第二章功率半导体器件的驱动与保护

合集下载

功率半导体器件的技术进展与应用

功率半导体器件的技术进展与应用

功率半导体器件的技术进展与应用近年来,随着科技的不断发展和人们对节能环保的认识加深,功率半导体器件的应用领域越来越广泛。

功率半导体器件是一种能够将高电压、大电流和高频率的电能转换为可控制的形式的集成电路,可以在电力变换、控制、传输、存储等领域发挥重要作用。

本文将简要介绍功率半导体器件的技术进展和应用。

一、技术进展1.功率MOSFET功率MOSFET是一种在低电压下工作的MOSFET,具有电阻低、导通损耗小、开关速度快等优点,广泛应用于频率转换、功率逆变和开关电源等方面。

近年来,随着电路集成度的提高和新材料的应用,功率MOSFET的性能不断提高,主要表现在以下几个方面:(1)低电阻:采用短通道、高导电能力金属等材料,可以将电阻进一步降低,从而降低导通时的损耗。

(2)快开关:采用多晶硅材料、低电容衬底和优化的结构设计,可以提高开关速度,从而减少反向恢复损失。

(3)高电压:采用氮化硅等材料,可以提高器件承受电压的能力,从而降低工作时的漏失。

(4)高温:采用碳化硅材料,可以在高温环境下正常工作,从而提高器件的可靠性。

2. IGBTIGBT是一种功能介于MOSFET和晶闸管之间的器件,具有高电阻、高压、高速等优点,被广泛应用于交流电机驱动、UPS、电焊等领域。

IGBT的主要进展包括:(1) 低开关损耗:采用SiC材料和硅极细晶化技术等,可以进一步降低开关损耗。

(2) 高辐射环境下的可靠性:采用硅材料和硅细晶化技术等,可以提高器件的抗辐射性能。

(3) 低噪声:采用新型高低侧驱动技术、晶格磁通快速切换技术等,可以降低开关噪声。

(4) 高集成度:采用3D封装技术、SEPIC局放结构等,可以提高器件的集成度。

3. SiC/MOSFETSiC/MOSFET是一种基于碳化硅材料的MOSFET,具有高温、高速、低损耗等优点,被广泛应用于太阳能逆变器、电动汽车等领域。

SiC/MOSFET的主要进展包括:(1) 低电阻:采用近完美的完整性碳化硅基底,可以进一步降低器件电阻,从而降低导通损耗。

功率半导体器件要点

功率半导体器件要点

功率半导体器件要点功率半导体器件是指用于控制和转换电力的半导体器件,其具有承载高电流和高电压的特点。

在电力电子领域中,功率半导体器件广泛应用于电力变换、传输和控制系统中,起到关键的作用。

本文将重点介绍功率半导体器件的要点,包括常见的功率半导体器件类型、特性与工作原理、应用领域和发展趋势等方面。

1.常见的功率半导体器件类型常见的功率半导体器件包括功率二极管、功率晶体管、功率场效应管(MOSFET)、可控硅(SCR)和绝缘栅双极晶体管(IGBT)等。

每种器件都有自己特殊的工作原理、结构和性能特点,适用于不同的应用场合。

2.功率半导体器件的特性与工作原理不同类型的功率半导体器件具有不同的特性和工作原理。

例如,功率二极管通常用作电流开关和快速恢复整流器,其主要特点是低电压降、快速开关速度和高导通电流能力。

功率晶体管在电力放大和开关电路中广泛使用,具有高功率放大能力和较高的开关速度。

功率场效应管主要有MOSFET和IGBT两种类型,其特点是低输入阻抗、高开关速度和较低的控制电压。

可控硅主要用于交流电控制和直流电开关,其工作原理是通过施加门极电压来控制器件的导通。

3.功率半导体器件的应用领域功率半导体器件在电力电子领域有广泛的应用。

例如,功率二极管通常用于电源、电机驱动和变频器等电路中。

功率晶体管广泛应用于功率放大、开关和变换器等电路。

功率场效应管主要用于集成电路和电力开关等领域。

可控硅被广泛应用于交流变频器、电动机起动和照明控制等场合。

绝缘栅双极晶体管(IGBT)结合了晶体管和可控硅的特点,逐渐成为高功率应用的主流器件。

4.功率半导体器件的发展趋势随着电力电子的广泛应用和需求的增加,功率半导体器件面临着高功率、高频率、高效率和小型化等方面的挑战。

近年来,功率半导体器件在结构设计、材料改进和工艺制造等方面取得了重大进展。

新型材料如碳化硅(SiC)和氮化镓(GaN)的应用,使功率半导体器件具有更高的工作温度、更高的开关速度和更低的导通电阻。

第二章 - 5_IGBT(电力电子技术)

第二章 - 5_IGBT(电力电子技术)

主要解决挚 住效应
改善饱和压降和开 关特性:N+缓冲 层、P+层浓度、 厚度最佳化、新 寿命控制,饱和 压降、下降时间 微细化工艺 均降低了30%以 上。
有选择的寿命控制,饱 和压降和关断时间 下降到1.5V/0.1ms。
沟槽技术
19
2.5 其他新型电力电子器件
2.5.1 MOS控制晶闸管MCT 2.5.2 静电感应晶体管SIT 2.5.3 静电感应晶闸管SITH 2.5.4 集成门极换流晶闸管IGCT 2.5.5 基于宽禁带半导体材料的电力 电子器件
11
2.4.4 绝缘栅双极晶体管
■IGBT的主要参数 ◆前面提到的各参数。 ◆最大集射极间电压UCES ☞由器件内部的PNP晶体管所能承受的击穿 电压所确定的。 ◆最大集电极电流 ☞包括额定直流电流IC和1ms脉宽最大电流ICP。 ◆最大集电极功耗PCM ☞在正常工作温度下允许的最大耗散功率。
12
正向电流密度(A/sp.cm)
1000
IGBT
100 10 1 0.1 0 1 2
300V 600V 1200V 300V 600V 1200V
MOSFET
正向压降(V) 16
3
温度特性
功率MOSFET 导通时温升沟道电阻速增,200度时可达室温时的3倍。考 虑温升必须降电流定额使用。 IGBT 可在近200度下连续运行。导通时,MOS段的N通 道电阻具有正温度系数,Q2的射基结具有负温度系数,总 通态压降受温度影响非常小。
13
IGBT_5SNS 0300U120100
主要参数: • VCES 1200V • IC(DC) 300A • Tc(OP) -40~125oC • VCESAT IC300A ,VGE15V: 1.9V 25oC,2.1V125oC

