海南省侨中三亚学校2015届中考数学模拟试题五(含解析)

合集下载

【解析版】侨中三亚学校2015年七年级上第一次月考数学试卷

【解析版】侨中三亚学校2015年七年级上第一次月考数学试卷

2015-2016 学年海南省侨中三亚学校七年级(上)第一
次月考数学试卷
参考答案与试题解析
一、选择题.(每题 3 分,共 42 分) 1.下列各组量中,互为相反意义的量是( ) A.收入 200元与支出 200元 B.上升 10米与下降 7 米 C.超过 0.05毫米与不足 0.03毫米 D.增大 5 升与减少 2 升 考点: 正数和负数. 分析: 根据相反意义的量的定义对各选项分析判断后利用排除法求解. 解答:解:A、收入 200元与支出 200元,是互为相反意义的量,故本选项正确; B、上升 10米与下降 7 米,不是互为相反意义的量,故本选项错误; C、超过 0.05毫米与不足 0.03毫米,不是互为相反意义的量,故本选项错误; D、增大 5 升与减少 2 升,不是互为相反意义的量,故本选项错误. 故选 A. 点评: 本题考查了正数和负数,主要是相反意义的量的考查,是基础题.
故选:D. 点评: 此题考查了负数的定义.此题比较简单,注意熟记定义是解此题的关键.
4.绝对值等于本身的数( ) A.正数 B.非负数 C.零 D.非正数 考点: 绝对值. 分析: 根据绝对值的定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反 数,0 的绝对值是 0.而 0 的相反数也是 0,故绝对值等于本身的数是正数或 0,即非负 数. 解答: 解:绝对值等于本身的数是非负数. 故选 B. 点评: 本题主要考查了绝对值的定义.绝对值规律总结:一个正数的绝对值是它本身;一 个负数的绝对值是它的相反数;0 的绝对值是 0.
2015-2016 学年海南省侨中三亚学校七年级(上)第一次月考 数学试卷
一、选择题.(每题 3 分,共 42 分) 1.下列各组量中,互为相反意义的量是( ) A.收入 200元与支出 200元 B.上升 10米与下降 7 米 C.超过 0.05毫米与不足 0.03毫米 D.增大 5 升与减少 2 升

2015年海南省中考数学模拟试题(五)-1.doc

2015年海南省中考数学模拟试题(五)-1.doc

2015年海南省中考数学模拟试题(五)参考答案一.选择题(本大题满分42分,每小题3分)BCDBC ACDAB CDBC二.填空题(本大题满分16分,每小题4分)15.(4)(4)a x x +-; 16. 6;; 18.(63,32) 三.解答题(本大题满分62分)19.(1)解:原式=113122+-+ ‥3分 = 4 ‥5分(2)解:原式=()()()()()()32222222x x x x x x x x x --++-⋅+- =223622x x x x x --- ‥3分 =22842x x x x-=- ‥5分20.解:(1)设甲种货车有x 辆,则‥1分解之,得 ‥3分 ∴x 的值是:2或3或4.∴有三种租用货车的方案.设计方案为:①租用甲种货车2辆,乙种货车6辆;②租用甲种货车3辆,乙种货车5辆;③租用甲种货车4辆,乙种货车4辆.6分(2) 由(1)知:方案① 的运输费用是:2×4000+6×3600=29600(元)方案② 的运输费用是:3×4000+5×3600=30000(元)方案③ 的运输费用是:4×4000+4×3600=30400(元)∴ 应选用方案①:租用甲种货车2辆,乙种货车6辆,运输费用最少为29600元 …8分21.(1)50;…2分(2)108;…5分42≤≤x {5030(8)2802030(8)200x x x x +-≥+-≥(3)800 …8分21.解:解:过点B 作BD ⊥AC 于D .由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC ﹣∠ABC=30°, 在Rt △ABD 中,BD=AB •sin ∠BAD=20×=10(海里), 在Rt △BCD 中,BC===20(海里).答:此时船C 与船B 的距离是20海里. …9分23. 解:(1)∵四边形ABCD 是正方形,∴AB =DA ,∠ABE =90°=∠DAH .∴∠HAO +∠OAD =90°.∵AE ⊥DH ,∴∠ADO +∠OAD =90°.∴∠HAO =∠ADO .∴△ABE ≌△DAH (ASA ),∴AE =DH .‥4分(2)EF =GH .将FE平移到AM 处,则AM ∥EF ,AM =EF .将GH 平移到DN 处,则DN ∥GH ,DN =GH .∵EF ⊥GH ,∴AM ⊥DN ,‥8分根据(1)的结论得AM =DN ,所以EF =GH ;(3)∵四边形ABCD 是正方形,∴AB ∥CD∴∠AHO =∠CGO图13∵FH ∥EG∴∠FHO =∠EGO∴∠AHF=∠CGE∴△AHF ∽△CGE∴∵EC =2∴AF =1过F 作FP ⊥BC 于P ,根据勾股定理得EF =,∵FH ∥EG ,∴ 根据(2)①知EF =GH ,∴FO =HO .∴,,∴阴影部分面积为.‥13分24. 解:(1)把(18,0)A ,(0,10)B ,(8,10)C 代入2y ax bx c =++得2201818108810a b c a b c c ⎧=⨯++⎪=⨯++⎨⎪=⎩∴1184910a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩‥2分 于是21410189y x x =-++=2198(4)189x --+ , ∴顶点坐标为984,9() …4分(∥PA.故只要QC=PA 即可,而184,PA t CQ t =-= 故184t t -=得 185t =; …6分 (3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,由于Q C ∥OP 知△QD C ∽△PDO ,故144CD QC t DO OP t === ∵14QC CE CD AF EA DO === ∴44AF QC t OP ===,∴18PF PA AF PA OP =+=+=…8分又点Q 到直线PF 的距离10d =,∴1118109022PQF S PF d ∆==⨯⨯=, 于是△PQF 的面积总为定值90. …9分(4)由(2)得,当四边形PQCA 为平行四边形时,OPD ∆∽OAC ∆,此时185t =. …11分若OPD ∆∽OCA ∆,此时OD OP OA OC =,即有44518OC t OC⨯=,又OC = 解得 8245t = ∴当8245t =或185t =时, OPD ∆与OAC ∆相似 …14分。

海南省侨中三亚学校学年中考数学模拟试题(含解析)

海南省侨中三亚学校学年中考数学模拟试题(含解析)

