二元一次方程组全章提升

合集下载

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与稳固(提升)知识解说【学习目标】1. 认识二元一次方程(组)的有关观点,会解简单的(数字系数);能依据详细问题中的数量关系,列出二元一次方程组解决简单的实质问题,并能查验解的合理性.2. 二元一次方程组的图像解法,初步领会方程与函数的关系.3.认识解二元一次方程组的“消元”思想,进而初步理解化“未知”为“已知”和化复杂问题为简单问题的划归思想 .【知识网络】【重点梳理】重点一、二元一次方程组的有关观点1.二元一次方程的定义定义:方程中含有两个未知数(x 和y),并且未知数的次数都是1,像这样的方程叫做二元一次方程.重点解说:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是 1.(3)二元一次方程的左侧和右侧都一定是整式.2. 二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.重点解说:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,x=a即二元一次方程的解往常表示为的形式.y=b3.二元一次方程组的定义定义:把拥有同样未知数的两个二元一次方程合在一同,就构成了一个二元一次方程组.别的,构成方程组的各个方程也不用同时含有两个未知数. 比如,二元一次方程组3x4y5x2.重点解说:(1)它的一般形式为a1x b1 y c1(此中 a1, a2, b1, b2不一样时为零).a2 x b2 y c2(2)更一般地,假如两个一次方程合起来共有两个未知数,那么它们构成一个二元一次方程组.(3)符号“”表示同时知足,相当于“且”的意思.4.二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.重点解说:(1)方程组中每个未知数的值应同时知足两个方程,所以查验是不是方程组的解,应把数值代入两个方程,若两个方程同时建立,才是方程组的解,而方程组中某一个方程的某一组解不必定是方程组的解 .(2)方程组的解要用大括号联立;2x y5( 3)一般地,二元一次方程组的解只有一个,但也有特别状况,如方程组无2x y6x y1解,而方程组的解有无数个 .2x 2y2重点二、二元一次方程组的解法1.解二元一次方程组的思想消元二元一次方程组一元一次方程转变2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有 x(或y)的代数式表示y (或x ),即变为y ax b (或x ay b )的形式;②将y ax b (或x ay b )代入另一个方程(不可以代入原变形方程)中,消去y(或x ),获得一个对于x (或③解这个一元一次方程,求出y )的一元一次方程;x (或y)的值;④把x (或y )的值代入y ax b (或x ay b )中,求y (或x )的值;⑤用“”联立两个未知数的值,就是方程组的解.重点解说:(1) 用代入法解二元一次方程组时,应先察看各项系数的特色,尽可能选择变形后比较简单或代入后化简比较简单的方程变形;(2)变形后的方程不可以再代入原方程,只好代入原方程组中的另一个方程;(3)要擅长剖析方程的特色,找寻简易的解法 . 如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这类方法叫做整体代入法 . 整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简易,提升运算速度及正确率 .(2)用加减消元法解二元一次方程组的一般过程:①依据“等式的两边都乘以(或除以)同一个不等于0 的数,等式仍旧建立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②依据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,获得一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“”联立在一同即可.重点解说:用加减消当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,元法较简单 .(3)图像法解二元一次方程组的一般过程:①把二元一次方程化成一次函数的形式.②在直角坐标系中画出两个一次函数的图像,并标出交点.③交点坐标就是方程组的解.重点解说:二元一次方程组无解<=>一次函数的图像平行(无交点)二元一次方程组有一解<=>一次函数的图像订交(有一个交点)二元一次方程组有无数个解<=>一次函数的图像重合(有无数个交点)利用图像法求二元一次方程组的解是近似解,要获得正确解,一般还是用代入消元法和加减消元法解方程组 . 相反,求两条直线的交点坐标能够转变为求这两条直线对应的函数表达式联立的二元一次方程组的解.重点三、实质问题与二元一次方程组重点解说:(1)解实质应用问题一定写“答” ,并且在写答案前要依据应用题的实质意义,检查求得的结果能否合理,不切合题意的解应当舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应当列出几个方程并构成方程组.重点四、二元一次方程(组)与一次函数 1. 二元一次方程与一次函数的关系( 1 ) 任 何 一 个 二 元 一 次 方 程 ax byc(a 、 b 0, c 为常数 ) 都 可 以 变 形 为a c 0c,为常数 即)为一个一次函数, 所以每个二元一次方程都对应一个一y - x(a 、bbb次函数 .( 2)我们知道每个二元一次方程都有无数组解,比如:方程x y5 我们列举出它的x 0, x 5, x 2, ( 0,5),( 5,0),几组整数解有y 0; y ,我们发现以这些整数解为坐标的点y 5; 3(2, 3)恰幸亏一次函数y =x 5 的图像上,反过来,在一次函数y 5 x 的图像上任取一点,它的坐标也合适方程 x y 5 .重点解说:1. 以二元一次方程的解为坐标的点都在相应的函数图像上;2. 一次函数图像上的点的坐标都合适相应的二元一次方程;3. 以二元一次方程的解为坐标的所有点构成的图像与相应一次函数的图像同样 .2. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线. 从“数”的角度看,解方程组相当于考虑自变量为什么值时两个函数的值相等,以及这时的函数为什么值;从“形”的角度看,解方程组相当于确立两条直线交点的坐标 .3. 用二元一次方程组确立一次函数表达式待定系数法: 先设出函数表达式, 再依据所给的条件确立表达式中未知数的系数,进而获得函数表达式的方法,叫做待定系数法 .利用待定系数法解决问题的步骤: 1. 确立所求问题含有待定系数分析式.2. 依据所给条件 , 列出一组含有待定系数的方程 .3. 解方程组或许消去待定系数,进而使问题获得解决.重点五、三元一次方程组1.定义: 含有三个未知数,并且含有未知数的项的次数都是 1 的方程叫做三元一次方程; 含有三个同样的未知数,每个方程中含未知数的项的次数都是 1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.4x y z 12,2a 7b3,3x 2 y z 5, 3a c1, 等都是三元一次方程组 .xy 5z1,b 3c4重点解说: 理解三元一次方程组的定义时,要注意以下几点:( 1)方程组中的每一个方程都是一次方程;( 2)假如三个一元一次方程合起来共有三个未知数,它们就能构成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想还是消元,一般的,应利用代入法或加减法消去一个未知数,进而化三元为二元, 而后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:( 1)利用代入法或加减法, 把方程组中一个方程与另两个方程分别构成两组, 消去两组中的同一个未知数,获得对于此外两个未知数的二元一次方程组;( 2)解这个二元一次方程组,求出两个未知数的值;( 3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,获得一个一元一次方程;( 4)解这个一元一次方程,求出最后一个未知数的值; ( 5)将求得的三个未知数的值用“ { ”合写在一同.重点解说:( 1)有些特别的方程组可用特别的消元法,解题时要依据各方程特色追求比较简单的解法. ( 2)要查验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中, 看每个方程的左右两边能否相等, 若相等,则是原方程组的解,只需有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:( 1)弄清题意和题目中的数目关系,用字母 ( 如 x ,y , z) 表示题目中的两个 ( 或三个 ) 未知数;( 2)找出能够表达应用题所有含义的相等关系;( 3)依据这些相等关系列出需要的代数式,进而列出方程并构成方程组; ( 4)解这个方程组,求出未知数的值;( 5)写出答案 ( 包含单位名称 ) .重点解说:(1) 解实质应用题一定写“答”,并且在写答案前要依据应用题的实质意义,检查求得的结果能否合理,不切合题意的应当舍去.(2) “设”、“答”两步,都要写清单位名称,应注意单位能否一致. (3) 一般来说,设几个未知数,就应列出几个方程并构成方程组. 【典型例题】种类一、二元一次方程组的有关观点1.(2016春?潮州期末) 以下方程组中,不是二元一次方程组的是()x 1x y 1 x y 1 y xA.B.x y 0C.D.y 2 3xy 0x 2y 1【思路点拨】 依据二元一次方程组的定义判断即可.【答案】 C.【分析】 C 选项是二元二次方程组,不是二元一次方程组,故本选项切合题意,选 C.【总结升华】 熟记二元一次方程组的定义是解本题的重点.贯通融会:【变式 1】若对于 x 、 y 的方程m 1 xy m 2 是二元一次方程,则 m =.【答案】 1.x y 5 .【变式 2】已知方程组3 y 有无数多个解, 则 a 、b 的值等于ax b 1【答案】 a =﹣ 3, b =﹣ 14.种类二、二元一次方程组的解法2( x y)y 5①2. 解方程组33( x5 yy)3 ②22【思路点拨】 本题结构比较复杂,一般应先化简,再消元.认真察看题目,不难发现,方程 组中的每一个方程都含有 (x-y) ,所以能够把 (x-y) 看作一个整体,消去 (x-y) 可获得一个关于 y 的一元一次方程. 【答案与分析】解:由①× 9 得: 6(x-y)+9y = 45③②× 4 得: 6(x-y)-10y =-12 ④③ - ④得: 19y =57, 解得 y = 3.把 y =3 代入①,得x = 6.x 6 所以原方程组的解是.y3【总结升华】 本题奇妙运用整体法求解方程组, 明显比加减法或代入法要简单, 在平常求方程组的解时,要擅长发现方程组的特色,运用整体法求解会收到事半功倍的成效. 贯通融会:【变式】( 2015?黄冈模拟)若对于 x ,y 的二元一次方程组的解也是二元一次方程 2x+3y=6 的解,求 k 的值.【答案】 解:由方程组得:∵此方程组的解也是方程 2x+3y=6 的解∴ 2×7k+3×(﹣ 2k ) =6即 k= .3. 方程 x 2 y 3 x y 1 1的整数解的个数是.【思路点拨】 把 1 表示成两个非负整数的和,这两个数只好是1 与 0,于是一个方程裂变为多个方程组,经过解方程组来求解的个数. 【答案】 2 组【分析】x 2 y 3 0 x 2 y 3 1 解:由条件得或x y 1 1 x y 1即即x 2y 3 0 x y 1或 1x 2 y3 0x y 1 1或x 2y 31x y 1x 2 y 3 0 x 2 y 3 1 x 2y 3 1 x或x 或x ,y 1 1y 1 0y 1 012x 1xxx 0 解得,或 3 或3 或y 15 y5 y1y33【总结升华】 依据已知条件结构出方程组, 再选择合适方法求得方程组的解, 而后再所求得出答案. 贯通融会:种类三、实质问题与二元一次方程组4. ( 2015?旭日)为响应国家节能减排的呼吁,鼓舞居民节俭用电,各省先后出台了居民用电 “阶梯价钱 ”制度, 如表中是某省的电价标准(每个月).比如: 方女士家 5 月份用电 500度,电费 =180×0.6+220×二档电价 +100×三档电价 =352 元;李先生家 5 月份用电 460 度,交费 316 元,请问表中二档电价、三档电价各是多少? 阶梯 电量电价 一档 0﹣ 180 度 0.6 元 /度 二档 181﹣ 400 度 二档电价 三档401 度及以上三档电价【答案与分析】 解:设二档电价是 x 元 /度、三档电价是 y 元 /度,依据题意得,,解得,答:二档电价是 0.7 元 / 度、三档电价是 0.9 元 /度.【总结升华】 本题主要考察了二元一次方程组的应用,解题的重点是正确列出方程组. 贯通融会:【变式】甲、乙两班学生到市集上购置苹果,价钱以下:甲班分两次共购置苹果70 千克 ( 第二次多于第一次) ,共付出 189 元,而乙班则一次购置苹果 70 千克。