功率半导体用途

功率半导体用途

功率半导体用途功率半导体是一种常见的半导体器件,具有较高的电流、电压和功率处理能力,主要用于高压变换器、直流电源、交流变频器等领域。

在现今的工业应用中,功率半导体器件已经成为不可或缺的一部分。

本文将探讨功率半导体器件的用途。

1. 交流变频器功率半导体器件主要用于驱动交流变频器,实现交流电机的调速功能。

交流电机因其效率高、寿命长等优点,在现代化工制造业中广泛使用。

在交流电机的运转过程中,功率半导体器件可以提供可靠稳定的电源及驱动电路,从而实现电机的高效稳定运行。

2. 直流电源功率半导体器件也可以用于直流电源,为各种电子设备供电。

在电气工程中,直流电源作为电子设备的重要组成部分,其质量和稳定性需要得到有效地保障。

功率半导体器件可以保障直流电源质量稳定,从而确保电子设备的安全及可靠性。

3. 高压变换器功率半导体器件还被广泛应用于高压变换器。

在高压电力变换器的运行过程中,需要处理大电流、高电压等情况,这就需要具备较高功率处理能力的器件进行驱动。

功率半导体器件可以满足这一需求,从而成为高压变换器的重要组成部分。

4. 高速开关功率半导体器件还常常被用作高速开关,如用于高速数字电路中,实现数据位反转,从而使数字信号的传输更加可靠性。

实际应用中,高速开关可以大大提高数字信号的传输速度和稳定性。

5. 其他应用功率半导体器件还有其他的应用,如:开关电源、数码电路、光电子器件等领域。

这些应用都需要具备较高功率处理能力的器件来保障其安全、可靠性和稳定性。

因此,功率半导体器件在这些领域也有着不可或缺的应用价值。

综上所述,功率半导体器件在诸多领域都有着广泛的应用,从驱动交流变频器,直流电源供电,到高压变换器、高速开关,都非常受到市场欢迎。

随着未来的发展,功率半导体器件的应用前景将更加广阔,市场需求量也将进一步提高。

功率半导体器件.

功率半导体器件.

(2.2)
(2.2) Dn, Dp: 电子和空穴的扩散系数 : 高注入条件下漂移区载流子寿命
方程 (2.2)X ( p p) ,(2.3)X (n n ) 得到 (2.4)
稳态条件下 (2.4) 应该为
(2.5)
上式中利用了双极扩散系数:
(2.6)
在 N/N+ 阴极处 (x = +d), 电流主要由电子承载,采用100%电子效率假设,可得 到:
反向阻断电压
反向阻断电压要小于击穿电压,而击穿电压主要有低掺杂去所决定。半导体材料决定 了最大击穿电场EC,对于单边突变结:
VBD
s Ec
2
பைடு நூலகம்2qN D
提高要击穿电压(反向阻断电压)的措施: 1.漂移区足够厚(d),以使在反偏时能够建立起足够宽的耗尽层,这与降低正向压降有 冲突,需要折衷考虑 2.使用低掺杂浓度和高电阻率晶圆,在生产中严格控制化学试剂的质量 3.使用具有高击穿电场的材料,如SiC,GaN
1.7 用于制备功率器件的半导体材料优值
1.8 课程内容及考核
• P-i-n整流器件,双极功率器件,功率MOSFET, 晶闸管类器件,双极-MOS功率器件 • 学时32:周二(1~16周) • 考核方式:平时60%+随堂测试40%
第二章 p-i-n二极管
• • • •
应用:整流器 额定电流: 1A 到几百安培 反向阻断电压: 几十伏特到几千伏特 设计目标: 高反向阻断电压、低正向压降、开关态 间快的转换速度
IC1 M (1I E1 IC 01 )
IC 2 M (2 I E 2 IC 02 )
4.3 晶闸管开关的能带变化
正向阻断态: J1,J3正偏,J2反偏, 空穴从P1注入N1被J2的反偏电场抽 运到P2,使其能带降低,导致J3更 加正偏;与之对应,电子聚集在N1 区使之能带升高,导致J1更加正偏。 在器件端电压不是足够大时,注入 的过剩载流子完全被复合掉 正向导通态:端电压不是足够高时, 载流子除了复合外,剩下的流入外 部电路

《电力电子技术》教学大纲

《电力电子技术》教学大纲

《电力电子技术》教案大纲
一、教案目的和任务
电力电子技术横跨“电力”、“电子”与“控制”三个领域,是现代电子技术的基础之一,已被广泛地应用在工农业生产、国防、交通等各个领域,有着极其广阔的应用前景。

《电力电子技术》是电类专业重要的专业基础课程。

本课程通过对功率半导体器件、驱动及保护电路、交流直流()变换电路、直流直流()交换电路、直流交流()变换电路、交流交流()变换电路、软开关技术等内容的学习,使学生能掌握各类电能变换的基本原理,各电力电子变换装置的电路结构、基本原理、控制方法、设计计算;使学生具有初步设计、调试、分析电力电子变流装置的能力。

二、教案内容的结构
三、教案目标与任务
四、教案活动
本课程学习主要形式以:课件学习为主,辅以网上实时和非实时答疑、网上讨论。

课件自学由学生根据教案周历表要求,自主安排学习计划。

具体如下:
•自主性学习:借助教材、视频课件、课程导学、习题库、课外阅读等网上内容,进行自主性学习;
•互动性学习:通过在线专题讨论、辅导答疑、交流、电子邮件、电话等形式,与教师、同学进行交流,解决学习中疑难问题;
•实践性学习:学生在家就可以通过网络实时完成远程网络教案实验。

在具备条件的教案中心,组织学生利用课程组研制的得到广泛推广的电力电子技术与电机控制系统实验装置进行实验。

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术

IGBT的驱动电路原理与保护技术IGBT(Insulated Gate Bipolar Transistor)是一种用于高压高功率开关电路的半导体器件,结合了MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)的输入特性和BJT(Bipolar Junction Transistor)的输出特性。

