高数4-4
高数上册第4章不定积分
ln x e x ln 1 x e x C x ln x ln 1 x e x C
1 1 x ex x ex 分析: x x x e (1 x e ) x e x (1 x e x )
( x 1) e x dx xe x dx e x dx
n 2 k 1 或 sin x cos x (其中k N ) (i). 对于 型函数的积分,可依次作变换 u cos x 或 u sin x ,求得结果 .
2k 2l (ii). 对于 sin x cos x(其中k , l N ) 型函数的积分
可利用倍角公式: sin 2 x 1 cos 2 x ,cos 2 x 1 cos 2 x
得
1 ∴原式 = 2 (cos 5 x cos x)dx 1 1 cos 5 xd (5 x) cos xdx 10 2
1 cos 3x cos 2 x (cos 5 x cos x) 2
例11. 求 解: 原式 =
e
ex
x
1 1 x ( x ) d( x e ) x x e 1 x e
1 ln 1 sin x ln 1 sin x C 2 1 1 sin x ln C 2 1 sin x
解法 2
(sec x tan x) sec x tan x 2 sec x sec x tan x dx sec x tan x d (sec x tan x) sec x tan x
则
推论: 若
k
i 1
n
i
f i ( x ) dx k i f i ( x )dx
i 1
机动 目录 上页 下页 返回 结束
大学高等数学上下考试题库(及答案)
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高数上册习题4-4,4-5,4-6部分习题解答
1 dy 1 d 2 y dt 1 d 2 y dy dy dy dt 1 dy d 2 y d dy , , 2 dx dx x 2 dt x dt 2 dx x 2 dt 2 dt dx dt dx x dt dx
d 2 y dy d 2 dt d 3 y 2 d 2 y dy 1 dt 2 d 2 y dy 1 d 3 y dt d 2 y dt 3 2 2 3 dx 3 x 3 dt 2 dt x 2 dx x dt dt x dt dx dt 2 dx
C 1 1 1 C 2 又 y(0) 1 , y(0) 2 ,则 ,解得 ;故所求特解为 y x e x . 2 C 1 C 2 C 2 1
1 x2 2 4.验证 y 1 x , y 2 是方程 x y 3 xy 5 y 0 的解, y 3 ln x 是方程 9 x
5
x 2 y 3 xy 5 y x 2 ln x 的解,写出微分方程 x 2 y 3 xy 5 y x 2 ln x 的通解。
解:容易写出微分方程的通解为: y C 1 x 5 C 2
1 x2 ln x ,即非齐次线性微分方程的通解 x 9
等于非齐次线性微分方程的特解加上齐次线性微分方程的通解。
y(0) 1 , y(0) 2 的特解。
2
2
2
2
解:因为 y 1 x , y 2 e x 是微分方程 ( x 1) y xy y 0 的两个线性无关的解, 所以微分方程 ( x 1) y xy y 0 的通解为: y C 1 x C 2e x ,
考研高数讲义高数第四章不定积分上课资料
考研高数讲义高数第四章不定积分上课资料考研高数讲义高数第四章不定积分上课资料编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(考研高数讲义高数第四章不定积分上课资料)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为考研高数讲义高数第四章不定积分上课资料的全部内容。
第四章 不定积分⎧⎪⎧⎪⎪⎪⎨⎪→→⎨⎪⎩⎪⎪⎪⎪⎩性质第一类换元法计算第二类换元法原函数不定积分分部积分法简单分式的积分分段函数的积分1第一节 不定积分的概念与性质一、原函数的定义原函数:若对于,有或,称为在区间内的原函数。
I x ∈∀∈)()(x f x F='dx x f x dF )()(=)(x F )(x f I2原函数存在定理:连续函数必有原函数-—即若在上连续,则必存在,使得当时,。
)(x f I )(x F x∈I )()(x f x F='3【例1】设是在上的一个原函数,则在上( )(A )可导 (B )连续(C)存在原函数 (D)是初等函数 【答案】(C ))(x F )(x f (,)a b ()()fx F x(,)a b4【例2】(92二)若的导函数是,则有一个原函数为(A ). (B )。
(C )。