七年级数学下册 第八章 二元一次方程组章末小结与提升

七年级数学下册 第八章 二元一次方程组章末小结与提升
时,( a,b )=( c,d );并定义其运算如下:( a,b )※( c,d )=( acbd,ad+bc ),如( 1,2 )※( 3,4 )=( 1×3-2×4,1×4+2×3 )=( -5,10 ).若
( x,y )※( 1,-1 )=( 1,3 ),则 xy 的值是( C )
A.-1
B.0
= 3,
于 a,b 的方程组,即
解得
+ -4 = 1,
= 2.
【答案(dá àn)】 B
第三页,共十五页。
)
【针对训练】
1.方程( m2-9 )x2+x-( m+3 )y=0 是关于 x,y 的二元一次方程,则 m
的值为( B )
A.±3
B.3
C.-3
D.9
2.已知方程( a-2 )x|a|-1-( b+5 )y|b|-4=3 是关于 x,y 的二元一次方程,
= 10,
②当 x,y 的值互为相反数时,a=20;③不存在一个实数 a,使
= 20;
得 x=y;④若 25a-y=2-3,则 a=2.其中正确的是 ②③④ .( 填序
号 )
第六页,共十五页。
类型(lèixíng)3 解二元一次方程组
典例 3
解方程组:
3( + ) + 2( - ) = 10,
章末小结与提升。类型1 二元一次方程(yī cì fānɡ chénɡ)( 组 )的概念。A.3,1
B.3,2
C.2,1
D.2,-1。a=-2,b=5。【针对训练】。2.某
电脑公司有A、B、C三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用于从这家电脑公司购进30

2022年人教版七年级下册数学同步培优第八章二元一次方程组 章末小结与提升

2022年人教版七年级下册数学同步培优第八章二元一次方程组  章末小结与提升

章末小结与提升类型1 二元一次方程(组)的概念与解 1.方程组{2x +y =□,x +y =3的解为{x =2,y =△,则被遮盖的两个数△和□分别为( C )A .1,2B .1,3C .1,5D .2,42.若{x =1,y =-2是关于x ,y 的二元一次方程mx +ny =3的解,则2m -4n 的值等于( B )A .3B .6C .-1D .-2 3.若方程组{y -(a -1)x =5,y |a |+(b -5)xy =3是关于x ,y 的二元一次方程组,则代数式ab 的值是 -5 .4.若关于x ,y 的方程组{2x +3y =m ,3x +5y =m +2的解满足x +y =12,求m 的值.解:{2x +3y =m , ①3x +5y =m +2, ②由②-①,得x +2y =2, ③ ③与x +y =12联立,得{x +y =12,x +2y =2,解得{x =22,y =-10,所以m =2x +3y =44-30=14. 类型2 解二元一次方程组 5.解方程组:{x -4(y -14)=3,3+x5-2y +33=115.解:整理,得{x -4y =2, ①3x -10y =7. ②由②-①×3,得2y =1,解得y =12. 把y =12代入①,得x -2=2,解得x =4. 所以方程组的解为{x =4,y =12.6.已知关于x ,y 的方程组{mx +ny =7,2mx -3ny =4的解为{x =1,y =2,求m -5n 的值.解:将{x =1,y =2代入方程组{mx +ny =7,2mx -3ny =4,得{m +2n =7,2m -6n =4,解得{m =5,n =1,所以m -5n =5-5×1=0. 7.已知关于x ,y 的方程组{ax +by =3,5x -cy =1,甲同学正确解得{x =2,y =3,而乙同学粗心,把c 给看错了,解得{x =3,y =6.求abc 的值.解:将{x =2,y =3代入方程5x -cy =1,解得c =3.将{x =2,y =3和{x =3,y =6代入方程ax +by =3,得{2a +3b =3,3a +6b =3,解得{a =3,b =-1.所以abc =3×(-1)×3=-9.8.已知关于x ,y 的方程组{x +y =3m +1,2x -y =8-6n(m ,n 为实数).(1)当m =-3,n =2时,求方程组的解;(2)当m +4n =5时,试探究方程组的解x ,y 之间的关系.解:(1)当m =-3,n =2时,原方程组为{x +y =-8,2x -y =-4,解得{x =-4,y =-4.(2){x +y =3m +1, ①2x -y =8-6n , ②由①+②,得x =m -2n +3,代入①,得y=2m+2n-2,当m+4n=5时,m=5-4n,则x=5-4n-2n+3=8-6n,y=2(5-4n)+2n-2=8-6n,∴x=y.类型3二元一次方程组的应用9.观察下表:我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y,第2格的“特征多项式”为8x+4y.若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,则x=-3,y=2.10.小明要用16元钱买A,B两种型号的口罩,两种型号的口罩必须都买,16元钱全部用完.若A型口罩每个3元,B型口罩每个2元,则小明的购买方案有多少种?解:设可以购买x个A型口罩,y个B型口罩.根据题意,得3x+2y=16,∴y=8-32x.∵x,y均为正整数,∴{x=2,y=5或{x=4,y=2.答:小明有2种购买方案:购买2个A型口罩、5个B型口罩或购买4个A型口罩、2个B型口罩.11.某出租车公司有A,B两种不同型号的汽车,用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨.由题意,得{2x+y=10,x+2y=11,解得{x=3,y=4.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意,得3a+4b=31.∵a,b均为正整数,∴{a=1,b=7或{a=5,b=4或{a=9,b=1,∴该物流公司共有3种租车方案:方案1:租A型车1辆,B型车7辆;方案2:租A型车5辆,B型车4辆;方案3:租A型车9辆,B型车1辆.(3)结合(2)知方案1的租车费用为200×1+240×7=1880(元);方案2的租车费用为200×5+240×4=1960(元);方案3的租车费用为200×9+240×1=2040(元).∵1880<1960<2040,∴该物流公司最省钱的租车方案是租A型车1辆,B型车7辆,最少租车费为1880元.1.[长沙中考]《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( A )A.{y=x+4.50.5y=x-1B.{y=x+4.5y=2x-1C.{y=x-4.50.5y=x+1D.{y=x-4.5y=2x-12.[泰安中考]《九章算术》中记载:今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其大意是:今有甲、乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y.根据题意,可列方程组为{x+12y=5023x+y=50.3.我国古代第一部数学专著《九章算术》中有这样一道题:今有上禾7束,减去其中之实1斗,加下禾2束,则得实10斗.下禾8束,加实1斗和上禾2束,则得实10斗.问上禾、下禾1束得实多少?译文为:今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗.问上等禾和下等禾1捆各能结出多少斗粮食?(斗为体积单位)解:设上等禾1捆能结出x斗粮食,下等禾1捆能结出y斗粮食.根据题意,得{7x-1+2y=10,8y+1+2x=10,解得{x=3526,y=4152.答:上等禾1捆能结出3526斗粮食,下等禾1捆能结出4152斗粮食.4.我国传统数学名著《九章算术》记载:今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?译文:假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?将这些购买方法列举出来.解:(1)设每头牛值x两银子,每只羊值y两银子.根据题意,得{5x+2y=19,2x+5y=16,解得{x=3,y=2.答:每头牛值3两银子,每只羊值2两银子.(2)设商人购买a头牛,b只羊.依题意,得3a+2b=19,所以b=19-3a2,因为a,b都是正整数,所以商人有3种购买方法:①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.。

七年级数学下册 第2章 二元一次方程本章总结提升课件

七年级数学下册 第2章 二元一次方程本章总结提升课件
y=1. 所以原方程组的解是yx= =21, ,
z=-3.
第十二页,共二十五页。
本章总结(zǒngjié)提升
x+y+z=0,① (2)x+4y+2z=3,②
x+9y-3z=28,③ ②-①,得 3y+z=3.④ ③-②,得 5y-5z=25,即 y-z=5.⑤ 再解由④⑤组成的二元一次方程组,得 yz==-2,3,将其代入①,得 x=1.
第二十四页,共二十五页。
内容(nèiróng)总结
第2章 二元一次方程组。本章总结(zǒngjié)提升。问题4 含参数的二元一次方程组问题。含有参数的方程组有哪几种常见的类型
No Image
12/10/2021
第二十五页,共二十五页。
第八页,共二十五页。
本章(běn zhānɡ)总结提升
例 3 解方程组:y3y=+2x2, x=8.
【解析】解方程组y3= y+2x2, x=①8,②因为方程组中相同未知数表示同一个 量,方程①中 y=2x,所以方程②中的 2x 可用 y 代替,这样,方程②就 转化成了关于 y 的一元一次方程.或将方程②中的 y 用 2x 代替,这样, 方程②就转化成了关于 x 的一元一次方程.
(10-8)y
16.2
第十八页,共二十五页。
本章总结(zǒngjié)提升
解:设不超过 8 立方米的水的单价为 x 元/米 3,超过 8 立方米的水的单价为 y 元/米 3. 根据题意列方程组,得88xx+ +( (1120- -88) )yy= =2126, .2, 解得xy= =12..39, . 答:每户居民每月用水收费标准是不超过 8 立方米的水的单价为 1.3 元/米 3,超过 8 立 方米的水的单价为 2.9 元/米 3.
本章(běn zhānɡ)总结提升

代数第一册(上)第五章《二元一次方程组》提高测试题

代数第一册(上)第五章《二元一次方程组》提高测试题

提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1.【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x -,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________. 【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值. 【答案】-438. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值.【答案】a =61,b =41,c =31. 【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( ) (A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………………………………………………………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式. 【答案】C . 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解. 15.若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B .【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法.(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 【提示】将方程组化为一般形式,再求解. 【答案】⎪⎩⎪⎨⎧-==.232y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值. 【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xy z ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值. 【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y 再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式.【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x x y y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得 ⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。

第五章二元一次方程组总结提升课件2024-2025学年 北师大版 八年级数学上册

第五章二元一次方程组总结提升课件2024-2025学年   北师大版 八年级数学上册
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
返回目录
(2) 原方程组的解.
− = ,
= ,
解:(2) 将
代入原方程组,得
− = ,
=
= ,
解得
=
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
返回目录
考点二
二元一次方程组的应用
20
返回目录
+ 3 = 4①,
2. 用加减消元法解二元一次方程组
时,下列方法中,无
2 − = 1②
法消元的是(

C
A. ①×2-②
B. ①×(-2)+②
C. ①-②×3
D. ②×(-3)-①
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
返回目录
3. 已知 a , b 都是有理数,观察表格中的运算,则 m 的值为
17
18
19
20
返回目录
7. 如图,在长方形 ABCD 中,放入5个形状、大小相同的小长方形(空
白部分),其中 AB =8cm, BC =12cm,则涂色部分的面积为

D

人教版七年级下《第八章二元一次方程组》综合提升卷(含答案)

人教版七年级下《第八章二元一次方程组》综合提升卷(含答案)

