2020高考调研衡水中学一轮复习理科数学作业18当堂测验试题
2020届河北省衡水中学新高考原创精准模拟考试(十八)理科数学试卷
2020届河北省衡水中学新高考原创精准模拟考试(十八)理科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·拉萨中学]已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U A B =ð( )A .{}1,3,4B .{}3,4C .{}3D .{}42.[2019·黔东南州一模]12i 12i1i 1i-++=+-( ) A .1-B .i -C .1D .i3. [2019·济南模拟]已知双曲线2219x y m-=的一个焦点F 的坐标为()5,0-,则该双曲线的渐近线方程为( )A .43y x =±B .34y x =±C .53y x =±D .35y x =±4.[2019·贵州适应]2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况。
2020届河北省衡水中学高三高考押题理科数学试卷及答案
| 4 - x 22河北衡水中学 2020 年高考押题试卷理数试卷(一)第Ⅰ卷一、选择题:本题共 12 个小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A = {x ∈ Z 1≥ 0}, B = {x | ≤ 2x ≤ 4} ,则 A I B =( )x + 2 4A . {x | -1 ≤ x ≤ 2}B .{-1,0,1,2}C . {-2, -1,0,1,2}D .{0,1,2}2.已知 i 为虚数单位,若复数 z = 1 - ti1 + i在复平面内对应的点在第四象限,则 t 的取值范围为( )A . [-1,1]B . (-1,1)C . (-∞, -1)3.下列函数中,既是偶函数,又在 (-∞,0) 内单调递增的为()D . (1,+∞)A. y = x 4 + 2 x B . y = 2|x|C. y = 2 x - 2- x D . y = log | x | -11 24.已知双曲线 C : 1 x2 x2- y 2 = 1与双曲线 C:- y 2 = -1 ,给出下列说法,其中错误的是( ) 2A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列 {a } 中,“ a , a 是方程 x 2 + 3x + 1 = 0 的两根”是“ a = ±1 ”的()n 4128A .充分不必要条件B .必要不充分条件C.充要条件D .既不充分也不必要条件6.执行如图的程序框图,则输出的 S 值为()A.1009 B .-1009 C.-1007 D .10087.已知一几何体的三视图如图所示,则该几何体的体积为()A.πA.(-52B.a2+b2≥2ab(a>0,b>0)1ππ1π1+B.+1C.+D.+6312123438.已知函数f(x)=A s in(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的部分图象如图所示,则函数g(x)=A c os(ϕx+ω)图象的一个对称中心可能为()1111,0)B.(,0) C.(-,0)D.(-,0)26269.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,B C=b,则该图形可以完成的无字证明为()A.a+b≥ab(a>0,b>0)2abC.≤ab(a>0,b>0)a+b D.a+b a2+b2≤22(a>0,b>0)10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A.720B.768 C.810D.81611.焦点为F的抛物线C:y2=8x的准线与x轴交于点A,点M在抛物线C上,则当|MA||MF|取得最大值时,f ( x) = ⎨ x 2 + 2g ( x) = ax + 1 ,对 ∀x ∈ [-2,0] , ∃x ∈ [-2,1],使得 g ( x ) = f ( x ) ,则实数 ,3 < x ≤ 4, ⎪A . (-∞, - 1 14.已知实数 x , y 满足不等式组 ⎨ x + 2 y - 5 ≥ 0, 且 z = 2 x - y 的最大值为 a ,则 ⎰ a cos 2 ⎪ y - 2 ≤ 0,直线 MA 的方程为()A . y = x + 2 或 y = - x - 2C. y = 2 x + 2 或 y = -2 x + 2B . y = x + 2D . y = -2 x + 212.定义在 R 上的函数 f ( x ) 满足 f ( x + 2) = 2 f ( x ) ,且当 x ∈ [2,4] 时,⎧- x 2 + 4 x ,2 ≤ x ≤ 3, ⎪ 1 2 2 1⎩ xa 的取值范围为()1) U[ , +∞)8 8B . [- 1 1,0) U (0, ]4 8C. (0,8]1 1D . (-∞, - ] U[ , +∞)4 8第Ⅱ卷本卷包括必考题和选考题两部分,第 13 题~第 21 题为必考题,每个试题考生都必须作答.第 22 题和第 23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分.r r r r r r r13.已知 a = (1,λ ) , b = (2,1) ,若向量 2a + b 与 c = (8,6) 共线,则 a 和 b 方向上的投影为.⎧ x - y - 2 ≤ 0,⎪ π ⎩0 x 2dx = .15.在 ∆ABC 中,角 A , B , C 的对边分别为 a , b , c , b tan B + b tan A = -2c tan B ,且 a = 8 , ∆ABC的面积为 4 3 ,则 b + c 的值为.16.已知球 O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心) A - BCD 的外接球, BC = 3 ,AB = 2 3 ,点 E 在线段 BD 上,且 BD = 3BE ,过点 E 作圆 O 的截面,则所得截面圆面积的取值范围是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知 (1+ x) + (1+ x)2 + (1+ x)3 + L + (1+ x)n 的展开式中 x 的系数恰好是数列 {a } 的前 n 项和 S .n n(1)求数列 {a } 的通项公式;n(2)数列{b}满足b=n n(22a nan-1)(2a n+1-1),记数列{b}的前n项和为T,求证:T<1.n n n18.如图,点C在以AB为直径的圆O上,P A垂直与圆O所在平面,G为∆AOC的垂心.(1)求证:平面OPG⊥平面PAC;(2)若P A=AB=2A C=2,求二面角A-OP-G的余弦值.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20.已知椭圆C:x2y240+=1(a>b>0)的长轴长为6,且椭圆C与圆M:(x-2)2+y2=的公共弦长a2b29为4103.(1)求椭圆C的方程.(2)过点P(0,2)作斜率为k(k≠0)的直线l与椭圆C交于两点A,B,试判断在x轴上是否存在点D,使得∆ADB为以AB为底边的等腰三角形.若存在,求出点D的横坐标的取值范围,若不存在,请说明理由.21.已知函数f(x)=2ln x-2mx+x2(m>0).(1)讨论函数f(x)的单调性;23 ⎪ x =4 + 已知直线 l 的参数方程为 ⎨(2)当 m ≥ 3 2时,若函数 f ( x ) 的导函数 f '(x) 的图象与 x 轴交于 A , B 两点,其横坐标分别为 x ,1x ( x < x ) ,线段 AB 的中点的横坐标为 x ,且 x , x 恰为函数 h( x ) = ln x - cx 2 - bx 的零点,求证:212122( x - x )h '(x ) ≥ - + ln 2 . 1 2 0请考生在第 22、23 题中任选一题作答.并用 2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分 .22.选修 4-4:坐标系与参数方程⎧ 2 ⎪ 2⎪ y = 2 t ⎪⎩ 2 t,( t 为参数),以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系,圆 C 的极坐标方程为 ρ = 4cos θ ,直线 l 与圆 C 交于 A , B 两点.(1)求圆 C 的直角坐标方程及弦 AB 的长;(2)动点 P 在圆 C 上(不与 A , B 重合),试求 ∆ABP 的面积的最大值.23. 选修 4-5:不等式选讲.已知函数 f ( x ) =| 2 x - 1| + | x + 1| .(1)求函数 f ( x ) 的值域 M ;(2)若 a ∈ M ,试比较 | a - 1| + | a + 1| ,3 7, - 2a 的大小.2a 2即S=122参考答案及解析理科数学(Ⅰ)一、选择题1-5:BBDDA6-10:BCCDB11、12:AD二、填空题(本大题共4小题,每小题5分,共20分)13.3514.3π15.4516.[2π,4π] 5三、解答题17.解:(1)(1+x)+(1+x)2+(1+x)3+L+(1+x)n的展开式中x的系数为C1+C1+C1+L+C1=C2+C1+C1+L+C1=C2= 123n223n n+11n2+n,n 11n2+n,22所以当n≥2时,a=S-Sn n n-1=n;当n=1时,a=1也适合上式,1所以数列{a}的通项公式为a=n.n n(2)证明:b=n2n11=-(2n-1)(2n+1-1)2n-12n+1-1,所以Tn111111=1-+-+L+-=1-3372n-12n+1-12n+1-1,所以T<1.n18.解:(1)如图,延长OG交AC于点M.因为G为∆AOC的重心,所以M为AC的中点.因为O为AB的中点,所以OM//B C.因为AB是圆O的直径,所以BC⊥AC,所以OM⊥AC.因为P A⊥平面ABC,OM⊂平面ABC,所以P A⊥OM.又P A⊂平面PAC,AC⊂平面PAC,P A I AC=A,所以OM⊥平面PAC.即OG⊥平面PAC,又OG⊂平面OPG,所以平面OPG⊥平面PAC.z 13 1 3 3 1 ⎧ 3⎪ n ⋅ O M = - x = 0, ⎪ 2⎪n r ⋅ O P r = - 3 x + 1 y + 2 z = 0,H = CH cos ∠HCB = 3H = CH sin ∠HCB = uuur r| CH ⋅ n | 设二面角 A - OP - G 的大小为 θ ,则 cos θ = uuu r r = =uuur uuur uuur(2)以点 C 为原点,CB ,CA ,AP 方向分别为 x ,y ,轴正方向建立空间直角坐标系 C - xyz ,则 C (0,0,0) ,A(0,1,0) ,B( 3,0,0) ,O( uuuur uuur , ,0) ,P(0,1,2) ,M (0, ,0) ,则 OM = (- ,0,0) ,OP = (- , , 2) .2 2 2 2 2 2r uuuur r平面 OPG 即为平面 OPM ,设平面OPM 的一个法向量为 n = ( x , y , z) ,则 ⎨ uuu ⎪⎩ 2 2r令 z = 1,得 n = (0, -4,1) .过点 C 作 CH ⊥ AB 于点 H ,由 P A ⊥ 平面 ABC ,易得 CH ⊥ P A ,又 P A I AB = A ,所以 CH ⊥ 平面 P AB ,uuur即 CH 为平面 P AO 的一个法向量.1 3在 Rt ∆ABC 中,由 AB = 2 A C ,得 ∠ABC = 30︒ ,则 ∠HCB = 60︒ , CH = CB =2 2 .所以 x3 , y4 4.uuur 所以 CH = (3 3, ,0) . 4 43 3 | 0 ⨯ -4 ⨯ + 1⨯ 0 | 4 4| CH | ⋅ | n | 3 9+ ⨯ 42 + 12 16 162 5117.19.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则P( A ) = C 3 3 = C 3 101 120,C2C17=3所以E(X)=0⨯1~B(3,3所以4得∆ADB为以AB为底边的等腰三角形,则DE⊥AB.由⎨x2y2得(8+9k2)x2+36kx-36=0,故⎪+所以两位顾客均享受到免单的概率为P=P(A)⋅P(A)=114400.(2)若选择方案一,设付款金额为X元,则X可能的取值为0,600,700,1000.P(X=0)=C33=C31017,P(X=600)=,120C34010P(X=700)=C1C237=C31021C3,P(X=1000)=7=40C310724,故X的分布列为,72171+600⨯+700⨯+1000⨯=764(元).1204040246若选择方案二,设摸到红球的个数为Y,付款金额为Z,则Z=1000-200Y,由已知可得Y39),故E(Y)=3⨯=,101010所以E(Z)=E(1000-200Y)=1000-200E(Y)=820(元).因为E(X)<E(Z),所以该顾客选择第一种抽奖方案更合算.20.解:(1)由题意可得2a=6,所以a=3.由椭圆C与圆M:(x-2)2+y2=可得椭圆C经过点(2,±210),340=1,解得b2=8.+99b2x2y2所以椭圆C的方程为+=1.98409410的公共弦长为,恰为圆M的直径,3(2)直线l的解析式为y=kx+2,设A(x,y),B(x,y),AB的中点为E(x,y).假设存在点D(m,0),使112200⎧y=kx+2,⎪=1,⎩989k 2 + 8 9k 2 + 8- 09k 2 + 8-18k k 9k + 8 < x <x + x =- 1 2 36k 9k 2 + 8,-18k 16所以 x = , y = kx + 2 =0 0 0. 因为 DE ⊥ AB ,所以 k DE =- 1 k,161 即 =- ,- m9k 2 + 8所以 m = -2k -2 =9k 2 + 8 k.8当 k > 0 时, 9k + ≥ 2 9 ⨯ 8 = 12 2 ,k所以 -2 ≤ m < 0 ;12当 k < 0 时, 9k + 8 k≤ -12 2 ,所以 0 < m ≤ 2 12 .综上所述,在 x 轴上存在满足题目条件的点 E ,且点 D 的横坐标的取值范围为 [- 2 2,0) U (0, ] .12 122( x 2 - mx + 1)21. 解:(1)由于 f ( x ) = 2ln x - 2mx + x 2的定义域为 (0, +∞) ,则 f '(x) = .x对于方程 x 2 - mx + 1 = 0 ,其判别式 ∆ = m 2 - 4 .当 m 2 - 4 ≤ 0 ,即 0 < m ≤ 2 时, f '(x) ≥ 0 恒成立,故 f ( x ) 在 (0, +∞) 内单调递增.m ± m 2 - 4当 m 2 - 4 > 0 ,即 m > 2 ,方程 x 2 - mx + 1 = 0 恰有两个不相等是实根 x =,2m - m 2 - 4 m + m 2 - 4令 f '(x) > 0 ,得 0 < x < 或 x > ,此时 f ( x ) 单调递增;2 2m - m 2 - 4 m + m 2 - 4 令 f '(x) < 0 ,得 ,此时 f ( x ) 单调递减.2 2综上所述,当 0 < m ≤ 2 时, f ( x ) 在 (0, +∞) 内单调递增;当 m > 2 时, f ( x ) 在 ( m - m 2 - 4 m + m 2 - 4, )2 2xxx - xx x + x x - x 2 2 1 2 xt因为 m ≥ 3 2内单调递减,在 (0, m - m 2 - 4 m + m 2 - 4) , ( , +∞) 内单调递增.2 22( x 2 - mx + 1)(2)由(1)知, f '(x) = ,所以 f '(x) 的两根 x , x 即为方程 x 2 - mx + 1 = 0 的两根.因为1 2m ≥ 3 22,所以 ∆ = m 2 - 4 > 0 , x + x = m , x x = 1 .1 2 1 2又因为 x , x 为 h( x ) = ln x - cx 2 - bx 的零点,1 2所以 ln x - cx 2 - bx = 0 , ln x - c 2 - bx = 0 ,两式相减得 ln 1 11 2 22x1 - c( x - x )( x + x ) - b ( x - x ) = 0 ,得1 2 1 2 1 2 2x ln 1xb == c( x + x ) . 1 2 12而 h '(x) =1- 2cx - b ,所以xxln 11 2 x( x - x )h '(x ) = ( x - x )( - 2cx - b ) = ( x - x )[ - c( x + x ) -+ c( x + x )] 1 2 0 1 2 0 1 2 1 2 1 2 0 12 12x1 - 12( x - x ) x x= - ln 1 = 2 ⋅ 2 x + x x x 1 2 2 1 + 1 x2x - ln 1 .x 2令x1= t (0 < t < 1) ,由 ( x + x )2 = m 2 得 x 2 + x 2 + 2 x x 12121 22= m 2 ,因为 x x = 1 ,两边同时除以 x x ,得 t +1+ 2 = m 2 ,1 2 1 21 5 1 1,故 t + ≥ ,解得 0 < t ≤ 或 t ≥ 2 ,所以 0 < t ≤ .2 t 2 2 2设 G(t ) = 2 ⋅ t - 1 t + 1- ln t ,所以 G '(t ) =-(t - 1)2 t (t + 1)2 < 0 ,则 y = G(t ) 在 (0, 1 2] 上是减函数,所以 G(t ) min 1 2= G( ) = - + ln 2 , 2 33 圆 C 的参数方程为 ⎨ ( θ 为参数),y = 2sin θ ,123. 解:(1) f ( x ) = ⎨2 - x, -1 ≤ x ≤ ,2 ⎪⎩ 2 2 2 2即 y = ( x - x )h '(x ) 的最小值为 - 1 2 0 2 3 + ln 2 .2所以 ( x - x )h '(x ) ≥ - + ln2 .1 2 0 22.解:(1)由 ρ = 4cos θ 得 ρ 2 = 4ρ cos θ ,所以 x 2 + y 2 - 4 x = 0 ,所以圆 C 的直角坐标方程为 ( x - 2)2 + y 2 = 4 .将直线 l 的参数方程代入圆 C : ( x - 2)2 + y 2 = 4 ,并整理得 t 2 + 2 2t = 0 ,解得 t = 0 , t 1 2 = -2 2 .所以直线 l 被圆 C 截得的弦长为 | t 1 - t |= 2 2 .2(2)直线 l 的普通方程为 x - y - 4 = 0 .⎧ x = 2 + 2cos θ ,⎩可设曲线 C 上的动点 P(2 + 2cos θ ,2sin θ ) ,则点 P 到直线 l 的距离d = | 2 + 2cos θ -2sin θ - 4 |2 2 + 2 .π π=| 2cos(θ + ) - 2 | ,当 cos(θ + ) = -1 时,d 取最大值,且 d 的最大值为4 4所以 S∆ABP 1 ≤ ⨯ 2 2 ⨯ (2 + 2) = 2 + 2 2 ,2即 ∆ABP 的面积的最大值为 2 + 2 .⎧⎪ -3x, x< -1,⎪⎪ ⎪⎪1 3x, x > .根据函数 f ( x ) 的单调性可知,当 x = 1 1 3时, f ( x ) = f ( ) = . min所以函数 f ( x ) 的值域 M 3 = [ , +∞) .23 3(2)因为 a ∈ M ,所以 a ≥ ,所以 0< 2 2a又 | a - 1| + | a + 1| = a - 1 + a + 1 = 2a ≥ 3 , ≤ 1.所以a≥32,知a-1>0,4a-3>0,(a-1)(4a-3)37所以>0,所以>-2a,2a2a237所以|a-1|+|a+1|>>-2a.2a2。
2020届河北省衡水中学高三第一次教学质量检测数学(理)试题(解析版)
