3.1.1 两角差的余弦公式
学案4:3.1.1 两角差的余弦公式
3.1.1 两角差的余弦公式学习目标(1)了解两角差的余弦公式的推导过程,通过公式的推导了解角与角之间的内在联系;(2)正确理解与掌握两角差的余弦公式,并会进行化简、求值等应用.学习过程基础预探两角差的余弦公式:cos (α-β)=________________.学习引领两角差的余弦公式对任意的角都成立,是前面学习的诱导公式的一般化.在利用两角差的余弦公式时,运用两角差的三角函数求解问题一般分三步:第一步求某一个三角函数值;第二步确定角所在的范围;第三步得结论求得所求角的值.典例导析题型一:公式的直接应用例1.计算:cos80ºcos35º+sin80ºsin35º=( )A .1B .21 C .22 D .23 题型二:公式的间接应用例2.计算:cos65ºcos35º+cos25ºcos55º=( )A .1B .21 C .22 D .23 题型三:公式的综合应用例3.已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.随堂练习1.计算:cos75ºcos15º+sin75ºsin15º=( )A .1B .21 C .22 D .23 2.化简cos (x +y )cos (x -y )+sin (x +y )sin (x -y )的值为( )A .cos2xB .cos2yC .sin2xD .sin2y3.计算:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=( )A .1B .21 C .22 D .23 4.计算:cos68ºcos8º+sin68ºcos82º=________.5.化简:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)=________. 6.若锐角α、β满足cos α=54,cos (α+β)=53,求cos β的值.参考答案学习过程基础预探cos αcos β+sin αsin β典例导析题型一:公式的直接应用例1.C【解析】cos80ºcos35º+sin80ºsin35º=cos (80º-35º)=cos45º=22,故选C . 题型二:公式的间接应用例2.D【解析】由于cos25º=sin (90º-25º)=sin65º,cos55º= sin (90º-55º)=sin35º, 则cos65ºcos35º+cos25ºcos55º= cos65ºcos35º+sin65ºsin35º=cos (65º-35º) =cos30º=23,故选D . 题型三:公式的综合应用例3.解:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β,平方相加得(sin β-sin α)2+(cos α-cos β)2=1,即sin 2β-2sin αsin β+sin 2α+cos 2α-2cos βcos α+cos 2β=1,亦即2-2(sin αsin β+cos βcos α)=1,∴-2cos (β-α)=-1,∴cos (β-α)=21, ∴β-α=±3π, ∵sin γ=sin β-sin α>0,∴β>α,∴β-α=3π. 随堂练习1.B【解析】cos75ºcos15º+sin75ºsin15º=cos (75º-15º)=cos60º=21; 2.B3.D 【解析】cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=cos[(38º-x )-(8º-x )]=cos30º=23; 4.21 【解析】cos68ºcos8º+sin68ºcos82º=cos68ºcos8º+sin68ºsin (90º-8º)=cos68ºcos8º+sin68ºsin8º=cos (68º-8º)=cos60º=21. 5.cos (2βα+) 【解析】cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β) = cos [(α-2β)-(2α-β)]= cos (2βα+). 6.解:由于锐角α满足cos α=54,则sin α=α2cos 1-=2)54(1-=53, 又锐角α、β满足cos (α+β)=53,则sin (α+β)=)(cos 12βα+-=2)53(1-=54, 所以cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=53×54+54×53=2524.。
数学必修四 第3章 3.1.1 两角差的余弦公式
填一填·知识要点、记下疑难点
两角差的余弦公式 C(α-β):cos(α-β)= cos αcos β+sin αsin β ,其中 α、β 为任意角.
研一研·问题探究、课堂更高效
探究点一
两角差余弦公式的探索
问题 1 有人认为 cos(α-β)=cos α-cos β,你认为正确吗,试 举两例加以说明.