第八章二元一次方程组 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组数值中,是二元一次方程x +y =7的解的是( )A.⎩⎨⎧x =-2,y =5B.⎩⎨⎧x =3,y =4C.⎩⎨⎧x =1,y =7D.⎩⎨⎧x =-2,y =-5 2.若方程组⎩⎨⎧3x +9y =17,az +6y =-20是关于x ,y 的二元一次方程组,则a 的值是( )A .0B .1C .2D .33.将方程2x -3y -4=0变形为用含有y 的式子表示x ,正确的是( ) A .2x =3y +4 B .x =32y +2C .3y =2x -4D .y =2x -434.把一根长7 m 的钢管截成2 m 和1 m 两种规格的钢管(两种都有).如果没有剩余,那么截法有( )A .6种B .5种C .4种D .3种5.在解三元一次方程组⎩⎨⎧9x +6z =19,6x +4y +2z =16,x +8y +3z =5时,比较简便的方法是消去()A .未知数xB .未知数yC .未知数zD .常数6.解方程组⎩⎨⎧3m -4n =7,①9m -10n +25=0②的最好方法是( )A .由①,得m =7+4n3,再代入②B .由②,得m =10n -259,再代入①C .由①,得3m =4n +7,再代入②D .由②,得9m =10n -25,再代入①7.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎨⎧x -y =49,y =2(x +1)B.⎩⎨⎧x +y =49,y =2(x +1)C.⎩⎨⎧x -y =49,y =2(x -1)D.⎩⎨⎧x +y =49,y =2(x -1) 8.小红在超市买了一些纸杯,她把纸杯整齐地放在一起,如图8-T -1,根据图中的信息,3个纸杯的高度为9 cm ,8个纸杯的高度为14 cm.若她把70个纸杯放在一起时,纸杯的高度为( )图8-T -1A .70 cmB .76 cmC .80 cmD .84 cm9.王老师的数学课采用小组合作学习的方式,把班上40名学生分成若干个小组.如果要求每小组只能是5人或6人,那么分组方案有( )A .4种B .3种C .2种D .1种10.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )甲 乙 丙 丁 笔记本(本) 18 15 24 27 计算器(个) 30 25 40 45 总价(元)396330528585A.甲 B .乙 C .丙 D .丁 请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.12.若方程组⎩⎨⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.13.以方程组⎩⎨⎧y =-x +2,y =x -6的解为坐标的点(x ,y)在平面直角坐标系中的第________象限.14.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________. 15.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何.”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两.”设每头牛值金x 两,每只羊值金y 两,可列方程组为______________________.16.小华在八一建军节这天写信问候爷爷.折叠长方形信纸、装入标准信封时发现:若将信纸按图8-T -2①连续两次对折后,沿着信封口边线装入时,宽绰有3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时,宽绰1.4 cm .则信纸的纸长与信封的口宽分别是____________.图8-T -2三、解答题(共52分)17.(6分)解下列方程组:(1)⎩⎨⎧2x -y =5,2y +3x =4;(2)⎩⎨⎧x +3y =5,y -2z =5,x +z =5.18.(5分)解方程组:⎩⎨⎧22x +27y =4,7x +9y =3.解:原方程组可化为⎩⎨⎧x +3(7x +9y )=4,①7x +9y =3,②将②代入①,得x +3×3=4,即x =-5.把x =-5代入②,得y =389,∴原方程组的解为⎩⎨⎧x =-5,y =389.你能用这种方法解答下面的题目吗?解方程组:⎩⎨⎧3x +5y =2,11x +20y =6.19.(5分)如图8-T -3所示,3×3的方格中每个方格内均有一个单项式(图中只列出了部分单项式),方格中每一行、每一列以及每一条对角线上的三个单项式的和均相等.求a 的值.图8-T -320.(5分)已知关于x ,y 的二元一次方程组⎩⎨⎧x +y =3m +3,x -y =5-m.(1)若x ,y 互为相反数,求m 的值;(2)若x 是y 的2倍,求原方程组的解.21.(7分)阅读以下内容:已知实数x ,y 满足x +y =2,且⎩⎨⎧3x +2y =7k -2,2x +3y =6,求k 的值.三名同学分别提出了以下三种不同的解题思路:甲同学:先解关于x ,y 的方程组⎩⎨⎧3x +2y =7k -2,2x +3y =6,再求k 的值.乙同学:先将方程组中的两个方程相加,再求k 的值.丙同学:先解方程组⎩⎨⎧x +y =2,2x +3y =6,再求k 的值.你最欣赏以上哪名同学的解题思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价..... (评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结出什么解题策略等)22.(8分)如图8-T -4为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5 km ,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米.图8-T -423.(8分)某旅行社拟在暑假期间向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲学校报名参加的学生人数多于100,乙学校报名参加的学生人数少于100.经核算,若两校分别组团共需20800元;若两校联合组团只需18000元.(1)两所学校报名参加旅游的学生人数之和超过200了吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?24.(8分)某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.典题讲评与答案详析1.B [解析] 将⎩⎨⎧x =3,y =4代入二元一次方程x +y =7,方程左、右两边相等.2.A [解析] 只有当a =0时,方程az +6y =-20才变成6y =-20,方程组⎩⎨⎧3x +9y =17,6y =-20是二元一次方程组.3.B [解析] 方程2x -3y -4=0用含有y 的式子表示x 是x =3y +42=32y +2.4.D [解析] 设2 m 长的钢管有x 根,1 m 长的钢管有y 根.则有2x +y =7,所以有⎩⎨⎧x =1,y =5,⎩⎨⎧x =2,y =3,⎩⎨⎧x =3,y =13种截法. 5.B [解析] 方程9x +6z =19中不含有y ,所以利用其余两个方程消去y 是比较简便的方法.6.C [解析] 注意到②中的9m 是①中的3m 的3倍,因此由①,得3m =4n +7,再代入②是最好的方法.7.D8.B [解析] 设一个杯子的高度为x cm ,增加一个杯子增加的高度为y cm.依题意,得⎩⎨⎧x +2y =9,x +7y =14,解得⎩⎨⎧x =7,y =1,所以把70个纸杯放在一起时,纸杯的高度为7+69=76(cm).9.C10.D [解析] 设每本笔记本的价格为x 元,每个计算器的价格为y 元. 甲:18x +30y =6(3x +5y )=396, 3x +5y =396÷6=66;乙:15x +25y =5(3x +5y )=330, 3x +5y =330÷5=66;丙:24x +40y =8(3x +5y )=528, 3x +5y =528÷8=66;丁:27x +45y =9(3x +5y )=585, 3x +5y =585÷9=65.因为甲、乙、丙中3x +5y 都为66,丁为65,所以选D.11.-3 [解析] 由题意,得a +1=1,b -2=1,所以a =0,b =3,所以a -b =-3. 12.7,3 [解析] 将x =2代入方程3x -y =3,得y =3.将x =2,y =3代入2x +y =*,得*=7.13.四 [解析] 解方程组⎩⎨⎧y =-x +2,y =x -6,得⎩⎨⎧x =4,y =-2,所以点(4,-2)在第四象限.14.12 [解析] 由题意,得⎩⎨⎧2=k +b ,-3=2k +b ,解得⎩⎨⎧k =-5,b =7,所以y =-5x +7,当x =-1时,y =12.15.⎩⎨⎧5x +2y =10,2x +5y =816.28.8 cm ,11 cm [解析] 设信纸的纸长为x cm ,信封的口宽为y cm.根据题意,得⎩⎪⎨⎪⎧x4=y -3.8,x 3=y -1.4,解得⎩⎨⎧x =28.8,y =11.即信纸的纸长为28.8 cm ,信封的口宽为11 cm.17.解:(1)⎩⎨⎧2x -y =5,①2y +3x =4.②由①,得y =2x -5.③将③代入②,得2(2x -5)+3x =4, 解得x =2.将x =2代入③,得y =-1,所以方程组的解为⎩⎨⎧x =2,y =-1.(2)⎩⎨⎧x +3y =5,①y -2z =5,②x +z =5,③由①,得x =5-3y .④把④代入③,得5-3y +z =5.⑤联立②⑤,得⎩⎨⎧y =-1,z =-3.把y =-1代入①,得x =8,所以方程组的解为⎩⎨⎧x =8,y =-1,z =-3.18.解:原方程组可化为⎩⎨⎧3x +5y =2,①4(3x +5y )-x =6,②将①代入②,得4×2-x =6,即x =2.把x =2代入①,得y =-45,所以原方程组的解为⎩⎨⎧x =2,y =-45.19.解:由题意,得⎩⎨⎧y -3x +3y =y -5x +5,y -5x +5=5+4+3y ,解得⎩⎨⎧x =-2,y =3.所以5-3x +a =5+4+3y ,所以a =7.20.解:(1)若x ,y 互为相反数,则x +y =0, 所以有3m +3=0,解得m =-1. (2)若x 是y 的2倍,则x =2y ,原方程组可化为⎩⎨⎧3y =3m +3,y =5-m ,解得⎩⎨⎧y =3,m =2,所以方程组的解为⎩⎨⎧x =6,y =3.21.解:最欣赏乙同学的解题思路.⎩⎨⎧3x +2y =7k -2,①2x +3y =6,② ①+②,得5x +5y =7k +4.③将x +y =2整体代入③,得7k +4=10. 解得k =67.评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k 的式子表示x ,y 的表达式,再代入x +y =2得到关于k 的方程,没有经过更多的观察和思考,解法比较烦琐,计算量大;乙同学观察到了方程组中未知数x ,y 的系数与x +y =2中未知数的系数的特殊关系,利用整体代入简化计算,而且不用求出x ,y 的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程作为一个整体,看成关于x ,y ,k 的三元一次方程组,并且选择先解其中只含有两个未知数x ,y 的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.22.解:设小明和小伟从家到学校乘地铁的里程分别是x 千米、y 千米.根据题意得⎩⎨⎧x -y =5,2(3-2.9)x =(4-3.6)y , 解得⎩⎨⎧x =10,y =5.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.23.解:(1)两所学校报名参加旅游的学生人数之和超过200了.理由:设两所学校人数之和为a .若a >200,则a =18000÷75=240.若100<a ≤200,则a =18000÷85=2111317,不合题意.所以这两所学校报名参加旅游的学生人数之和等于240,超过200了.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得⎩⎨⎧x +y =240,85x +90y =20800.解得⎩⎨⎧x =160,y =80.②当x >200时,得⎩⎨⎧x +y =240,75x +90y =20800.解得⎩⎪⎨⎪⎧x =5313,y =18623,此解不合题意,舍去.所以甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人. 24.解:(1)设购进甲种型号手机x 部,乙种型号手机y 部,丙种型号手机z 部. 根据题意,得①⎩⎨⎧x +y =40,1800x +600y =60000,解得⎩⎨⎧x =30,y =10.②⎩⎨⎧x +z =40,1800x +1200z =60000,解得⎩⎨⎧x =20,z =20.③⎩⎨⎧y +z =40,600y +1200z =60000,11 解得⎩⎨⎧y =-20,z =60.(不合题意,舍去) 故有两种进货方案:方案一,甲种型号手机购进30部,乙种型号手机购进10部;方案二,甲种型号手机购进20部,丙种型号手机购进20部.(2)方案一盈利:200×30+100×10=7000(元);方案二盈利:200×20+120×20=6400(元).因为7000元>6400元,所以购进甲种型号手机30部,乙种型号手机10部盈利最多.。

解二元一次方程组专项提升训练 (解析版)

解二元一次方程组专项提升训练 (解析版)

