(4份试卷汇总)2019-2020学年山西省大同市中考第四次模拟数学试题

合集下载

┃试卷合集4套┃2020山西省大同市中考第四次模拟数学试题

┃试卷合集4套┃2020山西省大同市中考第四次模拟数学试题

2019-2020学年数学中考模拟试卷一、选择题1.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A.213014000x x +-=B.2653500x x +-=C.213014000x x --=D.2653500x x --= 2.某市今年约有140000人报名参加初中学业水平考试,用科学记数法表示140000为( )A .41410⨯B .31410⨯C .41.410⨯D .51.410⨯ 3.若△ABC 的每条边长增加各自的50%得△A'B'C',若△ABC 的面积为4,则△A'B'C'的面积是( ) A.9B.6C.5D.24.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R R παα B.(90),sin 180R RR απα-- C.(90),sin 180R RR απα-- D.(90),sin 180R RR απα+- 5.在下列事件中,必然事件是( ) A .两条线段可以组成一个三角形B .400 人中至少有两个人的生日在同一天C .早上的太阳从西方升起D .过马路时恰好遇到红灯6.下列图形中,是轴对称图形但不是..中心对称图形的是( ) A.B.C.D.7.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则ABBC的值是( )A .22B .32C .214+ D .314+ 8.如图,已知Rt △ABC 的直角顶点A 落在x 轴上,点B 、C 在第一象限,点B 的坐标为(345,4),点D 、E 分别为边BC 、AB 的中点,且tanB =12,反比例函数y =kx的图象恰好经过D 、E ,则k 的值为( )A .185B .8C .12D .169.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt △ABC 中,AC =k ,∠ACB =90°,∠ABC =30°,延长CB 至点M ,在射线BM 上截取线段BD ,使BD =AB ,连接AD ,依据此图可求得tan75°的值为( )A .23B .23C .13D 3110.江西省足协2019年第三次主席办公会在南昌召开,某学校为了激发学生对体育的热情,选拔了23名学生作为校足球队成员,其中足球队23名队员的年龄情况如表: 年龄(岁) 12 13 14 15 16 人数(名)38642A .13,14B .13,13C .14.13.5D .16,1411.已知,二次函数()22y x k =++向左平移1个单位,再向下平移3个单位,得到二次函数()2+h 1y x =-,则h 和k 的值分别为( )A.3,-4B.1,-4C.1, 2D.3, 212.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .8二、填空题13.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________14.2的倒数是_____.15.已知一组数据0,2,x ,4,5的众数是4,那么这组数据的中位数是____. 16.计算:=________.17.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1, 第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2, 第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…, 第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n . 若∠E n =1度,那∠BEC 等于________度18.如图,△ABC 是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若∠CAF=20°,则∠BED 的度数为_______°.三、解答题19.如图,点D在△ABC的AB边上.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若直线DE与直线AC平行,则∠ACD=∠A吗?为什么?20.某企业有员工300人生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数).为减员增效,决定从中调配x人去生产新开发的B种产品.根据评估,调配后继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元.(1)调配后企业生产A种产品的年利润为万元,生产B种产品的年利润为万元(用含m 的代数式表示).若设调配后企业全年的总利润为y万元,则y关于x的关系式为;(2)若要求调配后企业生产A种产品的年利润不少于调配前企业年利润的五分之四,生产B种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案?请设计出来,并指出其中哪种方案全年总利润最大(必要时运算过程可保留3个有效数字).(3)企业决定将(2)中的年最大总利润(m=2)继续投资开发新产品,现有六种产品可供选择(不得重复投资同一种产品),各产品所需资金以及所获利润如下表:产品 C D E F G H所需资金(万元)200 348 240 288 240 500年利润(万元)50 80 20 60 40 85两种投资方案.21.(阅读材料)小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,PA=3,PC=4,求PB的长.小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.(问题解决)(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且PA=1,PB17PC=2AB的长.(灵活运用)(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=43,点P在△ABC外,且PB=3,PC=1,直接写出PA长的最大值.22.在“全民读书月”活动中,小明调查了班级里40名同学本学期购买课外书的费用情况,并将结果绘制成如图所示的统计表和扇形统计图,请根据相关信息,解答下列问题:(直接填写结果) 费用(元) 20 30 50 80 100 人数6a10b4(1)本次调查获取的样本数据的众数是 元,中位数是 元;(2)扇形统计图中,“50元”所对应的圆心角的度数为 度,该班学生购买课外书的平均费用为 元;(3)若该校共有学生1000人,根据样本数据,估计本学期购买课外书花费50元的学生有 人.23.计算:|﹣5|+(﹣1)2019﹣11()3-﹣02sin 45.24.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,OA ,OD 满足等式33OA OD --+(OA-5)2=0,AD=13.(1)求证:平行四边形ABCD 是菱形;(2)过点D 作DE ∥AC 交BC 的延长线于点E ,DF 平分∠BDE ,请求出DF 的长度.25.如图,在平面直角坐标系xOy 第一象限中有正方形OABC ,(40)A ,,点(0)P m ,是x 轴上一动点(04)m <<,将ABP △沿直线BP 翻折后,点A 落在点E 处。