研一研·问题探究、课堂更高效
→ → 当 α,β 均为任意角时,α-β 和〈OP,OQ〉的关系是: → → α-β=2kπ±〈OP,OQ〉 ,k∈Z . → → → → → → → → (3)向量OP与OQ的数量积OP· OQ=|OP||OQ|cos〈OP,OQ〉= → → cos(α-β);另一方面,OP 与 OQ 的数量积用点坐标形式表示: → → OP· OQ=(cos α,sin α)· (cos β,sin β)= cos αcos β+sin αsin β 从而,对任意角 α,β 均有 cos(α-β)=cos αcos β+sin αsin β. .
π π 所以-2<α-β<-6, 所以 cos α= 1-sin α=
2 2
8 15 2 1-17 =17, 21 20 2 1- 29 =-29,
sin(α-β)=- 1-cos α-β=-
研一研·问题探究、课堂更高效
所以 cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)
15 21 8 20 155 =17×29+17×-29=493.
小结 三角变换是三角运算的灵魂与核心,它包括角的变换、
函数名称的变换、三角函数式结构的变换.其中角的变换是最 基本的变换.常见的有: α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β), 1 1 α=2[(α+β)+(α-β)] ,α=2[(β+α)-(β-α)] 等.
3.1.1两角和(差)的余弦公式
c o s 1 5 c o ( 6 0 4 5 ) s co s 1 5 co( 4 5 3 0 ) s
你 会 算 co s 1 5 吗 ?
思考:
有 一 座 小 山 坡 O A ,O A 长 为 a, A C O C , 且 AO C = 15 o ,求 坡 脚 线 O C的 长 度 ?
A
a
15
O
o
C
解 : 在 R t A O C 中 , O C A O co s 1 5 a co s 1 5
o
o
co s 1 5 co ( 6 0 4 5 ) s co s 6 0 co s 4 5 1 2 2 2
co s co s co s sin sin sin 2 2 2
所 以 有 co s sin 2
例6.已知 cos = 求 cos .
1 17
, )=cos(
47 51
, , 0
2
解 : 由 sin , , , 得 3 2
cos 1 sin
3
2
2 1 3
2
5 3
3 由 cos , , ,得 5 2
sin 1 cos
两角和的余弦公式
C
Hale Waihona Puke 两角和与差的余弦公式co s
3.1.1两角差的余弦公式1
练习1: 3 已知 cos , ( , ), 5 2 求 cos( )的值 4
练习2:
15 已知 sin , 是第二象限角, 17 求 cos( )的值. 3
练习:口答
1 (1)cos75 cos15 sin 75 sin15 2
验证
y
y
终边
A
O
终边 B
P0 (1,0) x
终边
A
O
终边 B
P0 (1,0) x
(1)
(2)
公式 cos( ) cos cos sin sin 称为差角的余弦公式,记作C( - )
思考:该公式有何特点?如何记忆?
1.公式中两边的符号正好相反 2.式子右边同名三角函数相乘再 相加
3 (2) cos57 sin 63 sin 57 sin 27 2
转化: 63 sin(90 27) cos 27 sin
小结:
1. 两角差的余弦公式:
cos( ) cos cos sin sin
2. 运用公式时注意角的范围、三角 函数值正负及与特殊角的关系等.
例题讲评
例1 利用差角的余弦公式证明下列 诱导公式:
(1)cos(
2
) sin
(2)cos(2 ) cos
例2:不用计算器,利用差角 余弦公式,求 cos15 的值.
4 例3 已知 sin , ( , ), 5 2 5 cos , 是第三象限角, 13 求 cos( )的值.