河北衡水中学2020年高三第一次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ()A.{}1,3- B.{}1,0C.{}1,3D.{}1,5【答案】C 【解析】 ∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B =I∴1x =是方程240x x m -+=的解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( )A. 1i +B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A. 1033 B. 1053 C. 1073 D. 1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 4.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.82(log 5.1),(2),(3)a g b g c g =-==,则,,a b c 的大小关系为( ) A. a b c << B. c b a <<C. b a c <<D. b c a <<【答案】C 【解析】 【分析】 根据奇函数()f x 在R 上是增函数可得()g x 为偶函数且在[)0,+∞上为增函数,从而可判断,,a b c 的大小.【详解】()gx 定义域为R .()()()()()g x xf x x f x xf x g x -=--=--==⎡⎤⎣⎦,故()g x 为偶函数.因为()f x 为R 上的奇函数,故()00f =,当0x >时,因为()f x 为R 上的增函数,故()()00f x f >=.设任意的120x x ≤<,则()()120f x f x ≤<,故()()1122x f x x f x <,故()()12g x g x <,故()gx 为[)0,+∞上的增函数,所以()()22log 5.1log 5.1a g g =-=,而0.82223log 8log 5.1log 422=>>=>,故()()()0.823log 5.12g g g >>,所以c a b >>.故选C.【点睛】本题考查函数的奇函数、单调性以及指对数的大小比较,注意奇函数与奇函数的乘积、偶函数与偶函数的乘积都是偶函数,指数对数的大小比较应利用中间数和对应函数的单调性来考虑. 5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A. {}|10x x -<≤B. {}|11x x -≤≤C.{}|11x x -<≤D.{}|12x x -<≤【答案】C 【解析】试题分析:如下图所示,画出2()log (1)g x x =+的函数图象,从而可知交点(1,1)D ,∴不等式()()f x g x ≥的解集为(1,1]-,故选C .考点:1.对数函数的图象;2.函数与不等式;3.数形结合的数学思想.6.设直线l 1,l 2分别是函数f(x)=ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P-2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A. (0,1) B. (0,2)C. (0,+∞)D. (1,+∞)【答案】A 【解析】 试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x Q ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.7.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. π B.3π4 C.π2D. π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径r ==由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 8.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A. 1 B. 2 C .4D. 8【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.9.设,m n u r r 为非零向量,则“存在负数λ,使得λ=u r r m n ”是“0m n ⋅<u r r”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】通过非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立,可判断出结论.【详解】解:,m n u r r 为非零向量,存在负数λ,使得λ=u r r m n ,则向量,m n u r r 共线且方向相反,可得0m n ⋅<u r r.反之不成立,非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立.∴,m n u r r为非零向量,则“存在负数λ,使得λ=u r r m n ”是0m n ⋅<u r r”的充分不必要条件. 故选:A.【点睛】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z =2x +y 的最小值是( )A. -15B. -9C. 1D. 9【答案】A 【解析】 【分析】作出不等式组表示的可行域,平移直线z =2x +y ,当直线经过B (-6,-3)时,取得最小值. 【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值 z min =-12-3=-15. 故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.11.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合,1e 、2e 分别为1C 、2C 的离心率,则( ) A. m n >且121e e > B. m n >且111e e < C. m n <且121e e > D. m n <且121e e <【答案】A 【解析】【分析】根据椭圆1C 和双曲线2C 的焦点重合得出222m n -=,可得出m 、n 的大小,再由离心率公式可得出12e e 与1的大小关系,进而可得出结论.【详解】由于椭圆1C 和双曲线2C 的焦点重合,则2211m n -=+,则2220m n -=>,1m >Q ,0n >,m n ∴>.1e ==Q 2e ==,121e e ∴====>, 故选:A.【点睛】本题考查利用椭圆和双曲线的焦点求参数的大小关系,同时也考查了两曲线的离心率之积的问题,考查计算能力,属于中等题.12.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A.1-B.32e --C.35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a e x ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦',因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e -=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx 的图象的交点个数是 . 【答案】7 【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3]x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个考点:三角函数图像14.如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM ,PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.考点:异面直线的夹角.15.在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3- 【解析】曲线2b y ax x=+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,{2,a b =-=-所以3a b +=-. 【考点】导数与切线斜率.16.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (在的上方),且2AB =.(Ⅰ)圆C 的标准方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 .(写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)①②③ 【解析】 (Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,, 令直线的方程为,此时,,所以,,,因为,,所以NAMA NBMB=.所以2221(21)22222NB MA NA MB -==-=-+, 222121222222NB MA NAMB+===-+ 正确结论的序号是①②③.考点:圆的标准方程,直线与圆的位置关系.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤. 17.某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+π2π3π22πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.【解析】(Ⅰ)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k Z ∈.令π22π6x k θ+-=,解得ππ212k x θ=+-,k Z ∈. 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k Z ∈.由0θ>可知,当1k =时,θ取得最小值π6. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.18. 某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.【答案】(1)25;(2)0.016.【解析】试题分析:解题思路:(1)通过茎叶图得出数据即可求解;(2)观察频率直方图中的各个矩形的高与面积即可. 规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出. 试题解析:(1)分数在[50,60)的频率为0.00810=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016. .考点:1.茎叶图;2.频率直方图.19.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G 是»DF的中点.(1)设P是»CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】(1)30o;(2)60o【解析】试题分析: (1)第(1)问,直接证明BE⊥平面ABP 得到BE⊥BP,从而求出∠CBP 的大小. (2)第(2)问,可以利用几何法求,也可以利用向量法求解. 试题解析: (1)因为AP⊥BE,AB⊥BE,AB ,AP ⊂平面ABP ,AB∩AP=A ,所以BE⊥平面ABP. 又BP ⊂平面ABP ,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)方法一:如图,取EC uuu r的中点H ,连接EH ,GH ,CH.因为∠EBC=120°,所以四边形BEHC 为菱形, 所以AE =GE =AC =GC =223213+=.取AG 的中点M ,连接EM ,CM ,EC , 则EM⊥AG,CM⊥AG,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13123-=. 在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,所以△EMC 为等边三角形, 故所求的角为60°. 方法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz. 由题意得A(0,0,3),E(2,0,0),G(133),C(-130), 故AE u u u r=(2,0,-3),AG u u u r =(13,0),CG u u u r=(2,0,3).设m u r=(x 1,y 1,z 1)是平面AEG 的一个法向量,由00m AE m AG ⎧⋅=⎨⋅=⎩u u u v v u u u v v可得11112300x z x -=⎧⎪⎨+=⎪⎩取z 1=2,可得平面AEG 的一个法向量m u r=(3,2).设n r=(x 2,y 2,z 2)是平面ACG 的一个法向量.由00n AG n CG u u u v v u u u v v ⎧⋅=⎨⋅=⎩可得22220230x x z ⎧=⎪⎨+=⎪⎩取z 2=-2,可得平面ACG 的一个法向量n =(32).所以cos 〈,m n u r r 〉=||||m n m n ⋅u r rur r =12. 故所求的角为60°.点睛:本题的难点主要是计算,由于空间向量的运算,所以大家在计算时,务必仔细认真.20.已知椭圆()2222:10x y E a b a b +=>>以抛物线28y x =的焦点为顶点,且离心率为12. (1)求椭圆E 的方程;(2)若直线:l y kx m =+与椭圆E 相交于A 、B 两点,与直线4x =-相交于Q 点,P 是椭圆E 上一点且满足OP OA OB =+u u u r u u u r u u u r(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP TQ ⋅u u u r u u u r 为定值?若存在,求出点T 的坐标及OP TQ ⋅u u u r u u u r的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定点T 的坐标为()1,0-. 【解析】 【分析】(1)求出抛物线的焦点坐标可得出a 的值,由椭圆E 的离心率可得c 的值,进而可得出b 的值,由此可求得椭圆E 的方程; (2)设点()11,Ax y 、()22,B x y ,将直线l 的方程与椭圆E 的方程联立,列出韦达定理,求出点P 的坐标,由点P 在椭圆E 上得出22443m k =+,并求出点Q 的坐标,设点(),0T t ,计算出OP TQ ⋅u u u r u u u r ,由OP TQ ⋅u u u r u u u r为定值求出t ,由此可求得定点T 的坐标.【详解】(1)抛物线28y x =的焦点坐标为()2,0,由题意可知2a =,且12c e a ==,1c ∴=,则b == 因此,椭圆E 的方程为22143x y +=;(2)设点()11,Ax y 、()22,B x y ,联立22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()2224384120k x kmx m +++-=, 由韦达定理得122843kmx x k +=-+,则()121226243m y y k x x m k +=++=+, ()12122286,,4343km m OP OA OB x x y y k k ⎛⎫=+=++=- ⎪++⎝⎭u u u r u u u r u u u r Q ,即点2286,4343kmm P k k ⎛⎫- ⎪++⎝⎭, 由于点P 在椭圆E 上,则222281611434433km m k k ⎛⎫⎛⎫-⋅+⋅= ⎪ ⎪++⎝⎭⎝⎭,化简得22443m k =+, 联立4y kx m x =+⎧⎨=-⎩,得44x y m k=-⎧⎨=-⎩,则点()4,4Q m k --,设在x 轴上是否存在一点(),0T t ,使得OP TQ ⋅u u u r u u u r为定值,()4,4TQ t m k =---u u u r ,()()()22284642188634342km t m m k k t ktm km m OP TQ k m m ++-+++⋅===++u u u r u u u r 为定值, 则10t +=,得1t=-,因此,在x 轴上存在定点()1,0T -,使得OP TQ ⋅u u u r u u u r为定值.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中存在定点满足某条件问题的求解,考查计算能力,属于中等题. 21.已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(1)a=1;(2)见解析. 【解析】 【分析】(1)通过分析可知f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,进而利用h ′(x )=a 1x -可得h (x )min =h (1a),从而可得结论;(2)通过(1)可知f (x )=x 2﹣x ﹣xlnx ,记t (x )=f ′(x )=2x ﹣2﹣lnx ,解不等式可知t (x )min =t (12)=ln 2﹣1<0,从而可知f ′(x )=0存在两根x 0,x 2,利用f (x )必存在唯一极大值点x 0及x 012<可知f (x 0)14<,另一方面可知f (x 0)>f (1e )21e=. 【详解】(1)解:因为f (x )=ax 2﹣ax ﹣xlnx =x (ax ﹣a ﹣lnx )(x >0), 则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,求导可知h ′(x )=a 1x-. 则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减, 所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.因为当0<x 1a <时h ′(x )<0、当x 1a>时h ′(x )>0, 所以h (x )min =h (1a),又因为h (1)=a ﹣a ﹣ln 1=0, 所以1a=1,解得a =1; 另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1), 所以等价于f (x )在x =1处是极小值, 所以解得a =1;(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f ′(x )=2x ﹣2﹣lnx ,令f ′(x )=0,可得2x ﹣2﹣lnx =0,记t (x )=2x ﹣2﹣lnx ,则t ′(x )=21x-, 令t ′(x )=0,解得:x 12=, 所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增, 所以t (x )min =t (12)=ln 2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2, 且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正, 所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0, 所以f (x 0)20x =-x 0﹣x 0lnx 020x =-x 0+2x 0﹣220x =x 020x -, 由x 012<可知f (x 0)<(x 020x -)max 2111224=-+=;由f ′(1e )<0可知x 0112e <<, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e)上单调递减, 所以f (x 0)>f (1e )21e=; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(Ⅰ)利用cos x ρθ=,sin y ρθ=化简即可求解;(Ⅱ)先将直线l 化成极坐标方程,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=,再利用根与系数的关系和弦长公式进行求解. 试题解析:(Ⅰ)化圆的一般方程可化为2212110x y x +++=.由cos x ρθ=,sin y ρθ=可得圆C 的极坐标方程212cos 110ρρθ++=.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈.设A ,B 所对应的极径分别为1ρ,2ρ,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=. 于是1212cos ρρα+=-,1211ρρ=.12AB ρρ=-==由AB =23cos 8α=,tan α=.所以l .23.已知函数()123f xx x =+--.(I )在答题卡图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,, 【解析】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解 试题解析:(Ⅰ)如图所示:(Ⅱ)()413{3212342x x f x x x x x -≤-=--<<-≥,,,()1f x >当1x ≤-,41x ->,解得5x >或3x <1x ∴≤-当312x -<<,321x ->,解得1x >或13x < 113x ∴-<<或312x <<当32x ≥,41x ->,解得5x >或3x <332x ∴≤<或5x > 综上,13x <或13x <<或5x >()1f x ∴>,解集()()11353⎛⎫-∞⋃⋃+∞ ⎪⎝⎭,,, 考点:分段函数的图像,绝对值不等式的解法。
2020届河北衡中同卷新高考押题模拟考试(十八)理科数学