IGBT的驱动电路原理与保护技术对于确保IGBT的正常工作和延长其寿命非常重要。

1.基本原理:驱动电路的主要目的是将控制信号转换成足够的电压和电流来控制IGBT的开关动作。

基本的驱动电路一般由一个发生器、一个驱动电流放大器以及一个隔离电压放大器组成。

2.发生器:发生器产生控制信号,控制IGBT的开关状态。

信号可以是脉冲信号,由微控制器或其他逻辑电路产生。

3.驱动电流放大器:驱动电流放大器用于放大脉冲信号,以提供足够的电流来控制IGBT。

其输出电流通常在几十毫安到几安之间。

4.隔离电压放大器:IGBT通常需要电隔离,以防止高电压干扰信号影响其正常工作。

隔离电压放大器用于将驱动信号从控制信号隔离,并提供相应的电压放大。

1.过流保护:IGBT的工作电流超过额定值时,可能会导致损坏。

因此,电路中应包含过流保护电路,可以通过电流传感器来监测电流,并在超过设定值时立即切断电源。

2.过温保护:IGBT在超过一定温度时可能会发生热失控,导致器件损坏。

因此,必须安装温度传感器来监测器件的温度,并在超过设定值时采取适当的措施,如降低输入信号或切断电源。

3.过压保护:当IGBT的工作电压超过额定值时,可能会引起击穿,导致器件损坏。

因此,在电路中需要安装过压保护电路,以确保电压不会超过允许的范围。

4.反馈电路:为了确保IGBT的正常工作,需要实时监测其输出电流和电压。

因此,反馈电路可以用来调整控制信号,以保持IGBT在安全范围内工作。

总之,IGBT的驱动电路原理和保护技术是确保IGBT正常工作和延长其寿命的关键。

17_功率半导体器件基础教学大纲

17_功率半导体器件基础教学大纲

《功率半导体器件基础》课程教学大纲课程编号:课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。

功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。

根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。

二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。

(2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。

(3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。

三、教学内容与学时分配第一章(知识领域1):功率半导体器件概述(2学时)。

(1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

(2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

第二章(知识领域2):半导体的性质(2学时)。

(1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。

(2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质第三章(知识领域3):PN结(2学时)。

(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。

IGBT驱动电路原理及保护电路

IGBT驱动电路原理及保护电路

IGBT驱动电路原理及保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于驱动IGBT的电路,主要用于控制和保护IGBT。

IGBT是一种高性能功率半导体器件,广泛应用于各种功率电子设备中。

驱动信号发生器产生一个驱动信号,通常是一个脉冲信号,用于控制IGBT的开关状态。

信号放大器将驱动信号放大到足够的电压和电流,以满足IGBT的驱动要求。

保护电路用于监测IGBT的工作状态,并在故障发生时提供保护措施。

电源则为整个驱动电路提供所需的电能。

IGBT驱动电路的保护功能非常重要。

保护电路通常包括过流保护、过温保护、过压保护和短路保护等功能。

过流保护通过监测IGBT的输出电流来避免过大的电流损坏IGBT。

过温保护通过监测IGBT的温度来避免过热导致的损坏。

过压保护通过监测输入电压来避免过大的电压损坏IGBT。

短路保护通过监测IGBT的输出电压和电流来避免短路导致的损坏。

IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制、隔离等。

电流限制功能可以限制IGBT的输出电流,以满足设备的需要。

反馈控制功能可以通过监测输出信号,并将反馈信号送回到驱动信号发生器中,实现对IGBT的精确控制。

隔离功能可以通过光耦等器件实现驱动信号和IGBT之间的电气隔离,提高系统的安全性和可靠性。

总之,IGBT驱动电路是用于驱动和保护IGBT的电路,通过控制IGBT的输入电流和电压来实现对其的开关操作。

保护电路是其重要组成部分,可以提供对IGBT的过流、过温、过压和短路等故障的保护。

IGBT驱动电路还可以包括其他功能,如电流限制、反馈控制和隔离等。

这些功能和保护措施都有助于提高IGBT的性能和可靠性,保护其免受损坏。

第二章全控型电力电子器件

第二章全控型电力电子器件
模块
IGBT
开关器件——IGCT=驱动电路+GCT
4kA/4.5kV IGCT
663A/4.5kV IGCT
GCT分解部件
第一节 门极可关断(GTO)晶闸管
1. 结构
➢与普通晶闸管的相同点:PNPN四层半导体 结构,外部引出阳极、阴极和门极; ➢和普通晶闸管的不同点:GTO是一种多元的 功率集成器件,内部包含数十个甚至数百个共 阳极的小GTO元,这些GTO元的阴极和门极 则在器件内部并联在一起。
2. 导通关断条件
导通:同晶闸管,AK正偏,GK正偏 关断:门极加负脉冲电流
3.特点
全控型 容量大 off≈5 电流控制型
电流关断增益off : 最大可关断 阳极电流与门极负脉冲电流最大 值IGM之比称为电流关断增益
off
I ATO I GM
1000A的GTO关断时门极负脉
冲电流峰值要200A 。
1.单管GTR
单管GTR的基本工作原理与晶体管相同 作为大功率开关管应用时,GTR工作在截止和导
通两种状态。 主要特性是耐压高、电流大、开关特性好
2.达林顿GTR
单管 GTR的电流增益低,将给基极驱动电 路造成负担。达林顿结构是提高电流增益 一种有效方式。
达林顿结构由两个或多个晶体管复合而成, 可以是PNP型也可以是NPN型,其性质由 驱动管来决定
第二节 GTR——电力晶体管
➢ 电力晶体管GTR (Giant Transistor,巨型晶体管) ➢ 耐 高 电 压 、 大 电 流 的 双 极 结 型 晶 体 管 ( Bipolar
Junction Transistor——BJT), 英 文 有 时 候 也 称 为 Power BJT ➢ 在电力电子技术的范围内,GTR与BJT这两个名称等效。 应用 ➢ 20世纪80年代以来,在中、小功率范围内取代晶闸管, 但目前又大多被IGBT和电力MOSFET取代