海南省侨中三亚学校2015学年中考数学模拟试题一、选择题(本题有14个小题,每小题3分,共42分)1.在下列各数中,最小的数是()A.1 B.﹣1 C.﹣3 D.02.不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.3.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°4.下列图标中,属于中心对称的是()A.B.C.D.5.如图是一个正六棱柱,它的俯视图是()A.B.C.D.6.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±17.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()A.40° B.50° C.80° D.90°8.下列运算正确的是()A.a2+a3=a5B.(a﹣1)=a2﹣29.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣310.如果两点P1(1,y1)和P2(2,y2)都在反比例函数的图象上,那么()A.y2<y1<0 B.y1<y2<0 C.y2>y1>0 D.y1>y2>011.如图是从一幅扑克牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A.B.C.D.12.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.613.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m14.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式x2+1<的解集是()A.x>1 B.x<0 C.0<x<1 D.﹣1<x<0二、填空题(本题满分12分,每小题3分)15.分解因式:﹣x3y+2x2y﹣xy= .16.如图,△AOB的顶点O在原点,点A在第一象限,点B在x轴的正半轴上,且AB=6,∠AOB=60°,反比例函数(k>0)的图象经过点A,将△AOB绕点O顺时针旋转120°,顶点B恰好落在的图象上,则k的值为.17.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是,众数是,平均数是.18.AB是⊙O的直径,AB=4,AC是弦,AC=2,∠AOC为.三、解答题(本题满分66分)19.(1)|1﹣|﹣(﹣)﹣2﹣2cos45°+(﹣1)0+(2)化简(其中x=﹣2)20.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了人;(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是;(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有人.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?22.如图是一座人行天桥,天桥的高12米,坡面的坡比为=1:1,为了方便行人推车过天桥,市政府决定降低坡度,使新的斜坡的坡角为30°,问离原坡底8米处的大型广告墙M要不要拆除?23.菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.24.如图,抛物线经过A(﹣3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.2015学年海南省侨中三亚学校中考数学模拟试卷(6)参考答案与试题解析一、选择题(本题有14个小题,每小题3分,共42分)1.在下列各数中,最小的数是()A.1 B.﹣1 C.﹣3 D.0【考点】有理数大小比较.【分析】先根据有理数的大小比较法则比较大小,即可得出选项.【解答】解:∵﹣3<﹣1<0<1,∴最小的数是﹣3.故选C.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】先解不等式得到x<﹣2,根据数轴表示数的方法得到解集在﹣2的左边.【解答】解:5+2x<1,移项得2x<﹣4,系数化为1得x<﹣2.故选C.【点评】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.3.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°【考点】平行线的性质.【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【解答】解:在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°﹣∠1=45°(三角形的内角和定理),∴∠4=180°﹣∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点评】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.4.下列图标中,属于中心对称的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念逐项分析求解即可.【解答】解:根据中心对称图形的概念,知A、B、D都不是中心对称图形,不符合题意;C是中心对称图形,符合题意.故选C.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,是解题的关键.5.如图是一个正六棱柱,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个正六边形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.【点评】命题立意:考查分式值为零的条件.关键是要注意分母不能为零.7.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()A.40° B.50° C.80° D.90°【考点】圆周角定理.【专题】探究型.【分析】先根据圆周角、圆心角及弧的关系求出的度数,进而可得出的度数,由此即可得出结论.【解答】解:∵∠C=40°,∴=2∠C=80°,∵AB是⊙O的直径,∴=180°﹣=180°﹣80°=100°,∴∠ABD==×100°=50°.故选B.【点评】本题考查的是圆周角定理,熟知圆周角、圆心角及弧的关系是解答此题的关键.8.下列运算正确的是()A.a2+a3=a5B.(a﹣1)=a2﹣2【考点】平方差公式;合并同类项;完全平方公式.【专题】计算题.【分析】根据平方差公式、完全平方公式及合并同类项的法则分别计算各选项,比较后即可得出正确结果.【解答】解:A、a2与a3不是同类项,不能合并;故本选项错误;B、(a﹣2)2=a2﹣4a+4;故本选项错误;C、2a2﹣3a2=﹣a2;故本选项正确;D、(a+1)(a﹣1)=a2﹣1,故本选项错误.故选C.【点评】本题考查了平方差公式、完全平方公式及合并同类项的运算,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【考点】二次函数的性质.【专题】计算题.【分析】采用逐一排除的方法.先根据对称轴为直线x=2排除B、D,再将点(0,1)代入A、C两个抛物线解析式检验即可.【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.【点评】本题考查了二次函数的性质.关键是根据对称轴,点的坐标与抛物线解析式的关系,逐一排除.10.如果两点P1(1,y1)和P2(2,y2)都在反比例函数的图象上,那么()A.y2<y1<0 B.y1<y2<0 C.y2>y1>0 D.y1>y2>0【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】把两点P1(1,y1)和P2(2,y2)分别代入反比例函数求出y2、y1的值即可.【解答】解:把点P1(1,y1)代入反比例函数得,y1=﹣1;点P2(2,y2)代入反比例函数得,y2=﹣;∵﹣1<﹣<0,∴y1<y2<0.故选B.【点评】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.11.如图是从一幅扑克牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:可以用下表列举所有可能得到的牌面数字之和:红桃黑桃 1 2 3 41 1+1=2 2+1=3 3+1=4 4+1=52 1+2=3 2+2=4 3+2=5 4+2=63 1+3=4 2+3=5 3+3=6 4+3=74 1+4=5 2+4=6 3+4=7 4+4=8从上表可知,共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于7的情况共出现2次,因此牌面数字之和等于7的概率为=.故选:B.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【考点】轴对称-最短路线问题;菱形的性质.【专题】压轴题;探究型.【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F 即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【解答】解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB==5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知菱形的性质是解答此题的关键.13.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【考点】解直角三角形的应用-坡度坡角问题.【专题】压轴题.【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BA C=30°,∴AB=2BC=2×5=10m,故选:A.【点评】此题考查的是解直角三角形的应用,关键是先由已知得出∠BAC=30°,再求出AB.14.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式x2+1<的解集是()A.x>1 B.x<0 C.0<x<1 D.﹣1<x<0【考点】二次函数与不等式(组).【分析】根据函数图象,写出抛物线在双曲线下方部分的x的取值范围即可.【解答】解:由图可知,0<x<1时,x2+1<.故选C.【点评】本题考查了二次函数与不等式组,此类题目,利用数形结合的思想求解更加简便.二、填空题(本题满分12分,每小题3分)15.分解因式:﹣x3y+2x2y﹣xy= ﹣xy(x﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式﹣xy,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:﹣x3y+2x2y﹣xy=﹣xy(x2﹣2x+1)﹣﹣(提取公因式)=﹣xy(x﹣1)2.﹣﹣(完全平方公式)故答案为:﹣xy(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.16.如图,△AOB的顶点O在原点,点A在第一象限,点B在x轴的正半轴上,且AB=6,∠AOB=60°,反比例函数(k>0)的图象经过点A,将△AOB绕点O顺时针旋转120°,顶点B恰好落在的图象上,则k的值为9.【考点】反比例函数综合题;坐标与图形变化-旋转.【专题】综合题.【分析】依题意,旋转后,B、O、A三点在同一直线上,根据双曲线的中心对称性可知,OA=OB,又∠AOB=60°,可知△AOB为等边三角形,过A点作x轴的垂线,解直角三角形求A点的坐标即可求k的值.【解答】解:过A点作AC⊥x轴,垂足为C,设旋转后点B的对应点为B′,则∠AOB′=∠AOB+∠BOB′=60°+120°=180°,∵双曲线是中心对称图形,∴OA=OB′,即OA=OB,又∵∠AOB=60°,∴△AOB为等边三角形,OA=AB=6,在Rt△AOC中,OC=OA×cos60°=3,AC=OA×sin60°=3,∴k=OC×AC=9.故答案为:9.【点评】本题考查了反比例函数的综合运用,旋转的性质.关键是通过旋转及双曲线的中心对称性得出等边三角形.17.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是105 ,众数是105 ,平均数是100 .【考点】众数;算术平均数;中位数.【分析】要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的一个数;【解答】解:(1)平均数:(89+91+105+105+110)÷5=105,故平均数是100;(2)在这一组数据中105是出现次数最多的,故众数是105;将这组数据从小到大的顺序排列(89,91,105,105,110),处于中间位置的那个数是105,那么由中位数的定义可知,这组数据的中位数是105;故答案为:105,105,100.【点评】本题为统计题,考查的是平均数、众数和中位数,要注意,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.18.AB是⊙O的直径,AB=4,AC是弦,AC=2,∠AOC为120°.【考点】垂径定理;解直角三角形.【分析】作OD⊥AC,垂足为D,根据已知可求得OA,AD的长,再根据三角函数求得∠DOA 的度数,从而可得到∠AOC的度数.【解答】解:如图,作OD⊥AC,垂足为D∵AB=4∴OA=2∵AC=2,∴AD=,∵sin∠DOA==,∴∠DOA=60°∴∠AOC=120°.故答案是:120°.【点评】本题考查了垂径定理和解直角三角形.关键在于根据相关的定理推出AC=2,然后认真的进行计算.三、解答题(本题满分66分)19.(1)|1﹣|﹣(﹣)﹣2﹣2cos45°+(﹣1)0+(2)化简(其中x=﹣2)【考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)分别根据绝对值的性质、特殊角的三角函数值、0指数幂及负整数指数幂的计算法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=﹣1﹣4﹣2×+1+2=﹣1﹣4﹣+1+2=﹣2;(2)原式=x2[﹣]=x2=x2=﹣3x,当x=﹣2时,原式=6.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了300 人;(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是0.4 ;(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有3500 人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率.(4)根据图中“强制戒烟”的百分比再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.(4)支持“警示戒烟”这种方式的人有1000035%=3500(人).故答案为:300,0.4,3500.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【专题】应用题.【分析】设原计划每天修水渠x米.根据“原计划工作用的时间﹣实际工作用的时间=20”这一等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.【点评】本题考查了分式方程的应用,此题中涉及的公式:工作时间=工作量÷工效.22.如图是一座人行天桥,天桥的高12米,坡面的坡比为=1:1,为了方便行人推车过天桥,市政府决定降低坡度,使新的斜坡的坡角为30°,问离原坡底8米处的大型广告墙M要不要拆除?【考点】解直角三角形的应用-坡度坡角问题.【专题】压轴题.【分析】由原来的坡比求出CF的长度,然后根据新坡比求出FG,继而根据BG=FG﹣FB可得出BG的长度,与8米进行比较即可作出判断.【解答】解:∵坡面的坡比为1:1,∴∠CBF=45°,又∵CF=12米,则FB=12米,由于新的斜坡的坡角为30°,如果坡底用字母G表示,则CG=24米,FG=12米,故可得:BG=12﹣12=8.784米>8米,所以广告牌M要拆除.【点评】此题考查了解直角三角形的应用,理解坡比所表示的含义,求出线段BG的长度是解答本题的关键,难度一般,23.菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定.【专题】证明题.【分析】(1)首先连接AC,由菱形ABCD中,∠B=60°,根据菱形的性质,易得△ABC是等边三角形,又由三线合一,可证得AE⊥BC,继而求得∠FEC=∠CFE,即可得EC=CF,继而证得BE=DF;(2)首先由△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形.【解答】证明:(1)连接AC,∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°﹣∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°﹣∠AEF=30°,∴∠CFE=180°﹣∠FEC﹣∠ECF=180°﹣30°﹣120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△ACF中,∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.【点评】此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.24.如图,抛物线经过A(﹣3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.①当t为何值时,点N落在抛物线上;②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)把点A、C坐标代入抛物线解析式得到关于a、b的二元一次方程组,解方程组求出a、b的值,即可得解;(2)根据抛物线解析式求出顶点B的坐标,然后根据相似三角形对应边成比例用t表示出PM,再求出NE的长度,①表示出点N的坐标,再根据点N在抛物线上,把点N的坐标代入抛物线,解方程即可得解;②根据PM的长度表示出QD,再利用待定系数法求出直线BC的解析式,然后根据直线BC的解析式求出点R的横坐标,从而求出QR的长度,再表示出EC 的长度,然后根据平行四边形对边平行且相等列式求解即可.【解答】解:(1)∵y=ax2+bx+经过A(﹣3,0),C(5,0)两点,∴,解得,所以,抛物线的解析式为y=﹣x2+x+;(2)∵y=﹣x2+x+,=﹣(x2﹣2x+1)++,=﹣(x﹣1)2+8,∴点B的坐标为(1,8),∵抛物线的对称轴与x轴交于点D,∴BD=8,CD=5﹣1=4,∵PM⊥BD,∴PM∥CD,∴△BPM∽△BDC,∴=,即=,解得PM=t,所以,OE=1+t,∵四边形PMNQ为正方形,∴NE=8﹣t+t=8﹣t,①点N的坐标为(1+t,8﹣t),若点N在抛物线上,则﹣(1+t﹣1)2+8=8﹣t,整理得,t(t﹣4)=0,解得t1=0(舍去),t2=4,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:∵PM=t,四边形PMNQ为正方形,∴QD=NE=8﹣t,设直线BC的解析式为y=kx+m,则,解得,所以直线BC的解析式为y=﹣2x+10,则﹣2x+10=8﹣t,解得x=t+1,所以,QR=t+1﹣1=t,又EC=CD﹣DE=4﹣t,根据平行四边形的对边平行且相等可得QR=EC,即t=4﹣t,解得t=,此时点P在BD上,所以,当t=时,四边形ECRQ为平行四边形.【点评】本题是二次函数的综合题型,主要涉及待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),相似三角形的判定与性质,平行四边形的对边平行且相等的性质,综合性较强,但难度不大,仔细分析便不难求解.。

