离散数学复习纲要
离散数学复习提纲
离散数学复习2012本复习提纲仅列出了上课时所讲过的每一章节的知识点,请大家对照知识点认真复习。
第一章数理逻辑§1命题及其真值命题概念,命题联结词,命题真值表,命题符号化§2重言式命题公式的性质,逻辑等价公式,永真蕴含公式,命题公式推倒(化简与证明)§3范式指派,析取范式,合取范式,极小项,极大项,主范式的求法,主范式与真值表之间的关系//§4联结词的扩充与归约//功能完备集,与非,或非§5推理规则和证明方法反证法,CP规则,直接证明法 //条件证明法、命题公式证明§6谓词和量词全称量词,存在量词,基于谓词的命题符号化,公式的解释§7谓词演算的永真公式谓词公式的等价公式和永真蕴含公式 //前束范式//§8 谓词演算的推理规则//基于谓词的推理,ES、EG、US、UG规则第二章集合§1集合论的基本概念集合的定义,表示方法§2集合的运算交,并,补,差,环和,环积,幂集,包含排斥定理//§3 自然数//定义(了解)§4 集合的笛卡尔乘积序偶的特点,笛卡尔乘积的计算,第三章二元关系§1关系的基本概念二元关系的定义,表示方法(关系图、关系矩阵),性质判断及证明(自反,反对称,对称,反对称,传递)§2关系的运算二元关系的合成运算,逆运算,两种运算的矩阵表示§3关系上的闭包运算自反闭包,对称闭包,传递闭包的求法§4次序关系偏序关系的定义,哈斯图,8种特殊元素§5等价关系和划分等价关系的定义,等价划分,等价关系的证明第四章函数§1函数的基本概念定义、合成运算§2特殊函数类单射,满射,双射的判断//§3逆函数//定义第八章图论§1图的基本概念图、点、边的相关概念§2路径和回路基本路径,简单路径,基本回路,简单回路,最短路径(迪克斯特拉算法)§3图的矩阵表示邻接矩阵,可达性矩阵,//关联矩阵//§4 欧拉图和哈密尔顿图//欧拉图的定义、判断方法;哈密尔顿图的应用-最小哈密尔顿回路(TSP)问题(最邻//近算法)//§5*二部图和平面图//定义,应用§6树树的定义,性质,生成树,最小生成树(克鲁斯克儿算法)§7有向树二元树的定义,遍历,二元树与普通树的转换,表达式的计算等试卷类型:闭卷题型:填空题、命题符号化、作图、证明、计算。
离散数学复习提纲
离散数学复习提纲离散数学是一门关于离散对象的数学分支,它主要研究离散结构及其性质,广泛应用于计算机科学、信息技术、密码学等领域。
下面是一个离散数学的复习提纲,包括离散数学的基本概念、离散结构、图论、关系、逻辑以及集合论等内容。
一、离散数学的基本概念1.数学基础:集合、函数、关系、证明方法(数学归纳法、反证法、递归法等);2.命题逻辑:命题、命题连接词、真值表、逻辑运算、逻辑等价、推理规则等;3.谓词逻辑:谓词、量词、公式、合取范式和析取范式、蕴含、等价、量词的否定规则等;4.证明方法:直接证明、间接证明、归谬证明、证明策略等。
二、离散结构1.图论:图的基本概念、图的表示方法、连通性、路径和回路、图的着色、最小生成树等;2.代数结构:群、环、域的定义、性质及基本例子;3.组合数学:组合基本原理、二项式系数、排列组合、生成函数、递归关系、容斥原理等;4.有限状态自动机:确定性有限状态自动机、非确定性有限状态自动机、正则表达式等。
1.图的基本概念:顶点、边、路径、回路、度等;2.图的表示:邻接矩阵、邻接表、关联矩阵等;3.图的遍历:深度优先、广度优先;4. 最短路径问题:Dijkstra算法、Floyd-Warshall算法;5. 最小生成树问题:Prim算法、Kruskal算法;6.匹配问题:最大匹配、二分图匹配等。
四、关系1.关系的基本概念:关系矩阵、关系的性质(反自反性、对称性、传递性等);2.等价关系:等价关系的性质、等价类等;3.偏序关系:偏序关系的性质、偏序集合、哈斯图等;4.传递闭包:传递闭包的定义、传递闭包的计算方法等。
五、逻辑1.命题逻辑:命题的定义、逻辑运算、真值表、逻辑等价、推理规则等;2.谓词逻辑:量词的定义、公式的定义、量词的否定规则、等价变换等;3.命题逻辑与谓词逻辑的转换;4.形式化推理:前向链式推理、后向链式推理、消解法等。
1.集合的基本概念:子集、并集、交集、差集、补集等;2.集合运算:集合的并、交、差、补等运算的性质;3.集合的关系:包含关系、相等关系、等价关系等;4.集合的表示方法:列举法、描述法、元祖法等;5.集合的基数:有限集合的基数、无穷集合的基数、基数的性质。
离散数学期末复习总要
离散数学期末复习总要离散数学期末复习各个章节要点纲要(及定理)离散数学定义定理1.3.1命题演算的合式公式规定为:(1)单个命题变元本身是一个合式公式。
(2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。
(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。
若指定的一种指派,使P的值为真,则称这组指派为成真指派。
若指定的一种指派,使P的值为假,则称这种指派为成假指派。
含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。
1.3.6 设A为一命题公式,若A在它的各种指派情况下,其取值均为假,则称A为矛盾式或永假式。
1.3.7设A为一命题公式,若A在它的各种指派情况下至少存在一组成真指派,则称A为可满足式。
1.4.1 设X式合式公式A的子公式,若有Y也是一个合式公式,且X<=>Y,如果将A中的X用Y置换,得到公式B,则A<=>B。
1.4.2 设A,B为两个命题公式,A<=>B,当且仅当A ←→B为一个重言式。
P=>Q称做P蕴含Q或蕴含式,又称永真条件式。
蕴含式有下列性质:(1)对任意公式A,又A=>A;(2)对任意公式A,B和C,若A=>B,B=>C,则A=>C;(3)对任意公式A,B和C,若A=>B,A=>C,则A=>(B∧C); (4)对任意公式A,B和C,若A=>C,B=>C,则A∨B=>C.1.4.3设P,Q为任意两个命题公式,P<=>Q的充分必要条件式P=>Q,,Q=>P。
