09年高考数学充分条件与必要条件2

合集下载

人教A版高中数学选修2-1课件5充分条件与必要条件(二).pptx

人教A版高中数学选修2-1课件5充分条件与必要条件(二).pptx
空白演示
在此输入您的封面副标题
充分条件与必要条件(二)
上节课我们研究了两个符号:“”、“”
“” 表示: “充分”的意义; “” 表示: “必要”的意义.
对于命题“若 p , 则 q”来说,
⑴“若 p , 则 q ”是真命题记为“ p q ”,
我们说 p 是 q 的充分条件;(“有 p 就可推出 q ”之意)
(A)t≤0 (B)t≥0 (C)t≤-3 (D)t≥-3
既不充分也不必要
课堂练习 2.方程 ax2 bx c 0(a 0) 有实数根是 ac 0 的_必__要__不_充__分_条件.
3.
x y
xy
4
4

x
y
2 2
的必__要__不__充__分_条件.
课堂练习
4.已知
p
:
x2
3x
2ቤተ መጻሕፍቲ ባይዱ
0
,
q
:
x2
1 x
6
0
,

p

q
充分不必要
的________条件,
下列各题中,哪些 p 是 q 的充要条件?
⑴ p : b 0 , q :函数 f (x) ax2 bx c 是偶函数;
⑵ p : x 0, y 0 , q : xy 0 ;
⑶ p:ab , q:acbc.
(1)、(3)
下列各题中, p 是 q 的什么条件? ⑴ p : x2 3x 4 , q : x 3x 4 ;
分别证明,各个击破即可!
课堂练习: 1.在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必__要__不__充__分__条件; ⑶如图③所示,开关 A 闭合是灯泡 B 亮的___充__要_____条件; ⑷如图④所示,开关 A 闭合是灯泡 B 亮的__________条件.

高考数学充分条件和必要条件知识点总结归纳

高考数学充分条件和必要条件知识点总结归纳

高考数学充分条件和必要条件知识点总结归纳数学知识点的积累是高考必胜的法宝,以下是充分条件和必要条件知识点,请大家参考。

一、充分条件和必要条件当命题若A则B为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法1.定义法:判断B是A的条件,实际上就是判断B=A或者A=B 是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:若AB,则p是q的充分条件。

若AB,则p是q的必要条件。

若A=B,则p是q的充要条件。

若AB,且BA,则p是q的既不充分也不必要条件。

三、知识扩展1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2.由于充分条件与必要条件是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑正难则反的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。

一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

以上为大家分享的充分条件和必要条件知识点,查字典数学网希望大家可以熟练运用。

高三高考数学复习课件1-2命题及其关系充分条件与必要条件

高三高考数学复习课件1-2命题及其关系充分条件与必要条件

跟踪训练1 (1)命题“若x,y都是偶数,则x+y也是偶 数”的逆否命题是( )
A.若x+y是偶数,则x与y不都是偶数 B.若x+y是偶数,则x与y都不是偶数 C.若x+y不是偶数,则x与y不都是偶数 D.若x+y不是偶数,则x与y都不是偶数
(2)设原命题:若a+b≥2,则a,b中至少有一个不小于 1,则原命题与其逆命题的真假情况是( )
【答案】 A
题型一 命题及其关系 【例1】 (1)命题:“若x2<1,则-1<x<1”的逆否命题 是( ) A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1 C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥1
(2)(2018·石家庄模拟)命题“若一个数是负数,则它的 平方是正数”的逆命题是( )
1-m≤1+m, 则1-m≥-2, ∴0≤m≤3.
1+m≤10,
∴当 0≤m≤3 时,x∈P 是 x∈S 的必要条件,即所求 m 的取
值范围是[0,3].
【思维升华】 充分条件、必要条件的应用,一般表现 在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的 关系,然后根据集合之间的关系列出关于参数的不等式(或 不等式组)求解.
p是q的_充__分__不__必__要___条件
p⇒q且q⇒ p
p是q的__必__要__不__充__分___条件
p q且q⇒p
p是q的_充__要__条件
p⇔q
p是q的_既__不__充__分__也__不__必__要___条件 p q且q p
【知识拓展】 从集合角度理解充分条件与必要条件
若p以集合A的形式出现,q以集合B的形式出现,即A= {x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以 叙述为