(D). 【答案】(B ))(x f x sin )(x f x sin 1+x sin 1-x cos 1+x cos 1-5二、不定积分的定义不定积分:在区间内,的带有任意常数I )(x f6项的原函数称为在区间内的不定积分,记为:,即 计算方法:求函数的不定积分,只要求得它的一个原函数,加上任意常数即可。
C x F+)()(x f I ⎰dx x f )(⎰+=C x F dx x f )()(C不定积分的几何意义:一个原函数对应于一条积分曲线;不定积分对应于积分曲线簇-—无穷多条积分曲线,被积函数对应于切线的斜率——同一横坐标处切线平行。
(完整版)考研高数讲义高数第四章不定积分上课资料
12 四、基本积分表 (1)kdx (2)dxx (3)xdx (4)dxax ;dxex (5)21xdx (6)21xdx
持之以恒,厚积薄发
13 (7)xdxcos (8)xdxsin (9)xdxdxx22seccos1 (10)xdxdxx22cscsin1 (11)xdxxtansec (12)xdxxcotcsc
持之以恒,厚积薄发
23 (5)dxxx21; (6)xdxtan; 【答案】(5)()322113xC; (6)ln|cos|xC
第四章 不定积分
24 (7))ln21(xxdx; (8)xdxx52cossin; 【答案】(7)ln||1122xC; (8)sinsinsin357121357xxxC
第四章 不定积分
44 2211=()dxdxaxbxcaxhk公式求解 =2222(2)221ln||22mmbaxbnmxnaadxdxaxbxcaxbxcmmbaxbxcndxaaaxbxc
持之以恒,厚积薄发
45 【例1】求下列不定积分 (1)2239dxxx ; 【答案】(1)21ln|23|ln|3|99xxC
第四章 不定积分
46 (2)322xxdx Caxaxadxarctan122; 【答案】(2)11arctan22xC
持之以恒,厚积薄发
47 (3)2(31)23xdxxx; 【答案】(3)231ln|23|2arctan22xxxC
第四章 不定积分
48 (4)321xdxxx 【答案】(4)212321arctan233xxxC
持之以恒,厚积薄发
3 原函数存在定理:连续函数必有原函数——即若)(xf在I上连续,则必存在)(xF,使得当xI时,)()(xfxF。 【例1】设)(xF是)(xf在(,)ab上的一个原函数,则()()fxFx在(,)ab上( ) (A)可导 (B)连续 (C)存在原函数 (D)是初等函数 【答案】(C)
高数上册习题3-4,3-5部分习题解答
x 2 xf ( x )cos f ( t )dt 0
2
2
(4)因为 F ( x ) sin( x t )2 dt
0
x
令 xt u
则t x u
0 x
sin u2 ( 1)du
恒等 x sin u2du , 0 变形
x 所以 F ( x ) sin u2du sin x 2 . 0
0
(5) F ( x ) tf ( x 2 t 2 )dt .
x 解: (1) F ( x ) 1 t 2 dx 1 x 2 . 0 sin x sin x x (2) F ( x ) cot tdt cot tdt cot tdt x a a
1 1 0 0
解: (1)因为在 0 ,1 上 2 x e x ,所以 2 x dx e x dx . (2)因为在 0 ,1 上 x 2 x 3 ,所以 0 x 2dx 0 x 3dx .
1 1
(3)因为在 1 , 2 上 ln x 1 ,则 ln x (ln x )2 ,所以 1 ln xdx 1 (ln x )2 dx .
习题 3-4
2 2 1 1
定积分的概念与性质
1.等式 ln xdx ln udu 是否成立?为什么? 解:成立,根据定积分的几何意义, ln xdx 与 ln udu 表示的同一个平面图形面积的代数
1 1 2 2
和。 2.根据定积分的几何意义,判断下列定积分值的正、负. (1) 2 sin xdx ;
(19) sin(ln x )dx ;
高数第4章第5节——二阶常系数线性微分方程
例3 已知 y = x 及 y = sinx 为某二阶齐次线性 微分 方程的解 , 求该方程 .
解
例4
解
(1)
由题设可得:
2 2
p( x)2x
0, 1
x3
p( x)( ) x2
f ( x),
解此方程组,得
p( x) 1 , x
线性相关
存在不全为 0 的
使
线性无关
常数
思考:
中有一个恒为 0, 则 必线性 相关
例如 y y 0, 有解 y1 cos x, y2 sin x,
复习: 一阶线性方程 通解:
齐次方程通解Y 非齐次方程特解
2.二阶非齐次线性微分方程解的结构
定理 4.5.3
是二阶非齐次方程 ①
的一个特解, Y (x) 是相应齐次方程的通解,则 ②
的方程称为二阶常系数齐次线性微分方程.