解二元一次方程组专项提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•东源县校级期末)用代入法解方程组{y =2x −3①x −2y =6②时,将①代入②得( ) A .x ﹣4x +3=6 B .x ﹣4x +6=6 C .x ﹣2x +3=6D .x ﹣4x ﹣3=6 【分析】根据代入消元法,把②中的y 换成2x ﹣3即可.【解答】解:①代入②得,x ﹣2(2x ﹣3)=6,即x ﹣4x +6=6.故选:B .2.(2022秋•迎泽区校级月考)已知{2x +3y =53x +2y =10,那么x ﹣y 的值是( ) A .﹣5 B .5 C .﹣3 D .3【分析】根据题意将两方程相减,进而即可整体得出x ﹣y 的值.【解答】解:{2x +3y①3x +2y =10②, ②﹣①得:x ﹣y =5.故选:B .3.(2021秋•绥德县期末)用代入消元法解方程组{8x +5y =11①x =−2y②时,将②代入①正确的是( ) A .16y +5y =11 B .16y ﹣5y =11 C .﹣16y +5y =11D .﹣16y ﹣5y =11 【分析】把②代入①得到结果,即可作出判断.【解答】解:用代入消元法解方程组{8x +5y =11①x =−2y②时, 将②代入①正确的是8×(﹣2y )+5y =11,即﹣16y +5y =11.故选:C .4.(2022春•新乐市校级月考)利用加减法解方程组{5x +3y =10,①2x −2y =1,②时,利用①×a +②×b 消去y ,则a ,b 的值可能分别是( )A .2,3B .2,5C .﹣2,3D .﹣2,﹣5【分析】利用加减消元法判断即可.【解答】解:利用加减法解方程组{5x +3y =10,①2x −2y =1,②时, 利用①×2+②×3消去y ,得:10x +6x =20+3,则a 、b 的值可能是a =2,b =3,故选:A .5.(2022秋•新乡期末)已知二元一次方程组{x +2y =3x −y =5,则2x +y 的值为( ) A .﹣2 B .0 C .6 D .8【分析】把两个方程相加,则可直接求得2x +y 的值.【解答】解:{x +2y =3①x −y =5②, ①+②得:2x +y =8.故选:D .6.(2022秋•桥西区期中)关于x 、y 的二元一次方程组{6x −5y =36x +y =−15,用加减消元法消去x 后得到的结果为( ) A .6y =﹣12 B .﹣4y =﹣12 C .6y =﹣18 D .6y =18【分析】利用加减消元法进行求解即可.【解答】解:{6x −5y =3①6x +y =−15②, ②﹣①得:6y =﹣18,故选:C .7.(2021秋•藤县期末)在等式y =kx +b 中,当x =1时,y =3;当x =﹣1时,y =9.则k •b 的值为( )A .18B .﹣18C .﹣20D .20【分析】由题意先得到二元一次方程组,再解方程组求出b 、k ,最后代入得结论.【解答】解:由题意,得{k +b =3①−k +b =9②, ①+②,得2b =12,∴b =6;①﹣②,得2k =﹣6,∴k =﹣3.∴k •b =﹣3•6=﹣18.故选:B .8.(2022春•寻乌县期末)已知|x +5y +9|+(x ﹣2y ﹣5)2=0,则(x +y )2的值为( )A .1B .2C .3D .9 【分析】根据绝对值的非负性、偶次方的非负性求得x +5y +9=0,x ﹣2y ﹣5=0,进而求得x 与y ,再代入求值.【解答】解:∵|x +5y +9|≥0,(x ﹣2y ﹣5)2≥0,∴当|x +5y +9|+(x ﹣2y ﹣5)2=0,则|x +5y +9|=0,(x ﹣2y ﹣5)2=0.∴x +5y +9=0,x ﹣2y ﹣5=0.∴x =1,y =﹣2.∴(x +y )2=(1﹣2)2=1.故选:A .9.(2021秋•竞秀区期末)已知关于x ,y 的方程组{x +2y =5−2a x −y =4a −1,下列结论: ①当a =1时,方程组的解也是x +y =2a ﹣1的解;②无论a 取何值,x ,y 不可能互为相反数;③x ,y 都为自然数的解有4对;④若2x +y =8,则a =3,其中不正确的有( )A .1个B .2个C .3个D .4个【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a ﹣1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解; ③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【解答】解:①将a =1代入原方程组,得{x +2y =3x −y =3解得{x =3y =0 将x =3,y =0,a =1代入方程x +y =2a ﹣1的左右两边,左边=3,右边=1,当a =1时,方程组的解不是是x +y =2a ﹣1的解;②解原方程组,得{x =2a +1y =2−2a∴x +y =3,无论a 取何值,x ,y 的值不可能是互为相反数;③∵x +y =2a +1+2﹣2a =3∴x 、y 为自然数的解有{x =0y =3,{x =1y =2,{x =2y =1,{x =3y =0. ④∵2x +y =8,∴2(2a +1)+2﹣2a =8,解得a =2.综上所述:②③正确,故选:B .10.(2022春•武城县期末)若方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数,则m 的值为( ) A .1 B .2 C .3 D .4【分析】先解二元一次方程组求出x 、y 的值,再把x 、y 的值代入方程m ﹣x +(m +1)y =4,最后求出m 的值.【解答】解:∵方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数, ∴{2x +3y =1①x +y =0②. 解这个方程组,得{x =−1y =1. 把{x =−1y =1代入方程m ﹣x +(m +1)y =4, 得m +1+(m +1)×1=4.解这个方程,得m =1.故选:A .二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•禹州市期末)若关于x ,y 的方程组{ax +y =2x −by =3的解是{x =2y =−1,则2a ﹣b 的值是 2 . 【分析】先把方程的解代入方程组,整理后代入2a ﹣b 得结论.【解答】解:把{x =2y =−1代入方程组{ax +y =2x −by =3,得{2a −1=22−(−1)b =3. 整理,得{2a =3①b =1②, ∴①﹣②,得2a ﹣b =3﹣1=2.故答案为:2.12.(2022春•普陀区校级月考)写出一个解是{x =3y =6的二元一次方程组 {x +y =9x −y =−3. 【分析】利用二元一次方程组解的意义解答即可.【解答】解:∵{x =3y =6, ∴x +y =9,x ﹣y =﹣3.∴解为{x =3y =6的二元一次方程组为:{x +y =9x −y =−3(答案不唯一). 故答案为:{x +y =9x −y =−3. 13.(2021秋•天府新区期末)若关于x ,y 的二元一次方程组{x +y =3k x −y =k的解也是二元一次方程x +2y =1的解,则k 的值为 14 .【分析】首先把方程组解出,用k 表示x 、y ,再把x 、y 的值代入二元一次方程求出k .【解答】解:{x +y =3k①x −y =k②, ①+②得2x =4k ,解得x =2k ,把x =2k ,代入②得y =k ,把x =2k ,y =k ,代入x +2y =1,得2k +2k =1,解得k =14,故答案为:14. 14.(2022春•武江区校级期末)已知关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解,则a = ﹣2 ,b = 3 .【分析】依据题意重新组成方程组求得x ,y 的值,再将x ,y 值代入得到关于a ,b 的方程组,解方程组即可得出结论.【解答】解:∵关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解, ∴{x +2y =102x −y =5, 解得:{x =4y =3. ∴{4a +3b =14b +3a =6,解得:{a =−2b =3. 故答案为:﹣2;3.15.(2022春•邗江区期末)小亮解方程组{2x +y =●2x −y =12的解为{x =5y =●,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●= 8 .【分析】把x =5代入方程组求出y 的值,即可确定出所求.【解答】解:设●表示的数为a ,把x =5代入方程组得:{10+y =a 10−y =12, 解得:y =﹣2,则a 这个数为10﹣2=8.故答案为:8.16.(2022春•昌平区期中)已知{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,则方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2的解是 {x =2y =−2. 【分析】根据二元一次方程组的解,即可解答.【解答】解:将{x =3y =4代入{a 1x +b 1y =c 1a 2x +b 2y =c 2得:{3a 1+4b 1=c 13a 2+4b 2=c 2, 将{3a 1+4b 1=c 13a 2+4b 2=c 2代入方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2得: {x −1=1y +3=1解得:{x =2y =−2, 故答案为:{x =2y =−2. 三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•杜尔伯特县期中)解方程组.(1){2x +y =3x +2y =−6; (2){x +5y =43x −6y =5; (3){2x +5y =53x −5y =10; (4){3x +2y =52x +5y =7. 【分析】(1)(2)(3)(4)利用加减消元法或代入消元法解二元一次方程组即可.【解答】解:(1)①×2﹣②,得3x =12,解得x =4,把x =4代入①,得8+y =3,解得y =﹣5,∴方程组的解为{x =4y =−5; (2)①×3﹣②,得21y =7,解得y =13,把y =13代入①,得x +5×13=4,解得x =73,∴方程组的解为{x =73y =13; (3){2x +5y =5①3x −5y =10②, ①+②,得5x =15,解得x =3,把x =3代入①,得6+5y =5,解得y =−15,∴方程组的解为{x =3y =−15; (4){3x +2y =5①2x +5y =7②, ①+2﹣②×3,得﹣11y =﹣11,解得y =1,把y =1代入①,得3x +2=5,∴x =1,∴方程组的解为{x =1y =1. 18.(2022秋•浑南区校级月考)解方程组:(1){x +y =25x −3(x +y)=4; (2){x+13−y+24=0x−34−y−33=112; (3){2x+y 2=5x−3y 415%x +25%y =40×20%;(4){0.2x +0.5y =0.20.4x +0.1y =0.4; (5)3x+2y 4=2x+y+25=−x+5y 3.【分析】(1)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(2)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(3)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(4)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3,再进行化简整理,然后利用加减消元法进行计算即可解答. 【解答】解:(1)将原方程组化简整理得:{x +y =2①2x −3y =4②, ①×2得:2x +2y =4③,③﹣②得:5y =0,解得:y =0,把y =0代入①中,x +0=2,解得:x =2,∴原方程组的解为:{x =2y =0; (2)将原方程组化简整理得:{4x −3y =2①3x −4y =−2②, ①×3得:12x ﹣9y =6③,②×4得:12x ﹣16y =﹣8④,③﹣④得:7y =14,解得:y =2,把y =2代入①得:4x ﹣6=2,解得:x =2,∴原方程组的解为:{x =2y =2; (3)将原方程组化简整理得:{x −5y =0①3x +5y =160②, ①+②得:4x =160,解得:x =40,把x =40代入①中,40﹣5y =0,解得:y =8,∴原方程组的解为:{x =40y =8; (4)将原方程组化简整理得:{2x +5y =2①4x +y =4②, ①×2得:4x +10y =4③,③﹣②得:9y =0,解得:y =0,把y =0代入①中,2x +0=2,解得:x =1,∴原方程组的解为:{x =1y =0; (5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3, 化简整理得:{7x +6y =8①11x +28y =−6②, ①×14得:98x +84y =112③,②×3得:33x +84y =﹣18④,③﹣④得:65x =130,解得:x =2,把x =2代入①中,14+6y =8,解得:y =﹣1,∴原方程组的解为:{x =2y =−1. 19.(2022•阳谷县三模)已知方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解,求a 的值. 【分析】先解方程组求得x ,y 值,再将x ,y 值代入方程ax +y =4,解方程可求解a 值.【解答】解:解方程组{2x +15y −3=03x −2y +20=0的解为{x =−6y =1, ∵方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解, ∴﹣6a +1=4,解得a =−12.20.(2022春•大安市期末)在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4. (1)求正确的a ,b 的值;(2)求原方程组的解.【分析】(1)把甲的结果代入第二个方程求出b 的值,把乙的结果代入第一个方程求出a 的值即可;(2)将a 与b 的值代入方程组,求出解即可.【解答】解:(1)由题意得:{−12+b =−45a +20=10, 解得:{a =−2b =8; (2)把{a =−2b =8代入方程组得:{−2x +5y =10x −2y =−1, 解得:{x =15y =8. 21.(2022春•东平县期中)已知方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同,求2(a +b )2014的值. 【分析】根据方程组的解相同,可得新方程组,根据解方程组,可得方程组的解,根据方程组的解满足方程,把解代入,可得关于a 、b 的方程组,根据解方程组,可得a 、b 的值,根据乘方,可得幂.【解答】解;方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同, 可得{2x +y =−2①3x −y =12②{ax −by =−8③bx +ay =−6(4), 解第一个方程组得{x =2y =−6, 把{x =2y =−6代入第二个方程组得{2a +6b =−82b −6a =−6, 解得{a =12b =−322(a +b )2014=2(12−32)2014 =2.22.(2021春•天心区校级月考)关于x ,y 的二元一次方程组ax +by =c (a ,b ,c 是常数),b =a +1,c =b +1.(1)当{x =3y =1时,求c 的值; (2)若a 是正整数,求证:仅当a =1时,该方程有正整数解.【分析】(1)将x ,y 值代入方程,得到关于a ,b ,c 的方程求解.(2)先表示方程的解,再确定a .【解答】解:(1){x =3y =1代入方程得:3a +b =c , ∵b =a +1,c =b +1,∴b =c ﹣1,a =c ﹣2,∴3c ﹣6+c ﹣1=c .∴c =73.(2)证明:由题意,得ax +(a +1)y =a +2,整理得,a (x +y ﹣1)=2﹣y ①,∵x 、y 均为正整数,∴x +y ﹣1是正整数,∵a 是正整数,∴2﹣y 是正整数,∴y =1,把y =1代入①得,ax =1,∴a =1,此时,a =1,b =2,c =3,方程的正整数解是{x =1y =1. ∴仅当a =1时,该方程有正整数解.23.(2022春•兴化市月考)对于有理数x ,y ,定义新运算:x &y =ax +by ,x ⊗y =ax ﹣by ,其中a ,b 是常数.已知1&1=1,3⊗2=8.(1)求a ,b 的值;(2)若关于x ,y 的方程组{x&y =4−m x ⊗y =5m的解也满足方程x +y =5,求m 的值; (3)若关于x ,y 的方程组{a 1x&b 1y =c 1a 2x ⊗b 2y =c 2的解为{x =4y =5,求关于x ,y 的方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2的解.【分析】(1)根据定义新运算得出关于a 、b 的二元一次方程组,再解方程组即可;(2)根据题意得出关于x 、y 的二元一次方程组,求出方程组的解,再代入方程x +y =3求解即可;(3)根据定义新运算得出相关方程组,根据方程组的解的定义,利用整体代入的方法解答即可.【解答】解:(1)由题意得{a +b =13a −2b =8,解得{a =2b =−1; (2)依题意得{2x −y =4−m 2x +5=5m,解得{x =m +1y =3m −2, ∵x +y =5,∴m +1+3m ﹣2=5,解得m =32;(3)由题意得{2a 1+b 1y =c 12a 2+b 2y =c 2的解为{x =4y =5,, 由方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2得{6a 1(x +y)−4b 1(x −y)=5c 16a 2(x +y)+4b 2(x −y)=5c 2,整理,得{2a 1⋅35(x +y)−b 2⋅45(x −y)=c 12a 2⋅35(x +y)+b 2⋅45(x −y)=c 2, 即{35(x +y)=445(x −y)=5, 解得{x =15524y =524.。