高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件

高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件

高考数学复习考点知识与题型专题讲解命题及其关系、充分条件与必要条件考试要求1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p常用结论充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)“x>1”是“x>0”的充分不必要条件.(√)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)p是q的充分不必要条件等价于q是p的必要不充分条件.(√)教材改编题1.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.2.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等3.方程x2-ax+a-1=0有一正一负根的充要条件是________.答案a∈(-∞,1)解析依题意得a-1<0,∴a<1.题型一命题及其关系例1(1)(2022·玉林质检)下列四个命题为真命题的个数是()①命题“若x>1,则x2>1”的否命题;②命题“梯形不是平行四边形”的逆否命题;③命题“全等三角形面积相等”的否命题;④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题.A .1B .2C .3D .4答案B解析 ①命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,不正确,例如取x =-2.②命题“梯形不是平行四边形”是真命题,因此其逆否命题也是真命题.③命题“全等三角形面积相等”的否命题“不是全等三角形的面积不相等”是假命题. ④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题“若两条直线是异面直线,则这两条直线没有公共点”是真命题.综上可得真命题的个数为2.(2)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________________.答案f (x )=sin x ,x ∈[0,2](答案不唯一)解析设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.教师备选(2022·合肥模拟)设x ,y ∈R ,命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是()A .若x 2+y 2≤2,则x 2≤1或y 2≤1B.若x2+y2>2,则x2≤1或y2≤1C.若x2+y2≤2,则x2≤1且y2≤1D.若x2+y2>2,则x2≤1且y2≤1答案C解析根据否命题的定义可得命题“若x2+y2>2,则x2>1或y2>1”的否命题是“若x2+y2≤2,则x2≤1且y2≤1”.思维升华判断命题真假的策略(1)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练1(1)(2022·安顺模拟)命题“若x,y都是奇数,则x+y是偶数”的逆否命题是() A.若x,y都是偶数,则x+y是奇数B.若x,y都不是奇数,则x+y不是偶数C.若x+y不是偶数,则x,y都不是奇数D.若x+y不是偶数,则x,y不都是奇数答案D解析命题“若x,y都是奇数,则x+y是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是奇数”.(2)命题p:若m≤a-2,则m<-1.若p的逆否命题为真命题,则a的取值范围是________.答案(-∞,1)解析依题意,命题p 的逆否命题为真命题,则命题p 为真命题,即“若m ≤a -2,则m <-1”为真命题,则a -2<-1,解得a <1.题型二 充分、必要条件的判定例2(1)已知p :⎝ ⎛⎭⎪⎫12x <1,q :log 2x <0,则p 是q 的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由⎝ ⎛⎭⎪⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}单调递减,所以甲不是乙的充分条件.当数列{S n}单调递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在.所以甲是乙的必要条件.教师备选在△ABC中,“AB2+BC2=AC2”是“△ABC为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析在△ABC中,若AB2+BC2=AC2,则∠B=90°,即△ABC为直角三角形,若△ABC为直角三角形,推不出∠B=90°,所以AB2+BC2=AC2不一定成立,综上,“AB2+BC2=AC2”是“△ABC为直角三角形”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练2(1)“a>2,b>2”是“a+b>4,ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·成都模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为a⊥b,所以a ·b =0,则(a +b )2=a 2+2a ·b +b 2=a 2+b 2,所以“a ⊥b ”是“(a +b )2=a 2+b 2”的充分条件;反之,由(a +b )2=a 2+b 2得a ·b =0,所以非零向量a ,b 垂直,“a ⊥b ”是“(a +b )2=a 2+b 2”的必要条件.故“a ⊥b ”是“(a +b )2=a 2+b 2”的充要条件.题型三 充分、必要条件的应用例3已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解由x 2-8x -20≤0,得-2≤x ≤10,∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].延伸探究本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,则⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,解得m ≥9,故m 的取值范围是[9,+∞). 教师备选(2022·泰安检测)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是()A .(-∞,-1]B .(-∞,-1)C .[1,+∞)D .(1,+∞)答案A解析因为q :|x +2a |<3,所以q :-2a -3<x <-2a +3,记A ={x |-2a -3<x <-2a +3},p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以A B ,所以a ≤-2a -3,解得a ≤-1.思维升华 求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练3(1)使2x ≥1成立的一个充分不必要条件是()A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案B解析由2x ≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案[1,2]解析由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎪⎨⎪⎧a -1≤1,a +1≥2且等号不能同时取到,解得1≤a≤2.课时精练1.(2022·韩城模拟)设p:2<x<3,q:|x-2|<1,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式|x-2|<1得-1<x-2<1,解得1<x<3,因为{x|2<x<3}{x|1<x<3},因此p是q的充分不必要条件.2.(2022·马鞍山模拟)“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是() A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y不全为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案C解析根据命题“若p,则q”的逆否命题为“若綈q,则綈p”,可以写出“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是“若x,y∈R,x,y 不全为0,则x2+y2≠0”.3.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c,得到(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.4.已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.5.(2022·太原模拟)下列四个命题:①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题;②“若ab=0,则a=0”的逆否命题;③“若ac=cb,则a=b”的逆命题;④“若a=b,则a2=b2”的否命题.其中是真命题的为()A.①④B.②③C.①③D.②④答案C解析①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题是“在△ABC中,若∠C>∠B,则AB>AC”,是真命题;②“若ab=0,则a=0”是假命题,所以其逆否命题也是假命题;③“若ac=cb,则a=b”的逆命题是“若a=b,则ac=cb”,是真命题;④“若a=b,则a2=b2”的否命题是“若a≠b,则a2≠b2”,是假命题.6.(2022·青岛模拟)“∀x>0,a≤x+4x+2”的充要条件是()A.a>2B.a≥2 C.a<2D.a≤2 答案D解析因为x>0,所以x+4x+2=x+2+4x+2-2≥2(x+2)×4x+2-2=2,当且仅当x +2=4x +2,即x =0时等号成立,因为x >0,所以x +4x +2>2, 所以“∀x >0,a ≤x +4x +2”的充要条件是a ≤2. 7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题是真命题,则m 的取值范围是()A .(1,2)B .[1,2)C .(1,2]D .[1,2]答案D解析命题的逆命题“若1<x <2,则m -1<x <m +1”成立,则⎩⎪⎨⎪⎧ m +1≥2,m -1≤1,得⎩⎪⎨⎪⎧m ≥1,m ≤2,得1≤m ≤2, 即实数m 的取值范围是[1,2].8.(2022·厦门模拟)已知命题p :x <2m +1,q :x 2-5x +6<0,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .m >12B .m ≥12C .m >1D .m ≥1答案D解析∵命题p :x <2m +1,q :x 2-5x +6<0,即2<x <3,p 是q 的必要不充分条件,∴(2,3)(-∞,2m +1),∴2m +1≥3,解得m ≥1.实数m 的取值范围为m ≥1.9.(2022·延边模拟)若“方程ax 2-3x +2=0有两个不相等的实数根”是真命题,则a 的取值范围是________.答案a <98且a ≠0 解析由题意知⎩⎪⎨⎪⎧Δ=(-3)2-8a >0,a ≠0, 解得a <98且a ≠0. 10.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案x <-1(答案不唯一)解析由于4x =22x ,故2x >22x 等价于x >2x ,解得x <0,使得“2x >4x ”成立的一个充分条件只需为集合{x |x <0}的子集即可.11.直线y =kx +1与圆x 2+y 2=a 2(a >0)有公共点的充要条件是________.答案a ∈[1,+∞)解析直线y =kx +1过定点(0,1),依题意知点(0,1)在圆x2+y2=a2内部(包含边界),∴a2≥1.又a>0,∴a≥1.12.给出下列四个命题:①命题“在△ABC中,sin B>sin C是B>C的充要条件”;②“若数列{a n}是等比数列,则a22=a1a3”的否命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题;④命题“直线l与平面α垂直的充要条件是l与平面α内的两条直线垂直.”其中真命题是________.(填序号)答案①③解析对于①,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,①是真命题;②“若数列{a n}是等比数列,则a22=a1a3”的否命题是“若数列{a n}不是等比数列,则a22≠a1a3”,取a n=0,可知②是假命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题“若a与b的夹角为锐角,则a·b>0”为真命题;④直线l与平面α内的两条直线垂直是直线l与平面α垂直的必要不充分条件,④是假命题.13.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p 和q 中有且只有一个为真命题,则实数a 的取值范围是()A .0<a <1或a ≥2B .0<a <1或a >2C .1<a ≤2D .1≤a ≤2答案C解析若p 和q 中有且只有一个为真命题,则有p 真q 假或p 假q 真,当p 真q 假时,则⎩⎪⎨⎪⎧ -2-a <1<a ≤2,a >0,解得1<a ≤2;当p 假q 真时,则⎩⎪⎨⎪⎧1≤-2-a <2<a ,a >0,无解, 综上,1<a ≤2.14.若“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,则实数m 的取值范围为________. 答案m ≥5解析依题意有x 2-4x +3<0⇒1<x <3,x 2-mx +4<0⇒mx >x 2+4,∵1<x <3,∴m >x +4x ,设f (x )=x +4x (1<x <3),则函数f (x )在(1,2)上单调递减,在(2,3)上单调递增,∴f (1)=5,f (2)=4,f (3)=133,因此函数f (x )=x +4x (1<x <3)的值域为[4,5),∵“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,∴m ≥5.15.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是()A .a >3B .a <3C .a >4D .a <4答案A解析若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案⎝⎛⎦⎥⎤0,255 解析画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d=222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.。