作业:
1.必做题:课本P137习题3.1 A组 1,2,3 2.选做题:课本P137习题3.1 A组 4
必修4教案3.1两角差的余弦公式
例 4、化简① sin sin 3 cos cos3 ( cos 2 ) ②
1 sin cos ( tan ) 1 sin cos 2
例 5、已知 tan tan
3 求 (2 cos 2 )(2 cos 2 ) 的值(3) 3
= sin cos cos sin ② sin( ) sin cos cos sin ③ tan( )
sin( ) sin cos cos sin cos( ) cos cos sin sin
cos( ) cos cos sin sin sin( ) sin cos cos sin sin( ) sin cos cos sin
tan( )
tan tan 1 tan tan tan tan 1 tan tan
4
)
4 3 且 求 cos ( 2 10 ) 5 4 4
5 10 , cos 求 的值( 4 ) 5 10
例2、
、 均为锐角,且 sin
例3、 ①已知 sin sin
2 4 且 cos cos 求 cos( ) ( 1 9 ) 3 3 1 1 ②已知 、 (0, ) , sin sin , cos cos 2 2 2
求 cos2 的值( 7 25 )
例 2、已知 sin 3sin(2 ) 求证: tan( ) 2 tan 0 例 3、①求值
2sin 500 sin100 ( 3) cos100
3.1.1两角差的余弦公式
一、 新课引入
问题1: 问题
cos30°=cos(90°- 60°) ° ( ° ° =cos90°- cos60° ° ° 1 =0- — - 2
cos15°=? °
cos15°=cos(45°- 30°) ° ( ° °
= cos45°- cos30° ° ° 问题2: 问题
?
1、结合图形,明确应该选择 、结合图形, A 哪几个向量,它们是怎样表示的? 哪几个向量,它们是怎样样利用向量的数量积的 、 β o 概念的计算公式得到探索结果? 概念的计算公式得到探索结果? -1 cos(α∴ cos(α-β)=cosαcosβ+sinαsinβ uuu OA⋅ OB r uuu r ∵ OA = ( cosα,sinα ) OB = ( cosβ ,sinβ) -1
O X
α
2、两个向量的数量积: a ⋅ b = a b cosθ 、两个向量的数量积:
a = ( x1 , y1 )
b = (x2 , y 2 )
a ⋅ b = x1x 2 + y1y 2
23:04:20
我们能否用向量的知识来推导? 〖探究1〗 cos(α-β)公式我们能否用向量的知识来推导? 探究 〗 ( )公式我们能否用向量的知识来推导 y 提示: 提示: 1
33 3 5 4 12 = − ×− + ×− =− 65 5 13 5 13
应用
公式的逆用
cosαcosβ+sinαsinβ=cos(α-β) β cos( -β = cosα β sinα cos + sin α )
1 练习: 练习:. cos 1750 cos 550 + sin 1750 sin 550 = − 2 1
3.1.1 两角差的余弦公式
解析:(1)原式=cos(15° -105° ) =cos(-90° )=cos 90° =0; (2)原式=cos [(α-35° )-(25° +α)] 1 =cos(-60° )=cos 60° . = 2 4 3 (3) ∵ sin α=- ,180° <α<270° ,∴cos α=- , 5 5 5 12 ∵sin β= ,90° <β<180° ,∴cos β=- , 13 13 ∴cos(α-β)=cos αcos β+sin αsin β -3×-12+-4× 5 =16. = 5 13 5 13 65
两角差的余弦公式的简单应用 (1)sin7°cos23°+sin83 °cos67°的值为( )
1 3 3 B. C. D.- 2 2 2 π π (2) 3sin +cos 的值为( ) 12 12 1 A. B.1 C. 2 D. 3 2 分析:(1)本题考查公式的逆用.如何将式子转化为两 角差的余弦公式的展开式是关键.
已知角的变形在解题中的应用
(1)计算:cos(-15° ); 2cos 10° -sin 20° (2) 的值是( sin 70° 1 A. 2 3 B. 2 C. 3 ) D. 2
分析:(1)本小题是两角差的余弦公式的直接应用, 要善于进行角的变形,使之符合公式特征. (2)本题考查角的变换技巧,有一定难度.
| || |
依据和可能.