2020届河北衡中同卷新高考押题模拟考试(十八)数学(理)试卷★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.已知集合A 4{|log (1)1}x x =+≤,{|21,}B x x k k Z ==-∈,则A B I =( )A. {}113-,, B. {1,3} C. {1,3}- D. {1,1}-【答案】B 【解析】 【分析】先确定出集合A ,再进行集合的交集运算即可得到答案 【详解】由()411log x +≤可得:014x <+≤解得13x -<≤,即](13A =-, {}|21,B x x k k Z Q ==-∈, 则{}13A B ,⋂=故选B【点睛】本题主要考查了对数不等式的解法,集合的交集运算,意在考查学生的运算求解能力,属于基础题.2.若函数()()22,0,,0x x f x g x x -⎧-<⎪=⎨>⎪⎩为奇函数,则()()2f g =( )A. 2-B. 2C. 1-D. 1【答案】B 【解析】Q 函数()()22,0,0x x f x g x x -⎧-<⎪=⎨>⎪⎩为奇函数,所以可得()()222,2222x g x g =-+=-+=-,()()2f g =()22222f -=-=,故选B .3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A. M N N =IB. ()U M N =∅I ðC. M N U =UD. ()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断.【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A .【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定. 4.某个几何体的三视图如图所示,则该几何体的体积为( )A. 83B.33C.43D.433【答案】C 【解析】 【分析】根据三视图可知几何体为三棱锥,根据三棱锥体积公式直接求得结果. 【详解】由三视图可知,几何体为高为2的三棱锥∴三棱锥体积:11142223323V Sh ==⨯⨯⨯⨯=本题正确选项:C【点睛】本题考查棱锥体积的求解,关键是能够根据三视图确定几何体的底面积和高,属于基础题. 5.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大; (2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A. 4 B. 3C. 2D. 1【答案】B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4).【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B.【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 6.计算sin133cos197cos47cos73︒︒+︒︒的结果为( )A.12B. 12-C.2D.【答案】B 【解析】 【分析】根据诱导公式,化简三角函数值;再根据正弦的差角公式合并即可得到解.【详解】sin133cos197cos 47cos73sin 47(cos17)cos 47sin17+=-+o o o oo o o o()sin 47cos17cos 47sin17=--o o o osin(4717)=--o o1sin 302=-=-o所以选B【点睛】本题考查了三角函数诱导公式、正弦差角公式的简单应用,属于基础题.7.学校就如程序中的循环体,送走一届,又会招来一级.老师们目送着大家远去,渐行渐远…….执行如图所示的程序框图,若输入64x =,则输出的结果为( )A. 2B. 3C. 4D. 5【答案】C 【解析】 【分析】由题意结合流程图运行程序确定输出的值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:64x =,1i =,此时满足0x >,执行21log 4,122x x i i ===+=; 此时满足0x >,执行21log 1,132x x i i ===+=;此时满足0x >,执行21log 0,142x x i i ===+=;此时不满足0x >,输出i 的值为4. 本题选择C 选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 8.下列命题错误的是( )A. 命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-= 无实数根,则0m ≤”;B. 若p q ∨为真命题,则,p q 至少有一个为真命题;C. “1x =”是“232?0x x -+=”的充分不必要条件;D. 若p q ∧为假命题,则,p q 均为假命题 【答案】D 【解析】对于A ,命题“若0m >,则方程20x x m +-=有实数根”的逆否命题是:“若方程20x x m +-= 无实数根,则0m ≤”,故命题正确;对于B ,因为p q ∨ 的真假判断是,p q 有真则真,所以命题正确;1x =对于,时,2320x x -+= ,2320x x -+= 时,1x = 或2,1x ∴=,是“2320x x -+=”的充分不必要条件,故命题正确;对于D ,若p q ∧为假命题,则p 为假命题,q 为真命题,或p 为真命题,q 为假命题,或,p q 均为假命题,∴命题错误,故选D.【方法点睛】本题主要考查充分条件与必要条件,“且命题”“或命题”的真假,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 9.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE AB AD λμ=+u u u ru u u r u u u r(λ、μ为实数),则22λμ+=( )A.58 B.14C. 1D.516【答案】A【解析】试题分析:11111113()22242444DE DA DO DA DB DA DA AB AB AD=+=+=++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以22135,,248λμλμ==-+=,选A.考点:向量表示10.己知函数()xxf xe=,若关于的方程2[()]()10f x mf x m++-=恰有3个不同的实数解,则实数m的取值范围是( )A. ()(),22,-∞⋃+∞ B.11,e⎛⎫-+∞⎪⎝⎭C.11,1e⎛⎫-⎪⎝⎭D. ()1,e【答案】C【解析】【分析】先画出函数()f x的图象,令()f x t=,由题意中的恰有3个不同的实数解,确定方程210t mt m++-=的根的取值情况,继而求出m的范围【详解】()xxf xe=Q,则()()21x xxxe xe xf xee--='=当()1x∈-∞,时,()0f x'>,()f x单调递增当()1x∈+∞,时,()0f x'<,()f x单调递减如图所示:令()f x t=,则有210t mt m++-=即()()110t m t+-+=解得1211t m t =-=-, 故101m e<-< 即111m e-<< 故选C【点睛】本题考查了复合函数根的情况,在解答此类题目时需要运用换元法,根据原函数图像,结合实数点的个数,确定方程根的取值范围,从而进行转化为方程根的情况,然后求解,本题需要进行转化,有一定难度.11.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C 的极坐标方程为ρcos(θ-3π)=1,M ,N 分别为曲线C 与x 轴、y 轴的交点,则MN 的中点的极坐标为( )A. (1,3B. (,)36πC. 3π⎫⎪⎪⎝⎭,D. 2⎛ ⎝⎭【答案】B 【解析】 【分析】先求出曲线C 的平面直角坐标系的方程,求出M N 、中点在平面直角坐标系的坐标,然后再求出其极坐标【详解】由cos 13πρθ⎛⎫-= ⎪⎝⎭可得:1cos sin 12ρθρθ+=∴曲线C 的直角坐标方程为112x y +=,即20x +-=故点M N 、在平面直角坐标系的坐标为()2003⎛⎫⎪ ⎪⎝⎭,,,∴点P 坐标为1⎛ ⎝⎭则极坐标为36P π⎛⎫⎪ ⎪⎝⎭, 故选B【点睛】本题主要考查了平面直角坐标系与极坐标之间的转化,只要掌握转化方法然后就可以计算出答案,较为基础.12.已知实数,x y 满足1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列关系式中恒成立的是( ) A. tan tan x y >B. ()()22ln 2ln 1x y +>+C.11x y> D. 33x y >【答案】D 【解析】 【分析】根据题意,由指数函数的性质分析可得x >y ,据此结合函数的单调性分析选项,综合即可得答案. 【详解】根据题意,实数x ,y 满足(12)x <(12)y ,则x >y ,依次分析选项:对于A ,y=tanx 在其定义域上不是单调函数,故tanx >tany 不一定成立,不符合题意;对于B ,若0>x>y ,则x 2+2>y 2+2不成立,故ln(x 2+2)>ln (y 2+2)不一定成立,不符合题意;对于C ,当x >y>0时,1x <1y,不符合题意;对于D ,函数y=x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意. 故选D .【点睛】本题考查函数的单调性的应用,关键是掌握并利用常见函数的单调性.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13.已知3sin 45x π⎛⎫-= ⎪⎝⎭则sin2x 的值为________. 【答案】725【解析】 【分析】利用二倍角的余弦函数公式求出cos 22x π⎛⎫- ⎪⎝⎭的值,再利用诱导公式化简,将cos 22x π⎛⎫- ⎪⎝⎭的值代入计算即可求出值.【详解】解:∵3sin 45x π⎛⎫-=⎪⎝⎭,2187cos 212sin 1242525x x ππ⎛⎫⎛⎫∴-=--=-= ⎪ ⎪⎝⎭⎝⎭, 则sin2x =cos 22x π⎛⎫- ⎪⎝⎭=725, 故答案为725. 【点睛】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.已知向量(1,2),(1,0),(3,4)a b c ===r r r,若λ为实数,()//a b c λ+r r r ,则λ=_____.【答案】12【解析】 【分析】由()·a b c λ+v v v=0计算可得. 【详解】∵()a b c λ+⊥v v v ,∴()·a b c λ+v v v=0,即3(1)80λλ++=, 解得311λ=-. 故答案为311-.【点睛】本题考查平面向量的数量积,解题关键是掌握向量垂直与数量积的关系,即0a b a b ⊥⇔⋅=r r r r.15.函数f (x )=1()3x -log 2(x +2)在区间[-1,1]上的最大值为________. 【答案】3 【解析】13x y ⎛⎫= ⎪⎝⎭与y=-log 2(x +2) 都是[-1,1]上的减函数,所以函数f (x )=13x⎛⎫⎪⎝⎭-log 2(x +2) 在区间[-1,1]上的减函数,∴最大值为:f (-1)=3 故答案为3.16.已知定义在R 上的奇函数()f x 满足()()f x f x π+=-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =()()()1g x x f x π=--在区间[],3ππ-上所有零点之和为___________.【答案】4π 【解析】【分析】由已知条件求出函数()f x 的周期性,将问题转化为函数图像交点个数问题,然后求和 【详解】()f x Q 为奇函数,()()()f x f x f x π∴+=-=- 故()()()2f x f x f x ππ+=-+=()f x ∴为周期为2π的函数函数()()()1g x x f x π=--在区间[],3ππ-上所有零点之和转化为 函数()y f x =与()1h x x π=-的交点横坐标之和 由()()2f x f x π+=-可得函数关于()0π,对称 ()1h x x π=-的图象关于点()0π,对称 如图所示:由图象可得共有4个交点 其和为224πππ+= 故答案4π【点睛】本题主要考查了函数的奇偶性,周期性和对称性以及零点的相关知识,将问题进行转化为求函数的交点问题,要掌握本题的解法,注意转化,有一定难度.三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤17.已知数列{}n a 的前n 项和为n S ,且22n n S a +=. (1)求数列{}n a 的通项公式;(2)若n n b na =,求数列{}n b 的前n 项和n T .【答案】(1) 2nn a =;(2) ()1122n n T n +=-⋅+.【解析】 【分析】(1)由题意结合递推关系式可得数列{}n a 是首项为2,公比为2的等比数列,则2nn a =. (2)由题意结合(1)的结论可得2nn b n =⋅.错位相减可得数列{}n b 的前n 项和()1122n n T n +=-⋅+.【详解】(1)22n n S a +=Q ①1122n n S a --∴+= ()2n ≥ ②①-②得1122n n n n n S S a a a ---=-=,则12nn a a -= ()2n ≥, 在①式中,令1n =,得12a =.∴数列{}n a 是首项为2,公比为2的等比数列,∴ 2n n a =.(2)2n n b n =⋅. 所以123122232n T =⋅+⋅+⋅+ ...+ ()1122n n n n --⋅+⋅,③则 2n T = 231222...⋅+⋅++ ()122n n --⋅+ ()1122n n n n +-⋅+⋅,④ ③-④得, 23222n T -=++ 11...222n n n n -++++-⋅,()1212212nn n +⋅-=-⋅-()12122n n n +=-⋅--⋅()1122n n T n +∴=-⋅+.【点睛】一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.18.郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”. (1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望附:()()()()()22n ad bc K a b c d a c b d -=++++,【答案】(1)没有理由认为“围棋迷”与性别有关;(2)分布列见解析,()34E X =.【解析】 【分析】(1)由频率分布直方图可填写22⨯列联表,计算观测值,比较临界值即可得出结论;(2)由频率分布直方图计算频率,将频率视为概率,得出13,4X B ⎛⎫~ ⎪⎝⎭,根据独立重复试验概率公式计算对应的概率,写出X 的分布列,利用二项分布的期望公式计算数学期望.【详解】(1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而2×2列联表如下:将2×2列联表中的数据代入公式计算,得:()()221112122121212100301045151003.0307525455533n n n n n n n n n χ++++-⨯⨯-⨯===≈⨯⨯⨯, 因为3.030 3.841<,所以没有理由认为“围棋迷”与性别有关;(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为14.由题意13,4X B ⎛⎫~ ⎪⎝⎭,从而X 的分布列为()13344E X np ==⨯=. 【点睛】求解离散型随机变量的数学期望的一般步骤:①“判断取值”,即判断随机变量的所有可能取值以及取每个值所表示的意义;②“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率加法公式、独立事件的概率公式以及对立事件的概率公式等),求出随机变量取每个值时的概率; ③“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;④“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 19.如图,已知四棱锥P ABCD -的底面为菱形,120BCD ∠=o AP BP =.(1)求证:PC AB ⊥;(2)若4PC =,42PD =,3cos 4PCB ∠=,求二面角B PC D --的余弦值. 【答案】(1)见解析;(2)27-. 【解析】 【分析】(1)设AB 中点为E ,由题易得,PAB ∆与CAB ∆为共用相同底边AB 的等腰三角形,由三线合一,证得AB PCE ⊥平面,由此证明PC AB ⊥.(2)由题可推导出,PE 、CE 和AB 两两垂直,建立空间直角坐标系,利用向量法求出二面角B PC D --的余弦值.【详解】(1)设AB 中点为E ,连接,依题意,,为等边三角形 ;; 平面又PE CE E ⋂=Q ,AB ∴⊥平面PCE ,(2)由(1)知:,,,,在中,,由余弦定理得,,由(1)知,,,又,平面,以E 为坐标原点,以向量分别为轴、轴、轴的正方向建立空间直角坐标系 ,则,,,设是平面的一个法向量,令, 设是平面的一个法向量,令,设二面角的平面角为,则又二面角为钝角 二面角的余弦值为27-【点睛】本题考查线线垂直的证明,考查二面角余弦值的求法,考查空间中线线、线面和面面间的位置关系等基础知识,考查运算求解能力,解题时要认真审题,注意向量法的合理运用.20.已知椭圆()22122:10x y C a b a b +=>>的左右顶点是双曲线222:13x C y -=的顶点,且椭圆1C 的上顶点到双曲线2C 的渐近线的距离为32. (1)求椭圆1C 的方程;(2)若直线l 与1C 相交于12,M M 两点,与2C 相交于12,Q Q 两点,且125OQ OQ ⋅=-u u u u r u u u u r,求12M M 的取值范围.【答案】(1) 2213x y +=(2)【解析】 【分析】()1由双曲线的顶点可得23a =,求出双曲线的渐近线方程,运用点到直线的距离公式可得1b =,即可得到椭圆方程()2设直线l 的方程为y kx m =+,联立双曲线方程,消去y ,运用韦达定理和判别式大于0,结合向量的数量积的坐标表示,求得k m ,的关系式,再由直线方程和椭圆方程联立,运用韦达定理和弦长公式,计算即可得到所求【详解】(1)由题意可知:23a =, 又椭圆1C 的上顶点为()0,b , 双曲线2C的渐近线为:0y x x =⇔±=,由点到直线的距离公式有:12b =⇒=,所以椭圆的方程为2213x y -=.(2)易知直线l 的斜率存在,设直线l 的方程为y kx m =+,代入2213x y -=,消去y 并整理得:()222136330k xkmx m ----=,要与2C 相交于两点,则应有:()()2222213036413330k k m k m ⎧-≠⎪⎨----->⎪⎩ 22213013k m k ⎧-≠⇒⎨+>⎩ 设()()111222,,,Q x y Q x y ,则有:122613km x x k +=-,21223313m x x k--⋅=-. 又12OQ OQ ⋅=u u u u v u u u u v()()12121212x x y y x x kx m kx m +=+++ ()()2212121kx xkm x x m =++++.又:125OQ OQ ⋅=-u u u u v u u u u v,所以有:()()2221[13313k m k+--+- ()2222613]5k m m k +-=-, 2219m k ⇒=-,②将y kx m =+,代入2213x y +=,消去y 并整理得:()222136330k x kmx m +++-=,要有两交点,则()22236413k m k ∆=-+ ()22233031mk m ->⇒+>.③由①②③有:2109k <≤设()133,M x y 、()244,M x y .有:342613km x x k -+=+,23423313m x x k -⋅=+12M M==将2219mk =-代入有:12M M =12M M ⇒=12M M ⇒=令2t k =,10,9t ⎛⎤∈ ⎥⎝⎦令()()()2113t t f t t +=+ ()()31'13tf t t -⇒=+,10,9t ⎛⎤∈ ⎥⎝⎦.所以()'0f t >在10,9t ⎛⎤∈ ⎥⎝⎦内恒成立,故函数()f t 在10,9t ⎛⎤∈ ⎥⎝⎦内单调递增,故()50,72f t ⎛⎤∈ ⎥⎝⎦(12M M ⇒∈. 【点睛】本题主要考查了椭圆和双曲线的方程和性质,主要考查了渐近线方程的运用,同时考查了直线和椭圆及双曲线方程的联立,运用韦达定理和弦长公式,考查了化简整理的运算能力,有一定的难度. 21.已知函数()2xe xf x a =-.(1)若1a =,证明:当0x ≥时,()1f x ≥;(2)若()f x 在()0+∞,有两个零点,求a 的取值范围. 【答案】(1)证明见解析.(2) 2,4e ⎛⎫+∞ ⎪⎝⎭.【解析】【详解】分析:(1)只要求得()f x 在0x ≥时的最小值即可证;(2)()0f x =在(0,)+∞上有两个不等实根,可转化为2xe a x =在(0,)+∞上有两个不等实根,这样只要研究函数2()xe h x x=的单调性与极值,由直线y a =与()y h x =的图象有两个交点可得a 的范围.详解:(1)证明:当1a =时,函数()2xf x e x =-.则()'2xf x e x =-,令()2xg x e x =-,则()'2xg x e =-,令()'0g x =,得ln2x =.当()0,ln2∈时,()'0h x <,当()ln2,∈+∞时,()'0h x >()()(ln 2)22ln 200g x g f x '∴≥=->∴> ()f x \在[)0,+∞单调递增,()()01f x f ∴≥=(2)解:()f x 在()0,+?有两个零点⇔方程20xe ax -=在()0,+?有两个根,⇔ 2xe a x=在()0,+?有两个根,即函数y a =与()2x eG x x=的图像在()0,+?有两个交点.()()32'x e x G x x-=,当()0,2x ∈时,()'0G x <,()G x 在()0,2递增 当()2,x ∈+∞时,()'0G x >,()G x 在()2,+?递增所以()G x 最小值为()224e G =,当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,()f x \在()0,+?有两个零点时,a 的取值范围是2,4e ⎛⎫+∞ ⎪⎝⎭. 点睛:本题考查用导数证明不等式,考查函数零点问题.用导数证明不等式可转化这求函数的最值问题,函数零点问题可转化为直线与函数图象交点问题,这可用分离参数法变形,然后再研究函数的单调性与极值,从而得图象的大致趋势.22.已知在平面直角坐标系xOy 中,直线l 的参数方程是26x t y t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=. (Ⅰ)求直线l 的普通方程与曲线C 的直角坐标方程; (Ⅱ)设(,)M x y 为曲线C 上任意一点,求x y +的取值范围.【答案】(Ⅰ)直线l 的普通方程为260x y -+=,曲线C 的普通方程为(222x y +=.(Ⅱ)2⎡-++⎣.【解析】分析:(Ⅰ)由26x ty t =⎧⎨=+⎩消去参数即可得到直线l 的普通方程;把ρθ=化为2cos ρθ=,可得曲线C 的直角坐标方程;(Ⅱ)据题意设点)Mθθ,则x y θθ+=+ 2sin 4πθ⎛⎫=+ ⎪⎝⎭,从而即可得到x y +的取值范围.解析:(Ⅰ)由26x ty t =⎧⎨=+⎩,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C 的普通方程为(222x y -+=.(Ⅱ)据题意设点)M θθ,则x y θθ+= 2sin 4πθ⎛⎫=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-+⎣.点睛:将参数方程化为普通方程的方法将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如22sin cos 1θθ+=.。