高考数学一轮复习第一章第二讲充分条件与必要条件课件

高考数学一轮复习第一章第二讲充分条件与必要条件课件

p⇒q且q p
p是q的必要不充分条件
p q且q⇒p
p是q的充要条件
p⇔q
p是q的既不充分也不必要条件
p q且q p
2.充分条件与必要条件的两个特征
(1)对称性:若 p 是 q 的充分条件,则 q 是 p 的必要条件,即 “p⇒q”则“q⇐ p”.
(2)传递性:若 p 是 q 的充分(必要)条件,q 是 r 的充分(必要) 条件,则 p 是 r 的充分(必要)条件,即“p⇒q 且 q⇒r”,则“p⇒r” (“p⇐ q 且 q⇐ r”,则“p⇐ r”).
第二讲 充分条件与必要条件
1.理解必要条件的含义,理解性质定理与必要条件的关系. 2.理解充分条件的含义,理解判定定理与充分条件的关系. 3.理解充要条件的含义,理解数学定义与充要条件的关系.
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件
答案:[0,3]
【考法全练】
1.(考向 1)(2023 年潮南区开学)已知复数 z1=4-7i,z2=m+
2i(m∈R),zz21在复平面内所对应的点位于第三象限的一个充分不必 要条件是( )
பைடு நூலகம்
A.m<-2
B.m<-87
C.-87<m<27
D.m<27
解析:根据题意,得zz12=m4-+72ii=4m6-5 14+8+657mi,故在复平
C 相交”的充分不必要条件.故选 A. 答案:A
答案:A
2.(2023 年高州市二模)已知直线 l:y=kx 与圆 C:(x-2)2+
(y-1)2=1,则“0<k< 33”是“直线 l 与圆 C 相交”的(

高中数学选修2-1-充分条件与必要条件

高中数学选修2-1-充分条件与必要条件

充分条件与必要条件知识集结知识元充分条件、必要条件、充要条件知识讲解1.充分条件、必要条件、充要条件【知识点的认识】1、判断:当命题“若p则q”为真时,可表示为p⇒q,称p为q的充分条件,q是p的必要条件.事实上,与“p⇒q”等价的逆否命题是“¬q⇒¬p”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.例如:p:x>2;q:x>0.显然x∈p,则x∈q.等价于x∉q,则x∉p一定成立.2、充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.p与q互为充要条件.【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.例题精讲充分条件、必要条件、充要条件例1.若a>0,b>0,则“a+b<4”是“ab<4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件例2.不等式成立的一个充分不必要条件是()B.x>1A.C.0<x<1 D.x<0例3.若a>0,b>0,则“a+b≤8”是“ab≤16”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件当堂练习单选题练习1.已知平面α,β,直线m满足m⊄β,α⊥β,则“m⊥α”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习2.已知p:|x-m|<1,q:x2-8x+12<0,且q是p的必要不充分条件,则实数m的取值范围为()A.(3,5)B.[3,5]C.(-∞,3)∪(5,+∞)D.(-∞,3]∪(5,+∞)练习3.“a3>b3”是“log7a>log7b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习4.已知函数f(x)=(x2+a2x+1)e x,则“函数f(x)在x=-1处取得极小值”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件练习5.“a<-1”是“∃x0∈R,a sin x0+1<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件填空题练习1.已知集合A={x|<2x<8,x∈R},B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.解答题练习1.'已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.(1)若m=4,且p∧q为真,求x的取值范围;(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.'练习2.'设p:实数x满足x2-(3a+1)x+2a2+a<0,q:实数x满足|x-3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若a>0,且¬p是¬q的充分不必要条件,求实数a的取值范围.'练习3.'已知命题p:关于x的方程4x2-2ax+2a+5=0的解集至多有两个子集,命题q:1-m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围.'。

高考数学 复习《充分条件、必要条件与命题的四种形式》

高考数学 复习《充分条件、必要条件与命题的四种形式》
(2) 若 AB ,则 A B A
若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题

高考数学充分条件与必要条件

高考数学充分条件与必要条件
一、基础知识
(一)充分条件、必要条件和充要条件定义 1.充分条件:如果A成立那么B成立,则条件A是B成 立的充分条件。 2.必要条件:如果A成立那么B成立,这时B是A的必 然结果,则条件B是A成立的必要条件。
A B
3.充要条件:如果A既是B成立的充分条件,又是B 成立的必要条件,则A是B成立的充要条件;同时B也 是A成立的充要条件。
充分不必要
练习1.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不
充分条件是( C)
A、x<0 C、│x-1│>1
B、x<0或x>4 D、│x-2│>3
P32例1变式
记住:小范围能推出大范围,大范围不能推 出小范围。
新疆和静高级中学