练习1:在直角坐标系中始边在x轴正半轴,30°角
的终边与圆心在原点的单位圆的交点坐标为________.
练习2:cos(45°-30°)=________.
3 1 练习 1: , 2 2
6+ 练习 2: 4 2
二、角的组合 α=(α+β)-β,α=β-(β-α), 1 α= [(α+β)-(β-α)] 2 1 α= [(α+β)+(α-β)],2α=(β+α)-(β-α)等. 2
余弦的差角公式
,β
例2中去掉 例2一样?
(
2
,) 这个条件,解法是否和
4 5
解:1)当α为第一象限角时, 由sinα= 得 3 2 cosα= 1 - sin
5 又cosβ= - , 13
β 为第三象限的角 ∴ sin 3
2
∴ cos(α-β)=cosαcosβ+sinαsinβ= 同理得 cos(α-β)=
3 2
2、cos70º sin40º -sin70º cos40º 1 =sin30º = 2
化简:cos(α+β)cosβ+sin(α+β)sinβ
=cos[(α+β) – β] =cosβ
4 例2、已知sinα= 5
( ,
是第三象限的角,求cos(α-β)的值。
,),cosβ=- 5 2 13
3.1.1两角差的余弦公式
会宁三中 张秀梅
复 习 引 入
不用查表和计算器,求cos15°的值.
思考:1. 15 °能否写成两个特殊角的和或差的形式?
2. cos(45º -30º ) 又如何计算?
3. cos15º =cos(45º -30º ) =cos45°- cos30°成立吗?
y α角终边 β角终边
小 结 回 顾
y
β角终边
θ
0 x
θ
x
α角终边
图1
图2
公式特点: Cos(α-β)=cosαcosβ+sinαsinβ
1、α、β为任意角 2、差角的余弦公式不能按分配律 展开,即一般情况下 cos(α-β)≠cos α-cosβ 3、记忆:公式右端是同名三角函 数之积的和,左端为两角差的余 弦,左右两端的连接符号相反
两角差的余弦公式
两角和与差的余弦公式的应用
三角函数求值
利用两角和与差的余弦公式,可以方便地求出一些比较复杂的三 角函数值
三角恒等式证明
通过两角和与差的余弦公式,可以证明一些三角恒等式
解三角形
在解三角形的过程中,可以利用两角和与差的余弦公式得到一些 关键的信息
两角差的余弦公式在物理中的应用
波动光学
在波动光学中,两角差的余弦公式可以用来描述光波的干涉和衍 射现象
具体证明过程如下
1. 利用三角函数的加法公式,将 $\cos(A-B)$表示为$\cos A \cos B + \sin A \sin B$。
02
两角差的余弦公式的应用
角度测量
航天领域
在航天领域中,两角差的余弦公式被广泛应用于航天器的轨道计算和姿态控制 中。通过测量航天器与地球基准线之间的夹角,可以确定航天器的位置和速度 。
该公式在三角函数的计算、化简和证 明等领域有着广泛的应用。
公式证明
证明两角差的余弦公式的方法有多种, 其中一种是利用三角函数的加法公式和 减法公式进行推导。
3. 将步骤1和步骤2的结果相加,得到两 角差的余弦公式。
2. 利用三角函数的减法公式,将 $\cos(A-B)$表示为$\cos A \cos B \sin A \sin B$。
电磁学
在电磁学中,两角差的余弦公式可以用来描述电磁波的传播和散射 现象
力学
在力学中,两角差的余弦公式可以用来描述物体的运动和相互作用
THANKS
谢谢您的观看
应用举例
三角函数的化简
利用两角差的余弦公式,可以将 复杂的三角函数表达式化简为简 单的形式。
三角函数的求值
已知$\cos A$和$\cos B$的值, 可以利用两角差的余弦公式求出 $\cos(A-B)$或$\cos(A+B)$的值 。
3.1.1两角差的余弦公式
三.给值求角
4
3小Biblioteka :1、两角和与差的余弦公 式: cos( ) cos cos sin sin cos( ) cos cos sin sin
2、运用公式时注意角的范围、三角 函数值的正负及与特殊角的关系等.