离散数学复习提纲(完整版)解析
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学复习纲要
13
练习2
2.设A={1,2,3,4},在AA上定义二元关系R: <<x,y>,<u,v>>R x+y = u+v, 求R导出的划分. AA={<1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, <2,3>, <2,4>,<3,1>, <3,2>, <3,3>, <3,4>, <4,1>, <4,2>, <4,3>, <4,4>} 根据 <x,y> 中的 x+y = 2, 3, 4, 5, 6, 7, 8 将A划分成等价类: A/R={{<1,1>}, {<1,2>,<2,1>}, {<1,3>, <2,2>, <3,1>}, {<1,4>, <2,3>, <3,2>, <4,1>}, {<2,4>, <3,3>, <4,2>}, {<3,4>, <4,3>}, {<4,4>}}
7
划分实例
例10 设 A={ a, b, c, d }, 给定 1, 2, 3, 4, 5, 6如下: 1={{ a, b, c },{ d }} 2={{ a, b}, { c }, { d }} 3={{ a }, { a, b, c, d }} 4={{ a, b}, { c }} 5={,{ a, b }, { c, d }} 6={{ a, { a }}, { b, c, d }}
离散数学复习提纲
离散数学复习提纲第一章1、集合的三种表示法:①穷举列表法;例A={a,b,c};B={1,2,3,……,200};②特性刻划法;例A={x|x∈I并且I<0};③由计算规则定义;例设a1=1,a2=2,ai+1=ai+ai-1 S={ak|k>0}。
2、没有元素的的集合称为空集。
3、设A和B是两个集合,A B,表示A中的每个元素都可以在B中找到,称A是B 的一个子集(A被B包含),如果A中至少有一个元素不属于B,则A B。
4、幂集ρ(s)就是S的所有子集组成的集合(共2S个),例:S={1,{2,3}},则ρ(s)={{1},{{2,3}},{1,{2,3}},φ}5、文氏图是一种集合的图形表示。
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 第二章1、笛卡尔积A×B={(a,b)|a∈A,b∈B},即A到B的所有有序偶构成的集合。
2、(a,b)称为有序偶,若(a,b)= (c,d),当且仅当a=c,b=d,通常(a,b)≠(b,a),除非a=b。
3、A到B的二元关系R是A×B的一个子集,R A×B,若R= A×B,称R为全关系,R=φ称为空关系。
4、两个元素的有序偶(x,y)∈R,称x和y具有关系R,例:A上的小于关系定义为:L={(a1,a2)| a1,a2∈A∩a1<a2}。
5、对于每个x∈A,有(x,x)∈R,称R是A上的自反关系;对于每个x,y∈A,如有(x,y)∈R,有(y,x)∈R,则称R是A上的对称关系;对于每个x,y,z∈A,如有(x,y)∈R,并且(y,z)∈R,便有(x,z)∈R,则称R是A上的传递关系;例:A={1,2,3},R1={(1,1),(2,2),(3,3),…},R2={(1,2),(2,1),(3,3)},R3={(1,2),(2,3),(1,3)},则R1是自反的,R2是对称的,R3是传递的。
《离散数学》辅导纲要
《离散数学》辅导纲要第一章 命题逻辑一. 主要内容1. 命题公式及其真值表。
2. 命题演算的基本等价式和蕴含式。
3. 命题公式的范式。
4. 推理理论。
二. 重点掌握1. 能正确的画出给定命题公式的真值表,并能判断其类型(重言式、矛盾式、可满足式)。
2. 能将给定的一个命题进行符号化。
3. 证明两个命题公式等价。
4. 运用基本等价式化简命题公式。
5. 会用等价演算法和真值表法求一个命题公式的各种范式(析取范式、合取范式、主析取范式、主合取范式)。
6. 运用推理理论证明蕴含式。
三. 典型题举例例1. 证明等价式:()()()Q R P Q R Q P →∨=→∧→。
证明:()()()()Q R Q P Q R Q P ∨⌝∧∨⌝=→∧→()()Q R P Q R P ∨∨⌝=∨⌝∧⌝=()Q R P →∨=例2.用推理规则证明:()()()()S R S R B A B A P P D C D C ∨⇒∨→⌝∧⌝∧→⌝⌝→∨∨ , , , 证明:(1) D C ∨ P(2) ()P D C ⌝→∨ P(3) P ⌝ T (1)(2)I(4) ()B A P ⌝∧→⌝ P(5) B A ⌝∧ T (3)(4)I(6) ()()S R B A ∨→⌝∧ P(7) S R ∨ T (5)(6)I例3.证明等价式:()()()()CQ P A C Q P A C A Q P →↔∧=∨∨→∧→∧∧证明:()()()()()()()()()()()()()()()()()()()()()()()()()()()()CQ P A CQ P Q P A CQ P Q P A CQ P Q P A C Q P Q P A CQ P A Q P A C Q P A C Q P A C Q P A C A Q P C Q P A C A Q P →↔∧=→⌝∧⌝∨∧∧=→∨∧⌝∨⌝⌝∧=→∨∧⌝∨⌝∨⌝⌝=∨∨∧⌝∨⌝∨⌝=∨∨∨⌝∧⌝∨⌝∨⌝=∨∨∨⌝∧∨⌝∨⌝∨⌝=∨∨∨⌝∧∨∧∧⌝=∨∨→∧→∧∧例4.用推理规则证明:()C B E D A E D C B A ∨⇒∨→∨∨→ , ,证明:(1) () C B A ∨→ P(2) A E D →∨ P(3) C B E D ∨→∨ T (1)(2)I(4) E D ∨ P(5) C B ∨ T (3)(4)I例5.用推理规则证明:()()S Q S R Q P P →⇒∧→→ , 。