;车吉祥 https:// 车吉祥
AB
第三种方法:等价法
利用 A B与B A
A B与B A
等价关系。
B A与A B
的互为逆否命题的
证明A是B的充要条件,分两步:
(1)充分性:把A当作已知条件,结合前提 条件推出A。
例1.(充分必要条件的判断)指出下列各组命题中,
p是q的什么条件?
(1)(2)(3)在P32考例1
(1)在△ABC中,p:A>B q:BC>AC; 充要
(2)对于实数x、y,p:x+y≠8 q:x≠2或充y≠分6不;必要 (3)在△ABC中,p:SinA>SinB 即q:不ta充nA分>又tan不B必;要
(4)已知x、y∈R p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
新疆和静高级中学
新疆和静高级中学
新疆和静高级中学

人教版高中数学必修二课件 充分条件、必要条件2

人教版高中数学必修二课件 充分条件、必要条件2
1.2 常用逻辑用语
1.2.3 充分条件、必要条件
1
第一章 集合与常用逻辑用语
考点 充分条件、必要
条件的概念
充分条件、必要 条件的判断
充分条件、必要 条件的应用
学习目标 理解充分条件、必要条 件、充要条件的概念 结合具体命题掌握判断 充分条件、必要条件、充 要条件的方法 掌握证明充要条件的一 般方法
10
设 p:x<3,q:-1<x<3,则 p 是 q 成立的( ) A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析:选 C.因为x|-1<x<3 x|x<3,所以 p 是 q 成立的必要 不充分条件.
11
设 a,b 是实数,则“a+b>0”是“ab>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选 D.若 a+b>0,取 a=3,b=-2,则 ab>0 不成立;反 之,若 ab>0,取 a=-2,b=-3,则 a+b>0 也不成立,因此 “a+b>0”是“ab>0”的既不充分也不必要条件.
7
(3)对充分条件和必要条件的进一步划分:
条件 p 与结论 q 的关系
结论
p⇒q,且 q⇒/ p
p 是 q 的充分不必要条件
q⇒p,且 p ⇒/ q
p 是 q 的必要不充分条件
p⇒q,且 q⇒p,即 p⇔q
p 是 q 的充要条件
p ⇒/ q,且 q ⇒/ p
p 是 q 的既不充分也不必要条件
8
判断正误(正确的打“√”,错误的打“×”) (1)“x=0”是“(2x-1)x=0”的充分不必要条件.( ) (2)q 是 p 的必要条件时,p 是 q 的充分条件.( ) (3)若 p 是 q 的充要条件,则命题 p 和 q 是两个相互等价的命 题.( ) (4)q 不是 p 的必要条件时,“p⇒/ q”成立.( ) 答案:(1)√ (2)√ (3)√ (4)√

高考数学讲义:充分条件和必要条件(原卷版)

高考数学讲义:充分条件和必要条件(原卷版)