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)

浙教版2022-2023学年七下数学第二章 二元一次方程组 能力提升测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列属于二元一次方程组的是( ) A .{x +y =11x +1y =3B .{x +y =5y +z =7C .{x =13x −2y =6D .{x −y =xy x −y =1 【答案】C【解析】A 、是分式方程组,故A 不符合题意;B 、是三元一次方程组,故B 不符合题意;C 、是二元一次方程组,故C 符合题意;D 、是二元二次方程组,故D 不符合题意;故答案为:C.2.用加减消元法解二元一次方程组{x −y =7①2x −3y =2②时,下列能消元的是( ) A .①×2+② B .①×3+②C .①×2-②D .①×(-3)-②【答案】C【解析】对于二元一次方程组{x −y =7①2x −3y =2②, ①×2+②,得4x −5y =16,故A 选项不能消元,不合题意; ①×3+②,得5x −6y =23,故B 选项不能消元,不合题意; ①×2-②,得y =12,故C 选项能消元,符合题意; ①×(-3)-②,得−5x +6y =−23,故D 选项不能消元,不合题意;故答案为:C .3.已知实数x ,y ,z 满足{x +y +z =74x +y −2z =2,则代数式3(x ﹣z)+1的值是( ) A .﹣2 B .﹣4 C .﹣5 D .﹣6【答案】B【解析】方程组{x +y +z =7①4x +y −2z =2②, ②﹣①得:3x ﹣3z =﹣5,整理得:3(x ﹣z)=﹣5,把3(x ﹣z)=﹣5代入代数式3(x ﹣z)+1得:﹣5+1=﹣4,即代数式3(x ﹣z)+1的值是﹣4,故答案为:B .4.已知 {x =2y =1 是方程组 {ax +by =5bx +ay =−2的解,则a+b 的值是( ) A .-1 B .1 C .2 D .3【答案】B【解析】把 {x =2y =1 代入方程组 {ax +by =5bx +ay =−2, 得 {2a +b =5①2b +a =−2②, ①+②得 3a +3b =3 ,∴a +b =1 ,故答案为:B.5.如图,直线 a//b ,∠1 的度数比 ∠2 的度数大 50° ,若设 ∠1=x°,∠2=y° ,则可得到的方程组为( )A .{x =y −50x +y =180B .{x =y +50x +y =180C .{x =y −50x +y =90D .{x =y +50x +y =90【答案】B【解析】∵a//b ,∠1=x°,∠2=y° ,∴x°+y°=180° ,即 x +y =180 ,∵∠1 的度数比 ∠2 的度数大 50° ,∴x°=y°+50° ,即 x =y +50 , 则可列方程组为 {x =y +50x +y =180, 故答案为:B.6.某班分组活动,若每组 6 人,则余下 5 人:若每组 7 人,则少 4 人.设总人数为 x ,组数为 y ,则可列方程组( ) A .{6x +5=y 7x −4=y B .{6y =x +57y −4=x C .{6y =x −57y +4=x D .{6y =x −57y =x +4【答案】D【解析】每组6人得到的关系式为6y=x-5;每组7人得到的关系式为7y=x+4.可列方程组为:{6y =x −57y =x +4; 故答案为:D.7.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .{y −x =18y +x =90B .{y −x =18y +2x =90C .{y −x =18y =2xD .{x −y =18y +2x =90【答案】B【解析】设∠BAE 和∠BAD 的度数分别为x°和y°,依题意可列方程组: {y −x =18y +2x =90故答案为:B .8.已知 {4x −5y +2z =0x +4y −3z =0(xyz≠0),则x :y :z 的值为( ) A .1:2:3 B .3:2:1 C .2:1:3D .不能确定【答案】A【解析】{4x −5y +2z =0①x +4y −3z =0②, ①-②×4得-5y-16y+2z+12z=0, 解得y= 23 z , 把y= 23 z 代入②得x+ 83 z-3z=0,解得x= 13 z , 所以x :y :z= 13 z : 23 z :z=1:2:3. 故答案为:A .9.关于x ,y 的方程组 {2ax +3y =18−x +5by =17 (其中a ,b 是常数)的解为 {x =3y =4 ,则方程组 {2a(x +y)+3(x −y)=18(x +y)−5b(x −y)=−17 的解为( ) A .{x =3y =4 B .{x =7y =−1 C .{x =3.5y =−0.5 D .{x =3.5y =0.5【答案】C【解析】由题意知: {x +y =3①x −y =4② ,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 {x =3.5y =−0.5. 故答案为:C .10.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图所示.则桌子的高度 ℎ= ( )A .70B .55C .40D .30【答案】A【解析】设长方形的长为xcm ,宽为ycm ,则有 {80+y =ℎ+x ℎ+y =60+x ①②, ①−② ,得80−ℎ=ℎ−60 ,解得, ℎ=70 ,故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知{x =2y =3是二元一次方程2x −ky =−5的一个解,那么k 的值是. 【答案】3【解析】由题意知,将{x =2y =3代入2x −ky =−5得,2×2−3k =−5,解得k =3,故答案为:3 .12.已知x ,y 满足方程组{x +2y =−22x +y =3,则x −y 的值为 . 【答案】5【解析】{x +2y =−2①2x +y =3②, 由②-①,得:x −y =5,∴x −y =5.故答案为:513.已知m 为整数,方程组 {4x −3y =66x +my =26有正整数解,则m= . 【答案】-4或4【解析】∵{4x −3y =66x +my =26 , 解得, {x =3m+392m+9y =342m+9 , ∵方程组有正整数解,m 为整数,∴m = -4或4,故答案为:-4或4.14.七年级(二)班选出部分同学参加夏令营,分成红、蓝两队,红队戴红帽子,蓝队戴蓝帽子.一个红队队员说,我看见的是红队人数与蓝队人数相等;一个蓝队队员说,我看见的是红队人数是蓝队人数的2倍.则这个班参加夏令营的总人数是 人.【答案】7【解析】设红队队员有x 人,蓝队队员有y 人根据题意可得 {x −1=y x =2(y −1) 解得: {x =4y =3∴这个班参加夏令营的总人数是4+3=7(人)故答案为:7.15.某学校的劳动实践基地有一块长为20m 、宽为16m 的长方形空地,学校准备在这块空地上沿平行于长方形各边的方向割出三个完全相同小长方形菜地分别种上辣椒、茄子、土豆,其示意图如图所示,则每个小长方形菜地的面积是 m 2.【答案】32【解析】∵三个小长方形完全相同,设长为x ,宽为y ,根据题意:{2x +y =202y +x =16, 解方程组得:x =8,y =4,∴小长方形的面积为S =8×4=32m 2.故答案为:32.16.若关于x ,y 的方程组 {3x −ay =162x +by =15 的解是 {x =7y =1 ,则方程组 {3(x −2y)−ay =162(x −2y)+by =15的解是 .【答案】{x =9y =1【解析】∵{x =7y =1 是方程组 {3x −ay =162x +by =15 的解 ∴{21−a =1614+b =15 ∴a=5,b=1将a=5,b=1代入 {3(x −2y)−ay =162(x −2y)+by =15得 {3x −11y =16①2x −3y =15②①×2,得6x-22y=32③ ②×3,得6x-9y=45④ ④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为 {x =9y =1故答案为: {x =9y =1三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解方程组: (1){3x −y =135x +2y =7 (2){x 3+1=y 2(x +1)−y =6【答案】(1)解:{3x −y =13①5x +2y =7②, ①×2+②,得11x=33, ∴x=3,把x=3代入①,得y=-4,∴{x =3y =−4;(2)解:变形,得{x −3y =−3①2x −y =4②, ①×2-②,得-5y=-10, ∴y=2,把y=2代入①,得x=3,∴{x =3y =2.18.在关于x ,y 的二元一次方程组 {3x +5y =m +22x +3y =m中, (1)求出消去m 后得到的关于x ,y 的二元一次方程.(2)若x 与y 的和等于2,求出m 的值.【答案】(1)解:{3x +5y =m +2,①2x +3y =m ,②, 由①-②得:x-2y=2;(2)解:∵x+y=2,∴{x −2y =2x +y =2, 整理,解得:{x =2y =0,将{x =2y =0代入二元一次方程2x+3y=m 中, 解得:m=4.19.已知关于x ,y 的方程组{x −y =11−m①x +y =7−3m②(1)当3x +y =14−6m 时,求m 的值;(2)若x 为非负数,y 为负数,求m 的取值范围.【答案】(1)解:②×2+①得:3x +y =25−7m ,当3x +y =14−6m 时,即25−7m =14−6m ,解得:m =11.(2)解:{x −y =11−m①x +y =7−3m②, ①+②得:2x =18−4m ,即x =9−2m ,把x =9−2m 代入①得,y =−2−m ,∴原方程组的解为:{x =9−2m y =−2−m ,由x 为非负数,y 为负数,可得:{x =9−2m ≥0y =−2−m <0,即x =9−2m ≥0,解得m ≤92, 即y =−2−m <0,解得m >−2,∴−2<m ≤92. 20.我们定义:若整式M 与N 满足M +N =k (k 为整数)则称M 与N 为关于的平衡整式.例如,若2x +3y =4,我们称2x 与3y 为关于4的平衡整式.(1)若2a −5与4a +9为关于1的平衡整式,求a 的值;(2)若2x −9与y 为关于2的平衡整式,3x 与4y +1为关于5的平衡整式,求x +y 的值.【答案】(1)解:由题意得:2a −5+4a +9=1,解得:a =−12; (2)解:由题意得:{2x −9+y =2①3x +4y +1=5②, ① +②得:5x +5y =15,∴x +y =3.【解析】【分析】(1)根据题意求出 2a −5+4a +9=1, 再求解即可;(2)先求出 {2x −9+y =2①3x +4y +1=5②, 再利用加减消元法计算求解即可。