离散数学复习大纲
试卷类型一、选择题(10题,每题2分,共计20分)二、填空题(10空,每空2分,共计20分)三、选择题(8题,每空1分,共计8分)四、名词解释(3个,每个4分,共计12分)五、构造推理证明题(1题,计10分)六、计算题(共计30分)求解主析取范式或合取范式、等价关系或偏序关系哈斯图、最小生成树、求解前束范式离散数学的定义第1章数学语言与证明方法主要内容:●集合定义,集合的两种描述方法,空集合的定义与定理及推论,子集、真子集、全集,相等集合,包括0的自然数、有理数、整数、实数集合,集合的元素个数●集合的交、并、补、差、对称差、幂运算(集合的个数)定义,经过括号形成的更为复杂的集合运算,简单的可以通过文氏图来表示。
第2章命题逻辑主要内容:●命题及其真值。
感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
●简单命题与复合命题概念,5种联结词的具体涵义、真值表与符号表示,汉语的复合句的那些联结词与它们对应,特别是相容或和排斥或的符号化表示。
●联结词优先级:( ),⌝, ∧, ∨, →, ↔;同级按从左到右的顺序进行●命题常项、命题变项、合式公式定义,公式的赋值、真值表●命题公式的分类有重言式(永真式)、矛盾式(永假式)、可满足式●等值式的定义,真值表法和等值演算两种判断方法,置换规则●文字、简单析取式、简单合取式、析取范式、合取范式的定义●定理:(1) 一个简单析取式是重言式当且仅当它同时含某个命题变项和它的否定;(2) 一个简单合取式是矛盾式当且仅当它同时含某个命题变项和它的否定●定理:(1) 一个析取范式是矛盾式当且仅当它的每一个简单合取式都是矛盾式;(2)一个合取范式是重言式当且仅当它的每一个简单析取式都是重言式●定理:任何命题公式都存在着与之等值的析取范式与合取范式●求公式的范式的3个步骤●极小项、极大项的定义,对于每一个最小项只有一种指派使其取1,对于每一个最大项只有一种指派使其取0●定理:设m i与M i是由同一组命题变项形成的极小项和极大项, 则⌝m i ⇔ M i , ⌝M i⇔ m i●主析取范式、主合取范式的定义,求解公式的析取范式、合取范式、主析取范式、主合取范式●定理:任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的●求主析取范式的步骤,求主合取范式的步骤,快速求法、主析取范式的用途●命题逻辑推理的推理证明第3章一阶逻辑主要内容:●个体词(个体常项、个体变项)、个体域、全总个体域的定义●谓词(全称量词和存在量词)、n元谓词P(x1, x2,…, xn)的定义,命题的符号化●量词(全称量词和存在量词)、谓词公式、量词的辖域、谓词公式的真值判断、量词的消去等值变换●等值式的定义,5类基本等值式(量词的消去,量词辖域范围的收缩和扩展)●置换规则、换名规则的定义●前束范式的定义,利用量词的辖域的扩张,完成前束范式的求解●定理3.3(前束范式存在定理) 一阶逻辑中的任何公式都存在与之等值的前束范式第4章关系主要内容:●有序对、笛卡儿积、二元关系、从A到B的关系、A上的关系的定义●A上重要关系●A到B上关系的计数,A上关系的计数●关系的三种表示:关系的集合表达式、关系矩阵、关系图,后两种的使用限制●定义域、值域、域的定义●关系的运算:逆、合成的定义和表示方法以及简单计算●定理 4.1 设F是任意的关系, 则 (1) (F-1)-1=F (2) dom F-1=ran F,ran F-1=dom F●定理4.2 设F, G, H是任意的关系, 则(1) (F∘G)∘H=F∘(G∘H) (2) (F∘G)-1=G-1∘F-1●定理4.3 设R 为A上的关系, 则R∘I A= I A∘R = R●定义4.13 设R为A上的关系, n为自然数, 则 R 的 n次幂是 (1) R0 = {<x,x>| x∈A } = I A (2) R n+1 = R n∘R●定理4.4 设 A 为 n 元集, R是A上的关系, 则存在自然数 s 和 t, 使得 R s=R t.●定理4.5 设 R 是 A 上的关系, m, n∈N, 则 (1) R m∘R n = R m+n (2) (R m)n= R mn●自反性与反自反性, 对称性与反对称性,传递性的定义以及矩阵表示的特征。
(完整word版)离散数学复习提纲(完整版)
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。
离散数学期末复习要点与重点
离散数学期末复习要点与重点大纲复习以课本和笔记为主.文中标红为需重点掌握的,祝大家都能取得好成绩第1章命题逻辑复习要点1.理解命题概念,会判别语句是不是命题.理解五个基本联结词:否定P、析取、合取、条件、和双条件及其真值表,理解其他联结词的定义及基本等价式,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.理解公式的概念公式、赋值、成真指派和成假指派和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法真值表法和等价推导法.命题公式的范式不惟一,但主范式是惟一的.命题公式A有n个命题变元,A的主析取范式有k个小项,有m个大项,则于是有1 A是永真式k=2n m=0;2 A是永假式m=2n k=0;5.了解C是前提集合{A1,A2,…,A m}的有效结论或由A1, A2, …, A m逻辑地推出C的概念.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,真值表,主析取合取范式,命题演算的推理理论.