17-功率半导体器件基础教学大纲

17-功率半导体器件基础教学大纲

《功率半导体器件基础》课程教学大纲课程编号:课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。

功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。

根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。

二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。

(2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。

(3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。

三、教学内容与学时分配第一章(知识领域1):功率半导体器件概述(2学时)。

(1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

(2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

第二章(知识领域2):半导体的性质(2学时)。

(1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。

(2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质第三章(知识领域3):PN结(2学时)。

(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。

电力电子技术32

电力电子技术32

GTR的静态特性
Ic
•共发射极接法时的典 型输出特性:截止区 、放大区和饱和区。
•在电力电子电路中 GTR工作在开关状态。
放大区 i b3 i b2
•在开关过程中,即在
截止区和饱和区之间
过渡时,要经过放大
区。
O
i b1 ib1<ib2<ib3
截止区
U ce
共发射极接法时GTR的输出特性
哈尔滨工业大学电气工程系
PcM
UceM Uce
文件: 电力电子技术32.6
电力电子技术
功率半导体器件(2)
8.4 电力场效应晶体管
电力MOSFET的结构和工作原理
• 单极型晶体管(只有一种载流子参与导电),导电 机理与小功率MOS管相同,但结构上有较大区别。
• 采用多元集成结构。
S
D
D
G
N+ 区
C
I
I
R
V+
J1
C
D N-
C
-+
E
+
IR
G
-D on
C 集电极
E
• N沟道VDMOSFET与GTR组合——N沟道IGBT。
• IGBT比VDMOSFET多一层P+注入区,增强了通流能力。
• 简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿 结构,一个由MOSFET驱动的厚基区PNP晶体管。
ID / A
•漏极电流ID和栅源间电压UGS
50
的关系称为MOSFET的转移特性
。表明栅极电压对漏极电流的
40
控制能力。
30
20
•ID较大时, ID与UGS的

研究生课《功率半导体驱动和应用》-定义说明解析

研究生课《功率半导体驱动和应用》-定义说明解析

研究生课《功率半导体驱动和应用》-概述说明以及解释1.引言1.1 概述概述部分的内容:功率半导体驱动和应用技术是当今电力电子领域的前沿研究方向,具有非常重要的理论和应用意义。

随着科技的不断进步,功率半导体材料和器件的研发和应用已经取得了长足的进步。

功率半导体驱动技术是指通过对功率半导体器件进行合理的电力供应和控制,来实现对电力设备和系统的驱动和控制。

同时,功率半导体应用领域也在不断拓展,涵盖了电力电子、汽车电子、新能源等多个领域。

研究生课程《功率半导体驱动和应用》通过系统性的理论学习和实践操作,旨在培养学生对功率半导体技术的深刻理解和实际应用能力,为学生未来的科研和工程实践奠定坚实基础。

1.2 文章结构文章结构部分内容:本文分为引言、正文和结论三个部分。

引言部分概述了研究生课程《功率半导体驱动和应用》的主题和意义,介绍了文章的结构和目的。

正文部分将主要围绕功率半导体驱动技术和应用领域展开讨论,重点探讨了该课程在研究生阶段的重要性和意义。

结论部分将对文章进行总结回顾,并展望未来可能的发展方向,得出结论。

整个文章结构清晰,层次分明,内容丰富,逻辑严谨。

1.3 目的:本课程的目的是让学生深入了解功率半导体驱动技术及其在不同应用领域的具体应用。

通过学习和掌握相关知识,学生将能够具备对功率半导体驱动技术进行分析、设计和应用的能力。

同时,本课程也旨在培养学生独立思考和解决问题的能力,为将来在相关领域的工作和研究打下坚实的基础。

通过本课程的学习,学生将能够更好地理解和把握当前功率半导体驱动和应用领域的发展趋势,为其未来的职业发展提供有力支持。

2.正文2.1 功率半导体驱动技术功率半导体驱动技术是指通过对功率半导体器件的控制和驱动,实现电能的转换和控制的技术。

功率半导体器件包括晶闸管、场效应管、绝缘栅双极晶体管(IGBT)和功率型金属氧化物半导体场效应晶体管(MOSFET)等。

这些器件具有承受大电流、大电压和大功率特点,广泛应用于电力电子转换、控制、调节、逆变、稳压和开关等领域。

《新能源电源变换技术》课程标准

《新能源电源变换技术》课程标准

《新能源电源变换技术》课程标准一、课程基本情况一、课程编码及课程名称课程编码:16123301课程名称:新能源电源变换技术二、学时及学分总学时数:88,其中,讲授学时:64,实践(实验)学时:24。

学分:4三、适用专业及开设学期适用专业:光伏发电与应用技术专业开设学期:第4学期四、课程的性质、目标和任务新能源电源变换技术是可再生能源领域中占有重要地位的一门学科,它包括太阳能、风能、生物质能、可燃冰、潮流能、潮汐能、波浪能、温差能和盐差能等利用技术。

这些能源的应用研究内容主要是计算各方面自然存在的能量,再通过研究不同机构用其吸收这些能量,将其转换为机械能,带动发电机工作。

它的应用是一门多学科的综合技术,这包括大气环境、海洋环境学、流体力学、机械设计、电工及电控学等。

通过课程学习使学生掌握新能源能利用技术的基本理论与研究方法。

通过学习使学生了解太阳光伏、太阳热能、风能、生物质能、潮汐能、地热能等可再生能源发电及燃料电池发电技术;了解电力系统中的各种储能技术及最新发展,包括超导储能、飞轮储能、电池储能、超级电容及抽水蓄能技术等;了解用于可再生能源的电力变换技术,包括变换拓扑、工作原理及性能分析;以及分布式发电系统和主干系统的相互影响及其运行与控制;了解国内外最新的可再生能源发电应用工程情况等。

五、课程的基本要求通过该课程学习可使学生了解可再生能源的生成、特点及利用方法,使学生基本掌握新能源应用研究的技术手段。

掌握太阳能、风能发电的机理及设备;燃料电池发电的机理;各种储能技术;电力电子功率变换电路;分散电源对大系统的影响分析等。

六、课程教学内容第一章绪论(共2学时)(一)本章教学目的和要求通过本章学习,对本课程所学习的知识有一个初步的了解,掌握课程的学习方法。

要求学生对能源有一个概括的认识。

(二)教学内容第1章新能源发电与控制技术导论1.1能源储备与可持续发展战略1.1.1我国的能源结构与储备1.1.2我国的可持续发展战略1.2能源的分类与基本特征1.2.1能源的分类1.2.2能源的基本特征1.2.3新能源及主要特征1.2.4分布式能源及主要特征1.3新能源发电——能源转换的重要形式1.3.1新能源发电技术的应用1.3.2我国新能源发电的现状1.3.3新能源发电及电源变换的主要形式1.4新能源发电与控制技术的经济意义1.4.1能源是经济发展的引擎1.4.2新能源发电的经济意义本章小结(三)重点与难点重点:1.能源的基本分类难点:1.新能源的开发及发展趋势第2章电源变换和控制技术基础知识(6学时)(一)本章教学目的和要求通过本章学习,对本课程所学习的知识有一个初步的了解,掌握常用电力电子器件的基本知识、使用方法。