2020衡水中学高三一调数学(理)试题(含标准答案)
2019-2020学年度高三年级下学期一调考试数学(理科)试卷第Ⅰ卷(选择题 共60分)一、 选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U R =,集合{}22A y y x x R ==+∈,,集合(){}lg 1B x y x ==-,则阴影部分所示集合为( )A .[]12,B .()12,C .(12],D .[12), 2. 复数3a i z a i +=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若2πa -=,a b a =,aa c a =,则,,abc 的大小关系为A .c b a >>B .b c a >>C .b a c >>D .a b c >> 4.函数()x e x f xcos )112(-+=图象的大致形状是 A . B .C . D .5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( ) A .15B .815C .35D .3206.已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC u u u r u u u r⋅的值是( )A .2B .4C .8D .167.给出下列五个命题:①若p ∨q 为真命题,则p ∧q 为真命题;②命题“∀x >0,有e x ≥1”的否定为“∃x 0≤0,有e x 0<1”; ③“平面向量a ⃑ 与b 的夹角为钝角”的充分不必要条件是“a ⃑ •b <0”; ④在锐角三角形ABC 中,必有sinA +sinB >cosA +cosB ;⑤{a n }为等差数列,若a m +a n =a p +a q (m,n,p,q ∈N ∗),则m +n =p +q 其中正确命题的个数为( ) A .0B .1C .2D .38.已知定义在(0,)+∞上的函数()f x ,恒为正数的()f x 符合()()2()f x f x f x '<<,则(1)(2)f f 的取值范围为( ) A .(,2)e eB .211(,)2e eC .(3,e e )D .211(,)e e9.已知点(0,2)A ,抛物线C :24y x =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN =( )A .2:5B .1:2C .1:5D .1:310.定义12nnp p p +++L 为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111b b b b b b ++⋅⋅⋅+=( ) A .1011 B .112C .111D .111211.对于任意的实数[1,e]x ∈,总存在三个不同的实数[1,5]y ∈-,使得21ln 0y y xe ax x ---=成立,则实数a 的取值范围是( ) A .24251(,]e e e- B .4253[,)e eC .425(0,]eD .24253[,)e e e- 12.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论: ①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③第Ⅱ卷(共90分)二 、填空题:(本大题共4小题,每题5分,共20分)13.有一个底面圆的半径为1,高为2的圆柱,点O 1,O 2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点O 1,O 2的距离都大于1的概率为___.14.在数列{a n }中,若函数f (x )=sin 2xcos 2x 的最大值是a 1,且a n =(a n +1﹣a n ﹣2)n ﹣2n 2,则a n =_____.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。
2020届河北省衡水中学高三下学期一调考试数学理科试题(解析word版)
2019-2020学年度高三年级下学期一调考试数学(理科)试卷一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 已知全集U =R ,集合{}2|2A y y x x R ==+∈,,集合(){}lg 1B x y x ==-,则阴影部分所示集合为A. []12,B. ()12,C. (12],D. [12),【答案】B 【解析】【详解】试题分析:由函数,得到,由函数,得到,即,;全集,则.所以B 选项是正确的.考点:集合的运算.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 2. 复数3a iz a i+=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于 A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】先化简复数z ,再求得其共轭复数,令其虚部为12-,解得2a =,代入求解即可. 【详解】由题意得()()()()()331313331010a i i a i a ia z a a i i i ++++-=+=+=+--+, ∴()31311010a ia z +-=-,又复数z 的共轭复数的虚部为12-, ∴31102a +=,解得2a =. ∴5122z i =+,∴复数z 在复平面内对应的点位于第一象限. 故选A.【点睛】本题考查了复数的乘法运算,考查了复数的基本概念及复数的几何意义,属于基础题. 3. 若2,,aa a ab ac a π-===,则,,a b c 的大小关系为A. c b a >>B. b c a >>C. b a c >>D. a b c >>【答案】B 【解析】【详解】分析:首先确定a 的范围,然后结合指数函数的单调性整理计算即可求得最终结果. 详解:由题意可知:()2210,1a ππ-==∈,即1a <函数()xf x a =单调递减,则1a a a >,即a a a >,由于a a a >,结合函数的单调性可得:aa a a a <,即bc >,由于01a <<,故1a a <,结合函数的单调性可得:1aa a a >,即c a >,综上可得:,,a b c 的大小关系为b c a >> . 本题选择B 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 4. 函数()21cos 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( )A. B. C. D.【答案】B 【解析】 【分析】利用奇偶性可排除A 、C ;再由(1)f 的正负可排除D.【详解】()21e 1cos cos 1e 1e x x x f x x x -⎛⎫=-= ⎪++⎝⎭,()1e cos()1e x xf x x ----=-=+e 1cos e 1x x x -+ ()f x =-,故()f x 为奇函数,排除选项A 、C ;又1e(1)cos101ef -=<+,排除D ,选B. 故选:B.【点睛】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.5. 吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( ) A. 15B. 815C.35D.320【答案】D 【解析】【分析】“口香糖吃完时还剩2支香烟”即第四次取到的是口香糖且前三次有两次口香糖一次香烟,根据古典概型计算出其概率即可.【详解】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物, 基本事件总数:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况: 烟、糖、糖、糖:332118⨯⨯⨯=种 糖、烟、糖、糖: 332118⨯⨯⨯=种 糖、糖、烟、糖:323118⨯⨯⨯=种 包含的基本事件个数为:54, 所以,其概率为54336020= 故选:D【点睛】此题考查古典概型,解题关键在于弄清基本事件总数,和某一事件包含的基本事件个数,其本质在于计数原理的应用.6. 已知△ABC 外接圆的圆心为O ,若AB=3,AC=5,则AO BC ⋅的值是( ) A. 2 B. 4C. 8D. 16【答案】C 【解析】【分析】可画出图形,并将O 和AC 中点D 相连,O 和AB 的中点E 相连,从而得到,ODAC OE AB ,根据数量积的计算公式及条件可得出259·,?22AO AC AO AB ==,而()AO BC AO AC AB ⋅=⋅-,即可得出AO BC ⋅的值.【详解】如图,取AC 中点D,AB 中点E,并连接OD,OE, 则,ODAC OE AB ;∴ 2212519·,?2222AO AC AC AO AB AB ==== ∴ ()259822AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅=-= 故选C.【点睛】解题的关键是要熟练的运用数量积的公式cos a b a b θ⋅=以及三角形法则.7. 给出下列五个命题:①若p q ∨为真命题,则p q ∧为真命题;②命题“0x ∀>,有1x e ≥”的否定为“00x ∃≤,有01x e <”; ③“平面向量a 与b 的夹角为钝角”的充分不必要条件是“•0a b <”; ④在锐角三角形ABC 中,必有sin sin cos cos A B A B +>+;⑤{}n a 为等差数列,若()*,,,m n p q a a a a m n p q N +=+∈,则m n p q +=+其中正确命题的个数为 A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】根据或命题与且命题的性质判断①;根据全称命题否定的定义判断②;根据“ •0a b <,夹角有可能为π判断③;由2A B π+>,利用正弦函数的单调性判断④;根据特例法判断⑤.【详解】对于①,若p q ∨为真命题,则p 与 q 中至少有一个为真命题, p q ∧ 不一定为真命题,故错误.对于②,命题“:0p x ∀>,有1x e ≥”,则p ⌝为00x ∃>,有01x e < ,故错误. 对于③, 若 •0a b < 平面向量a ,b 的夹角为可能为π,故错误. 对于④,在锐角三角形ABC 中,必有02A B π<+<,即,22A B B A ππ>->-,所以sin cos sin cos A B B A ,>>,所以sin sin cos cos A B A B +>+,故正确;对于⑤,在等差数列{}n a 中,若,n a t t =为常数,则1234a a a a +=+满足,()*,,,m n p q a a a a m n p q N +=+∈,但是1234+=+不成立,即m n p q +=+ 不成立,故错误,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逻辑联接词的应用、全称命题的否定、向量的数量积、正弦函数的单调性以及等差数列的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 8. 已知定义在()0,∞+上的函数()f x ,恒为正数的()f x 符合()()()'2f x f x f x <<,则()()1:2f f 的取值范围为 A. (),2e e B. 11,2e e ⎛⎫⎪⎝⎭C. ()3,e eD. 211,e e ⎛⎫⎪⎝⎭【答案】D 【解析】 【详解】令()()()()2,xxf x f xg xh x ee==,则()()()2'2'0xf x f x h x e-=<,()()()''0xf x f xg x e-=>,()()()()12,12g g h h ∴,()()()()()()22421212111,,2f f f f f e e e e e f e∴∴<<,选D . 【方法点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.9. 已知点A (2,0),抛物线C :24x y =的焦点F .射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则:FM MN =( )A. 2B. 1:2C. D. 1:3【答案】C 【解析】【详解】抛物线C :x 2=4y 的焦点为F (0,1),定点A (2,0), ∴抛物线C 的准线方程为y=-1.设准线与y 轴的交点P ,则FM :MN =FP :FN , 又F (0,1),A (2,0), ∴直线FA 为:x +2y-2=0, 当y=-1时,x=4,即N (4,-1),FP FN ∴==, :FM MN=1:10. 定义12nn p p p +++为n 个正数1p 、2p 、…、n p 的“均倒数”,若已知正整数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111b b b b b b ++⋅⋅⋅+=( ) A.111 B.112C.1011D.1112【答案】C 【解析】【分析】由已知得()1221n n a a a n n S +++=+=,求出n S 后,利用当2n ≥时,1n n n a S S -=-即可求得通项n a ,最后利用裂项法即可求和. 【详解】由已知得12121nn a a n a =++++, ∴()1221n n a a a n n S +++=+=,当2n ≥时,141n n n a S S n -=-=-,验证知 当1n =时也成立,14n n a b n +∴==, 11111n n b b n n +∴=-⋅+,12231011111111111110122334101111b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴故选:C【点睛】本题是数列中的新定义,考查了n S 与n a 的关系、裂项求和,属于中档题. 11. 对于任意的实数[1,e]x ∈,总存在三个不同的实数[1,5]y ∈-,使得21ln 0yy xeax x ---=成立,则实数a 的取值范围是 A. 24251(,]e e e- B. 4253[,)e eC. 425(0,]eD. 24253[,)e e e- 【答案】B 【解析】【分析】原方程化为21ln yx y e a x -=+,令()[]ln ,1,xf x a x e x=+∈,令()[]21,1,5y g y y e y -=∈-,可得()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,利用导数研究函数()g y 的单调性,利用数形结合可得41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,得到关于a 不等式组,解出即可.【详解】0x ≠,∴原式可化为21ln y xy e a x-=+, 令()[]ln ,1,x f x a x e x =+∈时()()1ln '0,xf x f x x -=≥递增, 故()1,f x a a e⎡⎤∈+⎢⎥⎣⎦,令()[]21,1,5yg y y e y -=∈-,故()()1211'22yy y g y y ey e y y e ---=⋅-=-,故()g y 在()1,0-上递减,在()0,2上递增,在()2,5上递减,而()()()()244251,00,2,5g e g g g e e-====, 要使总存在三个不同的实数[]1,5y ∈-,使得21ln 0y y xe ax x ---=成立,即41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,故42514a e a e e ⎧≥⎪⎪⎨⎪+<⎪⎩,故4253a e e ≤<,实数a 的取值范围是4253,e e ⎡⎫⎪⎢⎣⎭,故选B.【点睛】本题考查了函数单调性、最值问题,考查导数的应用以及转化思想,是一道综合题. 转化与划归思想解决高中数学问题的一种重要思想方法,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将问题转化为41254,,a a e e e⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦.12. 如图,在正方体1111ABCDA B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论: ①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A. ①③B. ②④C. ①②④D. ①②③【答案】D 【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H , 连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1, 直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2直线A 1H 与该正方体各面所成角相等,均为arctan2,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确; 垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体, 所得截面为三角形或六边形,不可能为五边形.故④错误. 故选D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.二、填空题:(本大题共4小题,每题5分,共20分)13. 有一个底面圆的半径为1,高为2的圆柱,点12,O O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点12,O O 的距离都大于1的概率为___. 【答案】13【解析】【详解】到点12,O O 距离为1的点是半径为1的球面,所以所求概率为431=1-23=1V P V ππ=-球柱14. 在数列{a n }中,若函数f (x )=sin 2x2x 的最大值是a 1,且a n =(a n +1﹣a n ﹣2)n ﹣2n 2,则a n =_____. 【答案】a n =2n 2+n 【解析】【分析】()sin 23sin(2)f x x x x ϕ=+=+,可得13a =.由已知条件推出121n na a n n+-=+,然后求解数列的通项公式.【详解】解:()sin 23sin(2)f x x x x ϕ=+=+, 当222x k πϕπ+=+,k Z ∈,()f x 取得最大值3,13a ∴=.21(2)2n n n a a a n n +=---,21(1)22n n na n a n n +∴=+++,121n na a n n+-=+, n a n ⎧⎫∴⎨⎬⎩⎭是以131a =为首项,2为公差的等差数列,()321na n n∴=+- 2[32(1)]2n a n n n n ∴=+-=+, 故答案为:22n n +.【点睛】本题考查了数列递推关系、三角函数求值、法则求积,考查了推理能力与计算能力,属于中档题. 15. 秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边.若sin 2sin cos C A B =,且2b ,2,2c 成等差数列,则ABC 面积S 的最大值为____【解析】【分析】运用正弦定理和余弦定理可得a b =,再由等差数列中项性质可得2224a b c ==-,代入三角形的面积公式,配方,结合二次函数的最值求法,可得所求最大值.【详解】sin 2sin cos C A B =,∴2cos c a B =,因此2222,2a c b c a a b ac+-=⨯=∵2b ,2,2c 成等差数列,∴224b c +=,因此S ===,当285c =,即c =时,S 取得最大值12=,即ABC 面积S . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,以及等差数列中项性质,转化为求二次函数的最值是解题的关键,属于中档题.16. 过曲线22122:1(0,0)x y C a b a b-=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为M ,延长1F M 交曲线23:2(0)C y px p =>于点N ,其中1,C 3C 有一个共同的焦点,若10MF MN +=,则曲线1C 的离心率为________.【答案】51+ 【解析】 【分析】设双曲线的右焦点为2F ,根据曲线1C 与3C 有一个共同的焦点,得到抛物线方程, 再根据O 为12F F 的中点,M 为1F N 的中点,利用中位线定理,可得,2//OM NF ,22NF a =,21NF NF ⊥, 12NF b =.设(),N x y ,根据抛物线的定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2a ,然后在1ANF ∆中,利用勾股定理求解. 