第2章谓词逻辑复习要点1.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词,存在量词.命题符号化注意:使用全称量词,特性谓词后用;使用存在量词,特性谓词后用.2.了解原子公式、谓词公式、变元约束变元和自由变元与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题.在谓词公式xA或xA中,x是指导变元,A是量词的辖域.会区分约束变元和自由变元.在非空集合D个体域上谓词公式A的一个解释或赋值有3个条件.在任何解释下,谓词公式A取真值1,A为逻辑有效式永真式;公式A取真值0,A 为永假式;至少有一个解释使公式A取真值1,A称为可满足式.在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等.掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.3.理解前束范式的概念,掌握求公式的前束范式的方法.若一个谓词公式F 等价地转化成 B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是或,而x 1, x 2, …, x k 是个体变元,B 是不含量词的谓词公式.前束范式仍然是谓词公式.重点:翻译;前束范式.第3章 集合与关系复习要点1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分. 掌握集合包含子集、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,与,空集与所有集合等的关系. 空集,是惟一的,它是任何集合的子集.集合A 的幂集PA =}{A x x ⊆, A 的所有子集构成的集合.若A =n ,则PA =2n .2.熟练掌握集合A 和B 的并AB ,交AB ,补集AA 补集总相对于一个全集.差集A -B ,对称差,AB =A -BB -A ,或AB =AB -AB 等运算.掌握集合运算律运算的性质.3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明.证明方法有二:1要证明A =B ,只需证明AB ,又AB ;2通过运算律进行等式推导.4.了解有序对和笛卡尔积的概念,掌握笛卡尔积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置. 注意:有序对<a ,b ><b , a >,以a , b 为元素的集合{a , b }={b , a };有序对a , a 有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡尔积A ×B 是一个集合,规定A ×B ={<x ,y >xA ,yB },是有序对的集合.笛卡尔积也可以多个集合合成,A 1×A 2×…×A n .5.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算及复合关系、逆关系的性质与求法. 二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .设A 、B 是两个集合,且|A|=m,|B|=n,则从A 到B 可产生的不同的二元关系个数为nm 2.关系的表示方法有三种:集合表示法,关系矩阵:RA ×B,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >R ,由结点a i 画有向弧到b j 构成的图形.空关系是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><== ;复合关系矩阵:21R R R M M M ⨯=按逻辑运算; 有结合律:R S T =R S T ,一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1; 复合关系与逆关系存在:R S -1=S -1 R -1.6.理解关系的性质自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示,掌握其判别方法利用定义、矩阵或图,充分条件,知道关系闭包自反,对称,传递的定义和求法.注:1关系性质的充分必要条件:① R 是自反的I A R ;②R 是反自反的I A R =;③R 是对称的 R =R -1;④R 是反对称的RR -1I A ;⑤R 是传递的R RR .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.具有反自反性、对称性、反对称性和传递性.重点:集合的运算,笛卡尔积,关系的性质,复合关系和逆关系,关系的闭包.第4章 函数复习要点1.理解函数概念:函数映射,函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,aA ,存在惟一bB ,使得<a , b >f ,且Dom f =A ,f 是一个函数映射.函数是一种特殊的关系设A 、B 是两个集合,且|A|=m,|B|=n,则从A 到B 可产生的不同的函数关系个数为m n .集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——fA =B 或,,A x B y ∈∃∈∀使得y =fx ;双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :AB 是双射,则有反函数f -1:BA , },)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)(重点:函数.