功率半导体器件相关知识讲解

功率半导体器件相关知识讲解

• 电流控制器件(关断控制电流很大) • 用于(极)大功率场合(可至数十兆瓦) • 开关频率低(千赫兹以下) • 极大功率应用的(几乎)唯一选择
2023年12月6日
28
第二章 功率半导体器件
电力电子功率模块
现代电力电子技术原理与应用
• 电力电子器件的集成 • 电力电子器件与驱动、保护电路的集成 • 电力电子器件与控制电路的集成
现代电力电子技术原理与应用
电路中的开关器件:二极管整流器
2023年12月6日
40
第二章 功率半导体器件
现代电力电子技术原理与应用
电路中的开关器件:二极管整流器
2023年12月6日
41
第二章 功率半导体器件
现代电力电子技术原理与应用
电路中开关器件符号的处理:实际电路
2023年12月6日
42
第二章 功率半导体器件
2023年12月6日
21
第二章 功率半导体器件
IGBT
现代电力电子技术原理与应用
• 电压控制器件
• 用于中小功率场合(数十千瓦~数百千瓦)
• 开关频率中(数十千赫兹以下)
• 掣住效应问题(寄生晶闸管)
• 该功率等级目前最理想的器件
2023年12月6日
22
第二章 功率半导体器件
现代电力电子技术原理与应用
功率半导体器件相关知识讲解
第二章 功率半导体器件
理想的开关器件
现代电力电子技术原理与应用
• 关断时可承受正、反向电压(越高越好) • 开通时可流过正、反向电流(越大越好) • 开通态、关断态均无损耗 • 状态转换过程无损耗 • 状态转换过程快速完成(越快越好) • 开关寿命长(允许的开关次数越多越好)

第2章 电力电子器件的基本特性

第2章 电力电子器件的基本特性

• 1)GTO的导通机理与SCR是相同的。GTO一旦导通之后, 门极信号是可以撤除的, 但在制作时采用特殊的工艺 使管子导通后处于临界饱和,而不象普通晶闸管那样 处于深饱和状态,这样可以用门极负脉冲电流破坏临 界饱和状态使其关断。 • 2)在关断机理上与SCR是不同的。门极加负脉冲即从 门极抽出电流(即抽取饱和导通时储存的大量载流子), 强烈正反馈使器件退出饱和而关断。
图2.3.1
晶闸管的外型及符号
• 常用大功率晶闸管实物外形
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
晶闸管的工作原理
晶闸管的内部结构和等效电路 导通条件: ① 在A-K两端施加正向电压; ② 同时在门极和阴极之间也施加正向触发(电压)信号时,门 极有电流IG流通。 这时,即使去掉触发信号,这时晶闸管仍然能够自动维持导 通。
•① •② •③ •④ 明确门极开通和关断波形; 驱动电路的电源选择; 缓冲吸收回路的合理设计; 阳极电路限流电抗器的合理设计。
§2.4 功率场效应管和绝缘栅双极型晶体管
§2.4.1
功率场效应管(MOSFET)
§2.4.2
绝缘栅双极型晶体管(IGBT)
§2.4.1
现代电力电子技术现代电力电子技术modernpowerelectronicsmodernpowerelectronics电力半导体器件的基本特性21电力半导体器件的种类及应用22半导体整流管23晶闸管和可关断晶闸管24功率场效应管和绝缘栅双极型晶体管25电力半导体器件的功率损耗和冷却重点和难点重点和难点电力电子器件的基本模型和分类电力电子器件指标和特性应用电力电子器件系统的组成电力电子器件的驱动和保护类型及原理电力半导体器件的种类及应用电力半导体器件是电力电子技术及其应用系统的基础