二阶常系数齐次线性方程解法
-----特征方程法
设 y erx , 将其代入上方程, 得
(r 2 pr q)erx 0
erx 0,
故有
特征方程
特征根
r1,2 p
p2 4q , 2
特征根
(1) 特征方程有两个不相等的实根
特征根为r1 p
6Ax 2B x,
A 1,B0, 6
原方程通解为
例13
解 对应齐次方程为 特征方程为 r 2 2r 1 0,
特征根为 r1 r2 1, 故对应齐次方程的通解为 Y (C1 C2 x)e x . 1 是特征方程二重根, 可设 y x2( Ax B)e x ,
代入原方程, 得 6Ax 2B x 1, A 1 , B 1 ,
高数讲义第四节有理函数的积分全
例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x
解
令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式
人教版高数选修4-4第2讲:参数方程(学生版)
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
高数上册习题4-1,4-2,4-3部分习题解答
习题 4-2 一阶微分方程
1.求下列微分方程的通解: (1) ydx xdy 0 ; (3) y e y sin x ; 解: (1)原方程可变形为 ( 2) (1 y 2 )dx xy(1 x 2 )dy 0 ; (4) y
1 y2 ( x 1) . 1 x2
(4)原方程可变形为
1 1 ) , dy dx (这是一个“可分离变量的微分方程” 2 1 y 1 x2
两边同时取不定积分,得
1 1 dy dx arcsin y arcsin x C arcsin y arcsin x C , 2 1 y 1 x2
1 1
(这是一个“ x 是因变量 y 是自变量的一阶齐次线性微分方程” ) 因为 e
y ln y dy
e
ln y d (ln y )
e ln ln y C
eC dx 1 1 ,则方程 ,得 x0 两边同乘 ln y dy y ln y ln y
1 1 dx 1 x 0 2 ln y dy y ln y ln y
y2 x2 故 xy C 即为所求通解 . 2 2
3.求 y 10 x y 满足初始条件 y
x 0
1 的特解。
解:原方程可变形为 10 y dy 10 x dx (这是一个“可分离变量的微分方程” ) ,两边同时取不 定积分,得 10 y dy 10 x dx 10 y 10 x C , 又y
1 1 1 d (1 2u u2 ) 2 dx ln 1 2u u2 ln 2 ln C1 2 1 2u u x x
C1 C1 2y y 1 2 2 ( y x )2 2 x 2 C (C C1 ) 2 x x x x dy x y ( x y )dy ( x y )dx xdy ydy xdx ydx dx x y
高数(第三版)课后习题七详细答案
习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149z=153154即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB = c ,BC = a 表示向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=-- c a2225D A BA BD =-=-- c a3335D A BA BD =-=-- c a444.5D A BA BD =-=-- c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =︒=⨯=12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----155解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模; (3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2) 12PP ==(3) 12cos x aPP α==12cos y a PP β==12cos zaPP γ==.(4) 12012PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c156, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有c o s (1,1)3x a ia a i a iπ⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则22cos 42a b a b π⋅=⇒=⋅ 则214y a =求得12y a =±又1,a = 则2221x y z a a a ++=从而求得11{,,}222a =± 或11{,,}222-±18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩157故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=15822. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB在向量CD上的投影.解:AB={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ① (a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b159π2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||3⨯==±--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯ .证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-16022222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y zi j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y xa b a b i a b a b j a b a b k()()() 则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z xyza a ab b b C C C = 若 ,,C a b共面,则有 a b ⨯ 后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z xy za a a ab b b b C C C ⨯⋅=() a xy z xy z xy z bb b b C C C C a a a ⨯⋅= () b xy z xy z xy zCC C C a a a a b b b ⨯⋅= () 由行列式性质可得:xy z x y z x y z xy z x y z x y zxyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a a b b C C a ⨯⋅=⨯⋅=⨯⋅ ()()()16131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积12S =32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13B C D V S h =⋅⋅ , 而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB = ,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥ ,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).162解:(1)两点所确立的一个向量为 s ={3-1,1+2,-1-1}={2,3,-2} 故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3} 故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=163得b =2.故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4) (4) x –y =0表示过z 轴的平面(如图7-5) (5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=016416546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}166由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2} 故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;167(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0168得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.169解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=;(3)22194x z +=; (4)20y z -=;(5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1217059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=;(3)222149y z x --=; (4)2221149y z x +-=;(5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.171解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-.解:(1)直线的参数方程为334624x ty t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.172解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧+=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy平面上的投影方程为2215()24x yz⎧-+=⎪⎨⎪=⎩173。
高数IV下题题目(汇总)(1)
§7*多元函数微分法在几何上的应用1. 求下列向量值函数极限:(1);(2);2. 下列各题中,表示空间中的质点在时刻的位置,求质点在任意时刻的速度向量和加速度向量,以及时刻的速度向量和加速度向量.(1),;(2),;(3),.3. 求曲线,,在点处的切线及法平面方程.4. 求曲线,,在对应于点处的切线及法平面方程.5. 求曲面在点处的切平面及法线方程.6. 求曲面在点处的切平面及法线方程.7. 求下列向量值函数极限:(1)(2)8. 计算下列向量值函数的一阶及二阶导数:(1)(2)9. 求曲线,,在点处的切线及法平面方程.10. 求曲线在相应点处的切线及法平面方程.11. 求曲面在点处的切平面及法线方程.12. 求曲面在点处的切平面及法线方程.§9 多元函数的极值1. 求函数的极值.2. 求函数的极值.3. 试将已知正数分成个正数之和,使它们的积为最大.4. 某工厂要建造一座容积是立方米的长方体仓库,已知每单位面积房顶的造价是四周墙壁造价的三倍,问仓库的长宽高各为多少时,仓库的造价最小?5. 函数的驻点为 .6. 求函数的极值.7. 求函数的极值.8. 求函数的极值.9. 某工厂生产两种产品和,价格分别为和元,当两者的产量分别为,时,总成本为问如何安排两种产品的产量,使利润达到最大.10. 欲造一长方体盒子,所用材料的价格其底为顶与侧面的两倍. 若此盒容积为,各边长为多少时,其造价最低.§1二重积分的概念与性质1. 试用二重积分表示三个坐标平面及平面所围成的空间立体的体积.2. 试用二重积分表示曲面及平面所围成的空间立体的体积.3. 已知一平面薄片占据闭区域,其处的密度为,试用二重积分表示该平面薄片的质量.4. 试用二重积分表示三个坐标平面及平面所围成的空间立体的体积.5. 