第5章 代数结构复习要点1.掌握代数系统中运算及其性质自反,对称,传递,等幂,会判断某代数系统具有哪种性质.2. 掌握半群,独异点,群,阿贝尔群,循环群的概念及判定方法.半群:封闭+可结合.独异点:封闭+可结合+有幺元.群:封闭+可结合+有幺元+每个元素有逆元.阿贝尔群:群+可交换.循环群:群+有生成元.3. 掌握同态与同构的概念,理解同态的相关性质,并熟练掌握同态与同构的证明方法.重点:代数系统的运算性质,群与循环群的证明方法,同构与同态的证明方法.第7章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路环,无向平行边,有向平行边等概念.简单图,不含平行边和环自回路的图、在无向图中,与结点vV 关联的边数为结点度数deg v ;在有向图中,以vV 为终点的边的条数为入度deg -v ,以vV 为起点的边的条数为出度deg +v ,deg v =deg +v +deg -v .无向完全图K n 及其边数)1(21-=n n E ;有向完全图及其边数)1(-=n n E . 了解子图、真子图、补图的概念. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:1 握手定理 设G =<V ,E >,有∑∈=V v E v 2)deg(;2 在有向图D =<V , E >中,∑∑∈+∈-=Vv V v v v )(deg )(deg ;3 奇数度结点的个数为偶数个.2.了解路与回路概念.会求路和回路的长度.了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G=<V,E>,结点与边的交替序列为路.路中边的数目就是路的长度.起点和终点重合的路为回路.边不重复的路是迹;结点不重复的路是通路.无向图G中,结点u, v存在通路,u, v是连通的,G中任意结点u, v连通,G是连通图.PG表示图G连通分支的个数.要知道:强连通−−→−必是弱连通,反之不成立.−必是单侧连通−−→3.掌握邻接矩阵,可达矩阵和距离矩阵的概念,掌握其构造方法及其应用.4.理解欧拉通路回路、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G的每条边一次且仅一次的路回路是欧拉路回路.存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理1 无向连通图G是欧拉图G为连通图且G不含奇数度结点即G的所有结点为偶数度;2 非平凡图G含有欧拉路G为连通图且G最多有两个奇数度的结点;3 连通有向图D含有有向欧拉回路D中每个结点的入度=出度.4 连通有向图D含有有向欧拉路D中除两个结点外,其余每个结点的入度=出度,且此两点满足一个结点的入度比出度大1,另一个结点的出度比入度大1.5.了解汉密尔顿路回路、汉密尔顿图的概念,会做简单判断.通过连通图G的每个结点一次,且仅一次的路回路,是汉密尔顿路回路.存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件1 在无向简单图G=<V,E>中,V3,任意不同结点V)deg(deg(,,则G是汉∈),vuGvu≥+密尔顿图.充分条件2 有向完全图D=<V,E>, 若3V,则图D是汉密尔顿图. 充分条件≥3 设无向图G=<V,E>,任意V1V,则WG-V1V1必要条件若此条件不满足,即存在V1V,使得PG-V>V1,则G一定不是汉密尔顿图非汉密尔顿图的充分条件.6.了解树、树叶、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件等价定义.注意:1 树T是连通图;2树T满足m=n-1即边数=顶点数-1.图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作WT.最小生成树是带权最小的生成树.7.了解有向树、根树等概念.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0该结点为树根,其余结点的入度为1,该树为根树.有关树的求法:1生成树的破圈法和避圈法求法;2最小生成树的克鲁斯克尔求法;重点:图的概念,握手定理,路、回路以及图的矩阵表示,欧拉图和哈密顿图的基本概念及判别,树与根树的基本概念,最小生成树的求法.。
离散数学-复习提纲
第4.1节 代数系统
定义:设(A,*)是代数系统,如果对于A中任意 元素a和b,都有a*b = c∈A,则称二元运算*对 于A是封闭的,简称*为封闭运算。 例:
(R,+)、(R,-)、(R,×)、(R,÷)是封闭 的 (Z,+)、(Z,-)、(Z,×)是封闭的
(Z,÷)是不封闭的
第4.1节 代数系统
<R, × >, <Q, × > 是群?
第4.3节 群
对于(Nk,k),情况特别。 ⑴(Nk,k)不是群。因为1是幺元,0没有逆 元。 ⑵k为偶数时,(Nk-{0},k)不一定是群。如 k=6,364=0。 ⑶k为奇数时,(Nk-{0},k)不一定是群。如 k=9,396=0。 ⑷k为素数时,(Nk-{0},k)一定是群。
第3.2节 特殊函数
定义:设f是A到B的映射, 若对任意的x,y∈A,x≠y时, 均有 f(x)≠ f(y),则称f为A到B的单射。 若f(A)=B,则称f是A到B上的满射。 若f既是满射又是单射,则称f为A到B的双射, 或1––1映射,或一一对应。
例:设集合A={1,2,3},B={1,2,3,4},那么在A 到B中,可以定义多少种不同的单射函数? 1 2 3 1 2 3 1 2 3 1 2 4 第一行固定, 第二行从B中4个元素取3个做排列,P34。
第4.2节 半群与独异点