【详解】如图所示:设双曲线的右焦点为2F ,则2F 的坐标为(),0c , 因为曲线1C 与3C 有一个共同的焦点, 所以24y cx =,因为O 为12F F 的中点,M 为1F N 的中点, 所以OM 为12NF F ∆的中位线, 所以2//OM NF , 因OM a =,所以22NF a =又21NF NF ⊥,22,FF c = 所以12NF b =.设(),N x y ,则由抛物线定义可得2,2x c a x a c +=∴=-,过1F 点作x 轴的垂线,点(),N x y 到该垂线的距离为2NA a =,在1ANF ∆中,由勾股定理即得22244y a b +=, 即()()2224244c a c a c a-+=-,即210e e --=, 解得51e +=. 故答案为:51+ 【点睛】本题主要考查双曲线和抛物线的几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. 如图,在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知4c =,2b =,2cos c C b =,D ,E 分别为线段BC 上的点,且BD CD =,BAE CAE ∠=∠.(1)求线段AD 的长; (2)求ADE ∆的面积. 【答案】(1)6AD =215【解析】【详解】试题分析:(I )在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ; (II )根据角平分线性质得到2ABE ACE S AB S AC ∆∆==,又ABE ACE S BE S EC ∆∆=,所以2BE EC =,所以1433CE BC ==,42233DE =-=,再利用正弦形式的面积公式即可得到结果. 试题解析:(1)因为4c =,2b =,所以1cos 24b Cc ==.由余弦定理得22224161 cos244a b c aCab a+-+-===,所以4a=,即4BC=,在ACD∆中,2CD=,2AC=,所以2222cos6AD AC CD AC CD ACD=+-⋅⋅∠=,所以6AD=.(2)因为AE是BAC∠的平分线,所以1sin221sin2ABEACEAB AE BAES ABS ACAC AE CAE∆∆⋅⋅∠===⋅⋅∠,又ABEACES BES EC∆∆=,所以2BEEC=,所以1433CE BC==,42233DE=-=,又因为1cos4C=,所以215sin1cosC C=-=,所以115sin2ADES DE AC C∆=⨯⨯⨯=.18. 如图,在四棱锥P ABCD-中,底面ABCD是边长为2的菱形,60,90DAB ADP∠=︒∠=︒,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF平面PCE,并说明理由;(Ⅱ)当二面角D FC B--的余弦值为24时,求直线PB与平面ABCD所成的角.【答案】(1)见解析(2)60︒【解析】【分析】(Ⅰ)取PC 的中点Q ,连结EQ 、FQ ,得到故//AE FQ 且AE FQ =,进而得到//AF EQ ,利用线面平行的判定定理,即可证得//AF 平面PEC .(Ⅱ)以D 为坐标原点建立如图空间直角坐标系,设FD a =,求得平面FBC 的法向量为m ,和平面DFC 的法向量n ,利用向量的夹角公式,求得3a=,进而得到PBD ∠为直线PB 与平面ABCD 所成的角,即可求解.【详解】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由00m FC m CB ⎧⋅=⎨⋅=⎩得2030y az x y -=⎧⎪⎨-=⎪⎩,令1x =,则3y =23z =所以取231,3,m ⎛= ⎝⎭,显然可取平面DFC 的法向量()1,0,0n =,由题意:22cos ,41213m n a ==++,所以3a =. 由于PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD ,所以PBD ∠为直线PB 与平面ABCD 所成的角, 易知在Rt PBD ∆中,tan 3PDPBD a BD∠===,从而60PBD ∠=︒, 所以直线PB 与平面ABCD 所成的角为60︒.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.19. 如图,A 为椭圆22142x y +=的左顶点,过A 的直线l 交抛物线()220y px p =>于B 、C 两点,C 是AB 的中点.(1)求证:点C 的横坐标是定值,并求出该定值;(2)若直线m 过C 点,且倾斜角和直线l 的倾斜角互补,交椭圆于M 、N 两点,求p 的值,使得BMN ∆的面积最大.【答案】(1)证明见解析,定值1. (2) 928p = 【解析】【分析】(1)由题意可求()2,0A -,设()11,B x y 、()22,C x y ,l :2x my =-,联立直线与抛物线,利用C 是AB 的中点得122y y =,计算可得点C 的横坐标是定值;(2)由题意设直线m 的方程为213pm x m y ⎛⎫=--+ ⎪⎝⎭,联立方程,利用C 是AB 的中点,可得BMN AMN S S ∆∆=,根据三角形的面积公式以及基本不等式可求BMN ∆的面积最大值,由取等条件解得p 的值.【详解】(1)()2,0A -,过A 的直线l 和抛物线交于两点,所以l 的斜率存在且不为0,设l :2x my =-,其中m 是斜率的倒数,设()11,B x y 、()22,C x y ,满足222x my y px=-⎧⎨=⎩,即2240y pmy p -+=,0∆>且121224y y pm y y p+=⎧⎨=⎩,因为C 是AB 中点,所以122y y =,所以223pm y =,292m p =,所以222222133pm p x m m =⋅-=-=,即C 点的横坐标为定值1. (2)直线m 的倾斜角和直线l 的倾斜角互补,所以m 的斜率和l 的斜率互为相反数.设直线m 为213pm x m y ⎛⎫=--+ ⎪⎝⎭,即4x my =-+,联列方程224240x my x y =-+⎧⎨+-=⎩得()2228120m y my +-+=, ()()222848216960m m m ∆=-+=->,所以26m >;且12212282122m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩,∵点C 是AB 中点,∴BMN AMN S S ∆∆=, 设()2,0A -到MN的距离d =12MN y =-,12132AMNS MN d y y ∆=⋅⋅=-=26t m =-,AMN S ∆==≤=当且仅当8t =,214m =时取到, 所以9142p =,928p =. 法二:因为B 点在抛物线()220y px p =>上,不妨设2,2t B t p ⎛⎫⎪⎝⎭,又C 是AB 中点,则24,42t p t C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:224224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:28t p =,∴8414C p p x p -==为定值. (2)∵直线l 的斜率()02126tt k -==--,直线m 斜率'6t k =-, ∴直线m 的方程:()126t t y x -=--,即64x y t =-+,令6m t=代入椭圆方程整理得: ()2228120my my +-+=,设()11,B x y 、()22,C x y ,下同法一.【点睛】本题考查直线的方程和抛物线方程联立,注意运用椭圆的顶点坐标,运用韦达定理以及点到直线的距离公式,考查三角形的面积的最值求法,化简整理的运算能力,属于中档题.20. 某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较2K的观测值的大小加以说明.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1) ①9人②见解析;(2) 25m=【解析】【分析】(1)①根据分层抽样要求,先求从300人中抽取60人,其中“年龄达到35岁”的人数60 100300⋅,再求“年龄达到35岁” 中偶尔使用单车的人数45 20100⋅;②确定随机变量X的取值,计算X各个取值的概率,得分布列及数学期望.(2)对年龄m 是否达到35,m 是否达到25对数据重新整理(2⨯2联表),根据公式计算相应的2K ,比较大小确定.【详解】(1)①从300人中抽取60人,其中“年龄达到35岁”的有6010020300⨯=人,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为45209100⨯=. ②A 组这4人中得到礼品的人数X 的可能取值为0,1,2,3,相应概率为:()35395042C P X C ===,()12453910121C C P X C ===, ()2145395214C C P X C ===,()34391321C P X C ===. 故其分布列为∴()5105140123422114213E X =⨯+⨯+⨯+⨯=. (2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:35m =时,由(1)中的列联表,可求得2K 的观测值()22130012545755530015002520010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯.25m =时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:可求得2K 的观测值()22230067871133330021004920010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯. ∴21k k >,欲使犯错误的概率尽可能小,需取25m =.【点睛】本题考查分层抽样和独立性检验,随机变量的分布列及数学期望,考查统计知识理解掌握水平、对数据的处理能力及分析推理解决实际问题的能力.21. 已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围【答案】(Ⅰ)当12a ≤时, ()(0)1g x g b ≥=-;当 122e a <≤时, ()22ln(2)g x a a a b ≥--; 当2ea >时, ()2g x e a b ≥--.(Ⅱ) a 的范围为()2,1e -. 【解析】【详解】试题分析:(Ⅰ)易得()2,()2x x g x e ax b g x e a -='=--,再对分a 情况确定()g x 的单调区间,根据()g x 在[0,1]上的单调性即可得()g x 在[0,1]上的最小值.(Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,注意到(0)0,(1)0f f ==.联系到函数的图象可知,导函数()g x 在区间0(0,)x 内存在零点1x ,()g x 在区间0(),1x 内存在零点2x ,即()g x 在区间(0,1)内至少有两个零点. 由(Ⅰ)可知,当12a ≤及2ea ≥时,()g x 在(0,1)内都不可能有两个零点.所以122ea <<.此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,且必有(0)10,(1)20gb g e a b =->=-->.由(1)10f e a b =---=得:1b e a =--,代入这两个不等式即可得a 的取值范围.试题解答:(Ⅰ)()2,()2x x g x e ax b g x e a -='=--①当0a ≤时,()20xg x e a -'=>,所以()(0)1g x g b ≥=-. ②当0a >时,由()20x g x e a -'=>得2,ln(2)x e a x a >>. 若12a >,则ln(2)0a >;若2e a >,则ln(2)1a >. 所以当102a <≤时,()g x 在[0,1]上单调递增,所以()(0)1g x gb ≥=-. 当122e a <≤时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,所以()(ln 2)22ln 2g x g a a a a b ≥=--. 当2e a >时,()g x 在[0,1]上单调递减,所以()(1)2g x g e a b ≥=--. (Ⅱ)设0x 为()f x 在区间(0,1)内的一个零点,则由0(0)()0f f x ==可知,()f x 在区间0(0,)x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负.故()g x 在区间0(0,)x 内存在零点1x .同理()g x 在区间0(),1x 内存在零点2x .所以()g x 在区间(0,1)内至少有两个零点.由(Ⅰ)知,当12a ≤时,()g x 在[0,1]上单调递增,故()g x 在(0,1)内至多有一个零点. 当2e a ≥时,()g x 在[0,1]上单调递减,故()g x 在(0,1)内至多有一个零点. 所以122e a <<. 此时,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,因此12(0,ln(2)],(ln(2),1)x a x a ∈∈,必有(0)10,(1)20g b g e a b =->=-->.由(1)10f e a b =---=得:12a b e +=-<,有(0)120,(1)210g b a e g e a b a =-=-+>=--=->.解得21e a -<<.当21e a -<<时,()g x 在区间[0,1]内有最小值(ln(2))g a .若(ln(2))0g a ≥,则()0([0,1])g x x ≥∈,从而()f x 在区间[0,1]上单调递增,这与(0)(1)0f f ==矛盾,所以(ln(2))0g a <.又(0)20,(1)10g a e g a =-+>=->,故此时()g x 在(0,ln(2))a 和(ln(2),1)a 内各只有一个零点1x 和2x .由此可知()f x 在1[0,]x 上单调递增,在1(,x 2)x 上单调递减,在2[,1]x 上单调递增.所以1()(0)0f x f >=,2()(1)0f x f <=,故()f x 在1(,x 2)x 内有零点.综上可知,a 的取值范围是(2,1)e -.【考点定位】导数的应用及函数的零点.(二)选考题,满分共10分,请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑22. 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线1l 过原点且倾斜角为02παα⎛⎫< ⎪⎝⎭.以坐标原点O 为极点,x 轴正半轴为极轴建立坐标系,曲线2C 的极坐标方程为2cos ρθ=.在平面直角坐标系xOy 中,曲线2C 与曲线1C 关于直线y x =对称.(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若直线2l 过原点且倾斜角为3πα+,设直线1l 与曲线1C 相交于O ,A 两点,直线2l 与曲线2C 相交于O ,B 两点,当α变化时,求AOB 面积的最大值.【答案】(Ⅰ) 2sin ρθ= 34【解析】【分析】(Ⅰ)法一:将1C 化为直角坐标方程,根据对称关系用2C 上的点表示出1C 上点的坐标,代入1C 方程得到2C 的直角坐标方程,再化为极坐标方程;法二:将y x =化为极坐标方程,根据对称关系将1C 上的点用2C 上的点坐标表示出来,代入1C 极坐标方程即可得到结果;(Ⅱ)利用1l 和2l 的极坐标方程与12,C C 的极坐标方程经,A B 坐标用α表示,将所求面积表示为与α有关的三角函数解析式,通过三角函数值域求解方法求出所求最值.【详解】(Ⅰ)法一:由题可知,1C 的直角坐标方程为:2220x y x +-=,设曲线2C 上任意一点(),x y 关于直线y x =对称点为()00,x y ,所以00x y y x =⎧⎨=⎩ 又因为2200020x y x +-=,即2220x y y +-=,所以曲线2C 的极坐标方程为:2sin ρθ=法二:由题可知,y x =的极坐标方程为:4πθ=()R ρ∈, 设曲线2C 上一点(),ρθ关于4πθ= ()R ρ∈的对称点为()00,ρθ, 所以0024ρρθθπ=⎧⎪⎨+=⎪⎩ 又因为002cos ρθ=,即2cos 2sin 2πρθθ⎛⎫=-= ⎪⎝⎭, 所以曲线2C 的极坐标方程为:2sin ρθ=(Ⅱ)直线1l 的极坐标方程为:θα=,直线2l 的极坐标方程为:3πθα=+设()11,A ρθ,(),B ρθ22 所以2cos θαρθ=⎧⎨=⎩解得12cos ρα=,32sin πθαρθ⎧=+⎪⎨⎪=⎩解得22sin 3πρα⎛⎫=+ ⎪⎝⎭1211sin sin sin 2332AOB S ππρρααααα∆⎛⎫⎛⎫∴=⋅=⋅+=⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭223πααα⎛⎫=+=++ ⎪⎝⎭因为:02πα≤<,所以42333πππα≤+< 当232ππα+=即12πα=时,sin 213πα⎛⎫+= ⎪⎝⎭,AOB S ∆+34【点睛】本题考查轨迹方程的求解、三角形面积最值问题的求解,涉及到三角函数的化简、求值问题.求解面积的关键是能够明确极坐标中ρ的几何意义,从而将问题转化为三角函数最值的求解.23. 已知函数()121f x ax x =++-(1)当1a =时,求不等式()3f x >的解集;(2)若02a <<,且对任意x ∈R ,3()2f x a ≥恒成立,求a 的最小值. 【答案】(1)(,1)(1,)-∞-+∞;(2)1.【解析】 【分析】(1) 当1a =时,求出分段函数()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,然后可以选择数形结合求解或选择解不等式组;(2)当02a <<时,化简分段函数得()()()()12,,11 12122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩可以得到函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,然后利用最值分析法,即可求出参数a 的最小值.【详解】(1)当1a =时,()121f x x x =++-,即()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 解法一:作函数()121f x x x =++-的图象,它与直线3y =的交点为()()1,3,1,3A B -,所以,()3f x >的解集的解集为()(),11,-∞-⋃+∞.解法2:原不等式()3f x >等价于133x x <-⎧⎨->⎩ 或11223x x ⎧-≤≤⎪⎨⎪-+>⎩ 或1233x x ⎧>⎪⎨⎪>⎩, 解得:1x <-或无解或1x >,所以,()3f x >的解集为()(),11,-∞-⋃+∞.(2)1102,,20,202a a a a <<∴-+-<. 则()()()()12,,1112122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩ 所以函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 所以当12x =时,()f x 取得最小值,()min 1122a f x f ⎛⎫==+ ⎪⎝⎭. 因为对x R ∀∈,()32f x a ≥恒成立,所以()min 3122a f x a=+≥. 又因为0a >, 所以2230a a +-≥,解得1a ≥ (3a ≤-不合题意).所以a 的最小值为1.【点睛】本题第一问考查通过利用绝对值不等式的关系转化成分段函数进行求解的题目,求解的过程既可用数形结合,也可以用不等式组求解,属于简单题;第二问考查含参绝对值不等式求解参数的最值问题,因为本题的参数不容易分离,所以,选择最值分析法进行讨论求解,难度属于中等.。
2020届河北省衡水中学高三第一次调研考试数学(理)试题