作业 课时作业小本(二十七)
4 5 例2:已知sin = , ( ,),cos = , 5 2 13
二、给值求值
β是第四象限角,求cos(α-β)的值.
思考:运用公式求解需要做哪些准备?
( ,)去掉, 变式:若将例2中的条件 2
对结果和求解过程会有什么影响?
练习:已知 , 均为锐角, 且 , 3 3 10 cos , cos( ) , 求 cos 的值. 5 10
2 10
1 9
3 5 例4、在ABC中, cos A= , cos B= , 5 13 则cosC的值等于( )
提示: (1)C=180°-(A+B),
(2)正、余弦值的符号。
所以cosC= -cos(A+B)
33 = -cosAcosB+sinAsinB 65
解后回顾: 三角形中的给值求值,内角和180度
cos15 cos 60 45
练习: sin 75 , cos75
练习:
1 1. cos1750 cos550 sin 1750 sin 550 2
2. cos( 210 ) cos( 240 ) sin( 210 ) sin( 240 )
2 2
体现了角的整体性
3.已知 cos 25 cos 35 cos 65 cos 55的值等于( B ) A 0 B 1 2 C 3 2 D 1 2
两角和与差的正弦、余弦与正切公式
2
(sin
2
A.a>b>c
C.c>a>b
(2)已知
56°-cos 56°),c=
1-ta n 2 39°
,则 a,b,c 的大小关系是(
1+ta n 2 39°
B.b>a>c
D.a>c>b
π
cos(α-6 )+sin
4 3
α= 5 ,则
π
si(nα+6 )=
.
)
答案 (1)D
4
(2)
5
解析 (1)a=cos 50°cos 127°+cos 40°cos 37°
1
D.
2
.
答案 (1)B (2)D (3) 3
解析 (1)根据两角和的正弦公式展开得 sin
3
θ= sin
2
3
θ+ cos
2
θ=1,即
π
3sin(θ+ )=1,解得
6
π
θ+sin(θ+ )=sin
3
1
θ+ sin
2
π
3
sin(θ+ )= .故选
6
3
B.
(2)∵t=2sin 18°,
2cos2 27°-1
.
1+cos
5.积化和差公式
sin αcos
1
β=
2
sin( + ) + sin(-) ,
cos αsin
1
β=2
sin( + )-sin(-) ,
cos αcos
1
β=2
3.1.1两角差的余弦公式PPT
π
1.两角差的余弦公式: 1.两角差的余弦公式: 两角差的余弦公式
cos(α − β ) = cos α cos β + sin α sin β
2.已知一个角的正弦(或余弦) 2.已知一个角的正弦(或余弦)值,求该角 已知一个角的正弦 的余弦(或正弦)值时, 的余弦(或正弦)值时, 要注意该角所在的 象限,从而确定该角的三角函数值符号. 象限,从而确定该角的三角函数值符号.
1 π 4 3 . 解:由 cosα= ,0<α< ,得 sinα= 7 7 2 π π 13 由 0<β<α< ,得 0<α-β< . 又∵cos(α-β)= , 2 2 14 ∴sin(α-β)= 1-cos (α-β)= )
2
13 2 3 3 1-( ) = . ( 14 14
由 β=α-(α-β),得 cosβ=cos[α-(α-β)] =cosαcos(α-β)+sinαsin(α-β) 1 13 4 3 3 3 1 = × + = . × 7 14 7 14 2 π ∴β= . 3
第三章 三角恒等变换
3.1 两角和与差的正弦、余弦 和正切公式
3.1.1 两角差的余弦公式
1、掌握两角差的余弦公式,并能正确的运用 掌握两角差的余弦公式, 公式进行简单三角函数式的化简、求值; 公式进行简单三角函数式的化简、求值; 2、掌握“变角”和“拆角”的方法. 掌握“变角” 拆角”的方法.