定义:设(A,*)是代数系统,且*满足: ⑴运算*对于A是封闭的 ⑵运算*是可结合的 ⑶(A,*)含有幺元 则称(A,*)为独异点。
例:代数系统(R,+)、(Q,+)、(Z,+)都是独 异点,即含幺元0的半群。
第4.2节 半群与独异点
定义:设(A,*)是独异点,B是A的子集,如果 (B,*)也是独异点,且(A,*)中的幺元也属于 (B,*)。则称(B,*)为(A,*)的子独异点。
离散数学期末复习大纲
代数系统的定义
由非空集合及定义在该集 合上的一组运算构成的数 学结构。
代数系统的性质
封闭性、结合律、交换律、 分配律、吸收律等。
同态与同构
保持运算的映射关系,探 讨不同代数系统之间的结 构与性质相似性。
群、环、域等代数结构介绍
STEP 02
STEP 03
域的定义及性质
每个非零元素都有乘法逆 元的交换环,具有更丰富 的数学性质。
集合间关系与运算
集合间的关系
子集、真子集、相等集合等概念及其性质。
集合的运算
并集、交集、差集、补集等运算的定义、性 质及计算方法。
集合运算的优先级
括号>补集>交集>并集,在运算中应注意运 算优先级。
笛卡尔积与幂集
01
笛卡尔积的定义
设A和B为任意两个集合,则所有 有序对(a,b)的集合,其中a∈A, b∈B,称为A和B的笛卡尔积, 记作A×B。
形式语言与自动机
运用代数方法研究形式语言的语 法和语义,以及自动机的结构和 性质。
自动机理论
将计算过程抽象为状态转移的过 程,利用代数系统描述和分析自 动机的行为。
Part
07
总结与展望
关键知识点回顾与总结
命题逻辑
谓词逻辑
ቤተ መጻሕፍቲ ባይዱ
集合论
图论
代数系统
掌握命题、联结词、真 值表、逻辑等价、范式 等基本概念和性质,能 够运用推理规则进行逻 辑推理和证明。
Part
04
逻辑初步
命题逻辑基本概念及公式化简方法
命题逻辑基本概念
命题、联结词、真值表、命题公式、重言式、矛盾式 等。
公式化简方法
利用逻辑等价公式进行化简,如德摩根定律、分配律 等。
离散数学辅导大纲
离散数学期末复习提纲一、基本概念:1.数理逻辑中使用哪8条推理规则?其中哪几条规则的使用是有条件限制的?2.把实际问题符号化时,全称量词对应哪个逻辑连接词?存在量词对应哪个逻辑连接词?3.一个谓词公式一经量化就是一个确定的命题,假设个体域为S={1,2,3,⋯}如何确定(∀x)A(x)和(∃x)A(x)的真值?4.何为极小项(极大项)?极小项(极大项)一定是基本积(基本和)吗?5.何为判定问题?解决判定问题的途径是什麽?6.对偶式和对偶原理相同吗?7.一个谓词公式的前束范式具有什麽样的结构?8.⎨⌝,∧,∨⎬是最小功能完备集吗?为什麽?9.设A和B为任意两个集合,A⨯B一定是二元关系吗?10.一个关系可能具有哪些性质?每种性质的形式化描述如何?11.如何从一个关系的关系矩阵来判断其性质?在关系上可以进行哪些运算?12.R*和R+的意义各是什麽?13.我们都介绍了哪些特种关系?它们的形式化定义是什麽?14.划分和什麽关系相对应?覆盖和什麽关系相对应?15.盖复和覆盖是同一个概念吗?什麽关系使用哈斯图?画哈斯图时用到什麽概念?16.极大员、极小员、最大员、最小员和上界、下界、上确界、下确界定义的根本区别在哪里?17.是关系一定是函数,是函数一定是关系这两句话哪一句是正确的?18.一个关系若存在,则其逆关系一定存在;一个函数若存在,则其反函数一定存在这两句话哪一句是正确?19.我们介绍了哪些特种函数?20.当一个函数满足什麽条件时,就是运算?一个零元运算又叫集合X中的特异元素,我们介绍了哪些特异元素?21.两个无限集通过什麽方法比较大小?22.何为两个代数系统的同态,同构?23.何为同余关系?一个同余关系会造成一个集合的商集,一个商集一定是原集合的覆盖吗?24.何为群?寻找子群的Laglangre定理?25.何为格?何为布尔代数?一个元素的补元唯一吗?如果存在一个元素没有补元,还能构成格吗?26.何为图(指图的抽象数学定义)?图的度?d度正则图指的是有向图还是无向图?何为路径?从V i到Vj可达,从Vj到V i一定可达吗?强连通,单向连通,弱连通是指有向图还是指无向图而言?何为一个结点的可达集?设图的邻接矩阵为A,A中行上1的个数,列上1的个数各代表什麽含义?A²和A'²'中的元素含义各是什麽?何为欧拉图?何为哈密顿图?是哈密顿路一定是欧拉路,是欧拉路一定是哈密顿路,这两句话哪一句正确?二元树和二叉树的概念相同吗?什麽是叶加权最优二叉树?公式∑W(V)∙L(v)中各参数的含义是什麽?v∈V27.遍历二叉树有几种方法?二.能够熟练解决以下问题:1.命题逻辑中通过求主范式进行判定的问题。
离散数学复习提纲
离散数学复习提纲集合论一、基本概念集合(set):做为整体识别的、确定的、互相区别的一些对象的总体。
规定集合的三种方式:列举法、描述法、归纳法集合论的三大基本原理外延公理:两个集合A和B相等当且仅当它们具有相同的元素(无序性)概括公理:对于任意个体域U,任一谓词公式P都确定一个以该域中的对象为元素的集合S(确定性)正规公理:不存在集合A1,A2,A3,…使得…∈A3∈A2∈A1(有限可分,集合不能是自己的元素)注意:隶属、包含的判断(有时两者兼有)定理1:对于任意集合A和B,A=B当且仅当A ? B且B ? A传递性,对全集、空集的?关系等定理5:空集是唯一的子集、真子集、子集个数等运算:并、交、补、差、幂集,及一些运算性质、公式幂集:对任意集合A,ρ(A)称作A的幂集,定义为:ρ(A)={x|x?A},所有子集的集合设A,B为任意集合,A A B当且仅当ρ(A) ?