试用二重积分表示柱面及半球面所围成的空间立体的体积.6. 已知一平面薄片占据闭区域,由曲线及直线所围成,该平面薄片处的密度为,试用二重积分表示该平面薄片的质量.7. 计算二重积分,其中.8. 计算二重积分,其中.9. 计算二重积分,其中是由直线,,所围成的平面闭区域.10. 计算二重积分,其中,. 11. 比较二重积分的大小,其中,,.12. 比较二重积分的大小,其中,,. 13. 估计二重积分的取值范围,其中.14. 设,,其中,计算二重积分.15. 计算二重积分,其中,.16. 比较二重积分的大小,其中,,.17. 估计二重积分的取值范围,其中§1二重积分的计算(1)1. 化二重积分为直角坐标下的二次积分,其中积分区域是:(1)由直线及抛物线所围成的闭区域;(2)由轴及半圆(3)由直线,及双曲线所围成的闭区域.2.计算二重积分,其中区域是由,,,围成的矩形区域.3.计算二重积分,其中积分区域是由两坐标轴及直线所围成.4.计算二重积分, 其中积分区域由与轴围成.5.计算,其中积分区域是由直线与所围成.6. 计算二重积分,其中.7. 计算二重积分,其中是由直线所围成区域.8. 计算二重积分, 其中是由所围成的区域.9. 计算二重积分,其中是由所围成的区域.10. 计算二重积分,其中积分区域是由两条抛物线所围成.11. 计算,其中是由所围成的区域.12.交换下列二次积分的积分次序:(1)(2)(3)(4)13. 交换下列二次积分的积分次序.(1)(2)(3)(4)(5)(6)§3* 二重积分的计算(2)1. 把二重积分化为极坐标下的二次积分,其中积分区域为:(1)(2)2. 利用极坐标系计算,其中积分区域是圆环域:.3. 计算, 其中积分区域由圆周与所围成的在第一象限内的闭区域.4. 将二重积分化为极坐标系下的二次积分,其中是由和轴所围成的右半圆.5. 计算,其中积分区域是:.6. 计算,其中积分区域.§4 曲线积分1. 计算,由参数方程,,确定.2. 计算,由参数方程,,,确定.3. 计算,其中为连接及两点的直线段.4. 计算,其中是由点经过点到点的折线段.5. 计算,由参数方程,,确定.6. 计算给定金属线的质量,其线密度,为螺旋形曲线,参数方程如下:,,,.7. 计算,其中为连接及两点的直线段.8. 计算,其中是由、与围成的三角形区域的边界曲线.§1*数列的极限1. .2. .3. .4.5.6.7.8.§2 常数项级数1. 写出下列级数的一般项.(1).(2).2. 根据收敛定义判断级数的敛散性.3. 根据收敛定义判断级数的敛散性.4. 判断下列级数的收敛性.(1).(2).(3).(4).5.求下列级数的和.(1).(2) .(3).6. 判断下列级数的敛散性.(1).(2).(3).(4).(5).§3 常数项级数的审敛法(1)1. 用比较审敛法判定下列各级数的敛散性. (1).(2).(3).(4).2. 用比值审敛法判定下列各级数的敛散性. (1).(2).(3).3. 判断下列级数的敛散性.(1).(2).(3).(4).(5).(6).(7).(8).(9).§4常数项级数的审敛法(2)1. 判断下列级数是否收敛,如果是收敛的,是绝对收敛还是条件收敛?(1).(2).(3).2. 判断下列级数是否收敛,如果是收敛的,是绝对收敛还是条件收敛?(1).(2).(3).(4).(5).3. 下列级数中绝对收敛的是()(A)(B)(C)(D)§5 幂级数(1)1. 已知级数在处收敛,则其在处()(A)绝对收敛(B)条件收敛(C)发散(D)无法判断其敛散性2. 求幂级数的收敛区间.3. 求下列幂级数的收敛.(1).(2).(3).(4).4. 求下列幂级数的收敛半径、收敛区间和收敛域.(1).(2).(3).(4).(5).(6).§7 函数展开成幂级数(2)1. 将函数展开成为麦克劳林级数.2. 将函数展开成为麦克劳林级数.3. 将下列函数展开成的幂级数,并求其收敛区间.(1).(2).(3).4. 将函数展开成的幂级数.5. 将下列函数展开成为麦克劳林级数.(1).(2).(3).6. 将下列函数展开成的幂级数,并求其收敛区间.(1).(2).(3).(4).(5).7. 将函数展开成的幂级数.8. 将函数展开成的幂级数.9. 将函数展开成的幂级数.§1 可分离变量微分方程1. 判断下列方程是否为微分方程. 若是,则判断微分方程的阶数,并求微分方程通解的互相独立的任意常数的个数.(1);(2);(3);(4);(5);(6);(7);(8).2. 指出下列各题中的函数是否为所给微分方程的解:(1),;(2),;(3),;(4),.3. 求微分方程的通解.4. 求微分方程的通解.5. 求微分方程的通解.6. 求微分方程满足初始条件的特解.7. 已知一曲线通过点,且在该曲线上任一点处的切线斜率等于,求该曲线的方程.8. 已知细菌总数的增长率与总数成正比,且比例系数为. 若开始时细菌总数为,那么小时后细菌总数是多少?9.下列方程中()是二阶微分方程(A)(B)(C)(D)10. 下列函数中,()是微分方程的通解.(A)(B)(C)(D)11. 一曲线在其任一点的切线的斜率为,则此曲线是()(A)直线(B)抛物线(C)椭圆(D)圆12. 求微分方程的通解.13. 设是微分方程满足初始条件的特解,求.14. 求微分方程的通解.15. 已知一曲线通过点,且在该曲线上任一点处的切线斜率等于,求该曲线的方程.16. 设一物体的温度为,将其放置在空气温度为的环境中冷却,其中温度对时间的变化率与物体温度与室温之间的温度差成正比,比例系数为,试求物体温度随时间的变化规律.17. 放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 镭的衰变速度与它的现存质量成正比,比例系数为. 已知时刻铀的含量为,求衰变过程中铀含量随时间的变化规律.§2 一阶线性微分方程1. 求一阶线性微分方程的通解.2. 求一阶线性微分方程的通解.3. 求微分方程的通解.4. 求微分方程满足初始条件的特解.5. 求微分方程的通解.6. 求过原点且在点处的切线斜率等于的曲线方程.7. 求微分方程的通解.8. 求微分方程的通解.9. 求微分方程满足初始条件的特解.10. 求微分方程的通解.11. 求微分方程的通解.12. 求微分方程满足初始条件的特解.§3 二阶常系数线性微分方程1. 判断下列函数组在其定义区间内是线性相关还是线性无关. (1)(2)(3)(4)2. 验证和都是方程的解,并写出该方程的通解.3. ,是任意常数,验证是方程的通解;4. 求下列微分方程的通解:(1)(2)(3)5. 求下列微分方程满足所给初始条件的特解:(1),,;(2),,.6. 当取不同函数时,方程有何形式的特解(1)(2)(3)(4)7.求微分方程的通解.8.求微分方程满足初始条件,的特解.9. 判断下列函数组在其定义区间内是线性相关还是线性无关. (1)(2)(3)(4)(5)(6)10. 验证和都是方程的解,并写出方程的通解.11. 求下列微分方程的通解:(1)(2)(3)12. 求微分方程满足初始条件,的特解.13.微分方程的特解应具有形式()(A)(B)(C)(D)14. 求微分方程的通解:15. 求微分方程满足初始条件,的特解.。