可关断晶闸管(gto)触发驱动和保护电路的研究

可关断晶闸管(gto)触发驱动和保护电路的研究

可关断晶闸管(gto)触发驱动和保护电路的研究摘要:可关断晶闸管(GTO)是一种重要的功率半导体器件,被广泛应用于电力电子领域。

然而,GTO的触发驱动和保护电路的设计与实现是一个非常复杂的问题。

本文旨在研究可关断晶闸管的触发驱动和保护电路,提出一些新的解决方案,以改善GTO的性能和可靠性。

正文:一、GTO的触发驱动电路在GTO的工作过程中,触发驱动电路起着关键的作用。

一个好的驱动电路可以保证GTO可靠地开关,并且在关闭时可以控制漏电流。

因此,我们需要设计一种高效、精确、可靠的GTO触发驱动电路。

以下是一些常见的GTO触发驱动电路:1.电压控制触发驱动电路电压控制触发驱动电路是一种常用的GTO触发驱动电路。

它的原理是通过一个信号发生器来产生一个控制信号,然后将这个信号输入到GTO的控制端,以控制GTO的导通和断开。

电压控制触发驱动电路的优点是简单,易于实现,但是它的精度和稳定性不如其他触发驱动电路。

2.电流控制触发驱动电路电流控制触发驱动电路是一种比较精确和可靠的GTO触发驱动电路。

它的原理是将一个电流信号送入GTO的控制端,以控制GTO的导通和断开。

电流控制触发驱动电路的优点是精确、可靠,但是它的实现复杂,需要使用高精度的电流源和电流传感器。

3.光耦隔离触发驱动电路光耦隔离触发驱动电路是一种可靠、安全且精确的GTO触发驱动电路。

它的原理是使用一个光耦隔离器将控制信号隔离开,并将隔离后的信号送入GTO的控制端,以控制GTO的导通和断开。

光耦隔离触发驱动电路的优点是精确、可靠、安全,但是它的成本较高。

二、GTO的保护电路GTO在工作过程中,常常会受到各种各样的干扰和故障,如过电压、过电流、电磁干扰等。

因此,我们需要设计一种可靠的保护电路来保护GTO的正常工作。

以下是一些常见的GTO保护电路:1.过电压保护电路过电压保护电路是一种常见的GTO保护电路。

它的原理是使用一个电压传感器来检测GTO的电压,一旦电压超过设定值,就会触发一个保护电路,将GTO断开以保护它的安全。

IGBT模块:技术、驱动和应用

IGBT模块:技术、驱动和应用

IGBT模块:技术、驱动和应用IGBT模块是一种集成了多个功率晶体管的集成电路,它能够承受高电压和高电流,广泛应用于电力变换和工业控制领域。

IGBT模块的技术、驱动和应用,是电力电子学、微电子学和电气工程领域的重要内容。

本文将针对IGBT模块的技术、驱动和应用进行详细的分析和讨论。

一、技术1. IGBT的结构和原理IGBT模块采用了IGBT功率晶体管技术,是一种高功率半导体器件。

IGBT由P型掺杂的底部导电层、N型的发射区、P 型区域和N型区域组成。

IGBT的结构与三极管相似,但它在结构上融合了场效应晶体管(FET)和双极型晶体管(BJT)的优点。

IGBT的输出开关特性类似于MOSFET,控制端需要施加正向偏置电压才能开启它。

然而,IGBT模块的输出电容较大,需要控制端施加负向电压才能关闭它。

2. IGBT模块的特性(1)高平均功率:IGBT模块能够承受高电压和高电流,适用于高功率应用。

(2)低电压降:IGBT模块的导通电阻比较低,导通时的电压降较小。

(3)快速开关:IGBT模块的响应速度较快,可以实现高频开关。

(4)耐高温:IGBT模块的工作温度范围宽,可以在高温环境下工作。

3. IGBT模块的制造工艺IGBT模块的制造过程包括晶体管芯片制造、封装和模块组装三个步骤。

晶体管芯片制造是IGBT模块制造的核心,它需要进行掺杂、生长晶片、刻蚀和沉积等多个步骤。

封装使晶体管芯片和引脚封装在一起,并对晶片进行保护。

模块组装是将多个IGBT芯片、散热器和电容器等部件组合起来形成一个完整的IGBT模块。

组装包括焊接、粘接和测试等多个工序。

4. IGBT模块的散热和保护IGBT模块的高功率和高温度会导致散热问题。

散热系统需要有效地排放IC模块产生的热量。

通常采用散热片、散热器和风扇等来散热。

保护系统需要检测IGBT模块的输出信号和工作状态,并及时停止或调节当前的工作状态以保证工作的稳定性和可靠性。

通常采用过流保护、过压保护和过温保护等方式进行保护。

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章电力电子技术(第1节)课堂笔记及练习题主题:第二章电力电子技术(第1节)学习时间: 2015年11月23日--11月29日内容:我们这周主要学习电力电子技术第1节中的晶闸管的驱动、功率场效应管、绝缘栅型双极性晶体管、功率半导体器件的保护,通过学习我们要了解掌握晶闸管的驱动,掌握功率场效应管的结构、工作原理、特性、主要参数、安全工作区,掌握绝缘栅型双极性晶体管的结构、工作原理、特性、擎住效应和安全工作区,掌握功率半导体器件的过压、过流保护。

第一节功率半导体器件2.1.6 晶闸管的驱动1.晶闸管触发电路的基本要求:1)触发脉冲信号应有一定的功率和宽度。

2)为使并联晶闸管元件能同时导通,触发电路应能产生强触发脉冲。

3)触发脉冲的同步及移相范围。

4)隔离输出方式及抗干扰能力。

2.常见的触发电路图3-12为常见的触发电路。

它由2个晶体管构成放大环节、脉冲变压器以及附属电路构成脉冲输出环节组成。

当2个晶体管导通时,脉冲变压器副边向晶闸管的门极和阴极之间输出脉冲。

脉冲变压器实现了触发电路和主电路之间的电气隔离。

脉冲变压器原边并接的电阻和二极管是为了脉冲变压器释放能量而设的。

2.1.7 功率场效应晶体管功率场效应晶体管是一种单极型电压控制半导体元件,其特点是控制极静态内阻极高、驱动功率小、开关速度快、无二次击穿、安全工作区宽,开关频率可高达500kHZ,特别适合高频化的电力电子装置。

但由于电流容量小、耐压低,一般只适用小功率的电力电子装置。

1.结构与工作原理(1)结构功率场效应晶体管按导电沟道可分为P沟道和N沟道;根据栅源极电压与导电沟道出现的关系可分为耗尽型和增强型。

功率场效应晶体管一般为N沟道增强型。

从结构上看,功率场效应晶体管与小功率的MOS管有比较大的差别。

图3-13给出了具有垂直导电双扩散MOS结构的VD-MOSFET单元的结构图及电路符号。

(2)工作原理如图3-13 所示,功率场效应晶体管的三个极分别为栅极G、漏极D和源极S。

第二章电力电子器件

第二章电力电子器件
或者关断的控制,这类电力电子器件被称为电压控制型电力电子器件或者电 压驱动型电力电子器件。
第4页/共82页
2.1 电力电子器件概述
电力电子器件的使用特点 从使用角度出发,主要可从以下五个方面考察电力电子器件的性能特点。 (1)导通压降。电力电子器件工作在饱和导通状态时仍产生一定的管耗,管耗 与器件导通压降成正比。 (2)运行频率。受到开关损耗和系统控制分辨率的限制,器件的开关时间越短, 器件可运行的频率越高。 (3)器件容量。器件容量包括输出功率、电压及电流等级、功率损耗等参数。 (4)耐冲击能力。这主要是指器件短时间内承受过电流的能力。半控型器件的 耐冲击能力远高于全控型器件。 (5)可靠性。这主要是指器件防止误导通的能力。
普通二极管(Conventional Diode)又称整流二极管(Rectifier Diode), 多用于开关频率不高(1kHz以下)的整流电路中 2. 快速恢复二极管
恢复过程很短,特别是反向恢复过程很短(一般在5ms以下)的二极管被称 为快速恢复二极管(Fast Recovery Diode,FRD),简称快速二极管。 3. 肖特基势垒二极管
2.3 半控型器件—晶闸管及其派生器件
2. 晶闸管的工作原理 按图2.12所示电路 (1) 当晶闸管承受反向阳极电压时,不论门极承受何种电压,晶闸管都处
于关断状态。 (2) 当晶闸管承受正向阳极电压时,若门极不施加电压,晶闸管也处于关
断状态。即晶闸管具有正向阻断能力。 (3) 要使晶闸管由阻断变为导通,必须在晶闸管承受正向阳极电压时,同
第11页/共82页
2.2 电力二极管
电力二极管的工作原理和基本特性
电力二极管的基本结构都是以半导体PN结为基础。电力二极管实际上是 由一个面积较大的PN结和两端引线以及封装组成的。图2.7所示为电力二极 管的外形、结构和电气图形符号。从外形上看,电力二极管主要有螺栓型和 平板型两种封装。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章功率半导体器件的驱动与保护2.1 晶闸管的驱动与保护2.1.1 晶闸管的触发电路晶闸管触发电路的作用是将控制信号U k转变成延迟角α(或β)信号,向晶闸管提供门极电流,决定各个晶闸管的导通时刻。