海南中学2015年中考数学模拟试题(有答题纸)

海南中学2015年中考数学模拟试题(有答题纸)

九年级数学模拟试卷(命题:王国平) (考试时间:120分钟卷面总分:150分)一、选择题(每小题3分,共24分)1、-2的绝对值是( )A 、-2B 、-21 C 、21D 、2 2、下列运算正确的是( )A 、2x +y =2xyB 、()3212=+C 、(2ab )2=4a 2b 2D 、(-x -y )(x +y )=x 2-y 23、下列几何体的主视图与众不同的是( )4、下面四个标志属于中心对称的是( )5、下列命题正确的是( )A 、垂直于半径的直线一定是圆的切线B 、正三角形绕其中心旋转180°后能与原图形重合是必然事件C 、有一组对边平行,一组对角相等的四边形是平行四边形D 、四个角都是直角的四边形是正方形6、如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A 、a +b >0B 、ab >0C 、a -b >0D 、|a|-|b|>07、为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A 、6(x +22)=7(x -1)B 、6(x +22-1)=7(x -1)C 、6(x +22-1)=7xD 、6(x +22)=7xA B C D8、如图,点A 的坐标为(6,0),点B 为y 轴的负半轴上的一个动点,分别以OB ,AB 为直角边在第三、第四象限作等腰Rt △OBF ,等腰Rt △ABE ,连接EF 交y 轴于P 点,当点B 在y 轴上移动时,PB 的长度为( )A 、2B 、3C 、4D 、PB 的长度随点B 的运动而变化二、填空题((每小题3分,共30分)9、单项式-4x 2y 5的次数是_______ 10、分解因式2x 3-8x =______11、函数13++=x x x y 的自变量x 的取值范围是______12、用一张面积为60π的扇形铁皮,做成一个圆锥容器的侧面(接缝处不计),若这个圆锥的底面半径为5,则这个圆锥的母线长为_____13、如图,半径为3的⊙O 是△ABC 的外接圆,∠CAB =60°, 则BC =_____.14、某菱形的两条对角线长都是方程x 2-6x +8=0的根,则该菱形的周长为___15.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .16、如图,边长为2正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C B A ''',则四边形A B′O D 的周长是____17.有一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如图),则CF 的长为 .18.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上且坐标是(0,2),点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,C 1的坐标是(1,0).B 1C 1∥B 2C 2∥B 3C 3,以此继续下去,则点A 2015到x 轴的距离是 .三、解答题19、(8分)(1)计算()︒--+-⎪⎭⎫⎝⎛-45cos 263162102(2)解不等式组⎪⎩⎪⎨⎧<-<- ② ①9)6(34136x x ,并写出不等式组的整数解.一个学期平均一天阅读课外书籍所用时间统计表24515314312010080604020人数(名)时间(分钟)图2一个学期阅读课外书籍种类人数分布统计图其他 6%动漫类 25%传记类 %科普类 35%图1/本人数/一个学期阅读课外书籍数量统计图20、(8分)先化简,再求值:)1(112+÷⎪⎭⎫ ⎝⎛---m m m m m,其中m 是方程 m(m+1)=13m 的根21、(8分)书籍是人类进步的阶梯.联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:请你根据以上信息解答下列问题: (1)补全图1、图2; (2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有4000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.22、(8分)有4张不透明的卡片,除正面写有不同的数字外,其它均相同.将这四张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b(1)求出k为负数的概率;(2)用树状图或列表法求一次函数y=kx+b的图象不经过第一象限的概率.23、(10分)某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A到斜坡底C的水平距离为8. 8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD= 3.2m.已知斜坡CD的坡比i=1树高AB。

海南省中考数学模拟试题(五)(含答题卷和参考答案)

海南省中考数学模拟试题(五)(含答题卷和参考答案)

2015年海南省中考数学模拟试题(五)(考试时间100分钟,满分120分)欢迎你参加这次测试,祝你成功!一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答题卡...上表中相应题号的方格内.1. 如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C. +100元D.﹣100元2. 地球上的陆地而积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B. 1.49×107C. 1.49×108D.1.49×1093.如图1所示的几何体的主视图是4. 如图2所示,已知直线AB∥CD,125C∠=°,45A∠=°,则E∠等于A.70°B.80°C.90°D.100°5. 设计一张折叠型方桌子如图3,其主视图如图4,若50AO BO cm==,30CO DO cm==,将桌子放平后,要使AB距离地面的高为40cm,则两条桌腿需要叉开的∠AOB应为A.60º B.90º C.120º D.150º6. 点(1,2)P-关于x轴对称的点的坐标为A.(1,2) B.(1,2)- C.(1,2)- D.(1,2)--7. 为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了调查统计,那么最终买什么水果,下面的调查数据中最值得关注的是A.平均数B.加权平均数C.中位数D.众数8.设a b,是方程020142=-+xx的两个实数根,则22a a b++的值为A.2013 B.2014 C.2015 D.20169.已知方程组24,25,x yx y+=⎧⎨+=⎩则x y+的值为()A.1-B.0 C.2 D.310.若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是( )A.l=2r B.l=3r C.l=r D.l=错误!未找到引用源。