第8讲:充分条件和必要条件【学习目标】1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质定理的关系.3.能通过充分性、必要性解决简单的问题.【基础知识】知识点:充分条件与必要条件“若p ,则q ”为真命题“若p ,则q ”为假命题推出关系p ⇒qp ⇏q条件关系p 是q 的充分条件q 是p 的必要条件p 不是q 的充分条件q 不是p 的必要条件定理关系判定定理给出了相应数学结论成立的充分条件性质定理给出了相应数学结论成立的必要条件【考点剖析】考点一:充分条件的判断例1.设x R ,则“220x x ”是“12x ”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件变式训练1:“三角形是等边三角形”是“三角形是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式训练2:2x 是260x x 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件变式训练3:设x R ,则“2230x x ”是“13x ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式训练4:使得 20x y 成立的一个充分不必要条件是()A.20x y B.22(2)0x y C.221x y D.0x 或2y 考点二:必要条件的判断例2.已知a ,b ,c 是实数,则下列命题是真命题的()A.“a b ”是“22a b ”的充分条件B.“a b ”是“22a b ”的必要条件C.“a b ”是“22ac bc ”的充分条件D.“a b ”是“22ac bc ”的必要条件变式训练1:若a R ,则“1 a ”是“1a ”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件变式训练2:“2320x x ”是“1x 或4x ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式训练3:已知a ,b ,R c ,则“a b ”是“22ac bc ”成立的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件变式训练4:使得“1x ”成立的一个必要且不充分的条件是()A.21x B.3 1x C.11xD.2x 考点三:充分条件与必要条件(一)例3.1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年,仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件变式训练1:华夏文明五千多年,孕育出璀璨的诗歌篇章,诗歌“黄沙百战穿金甲,不破楼兰终不还”一句引自王昌龄的《从军行七首(其四)》,楼兰,汉时西域国名.据《汉书》载:汉武帝时,曾使通大宛国,楼兰王阻路,攻截汉朝使臣.汉昭帝元凤四年(公元前77)霍光派傅介子去楼兰,用计斩杀楼兰王.唐时与吐蕃在此交战颇多,王昌龄诗中借用傅介子斩楼兰王典故,表明征战将士誓平边患的决心.那么,“不破楼兰终不还”中,“还”是“破楼兰”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式训练2:老师经常说“努力不一定成功,但是不努力一定不会成功”,若这句话是真命题,则“努力”是“成功”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式训练3:为促进离汉人员安全有序流动,统筹推进疫情防控和复工复产复学,国务院联防联控机制日前印发《关于做好离汉人员新冠肺炎检测和健康管理服务工作的通知》,重点人群离汉前按照“应检尽检”原则进行新冠病毒核酸检测,离汉人员到达目的地后满足相应条件即可正常复工复产复学.这里的“相应条件”是“正常复工复产复学”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件考点四:充分条件与必要条件的应用(二)例4.已知,a b R ,那么“1a b ”是“221a b ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式训练1:如果2:2,:4,p x q x 则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式训练2:如果p 是q 的必要不充分条件,q 是r 的充要条件,r 是s 的充分不必要条件,那么p 是s 的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件考点五:充分条件与必要条件的应用(三)例5.已知p :1x 或2x ,q :x a ,若q 是p 的充分不必要条件,则a 的取值范围是()A.2a a B.2a a C.21a a D.1a a 变式训练1:若“14x ”是“4a x a ”的充分不必要条件,则实数a 的取值范围为()A.0a B.0a 或1a C.01a D.01a变式训练2:已知条件12p x :,条件q x a :,且p 是q 的充分不必要条件,则a 的取值范围是()A.1a B.1a C.1a D.3a ﹣变式训练3:已知:11p m x m , :260q x x ,且q 是p 的必要不充分条件,则实数m 的取值范围为()A.35m B.35m C.5m 或3m D.5m 或3m 考点六:充分条件与必要条件的应用(四)例6.已知集合211A x m x m ,24B x x .(1)当2m 时,求A B ,A B ∩;(2)若“x A ”是“x B ”成立的充分不必要条件,求实数m 的取值范围.变式训练1:已知集合12A x x , |1120B x m x m m ,,若“x A ”是“x B ”的必要不充分条件,求实数m 的取值范围变式训练2:已知集合{14}M x x ∣,{0}N x x a ∣.(1)当1a 时,求M N ,M N ;(2)若x M 是x N 的充分不必要条件,求实数a 的取值范围.【过关检测】1、“5x ”是“2450x x ”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件2、设a R ,则“23a ”是“2560a a ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、设命题甲为“03x ”,命题乙为“12x “,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、设R a ,则“a22a ”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件5、“04a ”是“210ax ax 对x R 恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、若“x a ”是“13x”的一个充分不必要条件,则下列a 的范围满足条件的是()A.2a B.102aC.13aD.13a 7、若“2x ”是“x a ”的必要不充分条件,则a 的取值范围是()A.{|2}a a <B.{}|2a a C.{}|2a a D.{|2}a a8、“三角形ABC 为锐角三角形”是“A 为锐角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、设,a b R ,下列四个条件中,使a b 成立的必要不充分条件是()A.1a b B.1a b C.22a b D.33a b 10、设集合 |2M x x , |6P x x ,那么“x M 或x P ”是“x M P ∩”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件11、使不等式22530x x 成立的一个必要不充分条件是()A.0x 或2x ≤B.0x 或2x C.1x 或4x D.12x或3x12、使f x )A.16x B.13x -<<C.26x D.61x 13、不等式22530x x 成立的一个充分不必要条件是()A.0x B.0x 或2x C.2x D.12x或3x 14、王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的()A.必要条件B.充分条件C.充要条件D.既不充分又不必要条件15、盛唐著名边塞诗人王昌龄在其作品《从军行》中写道:青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.其最后一句中“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16、唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙.”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件17、2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征.“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件18、2019年12月,湖北省武汉市发现多起病毒性肺炎病例.2020年1月12日,世界卫生组织正式将造成此次肺炎疫情的病毒命名为“2019新型冠状病毒”.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)。新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征。“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件19、“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神,其中“到长城”是“好汉”的()A.充要条件B.既不充分也不必要条件C.充分条件D.必要条件20、钱大姐常说“好货不便宜”,她这话的意思是:“好货”是“不便宜”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件21、除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的().A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件22、已知命题2:21,:560p x m q x x ,且p 是q 的必要不充分条件,则实数m 的取值范围为()A.12mB.12mC.1m >D.m 123、若1x a 成立的充分不必要条件是312x,则a 的取值范围()A.122a B.122a C.12a 或2a D.12a或2a 24、已知:12p x ,:q x a ,若p 是q 的必要不充分条件,则a 的取值范围是()A.1a B.1a C.3a D.3a 25、已知:12p x ,2:21q a x a ,若p 是q 的必要条件,则实数a 的取值范围是()A.1a B.112aC.112aD.112a26、设p :112x ;q :1a x a ,若p 是q 的充分不必要条件,则实数a 的取值范围是()A.102aB.102a ≤≤C.102aD.102a27、已知条件p :2230x x ,条件q :x a ,若p 是q 的充分非必要条件,利用教材中《子集与推出关系》的方法,求出实数a 的取值范围.28、设{|1A x x 或4},{|22}x B x a x a .(1)若A B R ,求实数a 的取值范围;(2)设:,:p x A q x B ,且p 是q 的必要不充分条件,求实数a 的取值范围.。