中考数学总复习《二元一次方程组》专项提升训练(带有答案)

中考数学总复习《二元一次方程组》专项提升训练(带有答案)

中考数学总复习《二元一次方程组》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =1 2.下列方程组中是二元一次方程组的是( )A. B. C. D.3.下面说法正确的是( )A.二元一次方程的解是唯一的B.二元一次方程有无数个解.C.二元一次方程中有一个未知数.D.二元一次方程中的二元是指未知数的项的次数为二次.4.二元一次方程x -2y=1有无数个解,下列4组值中不是该方程解的是( )A. B. C. D.5.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( ) A.⎩⎨⎧x =1y =4 B.⎩⎨⎧x =2y =3 C.⎩⎨⎧x =3y =2 D.⎩⎨⎧x =4y =16.20名同学在植树节这天共种了84棵树苗,其中男生每人种5棵,女生每人种3棵.设男生有x 人,女生有y 人.根据题意,列方程组正确的是( )A. B. C. D.7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A. B. C.D.8.为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,则购买一块电子白板和一台投影机分别需要( )A.4000元,8000元B.8000元,4000元C.14000元,8000元D.10000元,12000元9.若方程组的解满足x-y=1,则a的取值是( )A.-1B.-2C.2D.a不能确定10.对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则x y的值是( )A.﹣1B.0C.1D.2二、填空题11.写出2x﹣3y=0的一组整数解.12.在二元一次方程x+4y=13中,当x=5时,y= .13.已知是关于x,y的方程mx﹣ny=15的一个解,则7﹣(m﹣2n)=.14.如果方程组的解x与y相等,则k= .15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。

第8章 二元一次方程组 提升卷 2022-2023学年人教版数学七年级下册

第8章 二元一次方程组 提升卷 2022-2023学年人教版数学七年级下册

第8章二元一次方程组(提升卷)-2022年人教新版数学七年级下册一.选择题1.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图所示.则桌子的高度h=()A.70B.55C.40D.302.若关于x、y的方程组和有相同的解,则(a+b)2021的值为()A.﹣1B.0C.1D.20213.方程组的解x,y满足x是y的2倍少3,则a的值为()A.﹣41B.﹣11C.﹣31D.﹣2.24.如图,长为y,宽为x的大长方形被分割为5小块,除阴影D,E外,其余3块都是正方形,若阴影E周长为8,下列说法中正确的是()①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③5.如图,在周长为60的长方形ABCD中放入六个相同的小长方形,若小长方形的面积为S,长为x,宽为y,则()A.若x=2,则S=20B.若y=2,则S=20C.若x=2y,则S=10D.若x=4y,则S=106.方程组的解是()A.B.C.D.7.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐步成为人们喜爱的交通工具.某汽车公司计划正好用190万元购买A,B两种型号的新能源汽车(两种型号的汽车均购买),其中A型汽车进价为20万元/辆,B型汽车进价为30万元/辆,则A,B型号两种汽车一共最多购买()A.9辆B.8辆C.7辆D.6辆8.疫情期间,小明要用15元钱买A、B两种型号的口罩,两种型号的口罩必须都买,15元全部用完.若A型口罩每个3元,B型每个2元,则小明的购买方案有()A.2种B.3种C.4种D.5种9.我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是()A.B.C.D.10.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.二.填空题11.某学校八年级举行了二元一次方程组速算比赛,并按学生的得分高低对前100名进行表彰奖励,原计划一等奖表彰10人,二等奖表彰30人,三等奖表彰60人,经协商后调整为一等奖表彰20人,二等奖表彰40人,三等奖表彰40人,调整后一等奖平均分降低4.5分,二等奖平均分降低2.5分,三等奖平均分降低0.5分,若调整前一等奖平均分比二等奖平均分高0.8分,则调整后二等奖平均分比三等奖平均分高分.12.某校去年租借了三架无人机A,B,C用于体育节航拍,无人机A,B,C飞行平均速度之比为1:8:3,飞行时间之比为2:1:2.今年继续租借,但根据航拍需求,对三架无人机飞行平均速度和时间均作了调整.无人机B的平均速度比去年低了,无人机C的平均速度为去年的.A,C两架无人机的飞行总路程增加,而无人机B飞行总路程减少.无人机C增加的路程是无人机A增加路程的2倍,且占今年三架无人机总路程的20%.无人机A增加的路程与无人机B减少的路程之比为7:15,则今年无人机B与无人机C的飞行时间之比为.13.近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有名员工.14.已知关于x,y的二元一次方程组的解满足x+y=5,则k的值为.15.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方,如图的三阶幻方填写了一些数和字母,则x =.三.解答题16.阅读探索(1)知识积累解方程组.解:设a﹣1=x,b+2=y.原方程组可变为,解这个方程组得,即,所以,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:.(3)能力运用已知关于x,y的方程组的解为,请直接写出关于m、n的方程组的解是.17.已知方程组的解和方程组的解相同,求(2a+b)2021的值.18.某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):甲乙进价(元/件)2028售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?19.某玩具店购进甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.则甲、乙两款积木的进货单价各是多少?(用二元一次方程组的知识解决问题)20.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有种购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是元.。