【解析版】侨中三亚学校2015年七年级上第一次月考数学试卷

【解析版】侨中三亚学校2015年七年级上第一次月考数学试卷

2015-2016学年海南省侨中三亚学校七年级(上)第一次月考数学试卷一、选择题.(每题3分,共42分)1.下列各组量中,互为相反意义的量是()A.收入200元与支出200元B.上升10米与下降7米C.超过0.05毫米与不足0.03毫米D.增大5升与减少2升2.下列说法中正确的是()A.﹣a一定是负数B.|a|一定是负数C.|﹣a|一定不是负数D.﹣a2一定是负数3.对于下列各数:﹣,,﹣6,0,﹣3.14,﹣0.25,其中负数有()A.1个B.2个C.3个D.4个4.绝对值等于本身的数()A.正数 B.非负数C.零D.非正数5.下列各式中错误的是()A.﹣<﹣2 B.﹣<﹣C.|﹣5|<|﹣5| D.1.7>﹣1.76.计算(﹣5)+3的结果等于()A.2 B.﹣2 C.﹣8 D.87.下列算式中正确的有()(1)5﹣(﹣5)=0;(2)(﹣5)﹣(+5)=0;(3)(﹣5)﹣|﹣5|=0.A.0个B.1个C.2个D.3个8.若一个数的绝对值等于2,另一个数是1,则这两个数的和是()A.3 B.﹣1 C.3或﹣1 D.±3或±19.下列说法中错误的有()(1)0不能做除数(2)0没有倒数(3)0除以任何数都得0 (4)0没有相反数.A.1个B.2个C.3个D.4个10.计算(﹣1)×(﹣5)×(﹣)的结果是()A.﹣1 B.1 C.﹣D.﹣2511.绝对值大于或等于1,而小于4的所有的正整数的和是()A.8 B.7 C.6 D.512.有理数a、b在数轴上表示如图所示.下列关系正确的是()A.a<b B.a>b C.|a|>|b| D.a=b13.0到﹣3之间的负数共有()个.A.1个B.2个C.3个D.无数个14.|﹣|的相反数是()A.B.﹣C.﹣3 D.3二、填空题.(每题3分,共12分)15.如果上升10米记作+10米,那么下降20米记作.16.绝对值大于1而不大于3的整数有个.17.若一个数的绝对值为5,则这个数是18.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为.三、解答题.19.计算.(1)26+(﹣27)+34+(﹣23);(2)8+(﹣)﹣3﹣(﹣0.25);(3)(﹣﹣+)×48;(4)﹣5×(﹣)﹣13×﹣3÷(﹣).20.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2006,﹣(+5),+1.88(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.21.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为﹣39℃,求此处的高度是多少千米?22.画一条数轴,并在数轴上表示:2,﹣3,﹣3,0,1.5,并把这些数用“<”连接起来.23.10筐水果,以每筐35千克为准,超过千克数记作正数,不足的千克数记作负数,记录如下:2,﹣3,2.5,3,﹣0.5,﹣2,3,﹣1,0,﹣2.5.求这10筐水果共超过或不足标准多少千克?这10筐水果一共多少千克?24.某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣2,+4,﹣5,+6,﹣7,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?2015-2016学年海南省侨中三亚学校七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题.(每题3分,共42分)1.下列各组量中,互为相反意义的量是()A.收入200元与支出200元B.上升10米与下降7米C.超过0.05毫米与不足0.03毫米D.增大5升与减少2升考点:正数和负数.分析:根据相反意义的量的定义对各选项分析判断后利用排除法求解.解答:解:A、收入200元与支出200元,是互为相反意义的量,故本选项正确;B、上升10米与下降7米,不是互为相反意义的量,故本选项错误;C、超过0.05毫米与不足0.03毫米,不是互为相反意义的量,故本选项错误;D、增大5升与减少2升,不是互为相反意义的量,故本选项错误.故选A.点评:本题考查了正数和负数,主要是相反意义的量的考查,是基础题.2.下列说法中正确的是()A.﹣a一定是负数B.|a|一定是负数C.|﹣a|一定不是负数D.﹣a2一定是负数考点:正数和负数;绝对值;有理数的乘方.分析:本题可根据正负数的定义逐个进行分析,从而得出结果.解答:解:A错误,当a=0时,﹣a也是0,当a是负数时,﹣a为正数;B错误,|a|一定为非负数,可能为正数,也可能是0;C正确,|﹣a|一定不是负数,但可能为0,也可能是正数;D错误,﹣a2不一定是负数,也可能是0.故选C.点评:本题主要考查了正负数的定义,同时也考查了绝对值和乘方的知识.3.对于下列各数:﹣,,﹣6,0,﹣3.14,﹣0.25,其中负数有()A.1个B.2个C.3个D.4个考点:正数和负数.分析:由负数的定义(在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数)求解即可求得答案.解答:解:负数有:﹣,﹣6,﹣3.14,﹣0.25,共4个,故选:D.点评:此题考查了负数的定义.此题比较简单,注意熟记定义是解此题的关键.4.绝对值等于本身的数()A.正数 B.非负数C.零D.非正数考点:绝对值.分析:根据绝对值的定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.而0的相反数也是0,故绝对值等于本身的数是正数或0,即非负数.解答:解:绝对值等于本身的数是非负数.故选B.点评:本题主要考查了绝对值的定义.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列各式中错误的是()A.﹣<﹣2 B.﹣<﹣C.|﹣5|<|﹣5| D.1.7>﹣1.7考点:有理数大小比较.分析:直接利用比较有理数大小的方法分别判断得出答案即可.解答:解:A、∵|﹣|=>|﹣2|=2,∴﹣<﹣2,正确,不合题意;B、∵|﹣|=<|﹣|=,∴﹣>﹣,错误,符合题意;C、|﹣5|=5<|﹣5|=5,故此选项正确,不合题意;D、1.7>﹣1.7,此选项正确,不合题意.故选:B.点评:此题主要考查了有理数大小比较,正确掌握有理数比较大小的方法是解题关键.6.计算(﹣5)+3的结果等于()A.2 B.﹣2 C.﹣8 D.8考点:有理数的加法.分析:依据有理数的加法法则计算即可.解答:解:(﹣5)+3=﹣(5﹣3)=﹣2.故选:B.点评:本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.7.下列算式中正确的有()(1)5﹣(﹣5)=0;(2)(﹣5)﹣(+5)=0;(3)(﹣5)﹣|﹣5|=0.A.0个B.1个C.2个D.3个考点:有理数的减法.分析:根据有理数的减法:减去一个数等于加上这个数的相反数.解答:解:(1)5﹣(﹣5)5+5=10,故(1)错误;(2)(﹣5)﹣(+5)(﹣5)+(﹣5)=﹣10,故(2)错误;(3)(﹣5)﹣|﹣5|=(﹣5)+(﹣5)=﹣10,故(3)错误;故选:A.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.8.若一个数的绝对值等于2,另一个数是1,则这两个数的和是()A.3 B.﹣1 C.3或﹣1 D.±3或±1考点:有理数的加法;绝对值.专题:计算题.分析:利用绝对值的代数意义确定出一个数,求出两数之和即可.解答:解:∵一个数的绝对值等于2,∴这个数为±2,则两数之和为2+1=3或﹣2+1=﹣1.故选C.点评:此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.9.下列说法中错误的有()(1)0不能做除数(2)0没有倒数(3)0除以任何数都得0 (4)0没有相反数.A.1个B.2个C.3个D.4个考点:有理数.分析:根据0的意义,可得答案.解答:解:(1)0不能做除数,故(1)正确;(2)0没有倒数,故(2)正确;(3)0除以任何不等于零数都得0,故(3)错误;(4)0的相反数是0,故(4)错误;故选:B.点评:本题考查了有理数,熟记0的意义是解题关键.10.计算(﹣1)×(﹣5)×(﹣)的结果是()A.﹣1 B.1 C.﹣D.﹣25考点:有理数的乘法.专题:计算题.分析:先根据负因数个数有3个,得到结果为负,再利用乘法法则计算即可得到结果.解答:姐:原式=﹣1×5×=﹣1.故选A点评:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.11.绝对值大于或等于1,而小于4的所有的正整数的和是()A.8 B.7 C.6 D.5考点:绝对值.分析:根据绝对值的性质,求出所有符合题意的数,进行计算求得结果.解答:解:根据题意,得:符合题意的正整数为1,2,3,∴它们的和是1+2+3=6.故选C.点评:此题考查了绝对值的性质.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.有理数a、b在数轴上表示如图所示.下列关系正确的是()A.a<b B.a>b C.|a|>|b| D.a=b考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,b<a<0,∴|a|<|b|,故A、C、D错误,B正确.故选B点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.13.0到﹣3之间的负数共有()个.A.1个B.2个C.3个D.无数个考点:数轴.分析:﹣3与0之间的整数有2个,分数有无数个.解答:解:0到﹣3之间的负数有无数个.故选:D.点评:本题主要考查的是数轴,明确﹣3与0之间有无数个负分数是解题的关键.14.|﹣|的相反数是()A.B.﹣C.﹣3 D.3考点:相反数;绝对值.分析:根据负数的绝对值等于它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得答案.解答:解:|﹣|的相反数是﹣,故选:B.点评:本题考查了的相反数,先求绝对值,再求相反数.二、填空题.(每题3分,共12分)15.如果上升10米记作+10米,那么下降20米记作﹣20米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,可得答案.解答:解:上升10米记作+10米,那么下降20米记作﹣20米,故答案为:﹣20米.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.16.绝对值大于1而不大于3的整数有 4 个.考点:绝对值.分析:根据绝对值的性质写出所有的数即可得解.解答:解:绝对值大于1而不大于3的整数有﹣3、﹣2、2、3共4个.故答案为:4.点评:本题考查了绝对值,熟记性质并写出所有的数是解题的关键.17.若一个数的绝对值为5,则这个数是+5或﹣5考点:绝对值.专题:常规题型.分析:∵|+5|=5,|﹣5|=5,∴绝对值等于5的数有2个,即+5和﹣5,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于5的数有2个,分别位于原点两边,关于原点对称.解答:解:根据绝对值的定义得,绝对值等于5的数有2个,分别是+5和﹣5.故答案为:+5或﹣5.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.18.如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为1或﹣5 .考点:数轴.分析:此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.解答:解:如图所示:与A点相距3个单位长度的点所对应的有理数为1或﹣5.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.三、解答题.19.计算.(1)26+(﹣27)+34+(﹣23);(2)8+(﹣)﹣3﹣(﹣0.25);(3)(﹣﹣+)×48;(4)﹣5×(﹣)﹣13×﹣3÷(﹣).考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式变形后,计算即可得到结果.解答:解:(1)原式=26+34﹣27﹣23=60﹣50=10;(2)原式=8﹣3﹣0.25+0.25=5;(3)原式=32﹣12﹣18+10=42﹣30=12;(4)原式=﹣×(﹣5+13)+3×=﹣+=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2006,﹣(+5),+1.88(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:(1)正数集合:{ ,2006,+1.88,…};(2)负数集合:{﹣4,﹣|﹣|,﹣3.14,﹣(+5),…};(3)整数集合:{﹣4,0,2006,﹣(+5),…};(4)分数集合:{﹣|﹣|,,﹣3.14,+1.88,…}.点评:本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.21.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为﹣39℃,求此处的高度是多少千米?考点:有理数的混合运算.专题:应用题.分析:根据题意,此处的高度=(﹣39﹣21)÷(﹣6)×1,求出数值,即为高度.解答:解:∵高度每增加1km,气温大约降低6℃,某地区的地面温度为21℃,高空某处的温度为﹣39℃,∴该处的高度为:(﹣39﹣21)÷(﹣6)×l=10(km).点评:本题考查了有理数的混合运算在实际生活中的应用.根据题意列出关系式是解题的关键.22.画一条数轴,并在数轴上表示:2,﹣3,﹣3,0,1.5,并把这些数用“<”连接起来.考点:有理数大小比较;数轴.分析:先在数轴上表示各个数,再比较即可.解答:解:﹣3<﹣3<0<1.5<2.点评:本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.23.10筐水果,以每筐35千克为准,超过千克数记作正数,不足的千克数记作负数,记录如下:2,﹣3,2.5,3,﹣0.5,﹣2,3,﹣1,0,﹣2.5.求这10筐水果共超过或不足标准多少千克?这10筐水果一共多少千克?考点:正数和负数.分析:根据有理数的加法,可得答案.解答:解:2+(﹣3)+2.5+3+(﹣0.5)+(﹣2)+3+(﹣1)+0+(﹣2.5)=1.5千克,答:这10筐水果共超过标准1.5千克;35×10+1.5=351.5千克.答:这10筐水果一共351.5千克.点评:本题考查了正数和负数,利用有理数的加法运算是解题关键.24.某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣2,+4,﹣5,+6,﹣7,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?考点:正数和负数.分析:(1)根据有理数的加法运算,可的计算结果,根据正数和负数,可得方向;(2)根据行车就交费,可得营业额.解答:(1)9﹣3﹣2+4﹣5+6﹣7﹣6﹣4+10=2(千米)答将最后一名乘客送到目的地,出租车离鼓楼出发点1千米,在鼓楼的东方;(2)9+|﹣3|+|﹣2|+4+|﹣5|+6+|﹣7|+|﹣6|+|﹣4|+10)×2=134.4(元),答若每千米的价格为2.4元,司机一个下午的营业额是134.4元.点评:本题考查了正数和负数,有理数的加法运算是解(1)的关键,路程的和乘单价是解(2)的关键。

2015年海南省中考数学试卷

2015年海南省中考数学试卷

C. (x 10%)(x 15%) 万元
D. (110%-15%)x 万元
10.点 A(1,1) 是反比例函数 y m 1 的图象上一点,则 m 的值为 x
A. 1
B. 2
C. 0
D.1
()
11.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选
绝密★启用前

海南省 2015 年初中毕业生学业水平考试
数学
本试卷满分 120 分,考试时间 100 分钟.