高二数学充分条件与必要条件2(PPT)5-4

高二数学充分条件与必要条件2(PPT)5-4
复习巩固
1.一种逻辑关系的四种表达形式 : ①“若p则q”为真命题; ②p q ③p是q的充分条件; ④q是p的必要条件
青黑色:~发。②昏暗。 【灿】(燦)光彩耀眼:~然|~若云锦|黄~~的菜花。 【灿烂】形光彩鲜明耀眼:星光~|~辉煌◇~的笑容。 【灿亮】形 光亮耀眼:明光~。 【灿然】形形容明亮:阳光~|~炫目|~一新。 【掺】(摻)古代一种鼓曲:渔阳~(就是渔阳三挝)。 【孱】义同“孱”(), 用于“孱头”。 【孱头】?〈方〉名软弱无;304不锈钢板 304不锈钢板;能的人(骂人的话)。 【粲】〈书〉鲜明;美好:~然|云 轻星~。 【粲然】〈书〉形①形容鲜明发光:星光~。②形容显著明白:~可见。③笑时露出牙齿的样子:~一笑。 【璨】①美玉。②同“粲”。 【仓】 (倉)①名仓房;仓库:粮食满~。②指仓位?:补~|减~。③()名姓。 【仓储】动用仓库储存:~超市|~物资。 【仓促】形匆忙:~应战|时间~, 来不及细说了。也作仓猝。 【仓猝】同“仓促”。 【仓房】名储藏粮食或其他物资的房屋。 【仓庚】同“鸧鹒”。 【仓皇】形匆忙而慌张:~失措|神 色~。也作仓黄、仓惶、苍黄。 【仓黄】同“仓皇”。 【仓惶】同“仓皇”。 【仓库】名储藏大批粮食或其他物资的建筑物:粮食~|军火~。 【仓廪】 〈书〉名储藏粮食的仓库。 【仓容】名仓库的容量:~有限。 【仓位】名①仓库、货场等存放货物的地方。②指投资者所持的证券金额占其资金总量的比例。 也叫持仓量。 【伧】(傖)〈书〉粗野:~父(粗野的人)。 【伧俗】〈书〉形粗俗鄙陋:言语~。 【苍】(蒼)①青色(包括蓝和绿):~松翠柏。② 灰白色:~白|~髯。③〈书〉指天或天空:上~|~穹。④()名姓。 【苍白】形①白而略微发青;灰白:脸色~|~的须发。②形容没有旺盛的生命力: 作品中的人物形象~无力。 【苍苍】形①(头发)灰白:白发~|两鬓~。②深绿色:松柏~。③苍茫:海山~|夜幕初落,四野~。 【苍翠】形(草木等) 深绿:林木~|~的山峦。 【苍黄】①形黄而发青;灰暗的黄色:病人面色~|时近深秋,竹林变得~了。②〈书〉名苍指青色,黄指黄色。素丝染色,可 以染成青的,也可以染成黄的(语本《墨子?所染》)。比喻事物的变化。 【苍黄】同“仓皇”。 【苍劲】形①(树木)苍老挺拔:~的古松。②(书法、 绘画)老练而雄健有力:他的字写得~有力。 【苍老】形①(面貌、声音等)显出老态:病了一场,人比以前显得~多了。②形容书画笔力雄健。 【苍凉】 形凄凉:月色~。 【苍龙】名①二十八宿中东方七宿的统称。也叫青龙。参看页〖二十八宿〗。②古代传说中的一种凶神恶煞。现在有时用来比

2.2高考之充分条件、必要条件、充要条件

2.2高考之充分条件、必要条件、充要条件

第二章常用逻辑用语2.2 充分条件、必要条件、充要条件教材在通过数学命题的学习,引出了数学意义上的逻辑问题,在此基础上,要理解充分条件、必要条件和充要条件的意义,并通过“若p则q”形式命题的真假,形式化地判断语句“p”与语句“q”之间的条件关系,学会合理、准确地表述问题.1.教学重点:理解充分条件、必要条件、充要条件的意义.2.教学难点:会求(判定)某些简单命题的条件关系.1.下列语句中是命题的为()①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④对任意x∈R,5x-3>6.A.①③B.②③C.②④D.③④答案D解析①无法判断真假,②没有涉及命题的真假,都不是命题;③④为命题.2.判断下列语句是否为命题,若是,请判断真假并改写成“若p,则q”的形式.(1)垂直于同一条直线的两条直线平行吗?(2)三角形中,大角所对的边大于小角所对的边;(3)当x+y是有理数时,x,y都是有理数;(4)1+2+3+…+2 014;(5)这盆花长得太好了!解 (1)(4)(5)未涉及真假,都不是命题.(2)是真命题.此命题可写成“在三角形中,若一条边所对的角大于另一边所对的角,则这条边大于另一边.”(3)是假命题.此命题可写成“若x +y 是有理数,则x ,y 都是有理数”.阅读课本P29~30页,完成下列表格。

知识点一 充分条件与必要条件知识点二 充要条件的概念(1)定义:若p ⇒q 且q ⇒p ,则记作p ⇔q ,此时p 是q 的充分必要条件,简称充要条件.(2)条件与结论的等价性:如果p 是q 的充要条件,那么q 也是p 的充要条件.典型例题类型一 充分条件与必要条件的概念例1 判断下列说法中,p 是q 的充分条件的是____________________________________. ①p :“x =1”,q :“x 2-2x +1=0”;②设a ,b 是实数,p :“a +b >0”,q :“ab >0”.答案 ①解析 对①,p ⇒q ;②p ⇏ q ,故填①.引申探究例1中p 是q 的必要条件的是________.答案 ①解析 ①x 2-2x +1=0⇒x =1,即q ⇒p ;②q ⇏p .故填①.反思与感悟 充分条件、必要条件的两种判断方法(1)定义法①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为结论的充分条件,否则就不是充分条件; ③尝试从结论推条件,若结论能推出条件,则条件为结论的必要条件,否则就不是必要条件.(2)命题判断法①如果命题:“若p ,则q ”为真命题,那么p 是q 的充分条件,同时q 是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.变式:a >b 的一个充分不必要条件是( )A .a 2>b 2B .|a |>|b | C.1a <1bD .a -b >1答案 D解析 a -b >1⇒a -b >0而a -b >0⇏a -b >1,故选D.跟踪训练 设计如图所示的三个电路图,条件p :“开关S 闭合”;条件q :“灯泡L 亮”,则p 是q 的充分不必要条件的电路图是________.答案 (1)类型二充要条件的判断例2(1)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案C解析分别判断x>y⇒x>|y|与x>|y|⇒x>y是否成立,从而得到答案.当x=1,y=-2时,x>y,但x>|y|不成立;若x>|y|,因为|y|≥y,所以x>y.所以x>y是x>|y|的必要不充分条件.(2)下列所给的p,q中,p是q的充要条件的为________.(填序号)①若a,b∈R,p:a2+b2=0,q:a=b=0;②p:|x|>3,q:x2>9.答案①②解析①若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.②由于p:|x|>3⇔q:x2>9,所以p是q的充要条件.反思与感悟判断p是q的充分必要条件的两种思路(1)命题角度:判断p是q的充分必要条件,主要是判断p⇒q及q⇒p这两个命题是否成立.若p⇒q 成立,则p是q的充分条件,同时q是p的必要条件;若q⇒p成立,则p是q的必要条件,同时q 是p的充分条件;若二者都成立,则p与q互为充要条件.(2)集合角度:关于充分条件、必要条件、充要条件,当不容易判断p⇒q及q⇒p的真假时,也可以从集合角度去判断,结合集合中“小集合⇒大集合”的关系来理解,这对解决与逻辑有关的问题是大有益处的.跟踪训练(1)a,b中至少有一个不为零的充要条件是()A.ab=0 B.ab>0C.a2+b2=0 D.a2+b2>0答案D解析a2+b2>0,则a,b不同时为零;a,b中至少有一个不为零,则a2+b2>0.(2)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么()A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙既不是甲的充分条件,也不是甲的必要条件【答案】A【解析】因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙D⇏丙,如图.综上,有丙⇒甲,但甲D⇏丙,既丙是甲的充分条件,但不是甲的必要条件.类型三由条件关系求参数取值范围例3已知p:x<-2,q:x<a,若p是q的必要条件,求实数a的取值范围.解因为p是q的必要条件。

