蚁群算法(C++版)

蚁群算法(C++版)
蚁群算法(C++版)

// AO.cpp : 定义控制台应用程序的入口点。

#pragma once

#include

#include

#include

const double ALPHA=1.0; //启发因子,信息素的重要程度

const double BETA=2.0; //期望因子,城市间距离的重要程度

const double ROU=0.5; //信息素残留参数

const int N_ANT_COUNT=34; //蚂蚁数量

const int N_IT_COUNT=1000; //迭代次数

const int N_CITY_COUNT=51; //城市数量

const double DBQ=100.0; //总的信息素

const double DB_MAX=10e9; //一个标志数,10的9次方

double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素

double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离

//eil51.tsp城市坐标数据

double x_Ary[N_CITY_COUNT]=

{

37,49,52,20,40,21,17,31,52,51,

42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58,

37,38,46,61,62,63,32,45,59,5,

10,21,5,30,39,32,25,25,48,56,

30

};

double y_Ary[N_CITY_COUNT]=

{

52,49,64,26,30,47,63,62,33,21,

41,32,25,42,16,41,23,33,13,58,

42,57,57,52,38,68,48,67,48,27,

69,46,10,33,63,69,22,35,15,6,

17,10,64,15,10,39,32,55,28,37,

40

};

//返回指定范围内的随机整数

int rnd(int nLow,int nUpper)

{

return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1); }

//返回指定范围内的随机浮点数

double rnd(double dbLow,double dbUpper)

{

double dbTemp=rand()/((double)RAND_MAX+1.0); return dbLow+dbTemp*(dbUpper-dbLow);

}

//返回浮点数四舍五入取整后的浮点数

double ROUND(double dbA)

{

return (double)((int)(dbA+0.5));

}

//定义蚂蚁类

class CAnt

{

public:

CAnt(void);

~CAnt(void);

public:

int m_nPath[N_CITY_COUNT]; //蚂蚁走的路径

double m_dbPathLength; //蚂蚁走过的路径长度

int m_nAllowedCity[N_CITY_COUNT]; //没去过的城市 int m_nCurCityNo; //当前所在城市编号

int m_nMovedCityCount; //已经去过的城市数量public:

int ChooseNextCity(); //选择下一个城市

void Init(); //初始化

void Move(); //蚂蚁在城市间移动

void Search(); //搜索路径

void CalPathLength(); //计算蚂蚁走过的路径长度};

//构造函数

CAnt::CAnt(void)

{

}

//析构函数

CAnt::~CAnt(void)

{

}

//初始化函数,蚂蚁搜索前调用

void CAnt::Init()

{

for (int i=0;i

{

m_nAllowedCity[i]=1; //设置全部城市为没有去过 m_nPath[i]=0; //蚂蚁走的路径全部设置为0

}

//蚂蚁走过的路径长度设置为0

m_dbPathLength=0.0;

//随机选择一个出发城市

m_nCurCityNo=rnd(0,N_CITY_COUNT);

//把出发城市保存入路径数组中

m_nPath[0]=m_nCurCityNo;

//标识出发城市为已经去过了

m_nAllowedCity[m_nCurCityNo]=0;

//已经去过的城市数量设置为1

m_nMovedCityCount=1;

}

//选择下一个城市

//返回值为城市编号

int CAnt::ChooseNextCity()

{

int nSelectedCity=-1; //返回结果,先暂时把其设置为-1

//================================================== ============================

//计算当前城市和没去过的城市之间的信息素总和

double dbTotal=0.0;

double prob[N_CITY_COUNT]; //保存各个城市被选中的概率

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

prob[i]=pow(g_Trial[m_nCurCityNo][i],ALPHA)*pow(1.0/g_Distance[m_nCurCityNo][ i],BETA); //该城市和当前城市间的信息素

dbTotal=dbTotal+prob[i]; //累加信息素,得到总和

}

else //如果城市去过了,则其被选中的概率值为0

{

prob[i]=0.0;

}

}

//================================================== ============================

//进行轮盘选择

double dbTemp=0.0;

if (dbTotal > 0.0) //总的信息素值大于0

{

dbTemp=rnd(0.0,dbTotal); //取一个随机数

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

dbTemp=dbTemp-prob[i]; //这个操作相当于转动轮盘,如果对轮盘选择不熟悉,仔细考虑一下

if (dbTemp < 0.0) //轮盘停止转动,记下城市编号,直接跳出循环

{

nSelectedCity=i;

break;

}

}

}

}

//================================================== ============================

//如果城市间的信息素非常小 ( 小到比double能够表示的最小的数字还要小 )