第Ⅰ卷(选择题 共 42 分)
一、选择题(本大题共 14 小题,每小题 3 分,共 42 分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1. 2 015 的倒数是
()

A. 1
21.(本小题满分 8 分) 为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量指数,绘制 了如下不完整的统计图表:
空气质量指数统计表
空气质量指数条形统计图
三、解答题(本大题共 6 小题,共 62 分.解答应写出文字说明、证明过程或演算步骤)
19.(本小题满分 10 分) (1)计算: (1)3 9 12 22 .
(1)求该二次函数的表达式; (2)求证:四边形 ACHD 是正方形. (3)如图 2,点 M (t, p) 是该二次函数图象上的动点,并且点 M 在第二象限内,过点 M 的直线 y kx 交二次函数的图象于另一点 N . ①若四边形 ADCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围; ②若△CMN 的面积等于 21 ,请求出此时①中 S 的值.
22.(本小题满分 9 分)

海南省2015年中考数学真题试题(含扫描答案)

海南省2015年中考数学真题试题(含扫描答案)

海南省2015 年初中毕业生学业水平考试数学科试题(考试时间100 分钟,满分120 分)一、选择题(本大题满分42 分,每小题3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按.要.求.用2B 铅笔涂黑.1.- 2015 的倒数是A.-1B.20151C.- 2015 D.201520152.下列运算中,正确的是A.a2+a4= a6 B.a6÷a3=a2 C.(- a4)2= a6 D.a2·a4= a6 3.已知x = 1,y = 2,则代数式x - y 的值为A.1 B.- 1 C.2 D.- 34.有一组数据:1、4、- 3、 3、4,这组数据的中位数为A.- 3 B.1 C.3 D.45.图1 是由5 个完全相同的小正方体组成的几何体,则这个几何体的主视图是正面AB C D图16.据报道,2015 年全国普通高考报考人数约9 420 000 人,数据9 420 000 用科学记数法表示为9.42×10n,则n 的值是A.4 B.5 C.6 D.77.如图2,下列条件中,不.能.证明△ABC≌△DCB 的是 A D A.AB =DC,AC =DBC.BO =CO,∠A =∠D3 2B.AB =DC,∠ABC =∠DCBOD.AB =DC,∠A =∠DB C 8.方程x x2的解为图2A.x = 2 B.x = 6 C.x = - 6 D.无解 9.某企业今年1 月份产值为x 万元,2 月份比1 月份减少了10%,3 月份比2 月份增加了15% 则3 月份的产值是A.(1- 10%)(1+15%)x 万元C.(x- 10%)( x+15%)万元B.(1- 10%+15%)x 万元D.(1+10%- 15%)x 万元AMBM P O A BQ P10.点 A (- 1,1)是反比例函数 y m1 的图象上一点,则 m 的值为 xA .- 1B .- 2C .0D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是A . 1 3B . 4 9C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如图 3 所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑C .比赛到 2 分钟时,甲、乙两人跑过的路程相等B .甲先慢后快,乙先快后慢 D .甲先到达终点 13.如图 4,点 P 是□ABCD 边 AB 上的一点,射线 CP 交 DA 的延长线于点 E ,则图中相 似的三角形有A .0 对 S (米) 1000 700 600 500 022.5 图 3B .1 甲 乙 3.25 4 对 E t (分钟) BC .2 对 A P C 图 4D .3 对 D 图 5 14.如图 5, 将⊙O 沿弦 AB 折叠,圆弧恰好经过圆心 O ∠ A PB 的度数为, 点 P 是优弧 ⌒ 上一点,则 A .45°B .30°C .75°D .60°二、填空题(本大题满分 16 分,每小题 4 分)15.分解因式:x 2- 9 =. 16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1 y 2(填“>”或“=”或“<”)17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点 Q 的坐标为. A DB C图6 图718.如图7,矩形ABCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为⎨ x +天数48423630 24 18 12 6 0 2418 1596三、解答题(本大题满分62 分)2x 1≤3 19 (满分10 分)(1)计算:(- 1)3+ 9 - 12×22;(2)解不等式组:3>1 .220 (满分8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌A 型号计算器的单价比B 型号计算器的单价多10 元,5 台A 型号的计算器与7 台 B 型号的计算器的价钱相同,问A、B 两种型号计算器的单价分别是多少?21 (满分8 分)为了治理大气污染,我国中部某市抽取了该市2014 年中120 天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表空气质量指数条形统计图优良请根据图表中提供的信息,解答下面的问题:轻度中度重度污染污染污染严重级别污染(1)空气质量指数统计表中的a = ,m = ;(2)请把空气质量指数条形统计图补充完整;(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度(4)估计该市2014 年(365 天)中空气质量指数大于100 的天数约有天.22 (满分9 分)如图8,某渔船在小岛O 南偏东75°方向的B 处遇险,在小岛O 南偏西45°方向A 处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O 相距8 海里,渔船在中国渔政船的正东方向上.(1)求∠BAO 与∠ABO 的度数(直接写出答案);(2)若中国渔政船以每小时28 海里的速度沿AB 方向赶往B 处救援,能否在1 小时内赶到?请说明理由(参考数据:tan75°˜ 3.73,tan15°˜ 0.27,2 ˜ 1.41,6 ˜2.45北O东AB图823 (满分 13 分)如图 9-1,菱形 ABCD 中,点 P 是 CD 的中点,∠BCD = 60°,射线 AP 交BC 的延长线于点 E ,射线 BP 交 DE 于点 K ,点 O 是线段 BK 的中点.(1)求证:△ADP ≌△ECP ;(2)若 BP = n ·PK ,试求出 n 的值;(3)作 BM ⊥AE 于点 M ,作 KN ⊥AE 于点 N ,连结 MO 、NO ,如图 9-2 所示. 请证明△MON 是等腰三角形,并直接写出∠MON 的度数.A DA D KM KPP O O N B C 图 9-1 E B C E图 9-2 24 (满分 14 分)如图 10-1,二次函数 y = ax 2+bx +3 的图象与 x 轴相交于点 A (- 3,0)、B(1,0) 与 y 轴相交于点 C ,点 G 是二次函数图象的顶点,直线 GC 交 x 轴于点 H (3,0),AD 平 行 GC 交 y 轴于点 D .(1)求该二次函数的表达式;(2)求证:四边形 ACHD 是正方形;(3)如图 10-2,点 M (t ,p )是该二次函数图象上的动点,并且点 M 在第二象限内,过点 M 的直线 y = kx 交二次函数的图象于另一点 N .①若四边形 ADCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围②若△CM N 的面积等于 21 ,请求出此时①中 S 的值.4图 10-1 图 10-2G yM CAB H O xD N G yC A B H O x D。

2015年海南省中考数学试卷及答案

2015年海南省中考数学试卷及答案

海南省2015 年初中毕业生学业水平考试数学科试题(考试时间100 分钟,满分120 分)一、选择题(本大题满分42 分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按.要.求.用2B 铅笔涂黑.1.- 2015 的倒数是A.-1B.20151C.- 2015 D.201520152.下列运算中,正确的是A.a2+a4= a6 B.a6÷a3=a2 C.(- a4)2= a6 D.a2·a4= a63.已知x= 1,y = 2,则代数式x- y 的值为A.1 B.- 1C.2 D.- 34.有一组数据:1、4、- 3、3、4,这组数据的中位数为A.- 3B.1 C.3 D.45.图1是由5个完全相同的小正方体组成的几何体,则这个几何体的主视图是正面A B C D 图16.据报道,2015 年全国普通高考报考人数约9 420 000 人,数据9 420 000 用科学记数法表示为9.42×10n,则n的值是A.4 B.5 C.6 D.77.如图2,下列条件中,不.能.证明△ABC≌△DCB 的是 A DA.AB =DC,AC =DB C.BO =CO,∠A =∠D3 2 B.AB =DC,∠ABC =∠DCBOD.AB =DC,∠A =∠DB C8.方程=x x - 2的解为图2 A.x = 2 B.x = 6 C.x = - 6D.无解9.某企业今年1月份产值为x万元,2 月份比1月份减少了10%,3 月份比2月份增加了15%则3月份的产值是A.(1- 10%)(1+15%)x 万元C.(x- 10%)( x +15%)万元B.(1- 10%+15%)x 万元D.(1+10%- 15%)x 万元AMBMPO AByQP Ox10.点 A (- 1,1)是反比例函数 y =m + 1的图象上一点,则 m 的值为 xA .- 1B .- 2C .0D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是 A . 13B . 4 9C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如 图 3所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑C .比赛到 2 分钟时,甲、乙两人跑过的路程相等 B .甲先慢后快,乙先快后慢D .甲先到达终点13.如图 4,点 P 是□ABCD 边 A B 上的一点,射线 C P 交 D A 的延长线于点 E ,则图中相 似的三角形有 A .0 对 S (米)1000700 600 5002 2.5图 3B .1 甲 乙3.25 4对Et (分钟)BC .2 对A PC 图 4D .3 对D图 514.如图 5, 将⊙O 沿弦 A B 折叠,圆弧恰好经过圆心 O∠ A PB 的度数为 , 点 P 是优弧 ⌒ 上一点,则 A .45°B .30°C .75°D .60°二、填空题(本大题满分 16 分,每小题 4 分) 15.分解因式:x 2- 9 =.16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1y 2(填“>”或“=”或“<”)17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点Q 的坐标为 .ADBC图 6图 718.如图 7,矩形 A BCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为⎨ x +天数48 42 36 30 24 18 12 6 024181596三、解答题(本大题满分 62 分)⎧2x -1≤319 (满分 10 分)(1)计算:(- 1)3+ 9 - 12×2-2; (2)解不等式组: ⎪3>1 .⎛⎪ 220 (满分 8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌 A 型号计算器的单 价比B 型号计算器的单价多 10 元,5 台 A 型号的计算器与 7 台 B 型号的计算器的价钱相 同,问 A 、B 两种型号计算器的单价分别是多少?21 (满分 8 分)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表: 空 气质 量 指 数 统计 表空气质量指数条形统计图优 良请根据图表中提供的信息,解答下面的问题:轻度中度 重度 污染 污染 污染严重 级别 污染(1)空气质量指数统计表中的 a =,m =;(2)请把空气质量指数条形统计图补充完整;(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是 度 (4)估计该市 2014 年(365 天)中空气质量指数大于 100 的天数约有 天.22 (满分 9 分)如图 8,某渔船在小岛 O 南偏东 75°方向的 B 处遇险,在小岛 O 南偏西 45° 方向 A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛 O 相距 8 海里,渔船在中国渔政船的正东方向上.(1)求∠BAO 与∠ABO 的度数(直接写出答案);(2)若中国渔政船以每小时 28 海里的速度沿 A B 方向赶往 B 处救援,能否在 1 小时内赶到?请说明理由 (参考数据: t an 75°˜ 3.73,tan 15°˜ 0.27, 2 ˜ 1.41, 6 ˜ 2.45北A 图 8BO东级 别指 数天数 百分比优 0-50 24 m 良 51-100 a 40% 轻度污染 101-150 18 15% 中度污染 151-200 15 12.5% 重度污染 201-300 9 7.5% 严重污染 大于 300 6 5% 合计 ———— 120 100%23 (满分 13 分)如图 9-1,菱形 A BCD 中,点 P 是 C D 的中点,∠BCD = 60°,射线 A P 交BC 的延长线于点 E ,射线 B P 交 D E 于点 K ,点 O 是线段 B K 的中点. (1)求证:△ADP ≌△ECP ; (2)若 B P = n ·PK ,试求出 n 的值;(3)作 B M ⊥AE 于点 M ,作 K N ⊥AE 于点 N ,连结 M O 、NO ,如图 9-2 所示. 请证明△MON是等腰三角形,并直接写出∠MON 的度数.ADADK MKP P OO NB C图 9-1E B CE图 9-224 (满分 14 分)如图 10-1,二次函数 y = ax 2+bx +3 的图象与 x 轴相交于点 A (- 3,0)、B (1,0) 与 y 轴相交于点 C ,点 G 是二次函数图象的顶点,直线 G C 交 x 轴于点 H (3,0),AD 平 行 G C 交 y 轴于点 D .(1)求该二次函数的表达式; (2)求证:四边形 A CHD 是正方形;(3)如图 10-2,点 M (t ,p )是该二次函数图象上的动点,并且点 M 在第二象限内,过 点 M的直线 y = kx 交二次函数的图象于另一点 N .①若四边形 A DCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围 ②若△CMN 的面积等于21,请求出此时①中 S 的值. 4图 10-1图10-2GyMCABH OxD NGy CABH OxD。