因此,触发电路与主电路一样是晶闸管装置中的重要部分。

两者之间既相对独立,又相互依存。

正确设计的触发电路可以充分发挥晶闸管装置的潜力,保证运行的安全可靠。

触发电路在晶闸管变流装置中的地位如图2-1所示,可把触发电路和主电路看成一个功率放大器,以小功率的输入信号直接控制大功率的输出。

图2-1 触发电路在晶闸管装置中的地位1.触发脉冲要求晶闸管装置种类很多,工作方式也不同,故对触发电路的要求也不同。

下面介绍对触发电路的基本要求。

1)一般触发信号采用脉冲形式。

2)触发脉冲信号应有一定的功率和宽度。

3)为使并联晶闸管元件能同时导通,则触发电路应能产生强触发脉冲。

4) 触发脉冲的同步及移相范围。

为使晶闸管在每个周期都在相同的控制角α下触发导通,触发脉冲必须与电源同步,也就是说触发信号应与电源保持固定的相位关系。

同时,为了使电路在给定的范围内工作,应保证触发脉冲能在相应范围内进行移相。

5) 隔离输出方式及抗干扰能力。

触发电路通常采用单独的低压电源供电,因此应采用某种方法将其与主电路电源隔离。

3.锯齿波同步移相触发器常用的触发电路有正弦波同步触发电路和锯齿波同步触发电路,由于锯齿波同步触发电路具有较好的抗电路干扰、抗电网波动的性能及有较宽的调节范围,因此得到了广泛的应用。

该电路由同步检测环节、锯齿波形成环节、同步移相控制环节及脉冲形成与放大环节等组成。

图2-9为锯齿波同步移相触发电路图。

图2-10为锯齿波移相触发电路各点电压波形。

图2-9 锯齿波同步移相触发电路图2-10 锯齿波移相触发电路电压波形4.集成触发器随着电力电子技术及微电子技术的发展,集成化晶体管触发电路已得到广泛的应用。

集成化触发器具有体积小、功耗低、性能可靠、使用方便等优点。

下面介绍国内常用的KC(或KJ)系列单片移相触发电路。

KC04集成触发器电路的电原理如图2-14所示,其中虚线框内为集成电路部分,框外为外接电容、电阻等元件,该电路由同步检测、锯齿波形成、移相、脉冲形成、脉冲分选及功放等环节组成。

图2-14 KC04集成触发器电原理图5.数字触发器为了提高触发脉冲的对称度,对较大型的晶闸管变流装置采用了数字式触发电路。

目前使用的数字式触发电路大多为由计算机(通常为单片机等)构成的数字触发器。

图2-15为常见的MCS—96系列单片机构成的数字触发器的原理框图。

该数字触发器由脉冲同步、脉冲移相、脉冲形成与输出等几个部分构成。

图2-15 单片机数字触发器6.触发电路与主电路的同步在三相晶闸管电路中,选择触发电路的同步信号是一个很重要的问题。

只有触发脉冲在晶闸管阳极电压为正(相对阴极而言)时产生,晶闸管才能被触发导通。

在调试电力电子装置时,有时会遇到这种现象:晶闸管主电路线路正确,元件完好;而触发电路线路也正确,各输出脉冲正常,能符合移相要求;但主电路与触发电路合成调试时,却发现电路工作不正常,直流输出电压u d波形不规则、不稳定,移相调节不起作用。

这种不正常现象主要是主电路与触发电路没实现同步引起的,即送到主电路各晶闸管的触发脉冲与其阳极电压之间相位没有正确对应。

因此必须根据被触发晶闸管的阳极电压相位正确供给各触发电路特定相位的同步信号电压,才能使触发电路分别在各晶闸管需要触发信号的时刻输出脉冲。

这种正确选择同步电压相位及得到不同相位同步电压的方法,称为触发电路的同步(或定相)。

每个触发电路的同步电压u T与被触发晶闸管阳极电压的相互关系取决于主电路的不同方式,触发电路的类型,负载性质及不同的移相要求。

2.1.2 晶闸管的串、并联与保护1.晶闸管的串联当单个晶闸管的额定电压小于实际线路要求时,可以用两个以上同型号元件相串联来满足,如图2-19所示。

a)元件承受的反向电压b)串联均压电路图2-19 晶闸管的串联由于元件特性的分散性,当两个同型号晶闸管串联后,在正、反向阻断时虽流过相同的漏电流,但各元件所承受的电压却是不相等的。

图2-19a)表示了两反向阻断特性不同的晶闸管流过同一漏电流I e时,元件上承受的电压相差甚远的情况,承受高电压的元件有可能因超过额定电压而损坏。

为了使各元件上的电压分配均匀,除选用特性比较一致的元件进行串联以外,应采取均压措施。

2.晶闸管的并联单个晶闸管的额定电流不能满足要求时,可以用两个以上同型号元件并联。

由于并联各晶闸管在导通状态下的伏安特性不可能完全一致,相同管压降下各元件负担的电流不相同,可能相差很大,如图2-20a)所示。

为了均衡并联晶闸管元件的电流,除选用正向特性一致的元件外,应采用均流措施。

a) 并联时的电流分配b) 串电感均流图2-20 晶闸管的并联3.过压保护晶闸管元件有很多的优点,但由于击穿电压比较接近工作电压,热容量又小,因此承受过电压过电流能力差,短时间的过电压、过电流都可能造成元件损坏。