//那么由于浮点运算的误差原因,上面计算的概率总和可能为0

//会出现经过上述操作,没有城市被选择出来

//出现这种情况,就把第一个没去过的城市作为返回结果

//题外话:刚开始看的时候,下面这段代码困惑了我很长时间,想不通为何要有这段代码,后来才搞清楚。

if (nSelectedCity == -1)

{

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

nSelectedCity=i;

break;

}

}

}

//================================================== ============================

//返回结果,就是城市的编号

return nSelectedCity;

}

//蚂蚁在城市间移动

void CAnt::Move()

{

int nCityNo=ChooseNextCity(); //选择下一个城市

m_nPath[m_nMovedCityCount]=nCityNo; //保存蚂蚁走的路径

m_nAllowedCity[nCityNo]=0;//把这个城市设置成已经去过了

m_nCurCityNo=nCityNo; //改变当前所在城市为选择的城市

m_nMovedCityCount++; //已经去过的城市数量加1

}

//蚂蚁进行搜索一次

void CAnt::Search()

{

Init(); //蚂蚁搜索前,先初始化

//如果蚂蚁去过的城市数量小于城市数量,就继续移动

while (m_nMovedCityCount < N_CITY_COUNT)

{

Move();

}

//完成搜索后计算走过的路径长度

CalPathLength();

}

//计算蚂蚁走过的路径长度

void CAnt::CalPathLength()

{

m_dbPathLength=0.0; //先把路径长度置0

int m=0;

int n=0;

for (int i=1;i

{

m=m_nPath[i];

n=m_nPath[i-1];

m_dbPathLength=m_dbPathLength+g_Distance[m][n]; }

//加上从最后城市返回出发城市的距离

n=m_nPath[0];

m_dbPathLength=m_dbPathLength+g_Distance[m][n];

}

//tsp类

class CTsp

{

public:

CTsp(void);

~CTsp(void);

public:

CAnt m_cAntAry[N_ANT_COUNT]; //蚂蚁数组

CAnt m_cBestAnt; //定义一个蚂蚁变量,用来保存搜索过程中的最优结果 //该蚂蚁不参与搜索,只是用来保存最优结果

public:

//初始化数据

void InitData();

//开始搜索

void Search();

//更新环境信息素

void UpdateTrial();

//构造函数

CTsp::CTsp(void)

{

}

CTsp::~CTsp(void)

{

}

//初始化数据

void CTsp::InitData()

{

//先把最优蚂蚁的路径长度设置成一个很大的值

m_cBestAnt.m_dbPathLength=DB_MAX;

//计算两两城市间距离

double dbTemp=0.0;

for (int i=0;i

{

for (int j=0;j

{

dbTemp=(x_Ary[i]-x_Ary[j])*(x_Ary[i]-x_Ary[j])+(y_Ary[i]-y_Ary[j])*(y_Ary[i]-y_Ary[j]);

dbTemp=pow(dbTemp,0.5);

g_Distance[i][j]=ROUND(dbTemp);

}

}

//初始化环境信息素,先把城市间的信息素设置成一样

//这里设置成1.0,设置成多少对结果影响不是太大,对算法收敛速度有些影响 for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=1.0;

}

}

}

//更新环境信息素

void CTsp::UpdateTrial()

{

//临时数组,保存各只蚂蚁在两两城市间新留下的信息素

double dbTempAry[N_CITY_COUNT][N_CITY_COUNT];

memset(dbTempAry,0,sizeof(dbTempAry)); //先全部设置为0

//计算新增加的信息素,保存到临时数组里

int m=0;

int n=0;

for (int i=0;i

{

for (int j=1;j

{

m=m_cAntAry[i].m_nPath[j];

n=m_cAntAry[i].m_nPath[j-1];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;

dbTempAry[m][n]=dbTempAry[n][m];

}

//最后城市和开始城市之间的信息素

n=m_cAntAry[i].m_nPath[0];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength; dbTempAry[m][n]=dbTempAry[n][m];

}

//================================================== ================

//更新环境信息素

for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=g_Trial[i][j]*ROU+dbTempAry[i][j]; //最新的环境信息素 = 留存的信息素 + 新留下的信息素

}

}

}

void CTsp::Search()

{

char cBuf[256]; //打印信息用

//在迭代次数内进行循环

for (int i=0;i

{

//每只蚂蚁搜索一遍

for (int j=0;j

{

m_cAntAry[j].Search();

}

//保存最佳结果

for (int j=0;j

{

if (m_cAntAry[j].m_dbPathLength < m_cBestAnt.m_dbPathLength) {

m_cBestAnt=m_cAntAry[j];