绝密★启用前2020届河北省衡水中学高三第一次调研考试数学(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I卷(选择题)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数(为虚数单位),则()A.B.C.D.2.已知集合M={-1,0,1,2},N={x|}.则M∩N=()A.{0,1} B.{-1,0} C.{1,2} D.{-1,2}3.设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )A .月接待游客逐月增加B .年接待游客量逐年减少C .各年的月接待游客量高峰期大致在月D .各年月至月的月接待游客量相对于月至月,波动性较小,变化比较稳定5.在等差数列{a n }中,若2a 8=6+a 11,则a 4+a 6=( ) A .6 B .9C .12D .186.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+47.如图的程序框图,当输出15y 后,程序结束,则判断框内应该填( ) A .1x ≤ B .2x ≤ C .3x ≤D .4x ≤8. 在长方体ABCDA 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.310109. 已知某函数图象如图所示,则图象所对应的函数可能是( ) A .2xx y =B .22xy =-C .e xy x =- D .|2|2x y x =﹣10.将函数f (x )=2sin (2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y =g (x )的图象,若函数y =g (x )为偶函数,则函数y =f (x )在的值域为( )A .[﹣1,2]B .[﹣1,1]C .D .11.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为点12(,0),(,0)(0)F c F c c ->,抛物线24y cx =与双曲线在第一象限内相交于点P ,若212||||PF F F =,则双曲线的离心率为 A .B .1+C .D .12.若函数在区间上单调递增,则的最小值是( )A .-3B .-4C .-5D .第II 卷二、填空题(本题共4小题,每小题5分,共20分.) 13.已知,,与的夹角为,则__________.14.若,则__________.15.数列满足:的前项和为,则 _______.16.点(),M x y 在曲线22:4210C x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若a ,b +∈R ,则111a b++的最小值为_______.三、解答题(共70分,解答应写出文字说明、证明过程或演算过程.) 17.(本小题满分12分)已知函数21()cos )cos()2f x x x x ππ=-+-. (Ⅰ)求函数()f x 在[0,]π的单调递减区间;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C ,的对边分别为a ,b ,c ,已知()1f A =-,2a =,sin sin b C a A =,求ABC ∆的面积.18.(本小题满分12分)从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数,近似为样本方差.(ⅰ)利用该正态分布,求;(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求.附:.若,则,.19.(本小题满分12分)如图所示的几何体中,为三棱柱,且平面,四边形为平行四边形,.(1)若,求证:平面;(2)若,二面角的余弦值为,求三棱锥的体积.20.(本小题满分12分)已知,为椭圆的左右焦点,点为其上一点,且.求椭圆C的标准方程;若直线l:交椭圆C于A,B两点,且原点O在以线段AB为直径的圆的外部,试求k的取值范围.21.(本小题满分12分) 已知函数.(1)讨论的单调性; (2)当时,,记函数在上的最大值为,证明:.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4坐标系与参数方程 直线l 的极坐标方程为244sin =⎪⎭⎫⎝⎛-πθρ,以极点为坐标原点,极轴为x 轴建立直角坐标系,曲线C 的参数方程为⎩⎨⎧==ααsin 2cos 4y x (α为参数),(1)将曲线C 上各点纵坐标伸长到原来的2倍,得到曲线1C ,写出1C 的极坐标方程; (2)射线3πθ=与1C 和l 的交点分别为,M N ,射线32πθ=与1C 和l 的交点分别为,A B , 求四边形ABNM 的面积.23.(本小题满分10分)选修4-5不等式选讲已知关于x 的不等式||x -m +2x ≤0的解集为{x|x ≤- }2,其中m>0. (Ⅰ)求m 的值;(Ⅱ)若正数a ,b ,c 满足a +b +c =m ,求证:b 2a +c 2b +a2c ≥2.数学试题参考答案一、选择题:本大题共12小题,每小题5分.13.14.0 15.16. 1三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
河北省衡水中学2020届高三数学下学期一调考试试题 理(含解析)
河北省衡水中学2020届高三下学期一调考试数学(理科)一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】解一元二次不等式求得A,解指数不等式求得B,再根据两个集合的交集的定义求得. 【详解】因为集合,,所以,故选D.【点睛】该题考查的是有关集合的运算,属于简单题目.2.已知,是虚数单位,若,则()A. B. 2 C. D. 5【答案】C【解析】【分析】根据复数相等的充要条件,构造关于的方程组,解得的值,进而可得答案.【详解】因为,结合,所以有,解得,所以,故选C.【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.3.给出下列四个结论:①命题“,”的否定是“,”;②命题“若,则且”的否定是“若,则”;③命题“若,则或”的否命题是“若,则或”;④若“是假命题,是真命题”,则命题,一真一假.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】①写出命题“,”的否定,可判断①的正误;②写出命题“若,则且”的否定,可判断②的正误;写出命题“若,则或”的否命题,可判断③的正误;④结合复合命题的真值表,可判断④的正误,从而求得结果.【详解】①命题“,”的否定是:“,”,所以①正确;②命题“若,则且”的否定是“若,则或”,所以②不正确;③命题“若,则或”的否命题是“若,则且”,所以③不正确;④“是假命题,是真命题”,则命题,一真一假,所以④正确;故正确命题的个数为2,故选B.【点睛】该题考查的是有关判断正确命题的个数的问题,涉及到的知识点有命题的否定,否命题,复合命题真值表,属于简单题目.4.函数的图像大致是()A. B.C. D.【答案】A【解析】【分析】观察函数解析式,通过函数的定义域,特殊点以及当时,函数值的变化趋势,将不满足条件的选项排除,从而得到正确的结果.【详解】因为函数的定义域为R,故排除B,因为,所以排除C,当时,因为指数函数比对数函数增长速度要快,所以当时,有,所以排除D,故选A.【点睛】该题是一道判断函数图象的题目,总体方法是对函数解析式进行分析,注意从函数的定义域、图象所过的特殊点以及对应区间上函数图象的变化趋势,来选出正确的结果,注意对不正确的选项进行排除.5.已知图①②③中的多边形均为正多边形,,分别是所在边的中点,双曲线均以图中,为焦点.设图①②③中双曲线的离心率分别为,,,则()A. B.C. D.【答案】D【解析】【分析】分别根据正三角形、正方形、正六边形的性质,将用表示,然后利用双曲线的定义,求得,的等量关系,分别求出图示①②③中的双曲线的离心率,然后再判断的大小关系.【详解】图①中,;图③中,设正六边形的一个在双曲线右支上的顶点为,则,则;图②中,,,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.执行如图所示的程序框图,则输出的结果是()A. 2020B. -1010C. 1009D. -1009【答案】C【解析】【分析】根据程序框图,它的作用是求的值,根据结合律进行求解,可得结果.【详解】该程序框图的作用是求的值,而,故选C.【点睛】该题主要考查程序框图,用结合律进行求和,属于简单题目.7.已知某几何体的三视图如图所示,图中小方格的边长为1,则该几何体的表面积为()A. 65B.C.D. 60【答案】D【解析】【分析】由已知的三视图还原几何体为三棱柱截去三棱锥得到的,根据图中数据,计算表面积. 【详解】由三视图可知,该几何体为如下图所示的多面体,它是由直三棱柱截去三棱锥所剩的几何体,其中,所以其表面积为,故选D.【点睛】该题考查的是有关几何体的表面积的问题,涉及到的知识点有根据三视图还原几何体,锥体的表面积,属于简单题目.8.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A. B. C. D.【答案】C【解析】五个人的编号为由题意,所有事件共有种,没有相邻的两个人站起来的基本事件有,再加上没有人站起来的可能有种,共种情况,所以没有相邻的两个人站起来的概率为故答案选9.在中,角,,所对的边分别为,,,若,则()A. B. C. D.【答案】C【解析】在中,,由正弦定理得,,由余弦定理得,,,,,故选C.10.已知抛物线的焦点为,,是抛物线上的两个动点,若,则的最大值为()A. B. C. D.【答案】B【解析】【分析】利用余弦定理,结合基本不等式,即可求出的最大值.【详解】因为,,所以,在中,由余弦定理得:,又,所以,所以,所以的最大值为,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.11.已知当时,,则以下判断正确的是()A. B. C. D.【答案】C【解析】记,为偶函数且在上单调递减,由,得到即∴,即故选:C12.若存在一个实数,使得成立,则称为函数的一个不动点.设函数(,为自然对数的底数),定义在上的连续函数满足,且当时,.若存在,且为函数的一个不动点,则实数的取值范围为()A. B. C. D.【答案】B【解析】∵f(﹣x)+f(x)=x2∴令F(x)=f(x)﹣,∴f(x)﹣=﹣f(﹣x)+x2∴F(x)=﹣F(﹣x),即F(x)为奇函数,∵F′(x)=f′(x)﹣x,且当x0时,f′(x)<x,∴F′(x)<0对x<0恒成立,∵F(x)为奇函数,∴F(x)在R上单调递减,∵f(x)+≥f(1﹣x)+x,∴f(x)+﹣≥f(1﹣x)+x﹣,即F(x)≥F(1﹣x),∴x≤1﹣x,x0≤,∵为函数的一个不动点∴g(x0)=x0,即h(x)= =0在(﹣∞,]有解.∵h′(x)=e x-,∴h(x)在R上单调递减.∴h(x)min=h()=﹣a即可,∴a≥.故选:B点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本题共4小题.13.抛物线的准线方程为________.【答案】【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2P=1,∴其准线方程是y=,。
2020高考调研衡水中学一轮复习理科数学作业8当堂测验试题
题组层级快练(八)1.若函数y=(x+4)2在某区间上是减函数,则这区间可以是()A.[-4,0]B.(-∞,0]C.(-∞,-5] D.(-∞,4]答案 C2.若二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则f(x)的表达式为() A.f(x)=-x2-x-1 B.f(x)=-x2+x-1C.f(x)=x2-x-1 D.f(x)=x2-x+1答案 D解析设f(x)=ax2+bx+c(a≠0),由题意得c=1,a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x.故2a=2,a+b=0,c=1,解得a=1,b=-1,c=1,则f(x)=x2-x+1.故选D.3.已知m>2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2-2x的图像上,则() A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3答案 A4.已知函数f(x)=mx2+mx+1的定义域是实数集R,则实数m的取值范围是() A.(0,4) B.[0,4]C.(0,4] D.[0,4)答案 B解析因为函数f(x)=mx2+mx+1的定义域是实数集R,所以m≥0,当m=0时,函数f(x)=1,其定义域是实数集R;当m>0时,则Δ=m2-4m≤0,解得0<m≤4.综上所述,实数m的取值范围是0≤m≤4.5.已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是() A.(-∞,-1) B.(-1,2]C.[-1,2] D.[2,5)答案 C解析二次函数f(x)=-x2+4x的图像是开口向下的抛物线,最大值为4,且在x=2时取得,而当x=5或-1时,f(x)=-5,结合图像可知m的取值范围是[-1,2].6.(2019·杭州学军中学模拟)已知函数f(x)=x2+ax+b的图像过坐标原点,且满足f(-x)=f(-1+x),则函数f(x)在[-1,3]上的值域为()A.[0,12] B.[-14,12]C.[-12,12] D.[34,12]答案 B解析因为函数f(x)=x2+ax+b的图像过坐标原点,所以f(0)=0,所以b=0.因为f(-x)=f(-1+x),所以函数f(x)的图像的对称轴为x=-1 2,所以a=1,所以f(x)=x2+x=(x+12)2-14,所以函数f(x)在[-1,-12]上为减函数,在(-12,3]上为增函数,故当x=-12时,函数f(x)取得最小值-14.又f(-1)=0,f(3)=12,故函数f(x)在[-1,3]上的值域为[-14,12],故选 B.7.设abc>0,二次函数f(x)=ax2+bx+c的图像可能是() 答案 D解析若a>0,b<0,c<0,则对称轴x=-b2a>0,函数f(x)的图像与y轴的交点(0,c)在x轴下方.故选 D.8.(2019·山东济宁模拟)设函数f(x)=x2+bx+c(x≤0),2(x>0),若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.4 B.2C.1 D.3答案 D解析由解析式可得f(-4)=16-4b+c=f(0)=c,解得b=4. f(-2)=4-8+c=-2,可求得c=2.∴f(x)=x2+4x+2(x≤0),2(x>0).又f(x)=x,则当x≤0时,x2+4x+2=x,解得x1=-1,x2=-2.当x>0时,x=2,综上可知有三解.9.(2019·郑州质检)若二次函数y=x2+ax+1对于一切x∈(0,12]恒有y≥0成立,则a的最小值是()A.0 B.2C.-52D.-3答案 C解析设g(x)=ax+x2+1,x∈(0,12],则g(x)≥0在x∈(0,12]上恒成立,即a≥-(x+1x)在x∈(0,12]上恒成立.又h(x)=-(x+1x)在x∈(0,12]上为单调递增函数,当x=12时,h(x)max=h(12),所以a≥-(12+2)即可,解得a≥-52.10.若二次函数y=8x2-(m-1)x+m-7的值域为[0,+∞),则m=________.答案9或25解析y=8(x-m-116)2+m-7-8·(m-116)2,∵值域为[0,+∞),∴m-7-8·(m-116)2=0,∴m=9或25.11.(1)已知函数f(x)=4x2+kx-8在[-1,2]上具有单调性,则实数k的取值范围是________.答案(-∞,-16]∪[8,+∞)解析函数f(x)=4x2+kx-8的对称轴为x=-k8,则-k8≤-1或-k8≥2,解得k≥8或k≤-16.(2)若函数y=x2+bx+2b-5(x<2)不是单调函数,则实数b的取值范围为________.答案(-4,+∞)。
2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析
2019-2020学年高三第二学期一调数学试卷(理科)一、选择题1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.167.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.48.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.参考答案一、选择题(共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)解:集合A={y|y=x2+2,x∈R}=[2,+∞),集合B={x|y=lg(x﹣1)}=(1,+∞),图形阴影部分为∁U A∩B=(1,2),故选:B.2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵=,∴的虚部为﹣,由﹣=﹣,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c解:由题意0<a<1,故a<a a,故a a>,即b>c,而c=>a=π﹣2,故选:B.4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.解:在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为:P==.故选:D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.16解:如图,取AC中点D,AB中点E,并连接OD,OE,则:OD⊥AC,OE⊥AB;∴,;∴===8.故选:C.7.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.4解:①若p∨q为真命题的条件是p、q至少有一个是真命题,而p∧q为真命题的条件为p、q两个都是真命题,所以当p、q一个真一个假时,p∧q为假命题,所以①不正确;②命题“∀x>0,有e x≥1”的否定为“∃x0>0,有<1”;因此②不正确;③“平面向量与的夹角为钝角”⇒“”;反之不成立,平面向量与的夹角可能为平角.∴“平面向量与的夹角为钝角”的必要不充分条件是“”;因此不正确.④因为在锐角三角形中,∴π>A+B>,有>A>﹣B>0,所以有sin A>sin(﹣B)=cos B,即sin A>cos B,同理sin B>cos A,故sin A+sin B>cos A+cos B,所以④正确;⑤若等差数列{a n}为常数列,则m+n=p+q不一定成立,∴命题不正确.综上可得:只有④正确.故选:A.8.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.解:令g(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f(x)<f′(x),∴g′(x)==>0,∴g(x)=在区间(0,+∞)上单调递增,∴g(1)=<=g(2),∴<①;再令h(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f′(x)<2f(x)恒成立,∴h′(x)==<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)=>=h(2),∴>②,综上①②可得:<<.故选:D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:3解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,∴=2,可得|PN|=2|PM|,得|MN|==|PM|,因此可得|FM|:|MN|=|PM|:|MN|=1:.故选:C.10.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选:C.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)解:y2xe1﹣y﹣ax﹣lnx=0可化为:,设g(y)=(﹣1≤y≤5),则g′(y)=,即函数g(y)在(﹣1,0),(2,5)为减函数,在(0,2)为增函数,又g(﹣1)=e2,g(2)=,g(5)=,设f(x)=a+(x∈[1,e]),f′(x)=,即函数f(x)在[1,e]为增函数,所以a≤f(x)≤a,对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx=0成立,即对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得成立,即a+∈[,)对于任意的实数x∈[1,e]恒成立,即,即,故选:B.12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③解:如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P===1﹣=;故答案为:14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=2n2+n.解:f(x)=sin2x+2cos2x=3sin(2x+φ),当2x+φ=2kπ+,k∈Z,f(x)取得最大值3,∴a1=3.a n=(a n+1﹣a n﹣2)n﹣2n2,∴na n+1=(n+1)a n+2n2+2n,﹣=2,∴a n=n[3+2(n﹣1)]=2n2+n,故答案为:2n2+n.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为解:sin C=2sin A cos B,∴c=2a cos B.因此c=2a•,∵b2,2,c2成等差数列∴b2+c2=4,即有a2=b2=4﹣c2,因此S===,当c2=即c=时,S取得最大值×=,即△ABC面积S的最大值为,故答案为:.16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.解:设双曲线的右焦点为F,则F的坐标为(c,0),∵曲线C1与C3有一个共同的焦点,∴y2=4cx,∵,∴=,则M为F1N的中点,∵O为F1F的中点,M为F1N的中点,∴OM为△NF1F的中位线,∴OM∥PF,∵|OM|=a,∴|NF|=2a又NF⊥NF1,|F1F|=2c,∴|NF1|=2b,设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a.由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2),得e2﹣e﹣1=0,∴e=.故答案为:.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解:(1)根据题意,b=2,c=4,2c cos C=b,则cos C==;又由cos C===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CD cos C=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cos C=,则sin C==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.