2015中考数学模拟试题含答案

2015中考数学模拟试题含答案

2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。

2015年海南省中考数学模拟试题(五)-2.doc

2015年海南省中考数学模拟试题(五)-2.doc

2015年海南省中考数学模拟试题(五)(考试时间100分钟,满分120分)欢迎你参加这次测试,祝你成功!一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答题..卡.上表中相应题号的方格内. 1. 如果收入80元记作+80元,那么支出20元记作( ) A . +20元 B . ﹣20元 C . +100元 D . ﹣100元2. 地球上的陆地而积约为149000000km 2.将149000000用科学记数法表示为( ) A .1.49×106 B . 1.49×107 C . 1.49×108 D . 1.49×109 3.如图1所示的几何体的主视图是4. 如图2所示,已知直线AB ∥CD ,125C ∠=°,45A ∠=°,则E ∠等于A .70°B .80°C .90°D .100°5. 设计一张折叠型方桌子如图3,其主视图如图4,若50AO BO cm ==,30CO DO cm ==,将桌子放平后,要使AB 距离地面的高为40cm ,则两条桌腿需要叉开的∠AOB 应为A .60ºB .90ºC .120ºD .150º 6. 点(1,2)P -关于x 轴对称的点的坐标为A .(1,2)B .(1,2)-C .(1,2)-D .(1,2)-- 7. 为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了调查统计,那么最终买什么水果,下面的调查数据中最值得关注的是A.平均数B.加权平均数C.中位数D.众数 8.设a b ,是方程020142=-+x x 的两个实数根,则22a a b ++的值为 A .2013 B .2014 C .2015 D .2016 9.已知方程组24,25,x y x y +=⎧⎨+=⎩则x y +的值为( )A .1-B.0C .2D .310.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( )图3图4A B C D图1图2A .l =2rB .l =3rC .l =rD .l =3211.在正方形网格中,△ABC 位置如图5所示,则cos ∠ABC 的值为 B.23 C.22 D.1212.如图6,两个反比例函数y = k 1x 和y = k 2x 在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC⊥x 轴于点C ,交C 2于点A ,PD⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为 A .k 1·k 2 B .k 1k 2 C .k 1+k 2 D .k 1-k 213.如图7,O 内切于ABC △,切点D E F ,,分别在BC ,AB ,AC 上.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于A .40°B .55°C .65°D .70°14.一个面积为20的矩形,若长与宽分别为y x ,,则y 与x 之间的关系用图像可表示为二、填空题(本大题满分16分,每小题4分)15. 分解因式:=-a ax 162.16.如图8,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为9π,则弦AB 的长为 .17.如图9,正方形纸片ABCD 的边长为1,M N ,分别是AD BC 、边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E ,若M N ,分别是AD BC ,边的中点,则A N '= .A B CDA BC图5D y图6图718.正方形O C B A 111,1222C C B A ,2333C C B A … 按如图10所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则6B 的坐标是__________.三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分) (1)计算:19sin 30π-32-0°+();(2)化简:232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭. 20.(本题满分8分)某地为青海省玉树大地震灾区进行募捐,共收到粮食280吨,副食品200吨.现计划租用甲、乙两种货车共8辆将这批物资全部运往灾区,已知一辆甲种货车同时最多可装粮食50吨和副食品20吨,一辆乙种货车同时最多可装粮食和副食品各30吨. (1)将这些物资一次性运到目的地,有几种租用货车的方案?请你帮助设计出来.(2)若甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,要使运输总费用最少?应选择哪种方案?21.(本题满分8分)学习了统计知识后,小红和小莉就本班同学“我最喜爱的体育明星”进行了一次调查统计,图11和图12是她们通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题: (1)求该班共有多少名学生?(2)在扇形统计图中,“刘翔”部分所对应的圆心角的度数为 ; (3)若全校有4000名学生,请估计“最喜爱郭晶晶”的学生有多少名?图8 MA 'DE A B NC 图9 图12 姚明40%刘翔其它10%郭晶晶 图11图1322.(本题满分9分)如图13,钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛 海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一我国渔政执法船C ,求此时船C 与船B 的距离是多少.(结果保留根号) 23. (本题满分13分)提出问题:(1)如图14.1,在正方形ABCD 中,点E ,H 分别在BC ,AB 上,若AE ⊥DH 于点O ,求证:AE =DH ; 类比探究:(2)如图14.2,在正方形ABCD 中,点H ,E ,G ,F 分别在AB ,BC ,CD ,DA 上,若EF ⊥HG 于点O ,探究线段EF 与HG 的数量关系,并说明理由; 综合运用:(3)在(2)问条件下,HF ∥GE ,如图14.3所示,已知BE =EC =2,EO =2FO ,求图中阴影部分的面积.24、(本题满分14分)如图15,在平面直角坐标系xoy 中,抛物线2y ax bx c =++与x 轴, y 轴的交点分别为点(18,0)A ,点(0,10)B ,过点B 作x 轴的平行线BC ,交抛物线于点(8,10)C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥点F .设动点P ,Q 移动的时间为t (单位:秒) (1)求抛物线的解析式和抛物线的顶点的坐标; (2)当t 为何值时,四边形PQCA 为平行四边形? 请写出计算过程;(3)当0<t <4.5时, PQF ∆若是,求出此定值,若不是,请说明理由;图14.1图14.2图14.3最大最全最精的教育资源网 (4)当t 为何值时,OPD ∆与OAC ∆相似?。