ρ(B)集合族:如果集合C中的每个元素都是集合,称C为集合族集合族的标志集:如果集合族C可以表示为某种下标的形,C={Sd|d∈D},那么这些下标组成的集合称作集合族C的标志集广义并、广义交,及相关运算性质、公式归纳定义:基础条款:规定某些元素为待定义集合成员,集合其它元素可以从基本元素出发逐步确定归纳条款:规定由已确定的集合元素去进一步确定其它元素的规则终极条款:规定待定义集合只含有基础条款和归纳条款所确定的成员基础条款和归纳条款称作“完备性条款”,必须保证毫无遗漏产生集合中所有成员终极条款又称“纯粹性条款”,保证集合中仅包含满足完备性条款的那些对象例:自然数的归纳定义、数学归纳法等……(建议看一下课件例子了解一下思路)二、关系有序组(二元):设a,b为任意对象,称集合族{{a},{a,b}}为二元有序组,简记为称a为的第一分量,b为第二分量递归定义:n=2时,={{a1},{a1,a2}}n>2时,=<< a1,…,an-1>, an>集合的笛卡儿积:对任意集合A,A2,…,A,A1×A2称作集合A1,A2的笛卡儿积,定义如下:A1×A2 = { | u∈A1,v∈A2}A1×A2×…×An =(A1×A2×…×An-1) ×An定理:对于任意有限集合A1,…,An,有|A1×…×An|=|A1|*…*|An|一些运算性质关系是各个对象之间的联系和对应R称为集合A1,A2,…,An-1到An的n元关系,如果R是A1×A2×…×An的一个子集。
离散数学复习提纲
一、数理逻辑(第1章、第2章)·命题定义、联结词(与、或、非、单条件、双条件)·命题公式、真值、真值表、符号化·谓词、量词(全称、存在)、谓词公式·一阶逻辑符号化(所有的。
是。
,、和有些。
是。
特性谓词)·谓词公式求真值(在某种解释下)·命题公式的等值(等价)演算(十大定律)·命题公式的主范式·谓词公式的前束范式·命题逻辑应用·命题逻辑推理(推理定律、推理规则:P,T,CP)·谓词逻辑推理(推理定律、推理规则:P,T,CP,UI,EI,UG,EG)····························二、集合论(第3章)·集合的定义与表示方法(解析法、枚举法、文氏图法)·集合间的相互关系(定义,符号:⊆⊂ =)·集合的运算定义与图示(⋂⋃ - ~⊕⨯ P / )——入集条件·集合定律(十大定律)·集合恒等式的证明法一:直接利用定律及已证等式法二:利用集合相等的定义(①左⊆右∧右⊆左②x∈左⇔ x∈右)·集合的元素计数与应用(包容排斥原理)·································三、关系论(第4章)·二元关系的定义及其表示(解析法、集合法、图示法、矩阵法)·关系的运算(集合的所有运算+左复合、求逆、求闭包)·关系的性质(定义、关系图特点、矩阵的特点、证明)·等价关系(定义、等价类、上集、划分)·偏序关系与偏序集(定义、哈斯图)·全序集(线序集、定义、最元、极元、界元、确界)·································四、函数论(第4章)·定义(唯一性)·A到B的函数(唯一性、良定性)·特殊函数(常、恒等、单增、单减、特征、自然映射)·BA的计数·函数的性质(单、满、双,判断)·函数的复合(左复合)·反函数(只有双设才有)·······························五、代数系统(第5章、第6章)·二元运算(定义,封闭性)、运算表·各种定律(交换、结合、幂等、分配、吸收、消去、幺元、零元、逆元)·代数系统、子代数、积代数(定义、特殊元素、代数常数)·同态与同构(同态等式、证明)·半群、独异点·群、子群、阿贝尔群、生成子群、元素的阶(周期)、循环群(定义与证明)·环、含幺环、零因子、无零因子环、整环、除环与域·格(两种定义)、分配格、有界格、布尔格(判断)·······························六、图论(第7张、第8张、第9张)·无向图、有向图、零图、平凡图、完全图、子图、生成子图、补图·第一握手定理、度数序列·通路、回路、简单。
离散数学重点难点复习提纲
第一部分数理逻辑第一章命题逻辑重点:●熟练掌握联结词的定义;●掌握数理逻辑中命题的翻译及命题公式的定义;●熟记基本的等价公式和蕴涵公式;●利用真值表技术和公式法求公式的主析取范式和主合取范式;●熟练掌握应用基本推理方法完成命题逻辑推理:1.直接证法2.反证法3.CP规则难点:●如何正确地掌握对语言的翻译;●如何利用推理方法正确的完成命题推理。
第二章谓词逻辑重点:●谓词、量词、个体域的概念;●谓词逻辑中带量词命题的符号化;●熟记基本的谓词等价公式;●求公式的前束范式;●掌握谓词逻辑的推理规则以及能够熟练地完成一阶逻辑推理;难点:●谓词逻辑中带量词命题的符号化;●如何利用推理方法正确地完成一阶逻辑推理。
第二部分集合论第三章集合与关系重点:●掌握集合的五种基本运算和集合相等的证明方法;●幂集的概念以及和子集的关系;●序偶和笛卡尔积的概念;●关系定义及其和笛卡尔积之间的联系;●关系的复合;●关系的五种性质及其判断和证明;●关系的闭包;●等价关系定义、证明及其与等价类、集合的划分间的关系;●偏序关系的定义和证明,哈斯图;●偏序关系中的特殊元素;难点:●如何正确证明集合之间包含和相等关系;●如何正确地理解和判断关系的性质;●非常重要的关系性质的证明方法——按定义证明法;●如何正确地掌握等价关系及相应的等价类与集合划分之间的关系;●如何正确地理解和判断偏序关系中的八种特殊元素。
第四章函数重点:●能够判定某个二元关系是否是函数;●几种特殊的函数:满射,单射,双射;难点:●如何正确地判断三种特殊函数。
第三部分代数结构重点:●理解代数结构的构成和研究方法;●代数结构中运算的性质以及特殊元素;●广群⇒半群⇒独异点⇒群;●群的定义与性质;●环与域的判断和证明;●格的两种定义;●特殊格:分配格、有界格、有补格、有补分配格;●有补分配格与布尔代数之间的联系;难点:●循环群的判断和证明;●如何正确理解由偏序关系定义的格与由代数系统定义格之间的关系和区别;●如何正确理解布尔代数的概念。
离散数学复习要点