第2节 充分条件与必要条件 课件--高考数学一轮复习

第2节 充分条件与必要条件 课件--高考数学一轮复习
方法:解决此类问题一般会把充分条件、必要条件或充要条件转化 为集合之间的关系,然后根据集合之间的关系列出关于参数的不等 式(或不等式组)求解.正面直接解决比较困难时,可考虑利用命题的 等价关系转化,将复杂命题简单化.
注意:利用两个集合之间的关系求解参数的取值范围时,要注意区 间端点值的检验,处理不当容易出现漏解或增解的现象.
对点强化 根据充分、必要条件求参数的取值范围
已知 p:x-1 2≥1,q:|x-a|<2,若 p 是 q 的充分不必要条件,
则实数 a 的取值范围为( C )
A.(-∞,4] B.[1,4] C.(1,4] D.(1,4)
【解析】解不等式x-1 2≥1,即 1-x-1 2=xx- -32≤0,解得 2<x≤3.
③¬q是¬p的充要条件⇔ p是q的充要条件;
④¬q是¬p的既不充分也不必要条件⇔ p是q的既不充分也不必要条件.
例1
“2x2-5x-3<0”的一个必要不充分条件是( C )
A.-12<x<3 B.-3<x<12 C.-1<x<6 D.-12<x<0
例 2 已知p:x≠3或y≠2,q:x+y≠5,则p是q的( B )
例 3 若不等式|x-1|<a成立的充分条件为0<x<4,则实数a的
取值范围是( A )
A.{a|a≥3} B.{a|a≥1} C.{a|a≤3} D.{a|a≤1}
【解析】不等式|x-1|<a 成立的充分条件为 0<x&l0<x<4}⊆A.
当 a≤0 时,A=∅,不满足要求;
解得 a>1 或 a<-13,
即 a∈-∞,-13∪(1,+∞).所求充分不必要条件即为其一个真子集.

高考数学必考之充分条件与必要条件

高考数学必考之充分条件与必要条件

高考数学必考之充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q ⇒,(2)充分条件与必要条件:如果条件,p q 满足p q ⇒,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。

所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q ⇔,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。

例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q ⇒,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。