2015年海南省中考数学试卷解析版

2015年海南省中考数学试卷解析版

海南省2015年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(每小题3分,共42分)1.(2015•海南)﹣2015的倒数是()A.﹣B.C.﹣2015 D.20152.(2015•海南)下列运算中,正确的是()A.a2+a4=a6 B.a6÷a3=a2 C.(﹣a4)2=a6 D.a2•a4=a63.(2015•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣34.(2015•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1 C.3 D.45.(2015•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.6.(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4 B. 5 C. 6 D.77.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D8.(2015•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解9.(2015•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元10.(2015•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.111.(2015•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.12.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点13.(2015•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°二、填空题(每小题4分,共16分)15.(2015•海南)分解因式:x2﹣9=.16.(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”)17.(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为.18.(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.三、解答题(本题共6小题,共62分)19.(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.20.(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?21.(2015•海南)为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣50 24 m良51﹣100 a 40%轻度污染101﹣150 18 15%中度污染151﹣200 15 12.5%重度污染201﹣300 9 7.5%严重污染大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=,m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)估计该市2014年(365天)中空气质量指数大于100的天数约有天.22.(2015•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)23.(2015•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC 的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON 是等腰三角形,并直接写出∠MON的度数.24.(2015•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD 平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M 的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.2015年海南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(2015•海南)﹣2015的倒数是()A.﹣B.C.﹣2015 D.2015考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2015×(﹣)=1,∴﹣2015的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(2015•海南)下列运算中,正确的是()A.a2+a4=a6 B.a6÷a3=a2 C.(﹣a4)2=a6 D.a2•a4=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2•a4=a6,故错误;B、a6÷a3=a3,故错误;C、(﹣a4)2=a8,故错误;D、正确;故选:D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(2015•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3考点:代数式求值.分析:根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.解答:解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.点评:此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(2015•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1 C.3 D.4考点:中位数.分析:根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.解答:解:将这组数据从小到大排列为:﹣3,1,3,4,4,中间一个数为3,则中位数为3.故选C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(2015•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的视图是主视图,可得答案.解答:解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4 B. 5 C. 6 D.7考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于有7位,所以可以确定n=7﹣1=6.解答:解:∵9420000=9.42×106,∴n=6.故选C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D考点:全等三角形的判定.分析:本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.解答:解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2015•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解考点:解分式方程.专题:计算题.分析:本题考查解分式方程的能力,观察可得最简公分母是x(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.解答:解:方程两边同乘以x(x﹣2),得3(x﹣2)=2x,解得x=6,将x=6代入x(x﹣2)=24≠0,所以原方程的解为:x=6,故选B.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(2015•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元考点:列代数式.分析:根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.解答:解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选A点评:本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.10.(2015•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1考点:反比例函数图象上点的坐标特征.分析:把点A(﹣1,1)代入函数解析式,即可求得m的值.解答:解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.11.(2015•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中两名男学生的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴恰好选中两名男学生的概率是:=.故选A.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点考点:函数的图象.分析:根据给出的函数图象对每个选项进行分析即可.解答:解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.点评:本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.13.(2015•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对考点:相似三角形的判定;平行四边形的性质.分析:利用相似三角形的判定方法以及平行四边形的性质得出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.点评:此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.14.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°考点:圆周角定理;含30度角的直角三角形;翻折变换(折叠问题).专题:计算题.分析:作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.解答:解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,而OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.二、填空题(每小题4分,共16分)15.(4分)(2015•海南)分解因式:x2﹣9=(x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.16.(4分)(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1<y2(填“>”或“=”或“<”)考点:一次函数图象上点的坐标特征.分析:根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.解答:解:∵k=2>0,y将随x的增大而增大,2>﹣1,∴y1<y2.故y1与y2的大小关系是:y1<y2.故答案为:<点评:本题考查一次函数的图象性质,关键是根据当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.17.(4分)(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为(2,4).考点:坐标与图形变化-旋转.分析:首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.解答:解:作图如右,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(4,2),∴Q点坐标为(2,4),故答案为(2,4).点评:此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.18.(4分)(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为14.考点:矩形的性质.分析:运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.解答:解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(3+4)=14.故答案为:14.点评:本题考查了平移的性质,矩形性质,勾股定理的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三、解答题(本题共6小题,共62分)19.(10分)(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.考点:实数的运算;负整数指数幂;解一元一次不等式组.专题:计算题.分析:(1)原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=﹣1﹣3﹣12×=﹣1﹣3﹣3=﹣7;(2),由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?考点:一元一次方程的应用.分析:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依据“5台A 型号的计算器与7台B型号的计算器的价钱相同”列出方程并解答.解答:解:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依题意得:5x=7(x﹣10),解得x=35.所以35﹣10=25(元).答:A号计算器的单价为35元,则B型号计算器的单价是25元.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(8分)(2015•海南)为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣50 24 m良51﹣100 a 40%轻度污染101﹣150 18 15%中度污染151﹣200 15 12.5%重度污染201﹣300 9 7.5%严重污染大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=48,m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;(4)估计该市2014年(365天)中空气质量指数大于100的天数约有146天.考点:条形统计图;用样本估计总体;统计表;扇形统计图.分析:(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.解答:解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(9分)(2015•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)考点:解直角三角形的应用-方向角问题.分析:(1)作OC⊥AB于C,根据方向角的定义得到∠AOC=45°,∠BOC=75°,由直角三角形两锐角互余得出∠BAO=90°﹣∠AOC=45°,∠ABO=90°﹣∠BOC=15°;(2)先解Rt△OAC,得出AC=OC=OA≈5.64海里,解Rt△OBC,求出BC=OC•tan∠BOC≈21.0372海里,那么AB=AC+BC≈26.6772海里,再根据时间=路程÷速度求出中国渔政船赶往B处救援所需的时间,与1小时比较即可求解.解答:解:(1)如图,作OC⊥AB于C,由题意得,∠AOC=45°,∠BOC=75°,∵∠ACO=∠BCO=90°,∴∠BAO=90°﹣∠AOC=90°﹣45°=45°,∠ABO=90°﹣∠BOC=90°﹣75°=15°;(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.理由如下:∵在Rt△OAC中,∠ACO=90°,∠AOC=45°,OA=8海里,∴AC=OC=OA≈4×1.41=5.64海里.∵在Rt△OBC中,∠BCO=90°,∠BOC=75°,OC=4海里,∴BC=OC•tan∠BOC≈5.64×3.73=21.0372海里,∴AB=AC+BC≈5.64+21.0372=26.6772海里,∵中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,∴中国渔政船所需时间:26.6772÷28≈0.953小时<1小时,故若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.点评:本题考查了解直角三角形的应用﹣方向角问题,直角三角形的性质,锐角三角函数定义,准确作出辅助线构造直角三角形是解题的关键.23.(13分)(2015•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON 是等腰三角形,并直接写出∠MON的度数.考点:四边形综合题.分析:(1)根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理证明结论;(2)作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质证明结论;(3)作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON 是等腰三角形,根据直角三角形的性质和锐角三角函数求出∠MON的度数.解答:(1)证明:∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在△ADP和△ECP中,,∴△ADP≌△ECP;(2)如图1,作PI∥CE交DE于I,则=,又点P是CD的中点,∴=,∵△ADP≌△ECP,∴AD=CE,∴==,∴BP=3PK,∴n=3;(3)如图2,作OG⊥AE于G,∵BM丄AE于,KN丄AE,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,由(2)得,PB=3PO,∴OG=BM=,MG=MP=,tan∠MOG==,∴∠MOG=60°,∴∠MON的度数为120°.点评:本题考查的是菱形的性质和相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意锐角三角函数在解题中的运用.24.(14分)(2015•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M 的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.考点:二次函数综合题.分析:(1)根据二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),应用待定系数法,求出a、b的值,即可求出二次函数的表达式.(2)首先分别求出点C、G、H、D的坐标;然后判断出AO=CO=DO=HO=3,AH⊥CD,判断出四边形ACHD是正方形即可.(3)①作ME⊥x轴于点E,作MF⊥y轴于点F,根据四边形ADCM的面积为S,可得S=S+S△AOD,再分别求出S四边形AOCM、S△AOD即可.四边形AOCM②首先设点N的坐标是(t1,p1),则NI=|t1|,所以S△CMN=S△COM+S△CON=(|t|+|t1|),再根据t<0,t1>0,可得S△CMN=(|t|+|t1|)==,据此求出t1﹣t=;然后求出k1、k2的值是多少,进而求出t1、t2的值是多少,再把它们代入S关于t的函数表达式,求出S的值是多少即可.解答:解:(1)∵二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),∴解得∴二次函数的表达式为y=﹣x2﹣2x+3.(2)如图1,,∵二次函数的表达式为y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴点G的坐标是(﹣1,4),∵点C的坐标为(0,3),∴设CG所在的直线的解析式是y=mx+3,则﹣m+3=4,∴m=﹣1,∴CG所在的直线的解析式是y=﹣x+3,∴点H的坐标是(3,0),设点D的坐标是(0,p),则,∴p=﹣3,∵AO=CO=DO=HO=3,AH⊥CD,∴四边形ACHD是正方形.