超级难的高数极限题
超级难的高数极限题高等数学是大学数学的重要组成部分,其中极限是数学分析的基础。
极限是指函数在某一点趋近于某一值的过程,是数学中非常重要的概念。
而高数极限题则是考验学生数学思维和解题能力的重要题型之一。
下面将介绍一些超级难的高数极限题。
1. $lim_{xto 0} frac{sin x}{x}$这道题是高数极限题中最经典的一道题,也是最基础的一道题。
它的解法是利用极限的定义,即当$x$趋近于$0$时,$frac{sinx}{x}$趋近于$1$。
这个结论可以用泰勒公式证明。
2. $lim_{xto +infty} left(1+frac{1}{x}right)^x$这道题需要用到自然对数$e$的定义,即$lim_{xto +infty}left(1+frac{1}{x}right)^x=e$。
我们可以通过变形将这个式子转化为$lim_{xto 0} left(1+xright)^{frac{1}{x}}=e$,然后利用极限的定义求解。
3. $lim_{xto 0} frac{e^x-1}{sin x}$这道题需要用到泰勒公式的展开式,即$e^x=1+x+frac{x^2}{2!}+frac{x^3}{3!}+...$和$sinx=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+...$。
将这两个展开式代入原式中,我们可以得到$lim_{xto 0}frac{1+frac{x}{2!}+...}{x-frac{x^3}{3!}+...}$,然后利用洛必达法则求解。
4. $lim_{nto infty}left(frac{n}{n^2+1^2}+frac{n}{n^2+2^2}+...+frac{n}{n^2+n^2} right)$这道题需要用到积分的思想,即$int_0^1frac{1}{1+x^2}dx=frac{pi}{4}$。
我们可以将原式转化为$lim_{nto infty} frac{1}{n}sum_{k=1}^{n} frac{1}{1+(frac{k}{n})^2}$,然后利用积分的思想求解。
高数第四章习题课
x 1
又 F ( x)须处处连续,有
lim ( x
x1
C2 )
lim (
x1
1 2
x2
C1 )
即
1
C2
1 2
C1
,
1 lim ( 2 x1
x2
C3 )
lim ( x
x1
C2 )
即
1 2
C3
1
C2
,
联立并令 C1 C,
可得C2
1 +C, 2
C3 1 C.
1 2
x2
C,
故
max{1,
x
}dx
x 1 C, 2
[
f ( x)
f 3( x) ]dx.
解 原式
f ( x) f 2( x) f 2( x) f ( f ( x) f 2( x) f ( x) f ( x)
f ( x)
f 2(x)
dx
f (x) d[ f ( x)
f (x) ] f ( x)
1 [ f ( x) ]2 C. 2 f ( x)
cot xdx ln | sin x | C
1
x
(23)
dx arcsin C
a2 x2
a
(18) secxdx ln | secx tan x | C (24)
(19) csc xdx ln | csc x cot x | C
1
dx x2 a2 ln | x x2 a2 | C
例9 求 max{1, x }dx.
解 设 f ( x) max{1, x },
x, x 1
则
f
(
x)
1, 1
x 1,
高数课后习题答案及其解析
第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。
高数4(上)复习参考资料 (1)
(7) cos x d x sin x C
2 csc x d x cot x C (9)
1 d x arctan x C (11) 1 x 2
课本公式(5.25)
(16)
公式(5.18) tan x d x ln cos x C ln sec x C
课本公式(5.19) (17) cot x dx ln sin x C ln csc x C
(18) sec x dx ln sec x tan x C 课本公式(5.22)
首页
上一页
下一页
结束
x , 求 (1) 六.设函数 f x 1 2 ( x 3)
f x 的单调区间与极值; f x 的渐进线.
(2)
解:
f x 的凹性与拐点; (3)
3 x f ( x) , 3 ( x 3)
f (3) 0, f (6) 0;
首页 上一页 下一页 结束
1 1 2 sin x cos xdx 4 sin 2 xdx 8 (1 cos 4 x)dx x 1 sin 4 x C 8 32
2 2
有理分式部分分式分解;待定系数法
首页 上一页 下一页 结束
例.计算下列各题
dx 1. ; x 0 1 e
(19) csc x dx ln csc x cot x C 课本公式(5.21)
首页 上一页 下一页 结束
例
x3 (2) 2 dx x x 1
sin
高数提高讲义 - 第四讲 定积分与反常积分
第四讲 定积分与反常积分一、 考试要求1. 理解(了解)定积分的概念。
2. 掌握定积分的性质及换元积分法与分部积分法,掌握(了解)定积分中值定理。
3. 会求有理函数、三角函数有理式及简单无理函数的积分。
4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