解:(Ⅰ)在棱AB上存在点E,使得AF∥平面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且FQ=CD,AE∥CD且AE=CD,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.3分所以,AF∥EQ,又EQ⊂平面PEC,AFα平面PEC,所以,AF∥平面PEC.5分(Ⅱ)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且平面ADP⊥平面ABCD,平面ADP∩平面ABCD=AD,所以PD⊥平面ABCD,故以D为坐标原点建立如图空间直角坐标系,7分设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),B(,1,0),=(0,2,﹣a),=(),设平面FBC的法向量为=(x,y,z),则由,令x=1,则y=,z=,所以取=(1,,),平面DFC的法向量=(1,0,0),l因为二面角D﹣FC﹣B的余弦值为,所以由题意:|cos<>|===,解得a=.10分由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,由题意知在Rt△PBD中,tan∠PBD==a=,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.12分19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.解:(1)由题意可知A(﹣2,0),设B(x1,y1),C(x2,y2),∵过A的直线l交抛物线于两点,∴直线l的斜率存在且不为0,设l:x=my﹣2,联立方程,消去x得,y2﹣2pmy+4p=0,∴y1+y2=2pm,y1y2=4p,∵点C是AB的中点,∴y1=2y2,∴,,∴4p=,∴,∴2pm2=9,∴x2=my2﹣2=﹣2=1,∴点C的横坐标为定值1;(2)直线m的倾斜角和直线l的倾斜角互补,所以直线m的斜率和直线l的斜率互为相反数,又点C(1,),所以设直线m的方程为:x=﹣m(y﹣)+1,即x=﹣my+4,设M(x1,y2),N(x2,y2),联立方程,消去x得,(m2+2)y2﹣8my+12=0,∴△=(8m)2﹣48(m2+2)=16m2﹣96>0,解得m2>6,∴,,∴|MN|===4,∵点C是AB的中点,∴S△BMN=S△AMN,设点A(﹣2,0)到直线MN的距离为d,则d ==,∴S△BMN=S△AMN ==4×=12,令t=m2﹣6,∴S△BMN=12=12≤12=,当且仅当t =,即t=8,m2=14时,等号成立,∴2p×14=9,∴p =.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①由分层抽样性质得:从300人中抽取60人,其中“年龄达到35岁“的人数为:100×=20人,”年龄达到35岁”中偶而使用单车的人数为:=9人.②A组这4人中得到礼品的人数X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123P∴E(X)==.(2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到35岁12575200达到35岁5545100合计180120300m=35时,K2的观测值:k1===.m=25时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到25岁6733100达到25岁11387200合计180120300 m=25时,K2的观测值:k2==,k2>k1,欲使犯错误的概率尽量小,需取m=25.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.解:(Ⅰ)由题可知,C1的直角坐标方程为:x2+y2﹣2x=0,设曲线C2上任意一点(x,y)关于直线y=x对称点为(x0,y0),∴,又∵,即x2+y2﹣2y=0,∴曲线C2的极坐标方程为:ρ=2sinθ;(Ⅱ)直线l1的极坐标方程为:θ=α,直线l2的极坐标方程为:.设A(ρ1,θ1),B(ρ2,θ2).∴,解得ρ1=2cosα,,解得.∴==.∵0≤α<,∴<.当,即时,sin()=1,S△AOB取得最大值为:.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.解:(1)当a=1时,f(x)=|x+1|+|2x﹣1|,即;解法一:作函数f(x)=|x+1|+|2x﹣1|的图象,它与直线y=3的交点为A(﹣1,3),B (1,3),如图所示;所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);解法二:原不等式f(x)>3等价于或或,解得:x<﹣1或无解或x>1,所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);(2)由0<a<2,得﹣<,a+2>0,且a﹣2<0;所以f(x)=|ax+1|+|2x﹣1|=,所以函数f(x)在上单调递减,在上单调递减,在上单调递增;所以当时,f(x)取得最小值,且;因为对∀x∈R,恒成立,所以;又因为a>0,所以a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),所以a的最小值为1.。
2020高考调研衡水中学一轮复习理科数学作业87当堂测验试题
题组层级快练(八十七)(第一次作业)1.随机变量X 的分布列为则E(5X +4)等于( ) A .15 B .11 C .2.2 D .2.3答案 A解析 ∵E(X)=1×0.4+2×0.3+4×0.3=2.2,∴E(5X +4)=5E(X)+4=11+4=15. 2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E(X)等于( ) A.35 B.815 C.1415 D .1 答案 A解析 离散型随机变量X 服从N =10,M =3,n =2的超几何分布,∴E(X)=nM N =2×310=35.3.一套重要资料锁在一个保险柜中,现有n 把钥匙依次分给n 名学生依次开柜,但其中只有一把真的可以打开柜门,平均来说打开柜门需要试开的次数为( ) A .1 B .n C.n +12D.n -12答案 C解析 已知每一位学生打开柜门的概率为1n ,∴打开柜门需要试开的次数的平均数(即数学期望)为1×1n +2×1n +…+n ×1n =n +12,故选C.4.某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分;命中次数为X ,得分为Y ,则E(X),D(Y)分别为( ) A .0.6,60 B .3,12 C .3,120D .3,1.2答案 C解析 X ~B(5,0.6),Y =10X ,∴E(X)=5×0.6=3,D(X)=5×0.6×0.4=1.2.D(Y)=100D(X)=120.5.(2019·银川一模)已知随机变量X 的分布列如表所示,其中α∈(0,π2),则E(X)=( )A.2 C .0 D .1答案 D解析 由随机变量的分布列的性质,得sinα4+sinα4+cosα=1,即sinα+2cosα=2,由⎩⎪⎨⎪⎧sinα=2-2cosα,sin 2α+cos 2α=1,得5cos 2α-8cosα+3=0,解得cosα=35或cosα=1(舍去),则sinα=45,则E(X)=-sinα4+2cosα=-14×45+2×35=1.故选D.6.(2018·浙江)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D(ξ)减小 B .D(ξ)增大C .D(ξ)先减小后增大D .D(ξ)先增大后减小答案 D解析 由题可得E(ξ)=12+p ,所以D(ξ)=-p 2+p +14=-(p -12)2+12,所以当p 在(0,1)内增大时,D(ξ)先增大后减小.故选D.7.(2019·衡水中学调研卷)已知一次试验成功的概率为p ,进行100次独立重复试验,当成功次数的标准差的值最大时,p 及标准差的最大值分别为( ) A.12,5 B.45,25 C.45,5 D.12,25 答案 A解析 记ξ为成功次数,由独立重复试验的方差公式可以得到D(ξ)=np(1-p)≤n(p +1-p 2)2=n 4,当且仅当p =1-p =12时等号成立,所以D(ξ)max =100×12×12=25,D (ξ)max =25=5.8.(2019·山东潍坊模拟)已知甲、乙两台自动车床生产同种标准件,X 表示甲车床生产1 000件产品中的次品数,Y 表示乙车床生产1 000件产品中的次品数,经考察一段时间,X ,Y 的分布列分别是:据此判定( )A .甲比乙质量好B .乙比甲质量好C .甲与乙质量相同D .无法判定 答案 A解析 E(X)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,E(Y)=0×0.5+1×0.3+2×0.2=0.7.由于E(Y)>E(X),故甲比乙质量好.9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E(X)=( )A.126125B.65 C.168125 D.75答案 B解析 由题意知X =0,1,2,3,P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,∴E(X)=0×27125+1×54125+2×36125+3×8125=150125=65.10.(2019·合肥一模)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X 为取出3个球的总分值,则E(X)=( ) A.185 B.215 C .4 D.245答案 B解析 由题意知,X 的所有可能取值为3,4,5,且P(X =3)=C 33C 53=110,P(X =4)=C 32·C 21C 53=35,P(X =5)=C 31·C 22C 53=310,所以E(X)=3×110+4×35+5×310=215. 11.(2019·山东潍坊期末)某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( ) A .3 B.83 C .2 D.53 答案 B解析 在一轮投篮中,甲通过的概率为P =89,未通过的概率为19.由题意可知,甲3个轮次通过的次数X 的可能取值为0,1,2,3,则P(X =0)=(19)3=1729,P(X =1)=C 31×89×(19)2=24729,P(X =2)=C 32×(89)2×19=192729,P(X =3)=(89)3=512729. ∴随机变量X 分布列为数学期望E(X)=0×1729+1×24729+2×192729+3×512729=83. 12.(2017·课标全国Ⅱ,理)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D(X)=________. 答案 1.96解析 依题意,X ~B(100,0.02),所以D(X)=100×0.02×(1-0.02)=1.96.13.(2015·重庆,理)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望. 答案 (1)14 (2)35解析 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C 21C 31C 51C 103=14. (2)X 的所有可能值为0,1,2,且P(X =0)=C 83C 103=715,P(X =1)=C 21C 82C 103=715,P(X =2)=C 22C 81C 103=115.综上可知,X 的分布列为故E(X)=0×715+1×715+2×115=35(个).14.(2019·《高考调研》原创题)为了评估天气对某市运动会的影响,制定相应预案,衡水市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.答案 (1)0.35 (2)5.64,2.989 2解析 (1)设8月份一天中发生雷电天气的概率为p ,由已知,得p =14.5731=0.47.因为每一天发生雷电天气的概率均相等,且相互独立,所以在运动会开幕后的前3天比赛中,恰好有2天发生雷电天气的概率P =C 32×0.472×(1-0.47)=0.351 231≈0.35. (2)由题意,知X ~B(12,0.47).所以X 的数学期望E(X)=12×0.47=5.64, X 的方差D(X)=12×0.47×(1-0.47)=2.989 2.15.(2019·福建龙海二中摸底)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为14,不堵车的概率为34;汽车走公路②堵车的概率为p ,不堵车的概率为1-p 若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为716,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数X 的分布列和数学期望. 答案 (1)13 (2)56解析 (1)依题意,“三辆汽车中恰有一辆汽车被堵”包含只有甲被堵,只有乙被堵和只有丙被堵三种情形.∴C 21×14×34×(1-p)+(34)2×p =716,即3p =1,∴p =13.(2)X 的所有可能取值为0,1,2,3.P(X =0)=34×34×23=38,P(X =1)=716,P(X =2)=14×14×23+C 21×14×34×13=16,P(X =3)=14×14×13=148,∴X 的分布列为∴E(X)=0×38+1×716+2×16+3×148=56.16.(2019·湖北潜江二模)现有两种投资方案,一年后投资盈亏的情况如下表: 投资股市:购买基金:(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?结合结果并说明理由.答案 (1)512 (2)35<p ≤23(3)丙选择“投资股市”,理由略解析 (1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p +13+q =1.又因为p =14,所以q =512.(2)记事件A 为“甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”. 则C =AB ∪AB ∪AB ,且A ,B 独立. 由题表可知,P(A)=12,P(B)=p.所以P(C)=P(AB)+P(AB)+P(AB)=12·(1-p)+12p +12p =12+12p.因为P(C)=12+12p>45,所以p>35.又因为p +13+q =1,q ≥0,所以p ≤23,所以35<p ≤23.(3)假设丙选择“投资股市”方案进行投资,且记X 为丙投资股市的获利金额(单位:万元), 所以随机变量X 的分布列为则E(X)=4×12+0×18+(-2)×38=54.假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元), 所以随机变量Y 的分布列为则E(Y)=2×12+0×13+(-1)×16=56.因为E(X)>E(Y),所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.(第二次作业)1.(2019·广东七校联考)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,下雨会影响药材品质,基地收益如下表所示:万元;有雨时收益为10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;(2)该基地是否应该额外聘请工人,请说明理由.答案(1)预期收益为14.4万元.(2)当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.解析(1)设下周一无雨的概率为p,由题意得,p2=0.36,解得p=0.6,基地收益X的可能取值为20,15,10,7.5,则P(X=15)=0.24,P(X=10)=0.24,P(X=7.5)=0.16.∴基地收益X的分布列为E(X)=20×0.36+15×0.24+10×0.24+7.5×0.16=14.4(万元),∴基地的预期收益为14.4万元.(2)设基地额外聘请工人时的收益为Y万元,则其预期收益E(Y)=20×0.6+10×0.4-a=16-a(万元),E(Y)-E(X)=1.6-a(万元),综上,当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.2.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下表所示:且X 1的数学期望E(X 1)=6(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望; (3)在(1),(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:①产品的“性价比”=产品的等级系数的数学期望/产品的零售价; ②“性价比”大的产品更具可购买性.答案 (1)a =0.3,b =0.2 (2)4.8 (3)乙厂的产品更具可购买性,理由略.解析 (1)∵E(X 1)=6,∴5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又0.4+a +b +0.1=1,即a +b =0.5,由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知,用这个样本的分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:∴E(X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8,即乙厂产品的等级系数X 2的数学期望等于4.8.(3)乙厂的产品更具可购买性,理由如下:∵甲厂产品的等级系数的数学期望等于6,价格为6元/件,∴其性价比为66=1,∵乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,∴其性价比为4.84=1.2,又1.2>1,∴乙厂的产品更具可购买性.3.(2019·武昌调研)某机构随机询问了72名不同性别的大学生,调查其在购买食物时是否看营养说明,得到如下列联表:(1)有关系?(2)从被询问的28名不看营养说明的大学生中,随机抽取2名学生,求抽到女生的人数ξ的分布列及数学期望. 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).答案 (1)能 (2)分布列为期望值为47解析 (1)由计算可得K 2的观测值k =72×(16×8-28×20)244×28×36×36≈8.416.因为8.416>7.879,所以能在犯错误的概率不超过0.005的前提下认为性别与看营说明有关系. (2)ξ的所有可能取值为0,1,2.P(ξ=0)=C 202C 282=95189,P(ξ=1)=C 81C 201C 282=80189,P(ξ=2)=C 82C 282=227.ξ的分布列为ξ的数学期望E(ξ)=0×95189+1×80189+2×227=47.4.某中学共开设了A ,B ,C ,D 四门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A 选修课被这3名学生选择的人数X 的分布列和数学期望. 答案 (1)64 (2)916 (3)E(X)=34解析 (1)每个学生有四个不同选择,根据分步计数原理,选法总数N =4×4×4=64. (2)设“恰有2门选修课没有被这3名学生选择”为事件E ,则P(E)=C 42C 32A 2243=916,所以恰有2门选修课没有被这3名学生选择的概率为916.(3)方法一:X 的所有可能取值为0,1,2,3,且P(X =0)=3343=2764,P(X =1)=C 31×3243=2764,P(X =2)=C 32×343=964,P(X =3)=C 3343=164,所以X 的分布列为所以X 的数学期望E(X)=0×2764+1×2764+2×964+3×164=34.方法二:因为A 选修课被每位学生选中的概率均为14,没被选中的概率均为34.所以X 的所有可能取值为0,1,2,3,且X ~B(3,14),P(X =0)=(34)3=2764,P(X =1)=C 31×14×(34)2=2764,P(X =2)=C 32×(14)2×34=964,P(X =3)=(14)3=164,所以X 的分布列为所以X 的数学期望E(X)=3×14=34.5.某手机游戏研发公司为进行产品改进,对游戏用户每天在线的时间进行调查,随机抽取50名用户对其每天在线的时间进行了调查统计,并绘制了如图所示的频率分布直方图,其中每天的在线时间4 h 以上(包括4 h)的用户被称为“资深玩家”,根据频率分布直方图回答下列问题:(1)从所调查的“资深玩家”中任取3人再进行每天连续在线时间的调查,求抽取的3人中至少有2人的在线时间在[5,6]内的概率;(2)为响应社会要求,公司拟对“资深玩家”进行防沉迷限时,使其每天的在线时间小于4 h ,而公司每天对一个玩家限时0.5 h 就会损失1元,在频率分布直方图中以各组区间的中点值代表该组的数据,以游戏用户在线时间的频率作为在线时间的概率,现从所有“资深玩家”中任取3人进行一天的限时试验,记该公司因限时试验损失的钱数为X ,求X 的分布列和数学期望.答案 (1)13(2)分布列为期望值E(X)=275解析 (1)由题易知a =1-0.10-0.20-0.30-0.20-0.08=0.12,所以50名用户中,在线时间是[4,5)内的人数为0.12×50=6,在线时间在[5,6]内的人数为0.08×50=4,所以在所调查的50人中有10人是“资深玩家”.从“资深玩家”中任取3人共有C 103=120种情况,其中抽取的3人中至少有2人的在线时间在[5,6]内的共有C 42C 61+C 43=40种情况,记在所调查的“资深玩家”中任取3人,至少有2人的在线时间在[5,6]内为事件A ,则P(A)=40120=13. (2)“资深玩家”中每天的在线时间在[4,5)内的概率P 1=0.120.08+0.12=35,公司限时一天损失4.5-40.5×1=1(元); “资深玩家”中每天的在线时间在[5,6]内的概率P 2=0.080.08+0.12=25,公司限时一天损失5.5-40.5×1=3(元). 所以从“资深玩家”中任取3人进行一天的限时试验,X 的所有可能取值为3,5,7,9,则P(X =3)=C 33(35)3=27125,P(X =5)=C 32(35)2×25=54125,P(X =7)=C 31×35×(25)2=36125,P(X =9)=C 30(25)3=8125.X 的分布列是所以X 的数学期望E(X)=3×27125+5×54125+7×36125+9×8125=275.。