【3套试卷】人教版七年级下册第8章 二元一次方程能力提升测试

【3套试卷】人教版七年级下册第8章 二元一次方程能力提升测试

人教版七年级下册第8章 二元一次方程能力提升测试人教版七年级下册第八章二元一次方程组单元检测题能力提升测试一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来! 1.方程82=+y x 的正整数解的个数是( )A. 4B. 3C. 2D. 12.设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A. 3,2-B. 2,3-C. 3,2-D. 2,3-3.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=-9 4.已知⎩⎨⎧==41y x 是方程3=+y kx 的一个解,那么k 的值是( )A .7B .1C .-1D .-75.如果1-+y x 和()2322-+y x 互为相反数,那么x ,y 的值为( )A .1122 (2211)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩ 6.已知方程组⎩⎨⎧=+=+73by ax y x 和⎩⎨⎧-=--=-739y x by ax 的解相同,则b a ,的值分别为( )A .⎩⎨⎧=-=21b aB .⎩⎨⎧-==21b aC .⎩⎨⎧==21b aD .⎩⎨⎧-=-=21b a7.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是( ) A.B.C.D.8.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .设从甲地到乙地上坡与平路分别为xkm ,ykm ,依题意,所列方程组正确的是( )A .⎪⎪⎩⎪⎪⎨⎧=+=+604245605443y x y x B .⎪⎪⎩⎪⎪⎨⎧=+=+604254605443y x y x C .⎪⎪⎩⎪⎪⎨⎧=+=+42455443yx yxD .⎪⎪⎩⎪⎪⎨⎧=+=+42545443yx yx9.若方程组⎩⎨⎧=+=-54332y x y x 的解是⎩⎨⎧-==4.02.2y x ,则方程组()()()()⎩⎨⎧=-++=--+520194201833201922018b a b a 的解为( )A.⎩⎨⎧-==4.02.2b aB.⎩⎨⎧==6.20182.2020b aC.⎩⎨⎧=-=6.20188.2015b aD.⎩⎨⎧==4.20182.2020b a10.滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟 二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.方程组⎩⎨⎧=-=+23632y x y x ,则_______25=+y x12.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式()12-+y x •的值是____13.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是________14.关于x ,y 的二元一次方程组⎩⎨⎧+=--=+m y x my x 3531中,m 与方程组的解中的x 或y 相等,则m 的值为_______________________ 15.已知753cb a ==,且9423=-+c b a ,则__________=++c b a 16.已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+87ay bx by ax 的解为⎩⎨⎧==32y x ,那么关于m ,n 的二元一次方程组()()()()⎩⎨⎧=-++=-++87n m a n m b n m b n m a 的解为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来! 17(本题6分)解下列方程组:(1)⎩⎨⎧-=+=-732923y x y x (2)()()⎪⎩⎪⎨⎧=--+=-++25132y x y x yx y x18(本题8分)已知二元一次方程组的解为且m +n=2,求k 的值.19(本题8分)解关于x ,y 的方程组⎩⎨⎧-=-=+239cy x by ax 时,甲正确地解出⎩⎨⎧==42y x 乙因为把c抄错了,误解为⎩⎨⎧-==14y x 求c b a ,,的值.20(本题10分)(1)已知关于x ,y 的方程组⎩⎨⎧=+-=+029397y x my x 的解也是二元一次方程2x+y =-6的解,求m 的值.(2)已知关于x ,y 的方程组⎩⎨⎧+=-+=+122362m y x m y x 的解互为相反数,求m 的值.21(本题10分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?22(本题12分)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.23.(本题12分)小丽购买学习用品的收据如表:因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽购买自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种学习用品,共花费15元,则有哪几种不同的购买方案?答案一.选择题: 1.答案:B解析:方程82=+y x 变形为:x y 28-=,∴正整数解为:⎩⎨⎧==61y x ,⎩⎨⎧==42y x ,⎩⎨⎧==23y x 共3组,故选择B2.答案:A解析:∵方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x ,∴⎩⎨⎧=+=+731b a b a 解得:⎩⎨⎧=-=32b a 故选择A3.答案:C解析:方程组45x m y m +=⎧⎨-=⎩变形为:⎩⎨⎧+=+-=54m y m x ,∴9=+y x ,故选择C4.答案:C解析:∵⎩⎨⎧==41y x 是方程3=+y kx 的一个解,∴34=+k ,∴1-=k ,故选择C5.答案:C解析:∵1-+y x 和()2322-+y x 互为相反数,∴()03212=-++-+y x y x ,∴⎩⎨⎧=+=+321y x y x ,解得:⎩⎨⎧-==12y x 故选择C6.答案:C解析:∵方程组⎩⎨⎧=+=+73by ax y x 和⎩⎨⎧-=--=-739y x by ax 的解相同,∴⎩⎨⎧-=-=+733y x y x 解得:⎩⎨⎧=-=41y x ∴⎩⎨⎧-=--=+-9474b a b a 解得:⎩⎨⎧==21b a ,故选择C7.答案:A解析:由题意得:⎩⎨⎧+=+=y y x y x 2441055,故选择A8.答案:C解析:由题意得:⎪⎪⎩⎪⎪⎨⎧=+=+42455443yx yx ,故选择C9.答案:C解析:方程组⎩⎨⎧=+=-54332y x y x 的解是⎩⎨⎧-==4.02.2y x ,∴⎩⎨⎧-=-=+4.020192.22018b a 解得:⎩⎨⎧=-=6.20188.2015b a ,故选择C10.答案:D解析:设小王的行车时间为x 分钟,小张的行车时间为y 分钟,由题意得1.8×6+0.3x =1.8×8.5+0.3y +0.8×(8.5-7),整理得0.3(x -y )=5.7, ∴x -y =19.即这两辆滴滴快车的行车时间相差19分钟.故选D. 二.填空题: 11.答案:8解析:∵方程组⎩⎨⎧=-=+23632y x y x ,∴825=+y x12.答案:24解析:∵12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,∴72=++y x ,∴5=+y x , ∴()2412512=-=-+y x13.答案:5252cm解析:设墙砖的宽为xcm ,长为ycm , 由题意得:⎩⎨⎧=++=y x y x 2402103,解得:⎩⎨⎧==3515y x∴每块墙砖的截面面积是5252cm14.答案:2或21-解析:∵二元一次方程组⎩⎨⎧+=--=+m y x my x 3531中,m 与方程组的解中的x 或y 相等,∴⎩⎨⎧-=+=+53212y x y x 解得:2=x ,∴2=m或⎩⎨⎧=-=+5612y x y x ,解得:21-=y ,∴21-=m ,∴答案为2或21-15.答案:15-解析:∵753c b a ==,∴⎪⎪⎩⎪⎪⎨⎧==7553c b b a ,∴b c b a 57,53==, ∵9423=-+c b a ,∴9528259=-+b b b , ∴⎪⎩⎪⎨⎧-=-=-=753c b a ,∴15753-=---=++c b a16.答案:⎪⎪⎩⎪⎪⎨⎧-==2125n m解析:∵方程组⎩⎨⎧=+=+87ay bx by ax 的解为⎩⎨⎧==32y x ,∴⎩⎨⎧=+=+823732b a b a ,解得:⎩⎨⎧==12b a∴()()()()⎩⎨⎧=-++=-++8272n m n m n m n m 解得:⎩⎨⎧=-=+32n m n m 解得:⎪⎪⎩⎪⎪⎨⎧-==2125n m三.解答题:17.(1)答案:⎩⎨⎧-==31y x ,(2)答案:⎩⎨⎧==11y x18.解析:由题意得②+③得代入①得k =3.19.解析:把⎩⎨⎧==42y x 代入方程3x -cy =-2,得6-4c =-2,解得c =2.分别将⎩⎨⎧==42y x 和⎩⎨⎧-==14y x 代入ax +by =9中,得⎩⎨⎧=-=+94942b a b a , 解得⎩⎨⎧==15.2b a ,即a =2.5,b =1,c =2.20.解析:(1)解方程组⎩⎨⎧=+-=+029397y x m y x 得:⎪⎪⎩⎪⎪⎨⎧+-⨯=-=2934261334261m y m x 是2x +y =-6的解,∴629342613342612-=+-⨯+-⨯m m ,∴35342615=-⨯m ,解得:23=m (2)∵方程组⎩⎨⎧+=-+=+122362m y x m y x 的解互为相反数,∴⎩⎨⎧+=-+=12336m y m y ,∴⎪⎩⎪⎨⎧+-=+=31236m y m y ,∴31236+-=+m m , 解得:21-=m21. 解:设该水果店购进苹果x 千克,购进提子y 千克, 根据题意得:,解得:.答:该水果店购进苹果50千克,购进提子10千克.22.解析:(1)设一个保温壶售价为x 元,一个水杯售价为y 元.由题意,得:⎩⎨⎧=+=+1303260y x y x 解得:⎩⎨⎧==1050y x答:一个保温壶售价为50元,一个水杯售价为10元. (2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元), 在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元), ∵310<315,∴选择在“沃尔玛”超市购买更合算.23.解析:(1)设小丽购买自动铅笔x 支,记号笔y 支, 根据题意可得()()⎩⎨⎧++-=+++-=+5.3962845.11228y x y x 解得⎩⎨⎧==21y x 则小丽购买自动铅笔1支,记号笔2支(2)设小丽购买软皮笔记本m 本,自动铅笔n 支, 根据题意可得155.129=+n m , ∵n m ,为正整数,∴⎩⎨⎧==71n m 或⎩⎨⎧==42n m 或⎩⎨⎧==13n m 则共有3种方案:①购买1本软皮笔记本与7支记号笔; ②购买2本软皮笔记本与4支记号笔; ③购买3本软皮笔记本与1支记号笔人教版七年级下册第八章复习二元一次方程组解答题精选人教版七下第八章二元一次方程组解答题精选1.解方程组(1)(2).2.解方程组(1)(2).3.已知关于x,y的方程组和有相同解,求(﹣a)b值.4.如果关于x、y的二元一次方程组的解是,求关于x、y的方程组的解:(1)(2)5.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.6.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3,用<a>表示大于a的最小整数.例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣2.6]=,<6.2>=.(2)已知x,y满足方程组,则[x]=,<y>=,x的取值范围是,y的取值范围是.7.已知关于x、y的方程组的解满足x+y=2,求k的值.8.已知代数式kx+b,当x=﹣3,x=2时,代数式的值分别是1和11,求代数式的值为﹣3时,x的值.9.在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为,乙看错了方程组中的b,而得到解为.(1)求正确的a,b的值;(2)求原方程组的解.10.解方程组:11.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.12.已知方程组和的解相同,求代数式(4a﹣3b)2018的值.13.解方程组(1)(2)14.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.15.解方程组:(1)2x﹣y=x+y=3;(2).16.解关于x、y方程组可以用(1)×2+(2)消去未知数x;也可以用(1)+(2)×5消去未知数y;求m、n的值.17.已知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.18.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)19.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A.B.C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.20.根据要求,解答下列问题.(1)解方程组:.(2)解下列方程组,只写出最后结果即可:①;②.(3)以上每个方程组的解中,x值与y值有怎样的大小关系?(4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.21.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱,求有多少人,物品的价格是多少”.22.某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?23.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?24.小阳骑车和步行的速度分别为240米/分钟和80米/分钟,小红每次从家步行到学校所需时间相同.请根据两人的对话解决如下问题:小阳:“如果我骑车,你步行,那么我从家到学校比你少用4分钟”小红:“如果我们俩都步行,那么从家到学校我比你少用2分钟.”若设小阳从家到学校的路程为x米,小红从家到学校所需的时间为y分钟.(1)小阳从家到学校骑车的时间是分钟,步行的时间是分钟(用含x的式子表示).(2)求x,y的值.25.[阅读•领会]怎样判断两条直线是否平行?如图①,很难看出直线a、b是否平行,可添加“第三条线”(截线c),把判断两条直线的位置关系转化为判断两个角的数量关系.我们称直线c为“辅助线”.在部分代数问题中,很难用算术直接计算出结果,于是,引入字母解决复杂问题,我们称引入的字母为“辅助元素”事实上,使用“辅助线”、“辅助元”等“辅助元素”可以更容易地解决问题【实践•体悟】(1)计算(2+++)(+++)﹣(++)(2++++),这个算式直接计算很麻烦,请你引入合适的“辅助元”完成计算(2)如图②,已知∠C+∠E=∠EAB,求证AB∥CD,请你添加适当的“辅助线”,并完成证明【创造•突破】(3)若关于xy的方程组的解是的解是•则关于x、y的方程组的解为(4)如图③∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,我们把大于平角的角称为“优角”,若优角∠A3=270°,则优角∠A7=26.七(1)班五位同学参加学校举办的数学素养党赛试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道題未答),具体如下表:最后从公布的竞赛成绩中获知A,B,C,D,E五位同学的实际成绩分别是95分,81分,57分,83分,58分(1)求E同学的答对题数和答错题数;(2)若A,B,C,D四位同学中有一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况.27.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?28.在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建一条210米长的公路,甲队每天修建15米,乙队每天修建25米,一共用10天完成.根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:小红:小芳:(1)请你分别写出小红和小芳所列方程组中未知数x,y表示的意义:小红:x表示,y表示;小芳:x表示,y表示;(2)在题中“()”内把小红和小芳所列方程组补充完整;(3)甲工程队一共修建了天,乙工程队一共修建了米.29.春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示;(2)求甲、乙两工程队分别出新改造步行道多少米.30.小明是一个乐思好问的学生,在解答七年级下册教材中一道拓广探索题时遇到了困难.这道题是这样的:一个长方形的长减少5cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等.这个长方形的长、宽各是多少?(1)如图,设长方形的长、宽各是xcm,ycm,小明绞尽脑汁列出了三个不同的方程组:①,②,③以上三个方程组中,能正确反映题意的有.(请直接填写序号)(2)小明列出的方程,根据目前知识不易求解,便请教老师,老师提示这个问题可以列二元一次方程组来解答,并适时点拨,小明终于明白了.请你写出小明列出的二元一次方程组,并写出解题过程.31.某公司要把一批货物运往A地,准备租用汽车运输公司的甲乙两种货车.过去曾两次租用这两种货车的情况如表:现租用该公司甲种货车3辆,乙种货车5辆,正好运完这批货,如果每吨货物的运费为30元,这批货物应该付运费多少元?32.某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?33.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”34.某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.投篮投不中不得分,罚球投中一球得1分,除罚球外投中一球得2分或3分.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.35.分别用8个大小一样的长方形拼图.如图①,小明拼成了一个大的长方形;如图②,小红拼成了一个大的正方形,但中间恰好空出一个边长为1mm 的小正方形.你能求出小长方形的长和宽吗?36.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.37.在国家积极推进“互联网+”行动以来,网上购物已成为生活中的新常态.某甲在网购平台上购买商品A 、B 共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买,三次购买商品A 、B 的数量和费用如下表:(1)某甲第 次购物时,商品A 、B 同时打折,并简略叙述理由. 理由为: .(2)请求出商品A 的标价.38.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/公里计算,耗时费按y 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(1)求x ,y 的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?39.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价m 和市场价n 分别是多少元?(2)小明家5月份交水费70元,则5月份他家用了多少吨水?40.奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件,小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择,如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买15支钢笔,20个笔记本,一共花多少钱?答案:1.解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.2.解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为.3.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.4.解:∵关于x、y的二元一次方程组的解是,∴(1),解得;(2),解得.5.解:(1)∵a=b=3,∴3+3m=1,解得m=﹣,∴c和d的关系式为d﹣c=1;(2)依题意有,①+②,得b+d+(a+c)m=2⑤,把③④代入⑤,得4m+4+12m=2,即16m=﹣2,∴m=﹣,①﹣②,得b﹣d=(c﹣a)m即b﹣d=﹣(c﹣a)∵a<c.即c﹣a>0∴b﹣d=﹣(c﹣a)<0∴b<d.6.解:(1)由题意得:[﹣2.6]=﹣3,<6.2>=7;故答案为:﹣3,7;(2)解方程组得:,故x,y的取值范围分别为﹣1≤x<0,2≤y<3.故答案为:﹣1,3,﹣1≤x<0,2≤y<3.7.解:①×3+②得:7x+7y=10k+4,7(x+y)=10k+4,x+y=,x+y=2,=2,解得k=1.8.解:将x=﹣3、y=1和x=2、y=11代入得:,解得:,把k=2,b=7,y=﹣3代入y=kx+b中,可得:﹣3=2x+7,解得:x=﹣5.9.解:(1):将代入方程4x﹣by=1得b=5将代入方程ax+5y=﹣17得a=4(2)将a=4,b=5代入原方程组得,解此方程组得10.解:①+②得:4x+3z=18④,①+③得:2x﹣2z=2⑤⑤×2﹣④得:﹣7z=﹣14,解得:z=2,把z=2代入①得:x=3,把x=3,z=2代入①得:y=1,则方程组的解为.11.解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.12.解:联立得:,①+②得:9x=9,解得:x=1,把x=1代入①得:y=﹣5,把代入得:,解得:a=b=﹣1,则原式=1.13.解:(1),①+②得:2x=6,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为;(2),①+②得:3x﹣y=3④,①+③得:4x=6,解得:x=1.5,把x=1.5代入④得:y=1.5,把x=1.5,y=1.5代入①得:z=3.5,则方程组的解为.14.解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.15.解:(1)由题意得,①+②,得:3x=6,解得:x=2,将x=2代入②,得:2+y=3,解得:y=1,则方程组的解为;(2)令x+y=m、x﹣y=n,则,①×8﹣②,得:n=46,解得:n=6,将n=6代入①,得:+2=6,解得:m=8,则,③+④,得:2x=14,解得:x=7,③﹣④,得:2y=2,解得:y=1,所以原方程组的解为.16.解:由题意得:,解得:m=﹣23,n=﹣39.17.解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=318.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.19.解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:;;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.20.解:(1),①×2﹣②得:3y=3,即y=1,把y=1代入①得:x=1,则方程组的解为;(2)①;②;(3)以上每个方程组的解中,x=y;(4)把x=y代入①得:3y+7y=10,即y=1,则方程组的解为.21.解:设有x人,物品价格为y钱,由题意可得,,解得:,答:有7人,物品的价格是53钱.22.解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.23.解:设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,根据题意得,解得.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.24.解:(1)小阳从家到学校的骑车时间是:;步行时间是:;故答案为:;;(2)设小阳同学从家到学校的路程为x米,小红从家到学校所需时间是y分钟,由题意得:,解得:.答:x和y的值分别是720,7.25.解:(1)设a=++,原式=(2+a)(a+)﹣a(2+a+)=;(2)延长BA交CE于点F,如图所示:∵∠EAB是△EFA的外角,∴∠EAB=∠E+∠EFA,又∵∠EAB=∠E+∠C,∴∠EFA=∠C,∴AB∥CD;(3)把代入方程组得:,与方程组比较得:,方程组的解为:;故答案为:x=1,y=﹣3.(4)连接A7、A3,∵五边形的内角和为(5﹣2)×180°=540°,∴∠A1+∠A2+∠A8+∠1+∠3=540°,∠A4+∠A5+∠A6+∠2+∠4=540°,∵∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,∴∠1+∠3=∠2+∠4=260°,∴∠1+∠3+∠2+∠4=520°,∵优角∠A3=270°,即∠3+∠4=270°∴∠1+∠2=520°﹣270°=250°.故答案为:250°.26.解:(1)设E同学的答对题数为x条,则答错y条.由题意解得答:设E同学的答对题数为12条,则答错1条.(2)C同学错了自己的答题情况.应该是对13题,错4题,没有答3题.27.解:(1)全部粗加工共可售得6000×80%×100=480000(元),成本为600×100=60000(元),获利为480000﹣60000=420000(元).全部粗加工可获利420000元.故答案为420000;(2)10天共可精加工10×6=60(吨),可售得60×60%×11000+40×1000=436000(元),获利为436000﹣60000=376000(元).可获利376000元,故答案为376000;(3)设精加工x天,粗加工y天,则解得,销售可得:30×60%×11000+70×80%×6000=534000(元),获利为534000﹣60000=474000(元),答:可获利474000元.28.解:(1)由题意可得,小红:x表示甲队修建的天数,y表示乙队修建的天数;小芳:x表示甲队修建的长度,y表示乙队修建的长度;故答案是:甲队修建的天数;乙队修建的天数;甲队修建的长度;乙队修建的长度.(2)依题意得:小红:,小芳:.(3)解方程组,得则25y=25×6=150(米)即:甲工程队一共修建了4天,乙工程队一共修建了150米.故答案是:4;150.29.解:(1)由题意可得,小莉的:设甲工程队改造x天,乙工程队改造y天,,小刚的:设甲工程队改造长度x米,乙工程队改造长度y米,,故答案为:200、1800;1800、200;甲工程队改造天数,乙工程队改造天数;甲工程队改造的长度,乙工程队改造的长度;(2)设甲工程队改造长度x米,乙工程队改造长度y米,,解得,,答:甲、乙两工程队分别出新改造步行道600米、1200米.30.解:(1)解:由题意得:.故答案为:①②③(2)设长方形的长、宽各是x cm,y cm,由题意列方程组,得解这个方程组,得答:长方形的长、宽分别是cm、cm.31.解:设甲种货车每辆运x吨,乙种货车每辆运y吨,,得,∴3x+5y=3×4+5×2.5=24.5,30×24.5=735(元),答:如果每吨货物的运费为30元,这批货物应该付运费735元.32.解:设1辆大客车乘载x人,1辆小客车乘载y人,根据题意列出方程组得:,解得12×45+10×35=890(人).答:该校七年级师生共有890人.33.解:设每头牛值金x两,每只羊各值金y两.根据题意得:解得:答:每头牛值金两,每头羊值金两.34.解:设本场比赛中该运动员投中2分球x个,3分球y个,根据题意得:,解得:.答:本场比赛中该运动员投中2分球16个,3分球6个.35.解:设小长方形的长为xmm,宽为ymm,根据题意得:,解得:.答:小长方形的长为5mm,宽为3mm.36.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.37.解:(1)某甲以折扣价购买商品A、B是第二次购物.理由:∵某甲在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,且只有第二次购买数量明显增多,但是总的费用不高,∴某甲以折扣价购买商品A、B是第二次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为20元.38.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.39.解:(1)根据题意得:,解得:.答:每吨水的政府补贴优惠价m是2元,市场价n是3.5元.(2)设5月份小明家用了x吨水,根据题意得:14×2+3.5(x﹣14)=70,解得:x=26.答:5月份小明家用了26吨水.。