在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。

以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。

高考数学-第一章 §1.2 充分条件与必要条件

高考数学-第一章 §1.2 充分条件与必要条件

充分条件与必要条件考试要求理解必要条件、充分条件与充要条件的含义.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⃘B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当q是p的必要条件时,p是q的充分条件.(√)(2)已知集合A,B,则A∪B=A∩B的充要条件是A=B.(√)(3)q不是p的必要条件时,“p⇏q”成立.(√)(4)若p⇒q,则p是q的充分不必要条件.(×)题组二教材改编2.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要3.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 必要不充分4.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是________. 答案 m =-2题组三 易错自纠5.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件. 6.已知p :x >a 是q :2<x <3的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,2]解析 由已知,可得{x |2<x <3}{x |x >a },∴a ≤2.题型一 充分、必要条件的判定例1 (1)已知p :⎝⎛⎭⎫12x <1,q :log 2x <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由⎝⎛⎭⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞),由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件. (2)“a >2,b >2”是“a +b >4,ab >4”的( ) A .充分不必要条件 B .必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练1 (1)已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.(2)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行,则2λ(1-λ)-6(λ-1)=0,解得λ=1或λ=-3,经检验λ=1或λ=-3时两直线平行,故选A.题型二 充分、必要条件的应用例2 已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件, 即所求m 的取值范围是[0,3].若将本例中条件改为“若x ∈A 是x ∈B 的必要不充分条件”,求m 的取值范围.解 由x ∈A 是x ∈B 的必要不充分条件,知B A , ∴⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m ≤1+m ,1-m >-2,1+m ≤10,解得0≤m ≤3或0≤m <3,∴0≤m ≤3, 故m 的取值范围是[0,3].思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)使2x ≥1成立的一个充分不必要条件是( )A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案 B解析 由2x≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若关于x 的不等式|x -1|<a 成立的充分不必要条件是0<x <4,则实数a 的取值范围是________. 答案 [3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分不必要条件是0<x <4,所以(0,4)(1-a ,1+a ),所以⎩⎪⎨⎪⎧ 1-a ≤0,1+a >4或⎩⎪⎨⎪⎧1-a <0,1+a ≥4,解得a ≥3.题型三 充要条件的探求例3 已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解 因为mx 2-4x +4=0是一元二次方程, 所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1,所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根不是整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.思维升华 探求充要条件的关键在于转化的等价性,解题时要考虑条件包含的各种情况,保证条件的充分性和必要性.跟踪训练 3 (1)命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1 D .a >1答案 B解析 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.(2)(2020·武汉质检)关于x 的方程ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是________. 答案 ac <0解析 ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是⎩⎪⎨⎪⎧Δ=b 2-4ac >0,c a <0.即ac <0.课时精练1.“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析由log2(2x-3)<1⇔0<2x-3<2⇔32<x<52,4x>8⇔2x>3⇔x>32,所以“log2(2x-3)<1”是“4x>8”的充分不必要条件,故选A.2.设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案A解析由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a-b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,故选A. 3.“|x-1|<2”是“x<3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由|x-1|<2,可得-1<x<3,∵{x|-1<x<3}{x|x<3},∴“|x-1|<2”是“x<3”的充分不必要条件.4.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由ln(x+1)<0⇒0<x+1<1,即-1<x<0,故“x<0”是“ln(x+1)<0”的必要不充分条件,故选B.5.若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值范围是() A.a>3 B.a<3C .a >4D .a <4答案 A解析 若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.因为当x >1时,f (x )>3,∴a >3.6.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B解析 由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.7.(多选)若x 2-x -2<0是-2<x <a 的充分不必要条件,则实数a 的值可以是( ) A .1 B .2 C .3 D .4 答案 BCD解析 由x 2-x -2<0,解得-1<x <2. ∵x 2-x -2<0是-2<x <a 的充分不必要条件, ∴(-1,2)(-2,a ),∴a ≥2. ∴实数a 的值可以是2,3,4. 8.(多选)下列说法正确的是( )A .“ac =bc ”是“a =b ”的充分不必要条件B .“1a >1b ”是“a <b ”的既不充分也不必要条件C .若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆BD .“a >b >0”是“a n >b n (n ∈N ,n ≥2)”的充要条件 答案 BC解析 A 项,ac =bc 不能推出a =b ,比如a =1,b =2,c =0,而a =b 可以推出ac =bc ,所以“ac =bc ”是“a =b ”的必要不充分条件,故错误;B 项,1a >1b 不能推出a <b ,比如12>-13,但是2>-3;a <b 不能推出1a >1b ,比如-2<3,-12<13,所以“1a >1b”是“a <b ”的既不充分也不必要条件,故正确;C 项,因为“x ∈A ”是“x ∈B ”的充分条件,所以x ∈A 可以推出x ∈B ,即A ⊆B ,故正确;D 项,a n >b n (n ∈N ,n ≥2)不能推出a >b >0,比如a =1,b =0,1n >0n (n ∈N ,n ≥2)满足,但是a >b >0不满足,所以必要性不满足,故错误.9.已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 命题p 等价于0<a <4.命题q :对∀x ∈R ,ax 2+ax +1>0等价于⎩⎨⎧a =0,1>0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件. 10.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.11.若x ∈{-1,m }是不等式2x 2-x -3≤0成立的充分不必要条件,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎤-1,32 解析 不等式可转化为(x +1)(2x -3)≤0,解得-1≤x ≤32,由于x ∈{-1,m }是-1≤x ≤32的充分不必要条件,结合集合元素的互异性,得到m ∈⎝⎛⎦⎤-1,32. 12.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”成立的________条件.(填“充分不必要”“必要不充分”“充要”“即不充分也不必要”) 答案 充要解析 设f (x )=x +ln x ,显然f (x )在(0,+∞)上单调递增, ∵a >b ,∴f (a )>f (b ),∴a +ln a >b +ln b ,充分性成立;∵a +ln a >b +ln b ,∴f (a )>f (b ),∴a >b ,必要性成立,故“a >b ”是“a +ln a >b +ln b ”成立的充要条件.13.(2021·深圳模拟)对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈〉=2,〈-〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令x =,y =,满足|x -y |<1,但〈〉=2,〈〉=1,〈x 〉≠〈y 〉,可知充分性不成立.当〈x 〉=〈y 〉时,设〈x 〉=x +m ,〈y 〉=y +n ,m ,n ∈[0,1),则|x -y |=|n -m |<1,可知必要性成立.所以“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.故选B.14.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________. 答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.15.已知集合A =26113x x x --⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎭⎩≤,B ={x |log 3(x +a )≥1},若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,0]解析 由26113x x --⎛⎫⎪⎝⎭≤,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案 ⎝⎛⎦⎤0,255 解析 画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝⎛⎦⎤0,255.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C)充分且必要条件,(D)既不充分也不必要条件
p (1) : c a c b; q : a b
2 2
充分不必要条件
; (2)p : a, b, c成等差数列 q : 2b a c
充要条件
5、p : 设a、b、c R, 则b 4ac 0是
2
ax bx c 0恒成了的什么条件?并 说
2
明理由。
x2 x m 0 6、方程
充分不必要条件
1.已知: : 0 x 5, q : x 2 3 ,则p p 是q的( A )
A.充分不必要条件 B.必要不充分条件 C.既充分又必要条件 D.既不充分也不必要条件
2.已知: a, b, c为同一平面内的非零向 量 p : a b a c, q : b c ,则p是q的 (B ) A.充分不必要条件 B.必要不充分条件 C.既充分又必要条件 D.既不充分也不必要条件
什么条件? 5、(1)若 (2)若 (3)若
,
是 是 是
m 0 是无实根的
p q ,则 p q p,则 p p q ,则 p
q 的什么条件? q 的什么条件?
q 的什么条件?
7、设甲、乙、丙是三个命题,如果甲是乙的必要条件; 丙是乙的充分非必要条件,那么丙是甲的
(A)充分非必要条件,(B)必要非充分条件,
1.1.2 充分条件与必要条件 (2)
复习与回顾
pq 1.若p则q为真 ,记作_____________; pq 若p则q为假 ,记作_____________.
p q 且q p 2. p是q的充分不必要条件的含义:————。 p q 且q p p是q的必要不充分条件的含义:—————。 p q 且q p ( p q ) p是q的充要条件的含义:—————。
p q 且q p p是q的既不充分也必要条件的含义:————。
3、判断充分、必要条件的基本步骤: ①认清条件和结论; ②考察 p q 和 q p 的真假。
4、判别技巧: ① 可先简化命题; ② 否定一个命题只要举出一个反例即 可; ③ 将命题转化为等价的逆否命题后再 判断。
例1.已知: p : x 0, q : x 0 ,则 p是q的( A )
3、 从 “ ” 、 “ ” 、 “ ” 中 选 择 适 当的填空:
(1) x y _______x y :
2 2
a ( 2) a b ________ b;
( 3) A B A _______A B .
4.指出下列各组命题中,p是q的什么 条件:
A.充分不必要条件 B.必要不充分条件 C.既充分又必要条件 D.既不充分也不必要条件
例2 .指出下列各组命题中,p是q 的什么条件:
(1) p : x 3; q : x 2) p : ; q : cos cos
x 1 x y 2 (3) p : y 1; q : xy 1 ;
相关文档
最新文档