(3)①如图2,作ME⊥x轴于点E,作MF⊥y轴于点F,,∵四边形ADCM的面积为S,∴S=S四边形AOCM+S△AOD,∵AO=OD=3,∴S△AOD=3×3÷2=4.5,∵点M(t,p)是y=kx与y=﹣x2﹣2x+3在第二象限内的交点,∴点M的坐标是(t,﹣t2﹣2t+3),∵ME=﹣t2﹣2t+3,MF=﹣t,∴S四边形AOCM=×3×(﹣t2﹣2t+3)=﹣t2﹣t+,∴S=﹣t2﹣t++4.5=﹣t2﹣t+9,﹣3<t<0.②如图3,作NI⊥x轴于点I,,设点N的坐标是(t1,p1),则NI=|t1|,∴S△CMN=S△COM+S△CON=(|t|+|t1|),∵t<0,t1>0,∴S△CMN=(|t|+|t1|)==,,联立可得x2﹣(k+2)x﹣3=0,∵t1、t是方程的两个根,∴∴=﹣4t1t=(k+2)2﹣4×(﹣3)==,解得,,a、k=﹣时,由x2+(2﹣)x﹣3=0,解得x1=﹣2,或(舍去).b、k=﹣时,由x2+(2﹣)x﹣3=0,解得x3=﹣,或x4=2(舍去),∴t=﹣2,或t=﹣,t=﹣2时,S=﹣t2﹣t+9=﹣×4﹣×(﹣2)+9=12t=﹣时,S=﹣×﹣×+9=,∴S的值是12或.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合方法的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了待定系数法求函数解析式的方法,以及方程的根与系数的关系,要熟练掌握.(3)此题还考查了三角形的面积的求法,以及正方形的判定和性质的应用,要熟练掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省侨中三亚学校2015届中考数学模拟试题五一、选择题(本题有14个小题,每小题3分,共42分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.2.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为()A.2.56×105B.25.6×105C.2.56×104D.25.6×1043.下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x24.下列所给的几何体中,主视图是三角形的是()A.B.C.D.5.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63° B.83° C.73° D.53°6.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B.C.D.27.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<2 D.m>28.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.9.如图,在△ABC中,DE∥BC,若,DE=4,则BC=()A.9 B.10 C.11 D.1210.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,)A.众数是6度B.平均数是6.8度C.极差是5度D.中位数是6度11.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=312.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4 B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)213.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.414.如图,已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连结AC.若∠CAB=30°,则BD的长为()A.R B. R C.2R D. R二、填空题(本题满分16分,每小题4分)15.若点(4,m)在反比例函数y=(x≠0)的图象上,则m的值是.16.晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是.17.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).18.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.三、解答题(本题满分62分)19.(1)计算:;(2)先化简,再求值:(a﹣2)(a+2)﹣a(a﹣2),其中a=﹣1.20.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.21.学校集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.则大、小车每辆的租车费各是多少元?22.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)23.如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.24.如图,抛物线y=与x轴交于A,B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.2015年海南省侨中三亚学校中考数学模拟试卷(5)参考答案与试题解析一、选择题(本题有14个小题,每小题3分,共42分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.【考点】相反数;绝对值.【分析】利用相反数,绝对值的概念及性质进行解题即可.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A.【点评】此题主要考查了相反数,绝对值的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;求出|﹣2|=2,再利用相反数定义是解决问题的关键.2.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为()A.2.56×105B.25.6×105C.2.56×104D.25.6×104【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:256 000这一人数用科学记数法表示为2.56×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算中,正确的是()A.x2+x4=x6B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据合并同类项,可判断B;根据幂的乘方,可判断C;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同类项不能合并,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.下列所给的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形,得出主视图是三角形的即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项正确;C、主视图为等腰梯形,故本选项错误;D、主视图为正方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.63° B.83° C.73° D.53°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】因为AC∥ED,所以∠BED=∠EAC,而∠EAC是△ABC的外角,所以∠BED=∠EAC=∠CBE+∠C.【解答】解:∵在△ABC中,∠C=26°,∠CBE=37°,∴∠CAE=∠C+∠CBE=26°+37°=63°,∵AC∥ED,∴∠BED=∠CAE=63°.故选A.【点评】本题考查的是三角形外角与内角的关系及两直线平行的性质.6.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.2【考点】锐角三角函数的定义.【专题】网格型.【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.【点评】通过构造直角三角形来求解,利用了锐角三角函数的定义.7.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<2 D.m>2【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,∴2﹣m<0,∴m>2.故选D.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.8.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.【解答】解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<﹣3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是﹣3<x≤2,故D选项正确.故选:D.【点评】在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.9.如图,在△ABC中,DE∥BC,若,DE=4,则BC=()A.9 B.10 C.11 D.12【考点】相似三角形的判定与性质.【分析】由DE∥BC,可求出△ADE∽△ABC,已知了它们的相似比和DE的长,可求出BC的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC∴=∵DE=4∴BC=12故本题选D.【点评】此题考查了相似三角形的判定与性质:三角形一边的平行线截三角形另两边或另两边的延长线所得三角形与原三角形相似;相似三角形对应边的比相等.10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,)A.众数是6度B.平均数是6.8度C.极差是5度D.中位数是6度【考点】中位数;算术平均数;众数;极差.【专题】压轴题;图表型.【分析】众数是指一组数据中出现次数最多的数据;而中位数是指将一组数据按从小(或大)到大(或小)的顺序排列起来,位于最中间的数(或是最中间两个数的平均数);极差是最大数与最小数的差.【解答】解:A、数据6出现了5次,出现次数最多,所以众数是6度,故选项正确;B、平均数=(5×2+6×5+7×4+8×3+10×1)÷15=6.8度,故选项正确;C、极差=10﹣5=5度,故选项正确;D、本题数据共有15个数,故中位数应取按从小到大的顺序排列后的第8个数,所以中位数为7度,故选项错误.故选D.【点评】本题重点考查平均数,中位数,众数及极差的概念及求法.解题的关键是熟记各个概念.11.一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=3【考点】解一元二次方程-因式分解法;因式分解-十字相乘法等;解一元一次方程.【专题】计算题.【分析】分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:C.【点评】本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.12.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4 B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)2【考点】因式分解-运用公式法.【分析】这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:x2﹣4x+4=x2﹣2•2x+22=(x﹣2)2.故选C.【点评】应该牢记公式法分解的特点:必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.13.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.14.如图,已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连结AC.若∠CAB=30°,则BD的长为()A.R B. R C.2R D. R【考点】切线的性质.【分析】连接OC,由DC是⊙O的切线,则△DCO是直角三角形;由圆周角定理可得∠DOC=2∠CAB=60°,则OD=2OC=20B,BD的长即可求出.【解答】解:连接OC.∵DC是⊙O的切线,∴OC⊥CD,即∠OCD=90°.又∵∠BOC=2∠A=60°,∴Rt△DOC中,∠D=30°,∴OD=2OC=20B=OB+BD,∴BD=OB=R.故选A.【点评】本题考查了切线的性质及圆周角定理.解答该题的切入点是从切线的性质入手,推知△DOC 为含30度角的直角三角形.二、填空题(本题满分16分,每小题4分)15.若点(4,m)在反比例函数y=(x≠0)的图象上,则m的值是 2 .【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】直接把点(4,m)代入函数解析式,即可求出m的值.【解答】解:∵点(4,m)在反比例函数y=(x≠0)的图象上,∴m=,解得m=2.故答案为:2.【点评】本题主要考查点在函数图象上的含义,点在函数图象上,点的坐标一定满足函数解析式.16.晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是.【考点】几何概率.【专题】压轴题.【分析】让2的个数除以数的总数即可.【解答】解:图中共有8个相等的区域,含2的有4个,转盘停止时指针指向2的概率是=.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是∠APO=∠BPO等(只写一个即可,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP.【解答】解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO等.【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.18.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为8 .【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理可知AM的长,根据勾股定理可将OM的长求出,从而可将DM的长求出.【解答】解:连接OA,∵AB⊥CD,AB=8,∴根据垂径定理可知AM=AB=4,在Rt△OAM中,OM===3,∴DM=OD+OM=8.故答案为:8.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.三、解答题(本题满分62分)19.(1)计算:;(2)先化简,再求值:(a﹣2)(a+2)﹣a(a﹣2),其中a=﹣1.【考点】特殊角的三角函数值;整式的混合运算—化简求值.【专题】计算题.【分析】(1)根据乘方、二次根式、特殊角的三角函数值及绝对值的性质解答即可;(2)先找到公因式(a﹣2),再提公因式即可.【解答】解:(1)原式=4+2×2﹣8×﹣3=4+4﹣4﹣3=1;(2)原式=(a﹣2)(a+2﹣2)=(a﹣2)a=a2﹣2a=(﹣1)2﹣2×(﹣1)=1+2=3.【点评】此题考查了特殊角的三角函数值和整式的混合运算,熟悉基本的运算法则,记住特殊值是解题的关键.20.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据条形图、扇形图的意义,并灵活综合运用.(1)喜欢篮球的13人,占26%;则13÷26%=50,本次被调查的人数是50;(2)用样本估计总体:∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人;(3)结合实际意义,提出建议.【解答】解:(1)∵13÷26%=50,∴本次被调查的人数是50.补全的条形统计图如图所示;(2)∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人;(3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分)【点评】本题考查的是条形统计图、扇形图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.学校集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.则大、小车每辆的租车费各是多少元?【考点】二元一次方程组的应用.【分析】利用租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,进而分别得出等式求出即可.【解答】解:设租大车每辆x元,小车每辆y元,则,解得:.答:大车每辆的租车费位400元,小车每辆的租车费是300元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.22.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用.【分析】根据AD=xm,得出BD=xm,进而利用解直角三角形的知识解决,注意运算的正确性.【解答】解:假设AD=xm,∵AD=xm,∴BD=xm,∵∠ACD=30°,∠ABD=45°,BC=50m,∴tan30°==,∴=,∴AD=25(+1)≈68.3m.【点评】此题主要考查了解直角三角形的应用,根据已知假设出AD的长度,进而表示出ta n30°=是解决问题的关键.23.如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】几何动点问题;证明题.【分析】(1)根据四边形ABCD是正方形,BD是对角线,且GH∥BC,求证△GEB和△HDE都是等腰直角三角形.又利用EF⊥AE,可得∠EFH=∠AEG,然后即可求证△AGE≌△EHF.(2)分两种情况进行讨论:(i)当点E运动到BD的中点时,利用四边形AFHG是矩形,可得S四边形AFHG=(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFHG是直角梯形.由(1)知,△AGE≌△EHF,同理,图(2),△AGE≌△EHF可得,S四边形AFHG=(FH+AG)•GH=,然后即可得出结论.【解答】解:(1)∵四边形ABCD是正方形,BD是对角线,且GH∥BC,∴四边形AGHD和四边形GHCB都是矩形,△GEB和△HDE都是等腰直角三角形.∴∠AGE=∠EHF=90°,GH=BC=AB,EG=BG∴GH﹣EG=AB﹣BG即EH=AG∴∠EFH+∠FEH=90°又∵EF⊥AE,∴∠AEG+∠FEH=90°.∴∠EFH=∠AEG∴△AGE≌△EHF(2)四边形AFHG的面积没有发生变化.(i)当点E运动到BD的中点时,四边形AFHG是矩形,S四边形AFHG=(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFHG是直角梯形.由(1)知,△AGE≌△EHF同理,图(2),△AGE≌△EHF∴FH=EG=BG.∴FH+AG=BG+AG=AB=1这时,S四边形AFHG=(FH+AG)•GH=综合(i)、(ii)可知四边形AFHG的面积没有发生改变,都是.【点评】此题主要考查正方形的性质,全等三角形的判定与性质等知识点的理解和掌握,此题有一定的拔高难度,属于难题.24.如图,抛物线y=与x轴交于A,B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)根据题意可得点A,C的坐标,代入函数解析式即可求得b,c的值;(2)根据题意求的点B的坐标,即可求得△OBC为等腰三角形,可得点E的横纵坐标相等,解方程即可求得点E的坐标;(3)作PE∥OB,根据平行四边形的判定定理,证得PE=OB即可.【解答】解:(1)由图可得A(﹣2,0)、C(0,3),∵A、C在抛物线y=上,∴,解得,∴抛物线的解析式为y=.(2)过O作OD⊥BC垂足为D交抛物线于E,由(1)得抛物线与x轴的交点B(3,0),∴OB=OC即△OBC为等腰直角三角形,∵OD⊥BC,∴∠EOB=45°,又∵E在第一象限内,∴易知E的横坐标与纵坐标相等.设E(x,x),则有x=,解得x1=2,x2=﹣3(不合题意,舍去),∴E(2,2).(3)过E作EP∥OB交抛物线于P,设P(m,n),∵EP∥OB,∴n=2,由于P在抛物线上,∴2=,解得m1=﹣1,m2=2(不合题意,舍去).∴P(﹣1,2),∵PE∥OB且PE=OB,∴四边形OBEP是平行四边形,∴存在一点P(﹣1,2)使得四边形OBEP是平行四边形.【点评】此题考查了二次函数与三角形以及平行四边形的综合知识,解题时要注意认真审题,要注意数形结合思想的应用.。

相关文档
最新文档