5. 了解反常积分的概念,会计算反常积分。
二、内容提要1 定义 f x dx f x i i i na b()lim ()=→=∑⎰λξ01∆2 若f(x)在[a,b]上连续,则f x dx ab()⎰存在,特别f x dx b a n f a b ank n a bi n ()lim ()=-+-→∞=⎰∑1 f x dx n f n k n i n ()lim ()=→∞=⎰∑011113 f x dx f u du f t dt abab ab ()()()===⎰⎰⎰4 性质:(1) f x dx f x dx baab ()()=-⎰⎰(2) [()()]()()k f x k g x dx k f x dx k g x dx aba b a b1212+=+⎰⎰⎰ (3) f x dx f x dx f x dx cbac ab()()()=+⎰⎰⎰(4) 不等式性质(5) 估值定理 m f x M x a b ≤≤∀∈(),[,], 则 m b a f x dx M b a a b()()()-≤≤-⎰(6) 积分中值定理:若f(x)在[a,b]上连续,则f x dx f b a a b ab()()(),[,]=-∈⎰ξξ,注:ξ可在开区间(a,b )内取到.一般地,f(x)在[a,b]上连续, g(x)在[a,b]上可积且不变号,则 f x g x dx f g x dx a b abab()()()(),[,]=∈⎰⎰ξξ5 定积分的计算(1) 牛顿—莱布尼兹公式 f x dx F x F b F a a b ab()()()()==-⎰(2) 换元积分法 (3) 分部积分法6 反常积分(1)无界区域上的反常积分:设)(x F 是)(x f 在),(+∞a 上的一个原函数,且)()(),0(lim A F F a F A +∞→≡+∞+均存在,则称⎰+∞adx x f )(收敛,且定义⎰+∞adx x f )(=)0()(+-+∞a F F ;如果 )()(),0(lim A F F a F A +∞→≡+∞+中有一个不存在,则称⎰+∞adx x f )(发散。
高数第四章第一节不定积分
例5. 求
x 3 解: 原式 = ∫ x dx = 4 +C 3 +1
4 3
4+1
= 3x
例6. 求 解: 原式=
1 3
+C
∫
1 sin xdx 2
= 1 cos x + C 2
机动
目录
上页
下页
返回
结束
三、不定积分的性质
1. ∫ k f (x) dx = k∫ f (x)dx (k≠ 0) 2. ∫[ f (x) ± g(x)]dx = ∫ f (x)dx ± ∫ g(x) d x
1 1 (1 + x2 ) x2 1 = 2 (1) 2 = 2 2 2 2 x 1+ x x (1+ x ) x (1+ x )
2 2 1 sin x + cos x (2) = 2 2 sin x cos x sin2 x cos2 x
= sec x + csc x
2 2
机动
目录
上页
下页
返回
结束
∫F′(x) dx =F(x) + C
或 ∫ d F(x) = F(x)+ C
结论 微分运算与求不定积分的运算是互逆的. 微分运算与求不定积分的运算是互逆 互逆的
机动
目录
上页
下页
返回
结束
′ x x+1 实例 = x ∫ xdx = + C. +1 + 1 ( ≠ 1)
+1
二、 基本积分表 (P188-189)
机动
目录
上页
下页
返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分部积分法
求积分 ∫ e x cos xdx
e x cos xdx ∫
x
解
= ∫ e x d (sin x )
x
= e sin x − ∫ (sin x ) ⋅ e dx = e x sin x − ∫ e x d ( − cos x ) = e x sin x − [e x ( − cos x ) − ∫ ( − cos x ).e x dx ] = e (sin x + cos x ) − ∫ e cos xdx
第 4 章 不定积分 4.4 分部积分法
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
4.4
分部积分法
主 页 后退 退 出 目录
4.4
分部积分法
4.4 分部积分法
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
一、预备知识
函数积的微分法则
设函数u = u( x )和v = v ( x )都是x的可微函数, 则
主 页 后退 退 出 目录
总结 若被积函数是幂函数和反三角函数或幂 函数和对数函数的乘积, 一般不设幂函数为u 函数和对数函数的乘积 一般不设幂函数为 , 使其降幂一次(假定幂指数是正整数 假定幂指数是正整数) 使其降幂一次 假定幂指数是正整数
4.4 例6
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
= x 2 sin x − 2 x cos x + 2 sin x + C .
主 页 后退 退 出 目录
4.4
分部积分法
例4 求积分 x arctan xdx .
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
主 页 后退 退 出 目录
x2 解 令 u = arctan x , xdx = d = dv 22 2 x x ∫ x arctan xdx = 2 arctan x − ∫ 2 d (arctan x ) x2 x2 1 dx = arctan x − ∫ ⋅ 2 2 2 1+ x x2 1 1 )dx = arctan x − ∫ ⋅ (1 − 2 2 2 1+ x x2 1 = arctan x − ( x − arctan x ) + C . 2 2
2
1 dx 2 1+ x 令 x = tant
∫
1 1 dx = ∫ sec 2 tdt = ∫ sec tdt 1 + x2 1 + tan 2 t
= ln(sec t + tan t ) + C = ln( x + 1 + x 2 ) + C
x arctan x dx ∴ ∫ 2 1+ x
= 1 + x 2 arctan x − ln( x + 1 + x 2 ) + C .