《离散数学》复习大纲本说明包括以下部分:考核说明及实施要求考核内容和要求第一部分集合论第二部分数理逻辑第三部分图论第四部分代数结构第一部分集合论(集合和二元关系)一、集合[考核知识点]集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan律等),文氏(Venn)图序偶与迪卡尔积[考核要求]理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
掌握集合的表示法和集合的交、并、差、补等基本运算。
掌握集合运算基本规律,证明集合等式的方法。
了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
二、二元关系[考核知识点]关系、关系矩阵与关系图复合关系与逆关系关系的性质(自反性、对称性、反对称性、传递性)关系的闭包(自反闭包、对称闭包、传递闭包)等价关系与等价类[考核要求]理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
掌握求复合关系与逆关系的方法。
理解关系的性质(自反性、对称性、反对称性、传递性),掌握其判别方法(定义、矩阵、图) 掌握求关系的闭包 (自反闭包、对称闭包、传递闭包)的方法。
理解等价关系的概念,掌握等价类的求法。
理解单射、满射、双射等概念,掌握其判别方法。
三、 典型题第一章 集合1. 设A=∅, B={∅,a,{a}},求P(A)和P(B).2. 设A={1,2,3,4} , B={a,b,c}, 求A ⨯B 和B ⨯A.3. P21: 84. P22: 125.证明:B A B A =-6.思考题 P29: 15, 16第二章 关系1. 设A={1,2,3,4},A 上的关系R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),(3,4)}, S=={(2,1), (1,2), (2,3), (1,4), (2,2), (2,4),(4,4)}, 求(1) R 和S 的关系图和关系矩阵(2) R-S(3) S R 1-(4) S R ⊕(5) A 上的恒等关系I A2. 设A={a ,b ,c },R 是A 上的关系R={(a,a),(a,c),(c,b)}, 求 ∞=1n n R3. 设R 是A 上的关系,请叙述R 具有自反性,反自反性,对称性,反对称性和传递性的含义4. 设A={1,2,3,4,5},A 上的关系R={(a,b)|a-b 是偶数},求R ,判断R 具有的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分数理逻辑
第一章命题逻辑的基本概念
1、什么是命题?
2、合取(与)、析取(相容或、排斥或)、蕴涵(几种特例)。
3、掌握命题符号化的方法(如何抽取命题、采用哪些逻辑联结词)
第二章命题逻辑等值演算
1、几种常用的等值式和定律P17
2、掌握一定的等值演算法
3、掌握概念:文字、简单析取式、简单合取式、析取范式、合取范式、极大项、极小项、主析取范式、主合取范式
4、掌握求取一个合式公式的主析取范式和主合取范式的方法。
5、理解主析取范式、主合取范式与真值表的对应关系。
第三章命题逻辑的推理理论
1、掌握P47-P48所有推理规则及其名称,并能运用。
2、掌握一般推理方法、附加前提证明法以及归谬法。
理解附加前提证明法和归谬法的特征。
第四章一阶逻辑的基本概念
1、掌握谓词的用法。
2、掌握全称量词和存在量词的用法。
、
3、掌握一阶逻辑中的命题符号化。
第五章一阶逻辑等值演算与推理
1、掌握一阶逻辑中的简单推理方法。
(量词消去和引入。
重点掌握课堂教授的推理方法,复习课堂习题和课后练习)
第二部分集合论
第六章集合代数
1、概念:集合、包含、属于、空集、子集、幂集、基。
2、集合的运算:并、交、补、差的运算过程和定义式。
3、包含排斥原理(容斥原理)
4、集合的相关恒等式P92
5、证明集合的包含与、集合的相等方法。
第七章二元关系
1、概念:二元关系、第一元、第二元、笛卡尔积、空关系、全域关系、恒等关系。
关系的定义域、值域、关系的逆
2、关系的复合运算及其相关定理的证明和应用。
3、关系的n次幂的定义和计算方法。
(关系矩阵的应用)
4、关系的性质:自反、反自反、对称、反对称、传递(要求熟练掌握!)
5、掌握相关定理的应用和证明。
6、定义:等价关系、等价类、划分、商集
7、证明一个关系是等价关系并能写出对应的等价类、划分和商集。
8、定义:偏序关系、哈斯图、全序关系、最大元、最小元、极大元、极小元、上界、下界、上确界、下确界。
9、证明一个关系是偏序关系并能画出对应的哈斯图,并能写出该偏序关系对应的最大元、
最小元、极大元、极小元、上界、下界、上确界、下确界。
第八章函数
1、定义:函数(映射)、像、原像、单射(一对一的)、满射、双射(一一映射)。
2、掌握函数的复合运算与求取反函数的方法,包括相关定理及其证明。
第五部分图论
第十四章图的基本概念
1、定义:图、顶点集、边集、n阶图、平凡图、零图、标定图、基图、空图、
关联(点与边)、相邻(点与点、边与边)、环、关联次数、端点、始点、终点、孤立点。
2、定义:平行边、多重图、简单图,顶点的度数、出度、入度、图的最大度、图的最小度、悬挂点、悬挂边。
3、握手定理
4、定义:无向完全图、有向完全图、竞赛图、正则图、生成子图、导出子图、补图、自补图。
5、定义:通路、回路、初级通路(回路)、简单通路(回路)、复杂通路(回路)
6、定义:连通图,强连通图、单向连通图、弱连通图。
点割集、边割集(割集)、割点、割边、边连通度、点连通度。
7、图的矩阵表示和简单运算。
第十五章欧拉图与哈密顿图
1、欧拉图、半欧拉图的定义及其相关定理和证明方法
2、哈密顿图、半哈密顿图的定义及其相关定理和证明方法
第十六章树
1、树的定义及其相关定理和证明
2、树的先序、中序、后序遍历及哈夫曼树。