2020年河北省衡水中学高考数学一模试卷(理科) (解析版)
2020年河北省衡水中学高考数学一模试卷(理科)一、选择题(共12小题). 1.设复数z 1=1+i ,z 2=1﹣i ,则1z 1+1z 2=( )A .1B .﹣1C .iD .﹣i2.已知集合M ={x |y =ln (x +1)},N ={y |y =e x },则M ∩N =( ) A .(﹣1,0)B .(﹣1,+∞)C .(0,+∞)D .R3.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养与数学建模素养相同C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强 4.若α∈(π2,π),cos2α=725,则sinαsin(3π2+α)=( ) A .−34B .34C .43D .−435.已知x 1,x 2,x 3∈R ,x 1<x 2<x 3,设y 1=x 1+x 22,y 2=x 2+x 32,y 3=x 3+x12,z 1=y 1+y 22,z 2=y 2+y 32,z 3=y 3+y 12,若随机变量X ,Y ,Z 满足:P (X =x i )=P (Y =y i )=P (Z =z i )=13(i =1,2,3),则( )A .D ( X )<D (Y )<D (Z )B .D ( X )>D (Y )>D (Z )C .D ( X )<D (Z )<D (Y )D .D ( X )>D (Z )>D (Y )6.函数y =﹣cos x •ln |x |的图象可能是( )A .B .C .D .7.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E ”形视标,且从视力5.2的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”边长的√1010倍,若视力4.1的视标边长为a ,则视力4.9的视标边长为( )A .1045aB .10910aC .(110)45aD .(110)910a8.已知F 1,F 2为椭圆C :x 2m+y 2=1(m >0)的两个焦点,若C 上存在点M 满足MF 1⊥MF 2,则实数m 取值范围是( ) A .(0,12]B .[2,+∞)C .(0,12]∪[2,+∞)D .[12,1)∪(1,2]9.已知函数f (x )=√2sin ωx 和g (x )=√2cos ωx (ω>0)图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点,为了得到y =g (x )的图象,只需把y =f (x )的图象( ) A .向左平移1个单位 B .向左平移π2个单位C .向右平移1个单位D .向右平移π2个单位10.已知函数f (x )=ax +1+|2x 2+ax ﹣1|(a ∈R )的最小值为0,则a =( ) A .12B .﹣1C .±1D .±1211.如图,在棱长为3的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是平面A 1BC 1内一动点,且满足|PD |+|PB 1|=2+√13,则直线B 1P 与直线AD 1所成角的余弦值的取值范围为( )A .[0,12]B .[0,13]C .[12,√22]D .[12,√32]12.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,左焦点为F ,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M (异于P ,F ),与y 轴交于点N ,直线MB 与y 轴交于点H ,若HN →=−3OH →(O 为坐标原点),则C 的离心率为( ) A .2B .3C .4D .5二、填空题(共4题,每题5分)13.已知平面向量a →与b →的夹角为45°,a →=(﹣1,1),|b →|=1,则|a →+b →|= .14.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、C 、D 四地新增疑似病例数据信息如下:A 地:中位数为2,极差为5;B 地:总体平均数为2,众数为2;C 地:总体平均数为1,总体方差大于0;D 地:总体平均数为2,总体方差为3. 则以上四地中,一定符合没有发生大规模群体感染标志的所有选项是 .(填A 、B 、C 、D )15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3b cos C +3c cos B =5a sin A ,且A 为锐角,则当a 2bc取得最小值时,a b+c的值为 .16.在空间直角坐标系O ﹣xyz 中,正四面体P ﹣ABC 的顶点A ,B 分别在x 轴,y 轴上移动,若该正四面体的棱长为2,则|OP |的取值范围是 .三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤。
2020届河北省衡水密卷高三第一次调研考试数学(理)试题
2020届河北省衡水密卷高三第一次调研考试理科数学试题★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.若复数满足,则的共轭复数A. B. C. D.2.某公司生产,,三种不同型号的轿车,产量之比依次为,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为的样本,若样本中种型号的轿车比种型号的轿车少8辆,则A. 96B. 72C. 48D. 363.中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为A. 6B. 5C. 4D. 24.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是A. 这15天日平均温度的极差为B. 连续三天日平均温度的方差最大的是7日,8日,9日三天C. 由折线图能预测16日温度要低于D. 由折线图能预测本月温度小于的天数少于温度大于的天数5.已知点与点关于直线对称,则点的坐标为A. B. C. D.6.已知实数是给定的常数,函数的图象不可能是A. B. C. D.7.一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时,符合条件的共有A.个B.个C.个D.个8.现有甲班四名学生,乙班三名学生,从这名学生中选名学生参加某项活动,则甲、乙两班每班至少有人,且必须参加的方法有A. 种B.种 C.种D. 种9.在中,内角的对边分别为,已知,,,则A.B.C.D. 或10.若函数的图象关于直线轴对称,则函数的最小值为A. B. C. 0 D.11.已知函数,则下列结论中正确的是 A. 函数的定义域是B. 函数是偶函数C. 函数 在区间上是减函数 D. 函数的图象关于直线轴对称 12.已知函数,当时,不等式恒成立,则实数的取值范围是A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13..若5(1)ax 的展开式中3x 的系数是80,则实数a 的值是14.若实数满足不等式组,且的最小为,则实数______. 15.在平面四边形中,是边长为2的等边三角形,是以斜边的等腰直角三角形,以为折痕把折起,当时,四面体的外接球的体积为______.16.已知抛物线的焦点为是抛物线上一点,过点向抛物线的准线引垂线,垂足为,若为等边三角形,则______.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(本大题满分12分)已知数列满足.(Ⅰ)求和的通项公式;(Ⅱ)记数列的前项和为,若对任意的正整数恒成立,求实数的取值范围.18.(本大题满分12分)为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的名学生进行了跟踪调查,其中每周自主做数学题的时间不少于小时的有人,余下的人中,在高三模拟考试中数学成绩不足分的占,统计成绩后,得到如下的列联表:分分周做题时间不少于周做题时间不足(Ⅰ)请完成上面的列联表,并判断能否在犯错误的概率不超过的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(Ⅱ)(i)按照分层抽样的方法,在上述样本中,从分数大于等于分和分数不足分的两组学生中抽取名学生,设抽到的不足分且周做题时间不足小时的人数为,求的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从全校大于等于分的学生中随机抽取人,求这些人中周做题时间不少于小时的人数的期望和方差.附:19.(本大题满分12分)如图,在四棱锥中,底面为菱形,,,且.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.20.(本大题满分12分)函数.(Ⅰ)若函数在点处的切线过点,求的值;(Ⅱ)若不等式在定义域上恒成立,求的取值范围.21.(本大题满分12分)已知动圆过定点,且和直线相切,动圆圆心形成的轨迹是曲线,过点的直线与曲线交于两个不同的点.(Ⅰ)求曲线的方程;(Ⅱ)在曲线上是否存在定点,使得以为直径的圆恒过点?若存在,求出点坐标;若不存在,说明理由.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分).极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线,,,与曲线分别交异于极点的四点,,,.(Ⅰ)若曲线关于曲线对称,求的值,并把曲线和化成直角坐标方程.()求,当时,求的值域.23.设函数.(Ⅰ)求不等式的解集;(Ⅱ)当时,恒成立,求m的取值范围.理科数学试题答案1.D2.B3.C4.B5.D6.D7.C8.D9.C 10.D 11.B 12.C13.2 14.15.. 16.17.解:(1)由题意得,所以得由,所以(),相减得,得也满足上式.所以的通项公式为.(2)数列的通项公式为是以为首项,公差为的等差数列,若对任意的正整数恒成立,等价于当时,取得最大值, 所以解得所以实数的取值范围是18.()分分周做题时间不少于周做题时间不足∵.∴能在犯错误的概率不超过的前提下认为“高中生的数学成绩与学生自主学习时间有关”.()(i)由分层抽样知大于等于分的有人,不足分的有人,的可能取值为,,,,.,,,,.则分布列为(ii)设从全校大于等于分的学生中随机抽取人,这些人中,周做题时间不少于小时的人数为随机变量,由题意可知,故,.19.(1)证明:取中点,连结,,,.因为底面为菱形,,所以因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△ 和△ 中,因为,,,所以△ △ .所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦值为.20.(Ⅰ),,,整理可得,解得,(Ⅱ)由题意知,,,设,,故在递增,故时,,当时,,故在上有唯一实数根,当时,,当时,,故0时,取最小值,由,得,故,,解得:,故的范围是.21.(1)设动圆圆心到直线的距离为,根据题意,动点形成的轨迹是以为焦点,以直线为准线的抛物线,抛物线方程为.(2)根据题意,设,直线的方程为,代入抛物线方程,整理得若设抛物线上存在定点,使得以为直径的圆恒过点,设,则,同理可得解得在曲线上存在定点,使得以为直径的圆恒过点.22.(),即,化为直角坐标方程为.把的方程化为直角坐标方程为,因为曲线关于曲线对称,故直线经过圆心,解得,故的直角坐标方程为.()当时,,,,,∴,的值域为.23.(1),由解得即不等式的解集为.(2)当时,,由,得,也就是在恒成立,故,即的取值范围为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题层级快练(十八)
1.(2019·河北保定模拟)已知f(x)=lnx
x ,则( )
A .f(2)>f(e)>f(3)
B .f(3)>f(e)>f(2)
C .f(3)>f(2)>f(e)
D .f(e)>f(3)>f(2)
答案 D
解析 f(x)的定义域是(0,+∞),f ′(x)=1-lnx
x 2,令f′(x)=0,得x =e.所以当x ∈(0,e)时,f ′
(x)>0,f(x)单调递增,当x ∈(e ,+∞)时,f ′(x)<0,f(x)单调递减,故x =e 时,f(x)max =f(e)=1e ,而f(2)=ln22=ln86,f(3)=ln33=ln9
6,所以f(e)>f(3)>f(2).故选D. 2.若0<x 1<x 2<1,则( ) A .ex 2-ex 1>lnx 2-lnx 1 B .ex 2-ex 1<lnx 2-lnx 1 C .x 2ex 1>x 1ex 2 D .x 2ex 1<x 1ex 2 答案 C
解析 令f(x)=e x
x ,则f′(x)=xe x -e x x 2=e x (x -1)x 2
.
当0<x<1时,f ′(x)<0,即f(x)在(0,1)上单调递减,因为0<x 1<x 2<1, 所以f(x 2)<f(x 1),即ex 2x 2<ex 1
x 1,所以x 2ex 1>x 1ex 2,故选C.
3.(2019·山东师大附中模拟)设函数f(x)=e 2x -alnx. (1)讨论f(x)的导函数f′(x)零点的个数; (2)证明:当a>0时,f(x)≥2a +aln 2a
.
答案 (1)a>0时,f ′(x)存在唯一零点 (2)证明略 解析 (1)f(x)的定义域为(0,+∞),f ′(x)=2e 2x -a
x (x>0).
当a ≤0时,f ′(x)>0,f ′(x)没有零点; 当a>0时,设u(x)=e 2x ,v(x)=-a
x
,
因为u(x)=e 2x 在(0,+∞)上单调递增,v(x)=-a
x 在(0,+∞)上单调递增,
所以f′(x)在(0,+∞)上单调递增.
又f′(a)>0,当b 满足0<b <a 4且b <1
4时,f ′(b)<0,
故当a>0时,f ′(x)存在唯一零点.
(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x)<0; 当x ∈(x 0,+∞)时,f′(x)>0.
故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-a x 0=0,所以f(x 0)=a 2x 0+2ax 0+aln 2a ≥2a +aln 2
a .
故当a>0时,f(x)≥2a +aln 2
a
.
4.(2019·贵州适应性考试)已知函数f(x)=xlnx +ax ,a ∈R ,函数f(x)的图像在x =1处的切线与直线x +2y -1=0垂直. (1)求a 的值和函数f(x)的单调区间; (2)求证:e x >f ′(x).
答案 (1)单调递增区间为(e -
2,+∞),单调递减区间为(0,e -
2)
(2)证明略
解析 (1)由题易知,f ′(x)=lnx +1+a ,x>0,且f(x)的图像在x =1处的切线的斜率k =2, 所以f′(1)=ln1+1+a =2,所以a =1. 所以f′(x)=lnx +2, 当x>e -2时,f ′(x)>0, 当0<x<e -2时,f ′(x)<0,
所以函数f(x)的单调递增区间为(e -2,+∞),单调递减区间为(0,e -2). (2)证明:设g(x)=e x -f′(x)=e x -lnx -2,x>0, 因为g′(x)=e x -1
x
在(0,+∞)上单调递增,
且g′(1)=e -1>0,g ′(1
2
)=e 1
2-2<0,
所以g′(x)在(1
2,1)上存在唯一的零点t ,
使得g′(t)=e t -1t =0,即e t =1t (1
2
<t<1).
当0<x<t 时,g ′(x)<g′(t)=0,当x>t 时,g ′(x)>g′(t)=0,
所以g(x)在(0,t)上单调递减,在(t ,+∞)上单调递增,
所以x>0时,g(x)≥g(t)=e t -lnt -2=1t -ln 1e t -2=t +1
t -2≥2-2=0,
又1
2<t<1,所以上式等号取不到,所以g(x)>0,即e x >f ′(x). 5.(2019·沧州七校联考)设a 为实数,函数f(x)=e x -2x +2a ,x ∈R . (1)求f(x)的单调区间与极值;
(2)求证:当a>ln2-1且x>0时,e x >x 2-2ax +1.
答案 (1)单调递减区间为(-∞,ln2),单调递增区间为(ln2,+∞);极小值2(1-ln2+a) 无极大值 (2)略
解析 (1)由f(x)=e x -2x +2a ,x ∈R ,得f′(x)=e x -2,x ∈R .令f′(x)=0,得x =ln2. 于是当x 变化时,f ′(x),f(x)的变化情况如下表:
故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞).
f(x)在x =ln2处取得极小值,极小值为f(ln2)=e ln2-2ln2+2a =2(1-ln2+a).无极大值. (2)设g(x)=e x -x 2+2ax -1,x ∈R .于是g′(x)=e x -2x +2a ,x ∈R .
由(1)知当a>ln2-1时,g ′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x ∈R ,都有g′(x)>0, 所以g(x)在R 内单调递增.
于是当a>ln2-1时,对任意x ∈(0,+∞),都有g(x)>g(0). 又g(0)=0,从而对任意x ∈(0,+∞),g(x)>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.
6.已知函数f(x)=alnx +b (x +1)x ,曲线y =f(x)在点(1,f(1))处的切线方程为y =2.
(1)求a ,b 的值;
(2)当x>0且x ≠1时,求证:f(x)>(x +1)lnx
x -1.
答案 (1)a =b =1 (2)证明略
解析 (1)函数f(x)=alnx +b (x +1)x 的导数为f′(x)=a x -b
x
2,
曲线y =f(x)在点(1,f(1))处的切线方程为y =2, 可得f(1)=2b =2,f ′(1)=a -b =0,解得a =b =1. (2)证明:当x>1时,f(x)>(x +1)lnx
x -1,
即为lnx +1+1x >lnx +2lnx x -1,即x -1
x -2lnx>0.
当0<x<1时,f(x)>(x +1)lnx x -1,即为x -1
x -2lnx<0,
设g(x)=x -1x -2lnx ,g ′(x)=1+1x 2-2x =(x -1)
2
x 2≥0,
可得g(x)在(0,+∞)上递增,
当x>1时,g(x)>g(1)=0,即有f(x)>(x +1)lnx
x -1.
当0<x<1时,g(x)<g(1)=0,即有f(x)>(x +1)lnx
x -1.
综上可得,当x>0且x ≠1时,f(x)>(x +1)lnx
x -1都成立.
7.(2019·银川调研)已知函数f(x)=lnx -1
2ax 2+x ,a ∈R .
(1)令g(x)=f(x)-(ax -1),讨论g(x)的单调区间;
(2)若a =-2,正实数x 1,x 2满足f(x 1)+f(x 2)+x 1x 2=0,证明:x 1+x 2≥5-1
2
. 审题 (1)证明x 1+x 2≥
5-1
2
等价于求x 1+x 2的范围. (2)将f(x 1)+f(x 2)+x 1x 2=0具体化,配方得x 1+x 2的方程(x 1+x 2)2+(x 1+x 2)=x 1x 2-lnx 1x 2. (3)消元,消去x 1x 2得关于x 1+x 2的不等式. (4)解不等式得x 1+x 2的范围. 答案 (1)略 (2)证明略
解析 (1)当a ≤0时,函数单调递增区间为(0,+∞),无递减区间;当a>0时,函数单调递增区间为(0,1a ),单调递减区间为(1
a
,+∞).
(2)当a =-2时,f(x)=lnx +x 2+x ,x>0,由f(x 1)+f(x 2)+x 1x 2=0可得x 1x 2+lnx 1x 2+x 12+x 1+x 22+x 2=0,即(x 1+x 2)2+(x 1+x 2)=x 1x 2-lnx 1x 2,令t =x 1x 2,φ(t)=t -lnt ,则φ′(t)=1-1t =t -1t ,则φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以 φ(t)≥φ(1)=1,所以(x 1+x 2)2
+(x 1+x 2)≥1,又由x 1>0,x 2>0可知x 1+x 2>0,故x 1+x 2≥5-12
.。