初中数学二元一次方程组提升练习

初中数学二元一次方程组提升练习

二元一次方程一、知识梳理1、二元一次方程组的有关概念:二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

3、二元一次方程组的解法 (1)代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法. (2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法。

(3)换元法:某些较为复杂的方程组需要借助换元法来求解。

4、二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤: (1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组; (3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.二、基础过关1.若(m -3)x +2y |m -2|+8=0是关于x ,y 的二元一次方程,则m = 2. 解方程组:⎩⎨⎧4x -3y =2,①2x +y =6.②3.解方程组:⎩⎨⎧3x -y =10,①2x -3y =9.② ⎩⎪⎨⎪⎧y +14=x +23,①2x -3y =9.②4、已知关于x ,y 的二元一次方程组⎩⎨⎧2x +3y =k ,x +2y =-1的解互为相反数,则k 的值是 .5.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106 cmB .110 cmC .114 cmD .116 cm6、 利用二元一次方程组解决实际问题【例4】 (福建中考)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:多少千克?三、提升练习1、已知对于任意的有理数,a b ,关于,x y 的二元一次方程()()a b x a b y a b --+=+有一组公共解,则公共解为 。

七年数学下册第1章二元一次方程组全章整合与提升习题课件湘教版

七年数学下册第1章二元一次方程组全章整合与提升习题课件湘教版
第1章 二元一次方程组
全章整合与提升
提示:点击 进入习题
答案显示
1A
2B
3B
4C
5B
6 D 7 ①④;②③ 8 见习题 9 A 10 16
11 A
12 D
13 B
14 见习题 15 见习题
16 见习题 17 见习题
1.若方程(m-2 021)x2-3x+2yn=1 是关于 x,y 的二元一次方
程,则 mn 的值为( A )
x=1,
ax+by=2,
9.已知y=2,是方程组by+cz=3, 的解,则 a + b+ c 的
z=3
cx+az=7
值是( A )
A.3 B. 2
C.1 D.无法确定
10.已知yx==12,是二元一次方程组nmxx-+mnyy==18,的解,则 2m- n 的平方是____1_6___. 【点拨】由题意得22mn-+mn= =81, , 解得nm==23,. 所以 2m-n 的平方是 16.
12.某校八年级学生到学农基地进行学农实践活动,已知基地有 两种类型的学生宿舍,大宿舍每间可住 14 名学生,小宿舍 每间可住 8 名学生,大宿舍的间数比小宿舍的 2 倍还多 1 间, 该校 338 名学生恰好住满这些宿舍,求大、小宿舍各有多少 间.若设大宿舍有 x 间,小宿舍有 y 间,
则由题意可列方程组为( D )
解:设购买 a 头牛,b 只羊,依题意得 3a+2b=19,所以 b=19-2 3a. 因为 a,b 都是正整数,所以ba==81,或ab= =35,或ab= =52,. 所以有 3 种购买方案: ①购买 1 头牛,8 只羊; ②购买 3 头牛,5 只羊; ③购买 5 头牛,2 只羊.
15.解方程组:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组(提高题) 济宁学院附中李涛
类型一:二元一次方程的概念及求解
例(1).已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.
(2).二元一次方程3x +2y =15的正整数解为_______________.
类型二:二元一次方程组的求解
例(3).若|2a +3b -7|与(2a +5b -1)2
互为相反数,则a =______,b =______.
(4).2x -3y =4x -y =5的解为_______________. 类型三:已知方程组的解,而求待定系数。

例(5).已知⎩⎨⎧==1
2y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.
(6).若满足方程组⎩⎨⎧=-+=-6
)12(423y k kx y x 的x 、y 的值相等,则k =_______. 练习:若方程组⎩
⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。

若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5
243y x by x a 有相同的解,则a = ,b= 。

类型四:涉及三个未知数的方程,求出相关量。

设“比例系数”是解有关数量比的问题的常用方法.
例(7).已知2a =3b =4c ,且a +b -c =12
1,则a =_______,b =_______,c =_______. (8).解方程组⎪⎩
⎪⎨⎧=+=+=+63432
3x z z y y x ,得x =______,y =______,z =______.
练习:若2a +5b +4c =0,3a +b -7c =0,则a +b -c = 。

由方程组⎩⎨⎧=+-=+-0
432032z y x z y x 可得,x ∶y ∶z 是( )
A 、1∶2∶1
B 、1∶(-2)∶(-1)
C 、1∶(-2)∶1
D 、1∶2∶(-1)
说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.
当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程
组。

类型五:列方程组求待定字母系数是常用的解题方法.
例(9).若⎩⎨⎧-==20y x ,⎪⎩
⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为 (10).关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨
⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是
练习:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1
0cy bx by ax 的解,那么,下列各式中成立的是 ( )
A 、a +4c =2
B 、4a +c =2
C 、a +4c +2=0
D 、4a +c +2=0
类型六:方程组有解的情况。

(方程组有唯一解、无解或无数解的情况)
方程组⎩⎨⎧=+=+2
22111c y b x a c y b x a 满足 条件时,有唯一解;
满足 条件时,有无数解;
满足 条件时,有无解。

例(11).关于x 、y 的二元一次方程组⎩⎨⎧=+=-2
312y mx y x 没有解时,m
(12)二元一次方程组23
x y m x ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。

类型七:解方程组
例(13).⎪⎪⎩⎪⎪⎨⎧=+=-+.022
325232y x y y x (14).⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x
(15).⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x (16).⎪⎩
⎪⎨⎧=---=+-=+-.441454y x z x z y z y x
类型八:解答题
例(17).已知⎩⎨⎧=+-=-+0
254034z y x z y x ,xyz ≠0,求222
223y x z xy x +++的值. (18).甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩
⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨
⎧-=-=21y x ,求a 、b 的值.
练习:甲、乙两人共同解方程组⎩⎨
⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到
方程组的解为 ⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩
⎨⎧==45y x 。

试计算20052004
101⎪⎭⎫ ⎝⎛-+b a 的值.
(19).已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,
求m 的值.
(20).当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c的值;(2)当x=-2时,ax2+bx+c的值.
类型九:列方程组解应用题
(21).有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.
(22).某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?(23).汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.。

相关文档
最新文档