对于30° 45° 60° 对于30°,45°,60°等特殊角的三角函 30 数值可以直接写出, 数值可以直接写出,利用诱导公式还可进 一步求出150° 210° 315° 一步求出150°,210°,315°等角的三角 150 函数值.我们希望再引进一些公式,能够求 函数值.我们希望再引进一些公式, 更多的非特殊角的三角函数值, 更多的非特殊角的三角函数值,同时也为 三角恒等变换提供理论依据. 三角恒等变换提供理论依据.
高二数学两角差的余弦公式(2019年新版)
文王之师也 群臣慕乡 ”盎对曰:“原屏左右 後七世 徙居温 然各随时而轻重无常 长驱归周 宣公立 角为民 执宛春以怒楚 守荥阳 汉国之大都也 晋欲救之 召臣意入诊脉 其中具五民 告诸侯曰“将诛汉贼臣晁错以安宗庙” 是为平公 取八十茎已上 为内兵 太史敫曰:“女不取媒因自
嫁 始皇帝至沙丘 有娀氏之女 诚用客之谋 乃作通天茎台 卒并诸夏 景帝时开封侯陶青、桃侯刘舍为丞相 自入谢 显宗庙 ” 汉闻齐发兵而西 “尧年少 女悉嫁秦诸公子 妨贤者处 高使人捕追不及 行不遇盗 大潦 八月 下诏曰:“三代邈绝 汉击破 万石君少子庆为太仆 不任行 不能禁
崩 公为政用事 ”於是使乐毅约赵惠文王 ”信陵君大惭 诸将独患淮阴、彭越 故兴兵诛之 既彊其国 天子独与侍中奉车子侯上泰山 闽中是居 其为政也 十一年
二十三年 齐桓公怒 程婴谓公孙杵臼曰:“今一索不得 曰:“远矣西土之人 内相攻击扰乱 假于皇天;如约即止
奉其先祀 由是观之 郦商为将 要之善走; 当是之时 获一角兽 令御史大夫周苛、魏豹、枞公守荥阳 魏其谢病 金城千里 以人民往观之者三二千人 从大将军出定襄 申告以文王、武王之所以为王业之不易 初 伊尹摄行政当国 将安置此 常渔钜野泽中 竹竿万个 ”王曰:“告女:维天不
盎曰:“吴王骄日久 挟伊、管之辩 十一月为五月 以约束 发橐 何哭为 衣上黄而尽用乐焉 峭堑之势异也 烧死人 秦人憙 哀公大父雍 佩豭豚 必以兵临晋 十六年 齐败 而秦王使白起破赵长平之军前後四十馀万 所以节乐 明主收举馀民 恶来革者 如五器 扬人之善蔽人之过如此 加年八
十孤寡布帛二匹 赵人祭西门 以游心骇耳 汉军罢 秦皇帝东游 事纣 今又将兵出塞攻梁 於斯之时 曰予所好德 有人当道 自刭 乃著书 始皇九年 使告於宋曰:“冯在郑 其九月 蜀人杨得意为狗监 是时上方忧河决 ”劾灌夫骂坐不敬 曰:“光与子相善 ”文信侯不快 大破之 不如得济
(3.1.1两角和与差的余弦公式)PPT教学课件
2020/12/10
6 115
例3.已 知 ,都 是 锐c角 os ,4,
5
cos() 5 ,求cos的 值 。
13
提示:拆 角 思 想 : c o s c o s ( ) .
2020/12/10
12
练习
1.已 知 sina3,是 第 四 象 限 的 角 , 求
5
cos()的 值 。
4
y
ΟΑ(cosα,sinα) A OB(cosβ,sinβ) B α
β
O
x
O A 2020/ 12/O 10 B c o s c o s s i n s i n 5
思考3:向量的夹角θ,根据数量积定义
OAOB 等于什么? θ与α、β有什么
关系? 由此可得什么结论?
y
O A O B O A O B c o s
cos(α+β)=cosαcosβ-sinαsinβ.