为了使晶闸管元件能正常工作而不损坏,除合理选择元件外,还必须针对过电压、过电流发生的原因采取适当的保护措施。

凡超过晶闸管正常工作时所承受的最大峰值电压的电压均为过电压。

过电压根据产生的原因可分为二大类:①操作过电压:由变流装置拉、合闸和器件关断等经常性操作中电磁过程引起的过电压;②浪涌过电压:由雷击等偶然原因引起,从电网进入变流装置的过电压,其幅度可能比操作过电压还高。

对过电压进行保护的原则是:使操作过电压限制在晶闸管额定电压U R以下,使浪涌过电压限制在晶闸管的断态和反向不重复峰值电压U DSM和U RSM以下。

一个晶闸管变流装置或系统应采取过电压保护措施的部位可分为交流侧,直流侧,整流主电路等几部分,如图2-21所示。

图2-21 晶闸管装置可能采用的过电压保护措施4.过电流保护当变流装置内部某一器件击穿或短路、触发电路或控制电路发生故障,外部出现负载过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起装置其他元件的电流超过正常工作电流。

由于晶闸管等功率半导体器件的电流过载能力比一般电气设备差得多,因此必须对变流装置进行适当的过电流保护。

图2-26 晶闸管装置可能采用的过电流保护措施A—交流进线电抗器;B—电流检测和过流继电器;C、D、E—快速熔断器;F—过流继电器;G—直流快速开关晶闸管变流装置可能采用的几种过电流保护措施如图2-26所示。

2.2 电流型自关断器件的驱动2.2.1 门极可关断晶闸管的驱动基本要求门极可关断晶闸管(GTO)可以用正门极电流开通和负门极电流关断。

在工作机理上,开通时与一般晶闸管基本相同,关断时则完全不一样。

因此需要具有特殊的门极关断功能的门极驱动电路。

理想的门极驱动电流波形如图2-29所示,驱动电流波形的上升沿陡度、波形的宽度和幅度、及下降沿的陡度等对GTO的特性有很大影响。

GTO门极驱动电路包括门极开通电路、门极关断电路和门极反偏电路。

对GTO而言,门极控制的关键是关断。

(1) 门极开通电路GTO的门极触发特性与普通晶闸管基本相同,驱动电路设计也基本一致。

要求门极开通控制电流信号具有前沿陡、幅度高、宽度大、后沿缓的脉冲波形。

脉冲前沿陡有利于GTO 的快速导通,一般dI GF/dt为5~10A/μs;脉冲幅度高可实现强触发,有利于缩短开通时间,减少开通损耗;脉冲有足够的宽度则可保证阳极电流可靠建立;后沿缓一些可防止产生振荡。

(2) 门极关断电路已导通的GTO用门极反向电流来关断,反向门极电流波形对GTO的安全运行有很大影响。

要求关断控制电流波形为前沿较陡、宽度足够、幅度较高、后沿平缓。

一般关断脉冲电流的上升率dI GR/dt取10~50A/μs,这样可缩短关断时间,减少关断损耗,但dI GR/dt过大时会使关断增益下降,通常的关断增益为3~5,可见关断脉冲电流要达到阳极电流的1/5~1/3,才能将GTO关断。

当关断增益保持不变,增加关断控制电流幅值可提高GTO的阳极可关断能力。

关断脉冲的宽度一般为120μs左右。

图2-29 理想的GTO门极驱动电流波形(3) 门极反偏电路由于结构原因,GTO与普通晶闸管相比承受du/dt的能力较差,如阳极电压上升率较高时可能会引起误触发。

为此可设置反偏电路,在GTO正向阻断期间于门极上施加负偏压,从而提高电压上升率du/dt的能力。

2.2.2 大功率晶体管的驱动1.基本要求GTR基极驱动电路的作用是将控制电路输出的控制信号电流放大到足以保证大功率晶体管能可靠开通或关断。

而GTR的基极驱动方式直接影响它的工作状况,可使某些特性参数得到改善或受到损害,故应根据主电路的需要正确选择、设计基极驱动电路。

基极驱动电路一般应有以下基本要求:1) GTR导通期间,管子的管压降应在准饱和工作状态下尽可能小,基极电流I b能自动调节以适应负载电流的变化,保证GTR随时处于准饱和工作状态;GTR关断时,基极能迅速加上足够大的基极反偏电压。

这样可保证GTR能快速开关。

2) 基极驱动电路应与逻辑电路、控制电路在电气上隔离,通常采用光电隔离或变压器隔离等方式来实现。

3) 基极驱动电路应有足够的保护功能,防止GTR过流或进入放大区工作。

图2-32 理想的基极电流波形及集电极电流波形理想的基极电流波形如图2-32所示。

正向基极驱动电流的前沿要陡,即上升率di b/dt 要高,目的是缩短开通时间,初始基极电流幅值I bm>I b1,以便使GTR能迅速饱和,减少开通时间,使上升时间t r下降,降低开关损耗。

当GTR导通后,基极电流应及时减少到I b1,恰好维持GTR处于准饱和状态,使基区和集电区间的存储电荷较少,从而使GTR在关断时,储存时间t s缩短,开关安全区扩大。

在关断时,GTR应加足够大的负基极电流I b2,使基区存储电荷尽快释放,从而使存储时间t s和下降时间t f缩短,减少关断损耗。

在上述理想的基极电流作用下,可使GTR快速可靠开通、关断,开关损耗下降,防止二次击穿并可扩大安全工作区。

在GTR正向阻断期间,可在基极和发射极间加一定的负偏压,以提高GTR的阻断能力。

2.贝克钳位电路当GTR导通后,基极驱动电路应能提供足够大的基极电流使GTR处于饱和或准饱和状态,以便降低通态损耗保证GTR的安全。

而基极电流过大会使GTR的饱和度加深,饱和压降小,导通损耗也小。

但深度饱和对GTR的关断特性不利,使存储时间加长,限制了GTR 的开关频率。

因此在开关频率较高的场合,不希望GTR处于深度饱和状态,而要求GTR处于准饱和状态。

图2-33 贝克钳位电路抗饱和电路即为一种不使GTR进入深度饱和状态下工作的电路,图2-33所示的贝克钳位电路即为一种抗饱和电路。

相关文档
最新文档