第二次时仍应选 u2 = sin x
主 页 后退 退 出 目录
4.4
分部积分法
本节的学习目的与要求
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
• 1. 掌握分部积分公式; • 2.理解分部积分法并用其进行基本计算 。
主 页 后退 退 出 目录
x2 x2 ∫ x sin xdx = 2 sin x + ∫ 2 sin xdx 显然, u 选择不当,积分更难进行. 显然, , v ′ 选择不当,积分更难进行 解(二) 令 u = x , sin xdx = d ( − cos x ) = dv
∫ x sin xdx = ∫ xd (− cos x ) = − x cos x − ∫ ( − cos x )dx
xe − x dx = x ( − e − x ) − ∫ ( − e − x )dx ∫ = − xe − x + ∫ e − x dx = − xe − x − e − x + C
x x 2.令u = x , dv = sin dx , 则v = −2 cos 2 2 x x x ∫ x sin 2 dx = −2 x cos 2 + 2∫ cos 2 dx x x = −2 x cos + 4 sin + C 2 2
主 页 后退 退 பைடு நூலகம் 目录
4.4
分部积分法
习题4-4
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
1.计算下列不定积分 计算下列不定积分
(1)∫ xe dx
x
x ( 2) ∫ ln dx 2
( 3)∫ e x cos 2 xdx
(4) ∫ x 2e x dx (6) ∫ arc cot xdx (9) ∫ x sec xdx
主 页 后退 退 出 目录
4.4
分部积分法
− x2
例 8 已知 f ( x ) 的一个原函数是e
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
, 求 ∫ xf ′( x )dx .
解
∫ xf ′( x )dx = ∫ xdf ( x )= xf ( x ) − ∫ f ( x )dx ,
2
(5)∫ ( x + 4) sin 2 xdx (7 )∫ arcsin xdx (10)∫ x ln xdx ln x ( 8)∫ 2 dx x
主 页 后退 退 出 目录
4.4 2.求下列不定积分 求下列不定积分
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
分部积分法
(1)∫ e x dx
∫
4.4 例5 求积分
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
分部积分法
x 2 ln xdx ∫
解
x3 u = ln x , x 2dx = d ( ) = dv , 令 3 3 3 x x 2 ∫ x ln xdx = 3 ln x − ∫ 3 d ln x x3 x3 1 = ln x − ∫ . dx 3 3 x x3 1 3 = ln x − x + C 3 9
∫ uv′dx = uv − ∫ u′vdx, ∫ udv = uv − ∫ vdu.
分部积分公式
主 页 后退 退 出 目录
4.4 例1 求积分
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
分部积分法
∫ x sin xdx
解(一) 令 u = sin x
1 2 xdx = dx = dv 2
′
− x2
Q
(∫ f ( x )dx ) = f ( x ), ∴ ∫ f ( x )dx = e
f ( x ) = −2 xe
+ C,
求导, 两边同时对 x求导 得
− x2
,
∴ ∫ xf ′( x )dx = xf ( x ) − ∫ f ( x )dx
主 页 后退 退 出 目录
= −2 x e − e
x x
注意循环形式
主 页 后退 退 出 目录
1 x ∫ e cos xdx = 2 e (sin x + cos x ) + C
x
4.4
分部积分法
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
x arctan x dx . 例7 求积分 ∫ 2 1+ x x 2 ′ 解 Q 1+ x = , 2 1+ x x arctan x 2 dx = ∫ arctan xd 1 + x ∴ ∫ 2 1+ x
( 2)∫ sin xdx
主 页 后退 退 出 目录
4.4
1.(1) xe − e + + C
x x
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
分部积分法
x ( 2 ) x ln − 2 x + C 2
习题4-4答案 习题 答案
1 x ( 3 ) e ( 2 sin 2 x + cos 2 x ) + C ( 4 )e x ( x 2 − 2 x + 2 ) + C 5 1 1 ( 5 ) − x cos 2 x + sin 2 x − 2 cos 2 x + C 2 4 1 ( 6 ) xarc cot x + ln( 1 + x 2 ) + C 2 ( 7 ) x arcsin x + (1 − x ) + C ( 9 ) x tan x + ln cos x + C
d ( uv ) = udv + vdu
主 页 后退 退 出 目录
4.4
分部积分法
二、分部积分法
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
问题
∫ x sin xdx = ?
解决思路 利用两个函数乘积的求导法则 利用两个函数乘积的求导法则.
设函数 u = u( x ) 和 v = v ( x ) 具有连续导数 具有连续导数, ′ = (uv )′ − u′v , (uv )′ = u′v + uv′, uv
主 页 后退 退 出 目录
4.4
分部积分法
思考题解答
本节 预备 知识 本节 目的 要求 本节 重点 难点 本节 复习 指导
应为同类型函数. 注意前后几次所选的 u 应为同类型函数 例
e x cos xdx ∫
第一次时若选 u1 = cos x
e x cos xdx = e x cos x + ∫ e x sin xdx ∫