}

}

//更新环境信息素

UpdateTrial();

//输出目前为止找到的最优路径的长度

sprintf(cBuf,"\n[%d] %.0f",i+1,m_cBestAnt.m_dbPathLength); printf(cBuf);

}

}

int main()

{

//用当前时间点初始化随机种子,防止每次运行的结果都相同

time_t tm;

time(&tm);

unsigned int nSeed=(unsigned int)tm;

srand(nSeed);

//开始搜索

CTsp tsp;

tsp.InitData(); //初始化

tsp.Search(); //开始搜索

//输出结果

printf("\nThe best tour is :\n");

char cBuf[128];

for (int i=0;i

{

sprintf(cBuf,"%d ",tsp.m_cBestAnt.m_nPath[i]+1); if (i % 20 == 0)

{

printf("\n");

}

printf(cBuf);

}

printf("\n\nPress any key to exit!");

getchar();

return 0;

}

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

分形维数算法

分形维数算法. 分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,

如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近 似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维 D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的[26]。点 集和多枝权的三维图形,下面介绍一些常用的测定方法(1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系

-D(2-21) N~λ上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: 1-D(2-22)L=Nλ~λ 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈[27]。。这说明挪威的海岸线更曲折一些1.3. )小岛法(2面积如果粗糙曲线都是封闭的,例如海洋中的许多小岛,就可以利用周长-关系求分维,因此这个方法又被称为小岛法。则与λ的而面积A对于规则图形的周长与测量单位尺寸λ的一次方成正比, 二次方成正比。通常我们可以把它们写成一个简单的比例关系:1/2 (2-23) AP∝对于二维空间内的不规则分形的周长和面积的关系显然更复杂一些,提出,应该用分形周长曲线来代替原来的光滑周长,从而给出了下Mandelbrot 述关系式:21/??D??1/1/D2)(2-24)]?(?)]?[a?AP[(?)][??a(1?D)/DA(?00的P)式),使1(周长光滑时D=1,上式转化成为(2.23这里的分维D大于??的数1变化减缓,a是和岛的形状有关的常数,为小于是测量尺寸,一般取0/D)(1-D??减小而增大。作随测

计算机算法设计与分析习题和答案解析

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用(A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是( D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 11.备忘录方法是那种算法的变形。(B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是( B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是( A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数C。随机数函数 D.搜索函数 19. ( D )是贪心算法与动态规划算法的共同点。

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

分形维数算法

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

基于蚁群算法的机器人路径规划Ant Colony Algorithm

基于蚁群算法的机器人路径规划 说明:基于蚁群算法的机器人路径规划,使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 % ACASP.m % 蚁群算法动态寻路算法 % GreenSim团队原创作品,转载请注明 % Email:greensim@ %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

用蚁群算法解决TSP问题

用蚁群算法解决TSP 问题 一、引言 蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。后者留下的信息素会对原有的信息素进行加强,并循环下去。这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。 二、关键技术 (1) 解的表达形式 在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解; (2) 信息素的记忆和更新 在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认 为初始信息素矩阵为:1/(*(1))0ij N N p -?=?? i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--?-+?=?-?? i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模 在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

蚁群算法解决旅游线路问题

2011年第八届苏北数学建模联赛 承诺书 我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛报名号为: 参赛组别(研究生或本科或专科): 本科组 参赛队员(签名) : 队员1:唐文辉 队员2:徐玲 队员3:涂杰 获奖证书邮寄地址:

摘要 本文就旅游线路的优化设计问题,根据旅游者在旅行中的旅游时间,旅游费用,旅游地点,交通状况,住宿等因素的约束,借助图论,蚁群算法,建立最优化数学模型。在最短路路线的基础上,综合考虑交通,用费,时间对问题(2)、(3)、(4)、(5)的影响,给出旅游路线,并用lingo程序对结论进行检验,确保结论的全局最优性。 针对问题(1),首先,由城市经纬度建立城市和城市之间距离的有向图图论模型,在建立图论模型的基础上,建立在城市之间距离矩阵,采用蚁群算法,得到一条最短闭合路线。根据最短路线,查找合适时间的车次,距车站或景点一定范围内的最便宜的宾馆,达到费用最小。结合实际,得出最优路线:徐州->常州->舟山->黄山->庐山->武汉->洛阳->西安->祁县->北京->青岛->徐州,得到行程表和旅游最小费用3551元。 针对问题(2),采用衔接最得当,城市间交通时间和最少的交通方式,由此找出交通方式的时间最优化配置,进而得到最优路线:徐州->舟山->黄山->武汉->九江->常州->洛阳->西安->祁县->青岛->北京->徐州,并得到行程表和最短旅游时间9天。 针对问题(3)在问题(1)的基础上,对每个旅游景区最短停留时间,门票费用加权赋值建立权向量。运用层次分析法,分别求出权重。根据权重,分别求出每个景点综合花销。在2000元旅费的限制下,在最短路线上删除耗时长,费用高的城市。重新查找删去城市后城市间的交通费,得到旅游行程表和最多旅游景点7个,旅行线路:徐州->青岛->北京->祁县->西安->洛阳->武汉->九江。 针对问题(4),在基于问题(2)的结果下,首先,将问题(2)中停留时间(离开时刻与到达时刻之差)较长的城市从路线中删除,直到满足小于5天为止。重新查找删去城市后城市间的交通时间,对路线进行微调后,得到旅游行程表和最多旅游景点7个,分别是:徐州->北京->青岛->祁县->西安->洛阳->武汉->常州->徐州。 针对问题(5),对问题(3)和问题(4)综合考虑,找出其中时间相对长,旅游费用相对大的城市,进行排名并逐个剔除,并做适当调整。当满足条件时,得出行程表和费时5天、总费用1798元的结论,具体路线:徐州->北京->青岛->祁县->西安->洛阳->常州->徐州。 最后,对模型的优缺点进行了分析,提出改进方案。 关键字:TSP问题蚁群lingo 最优 1问题重述 江苏徐州有一位旅游爱好者打算现在的今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。他预选了十个省市旅游景点,如表1

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

大学计算机基础mooc习题集整理(含答案解析)

大学计算机考试模拟题(理工类) 一、简答题(本题共6个小题,每小题5分,共30分) 1. 什么是信息社会?信息社会的主要特征是什么?P32 第4题参见P13 P14 2. 什么是CPU,简述CPU的基本组成和功能P108 第18.(1) 参见P77 3. 什么是操作系统?简述操作系统的主要功能。P109 第24题参见P89 4. 人类问题求解的一般思维过程是什么?简要说明参见P112图3-1 描述 5. 什么是枚举法?说明枚举法的优缺点。参见P113第6段, P132穷举法 6. 什么是浏览器/服务器(B/S)三层体系结构,画图并简要说明。P340第10题参见P316 P276 二、单项选择题(本题共20个小题,每小题1分,共20分) 1. 下列容不属于信息素养(Information Literacy)的是 A.信息意识B.信息知识 C.分析能力D.信息道德 2. 阿兰·麦席森·图灵(Alan Mathison Turing)对计算机科学的发展做出了巨大贡献,下列说法不正确的是 A.图灵是著名的数学家、逻辑学家、密码学家,被称为计算机科学之父。 B.图灵最早提出关于机器思维的问题,被称为人工智能之父。 C.图灵创立了二进制。 D.“图灵奖”是为奖励那些对计算机科学研究与推动计算机技术发展有卓越贡献的杰出科学家而设立的。 3. 最早的机械式计算机“加法器”的发明人是 A.帕斯卡B.巴贝奇 C.莱布尼茨D.布尔 4. 巴贝奇的“分析机”到他终生都没有制造出来,下列说确的是()

A.设计原理有错误B.设计精度不够 C.设计图纸不够完善D.机械加工的工艺水平达不到它要求的精度 5. 以集成电路为基本元件的第三代计算机出现的时间为()。A.1965—1969B.1964—1975 C.1960—1969D.1950—1970 6. 在计算机中,引入16进制,主要目的是()。 A.计算机中的数据存储采用16进制 B.计算机中的数据运算采用16进制 C.缩短2进制字串的长度 D.计算机的存地址采用16进制编制 7. 设计算机字长为16位,采用补码表示,可表示的整数的取值围是()。A.0~65535B.-32767~32767 C.-32768~32767D.-32767~32768 8. 下列叙述中,正确的是( )。 A.所有十进制小数都能准确地转换为有限位二进制小数 B.汉字的计算机码就是国标码 C.所有二进制小数都能准确地转换为十进制小数 D.存储器具有记忆能力,其中的信息任何时候都不会丢失 9. 关于微处理器,下列说法错误的是() A、微处理器就是微机的CPU,由控制器运算器和存储器组成。 B、微处理器不包含存储器。 C、微处理器执行CPU控制部件和算术逻辑部件的功能。 D、微处理器与存储器和外围电路芯片组成微型计算机。 10. 关于操作系统,下列叙述中正确的是()。

相关文档
最新文档