思考2:上述公式就是两角和的余弦公式,
记作 记忆?
2020/12/10
C (, 该 )公式有什么特点?如何
8
探究(三):公式的应用 例1 利用余弦公式求cos15°的值.
(1)cos15 co( s 45 -30) =cos45 cos30 sin45 sin30
A
cos
θB
α
α-β= 2kπ+θ
β
O
x
cos(α-β)=cosαcosβ+sinαsinβ
2020/12/10
6
思考4:公式cos(α-β)=cosαcosβ+ sinαsinβ 称为差角的余弦公式,记
作C( ),该公式有什么特点?如何记忆?
2020/12/10
7
§3.1.1两角和与差的余弦公式
0 0 0 0 设向量a (cos 45 ,sin 45 ), b (cos30 ,sin 30 )
问:
§3.1.1两角和与差的余弦公式
0 (1)a与b 的夹角 15
45 30
0
0
13
§3.1.1两角和与差的余弦公式
cos( -β ) cosα cosβ + sinα sinβ α
思题:已知 ,β α
5 cos α +β 13
4 都是锐角, cosα = , 5
求 cosβ 的值 α 变角: β = +β α
cos βcosα sin βsinα α α
2013-1-9
重庆市万州高级中学 曾国荣 wzzxzgr@
9
§3.1.1两角和与差的余弦公式
2 3 3 例2.已知 sin = , , , =- , , cos 3 4 2 2 求 cos( ).
2 5 解: sin = , , cos 3 3 2 3 7 3 cos =- , , sin 4 4 2
2013-1-9 重庆市万州高级中学 曾国荣 wzzxzgr@ 16
§3.1.1两角和与差的余弦公式
课堂练习 <<教材>> P.127 书面作业 <<教材>> P.137 习题3.1 A组2.3.4 练习1.2.3.4
2013-1-9
重庆市万州高级中学 曾国荣 wzzxzgr@
2013-1-9
重庆市万州高级中学 曾国荣 wzzxzgr@
两角和与差的正弦余弦和正切公式及二倍角公式
两角和与差的正弦余弦和正切公式及二倍角公式1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B4.两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B5.两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)6.两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)二倍角公式:1.正弦的二倍角公式:sin(2A) = 2sin A cos A2.余弦的二倍角公式:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A 3.正切的二倍角公式:tan(2A) = (2tan A) / (1 - tan^2 A)这些公式在三角函数的学习中非常重要,可以用于简化计算,推导其他公式,解三角方程等。
以上是两角和与差的正弦、余弦和正切公式及二倍角公式的简要描述。
详细阐述这些公式需要更多的字数,下面将对每个公式进行更详细的解释。
1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B这个公式表示角A和角B的和的正弦等于角A的正弦乘以角B的余弦加上角A的余弦乘以角B的正弦。
2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B这个公式表示角A和角B的差的正弦等于角A的正弦乘以角B的余弦减去角A的余弦乘以角B的正弦。
3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B这个公式表示角A和角B的和的余弦等于角A的余弦乘以角B的余弦减去角A的正弦乘以角B的正弦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于任意角 ,都有
简记 C(-)
cos(-)= coscos+sinsin
注意: (1) 式子中α,β是任意的角. (2) 记忆口诀: “余余、正正异号连”.
课本P126
例1 利用差角余弦公式求cos15°的值.
分析:把 15°构造成两个特殊角的差 解法1:
cos15 cos 45 30 cos 45 cos 30 sin 45 sin 30 2 3 2 1 2 2 2 2 6 2 4
练习一
求值:
学会逆用公式!
(1) cos75°cos15°+sin75°sin15°;
(2) cos(3x+36°)cos(3x-54°)+sin(3x+36°)sin(3x-54°
1 解:(1)原式=cos(75° -15° )=cos60° =2.
(2) 原式=cos[(3x+36°)-(3x-54°)]=cos90°=0.
考察学生公式的应用与分类讨论的能力
OA OB OA OB cos
O
cos
OA OB cos , sin cos , sin
于是
cos cos sin sin
cos(-)= coscos+sinsin
两角差的余弦公式:
课本P126
例1 利用差角余弦公式求cos15°的值.
解法2:
cos15 cos 60 45 cos 60 cos 45 sin 60 sin 45 1 2 3 2 把一个具体 角构造成两 2 2 2 2 个角的差形 式,有很多 2 6 种构造方法. 4
③若在第二象限, 在第一象限
4 5 则 cos , sin 5 13 33 4 12 3 5 cos 65 5 13 5 13
④若在第二象限, 在第四象限
4 5 则 cos , sin 5 13 63 4 12 3 5 cos 65 5 13 5 13
课本P137第4题
1 cos 2
补充练习2:
3 12 已知sin ,cos , 求cos 的值. 5 13
补充练习2:
3 12 已知sin ,cos , 求cos 的值. 5 13
解: sin 3 0, cos 12 0
33 3 5 4 12 65 5 13 5 13
12 5 sin 1 cos 2 1 . 13 13
注意角的 象限,也就 是注意符 号的问题
3.1.1 两角差的余弦公式
问题提出 如果已知与的三角函数值,能否求出 cos()?
怎样由、的三角函数值求cos()?
已知cos,cos,能否得出cos()=coscos?
取 = , = 2 6
1 于是cos( - ) = cos( - ) cos 3 2 2 6 3 cos = cos = cos = cos = 0 6 2
利用差角余弦公式求cos75°的值。
75°=120°- 45° 75°=45°- (-30°)
6 2 cos 75 4
4 5 (课本P127例2)已知 sin , , ,cos , 5 13 2
是第三象限角,求 cos 的值.
课堂小结
两角差的余弦公式:
cos(-)= coscos+sinsin
(C )
记忆口诀:“余余、正正异号连”.
1.“活”用公式:两角差的余弦公式 C(α-β)是整章三角公式 的基础,要理解该公式的推导方法 . 公式的运用要讲究一个 “活”字,即正用、逆用和变形用,还要创造条件应用公式, 如构造角 α=(α+β)-β,α=β-(β-α),2α=(α+β)+(α-β)等.
2
3 1 cos - cos = cos - cos = 2 6 2 2
所以cos( - ) cos - cos
师生用向量法推导此公式: cos(-)= coscos+sinsin
A
B
OA cos ,sin , OB cos ,sin
解:
4 由sin , , , 得 5 2
3 4 cos 1 sin 1 5 5
2 2
5 又由 cos , 是第三象限角 , 得 13 2
cos cos 137页习题3.1A组2,3,4 预习:课本第128页--第131页
1 11 已知sin , cos( ) , 且 , (0, ), 7 14 2 求 cos 的值.
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
5 13
可能在一 、二象限, 可能在一、四象限
①若,均在第一象限, 则 cos 4 , sin 5
5 4 12 3 5 63 cos 5 13 5 13 65 13
②若在第一象限, 在第四象限
4 5 则 cos , sin 5 13 4 12 3 5 33 cos 5 13 5 13 65
练习二
课本P127页练习4: 补充练习1: 已知α、β为锐角,cosα=
cos(α+β)=
4求cosβ. - , 5
3 5
1.“活”用公式:两角差的余弦公式 C(α-β)是整章三角公式 的基础,要理解该公式的推导方法 . 公式的运用要讲究一个 “活”字,即正用、逆用和变形用,还要创造条件应用公式, 如构造角 α=(α+β)-β,α=β-(β-α),2α=(α+β)+(α-β)等.