山西省大同市2019-2020学年中考第四次模拟数学试题含解析

山西省大同市2019-2020学年中考第四次模拟数学试题含解析

山西省大同市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列四个式子中,正确的是( ) A .81 =±9B .﹣()26- =6C .(23+)2=5 D .1216=42.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( ) A .5.3×103B .5.3×104C .5.3×107D .5.3×1083.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >44.下列命题是真命题的是( ) A .如实数a ,b 满足a 2=b 2,则a =b B .若实数a ,b 满足a <0,b <0,则ab <0 C .“购买1张彩票就中奖”是不可能事件 D .三角形的三个内角中最多有一个钝角5.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米6.如图,四边形ABCD 内接于⊙O ,若∠B =130°,则∠AOC 的大小是( )A .130°B .120°C .110°D .100°7.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为( )A .(32,0) B .(2,0) C .(52,0) D .(3,0)8.下列运算正确的是( ) A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()9.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数 10.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 311.下列计算,结果等于a 4的是( ) A .a+3a B .a 5﹣a C .(a 2)2 D .a 8÷a 2 12.将直线y=﹣x+a 的图象向右平移2个单位后经过点A (3,3),则a 的值为( ) A .4 B .﹣4 C .2 D .﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.14.已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于________厘米.15.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.16.如图,四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=35°,则∠PFE 的度数是_____.17.分解因式:4a 2﹣1=_____.18.在平面直角坐标系内,一次函数2y x b =-与21y x =-的图像之间的距离为3,则b 的值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在□ABCD 中,E 为BC 边上一点,且AB=AE ,求证:AC=DE 。

山西省大同市2019-2020学年中考数学一模试卷含解析

山西省大同市2019-2020学年中考数学一模试卷含解析

山西省大同市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60582.2的相反数是()D.2A.﹣2B.2C.23.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON 上滑动,下列结论:①若C,O两点关于AB对称,则OA=23;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①②B.①②③C.①③④D.①②④4.如图所示的几何体,它的左视图是()A.B.C.D.5.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB =α,那么拉线BC的长度为()A .sin h αB .cos h αC .tan h αD .cot h α6.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( )A .()2,4--B .()2,4-C .()2,4D .()4,2-7.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度8.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m9.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是( )A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等10.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .4511.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( ) A .a e a v v v =B .e b b =v v vC .1a e a =v v vD .11a b a b =v v v v 12.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.14.若关于x 的二次函数y =ax 2+a 2的最小值为4,则a 的值为______.15.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k 的值为______.16.已知图中Rt △ABC ,∠B=90°,AB=BC,斜边AC 上的一点D ,满足AD=AB ,将线段AC 绕点A 逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC 时,旋转角度α 的值为_________,17.分式方程34x x +=1的解为_________. 18.已知实数a 、b 、c 满足2a+b+c (2005)(6)a b ++-+|10﹣2c|=0,则代数式ab+bc 的值为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在四边形ABCD 中,AD ∥BC ,点E 为CD 边上一点,AE 与BE 分别为∠DAB 和∠CBA 的平分线.(1)作线段AB 的垂直平分线交AB 于点O ,并以AB 为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE =4,sin ∠AGF =,求⊙O 的半径.20.(6分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.21.(6分)若关于x 的方程311x a x x--=-无解,求a 的值. 22.(8分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形;()2求ECD∠的度数;()3若CAE7.5∠=o,AD1=,将射线DA绕点D顺时针旋转60o交EC的延长线于点F,请写出求AF 长的思路.23.(8分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.24.(10分)计算:|﹣913)0﹣(12)﹣1.25.(10分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.26.(12分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.27.(12分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律2.A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解: 2的相反数是2-. 故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键. 3.D【解析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以23OA AC ==;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A 、C 、B 、O 四点共圆,则AB 为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC 是直径时,AB 与OC 互相平分,但AB 与OC 不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt △ABC 中,∵°2,30BC BAC ,=∠=∴224,4223AB AC ,=-=①若C.O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则23OA AC ==;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵°90AOB ACB ,∠=∠= ∴12,2OE CE AB === 当OC 经过点E 时,OC 最大,则C.O 两点距离的最大值为4;所以②正确;③如图2,当°30ABO ∠=时, °90OBC AOB ACB ∠=∠=∠=,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为°°60120、,不垂直, 所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的1,4则:90π2π,180⨯= 所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.4.A【解析】【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A .【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.5.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD h BCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 6.C【解析】【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点()2,4P -,与点P 关于y 轴对称的点的坐标是()2,4,故选:C .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.C【解析】【分析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确;小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误; 小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确. 故选C .考点:函数的图象、行程问题.8.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC ,∴,即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 9.B【解析】【分析】①根据函数的图象即可直接得出结论;②求得直线OA 和DC 的解析式,求得交点坐标即可;③由图象无法求得B 的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误,设货车对应的函数解析式为y =kx ,5k =300,得k =60,即货车对应的函数解析式为y =60x ,设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195,令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误,故选:B .【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式10.C【解析】【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD , ∴EF AB = DF DB ,EF CD =BF BD , ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3, ∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.11.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.12.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.14.1.【解析】【分析】根据二次函数的性质列出不等式和等式,计算即可.【详解】解:∵关于x的二次函数y=ax1+a1的最小值为4,∴a1=4,a>0,解得,a=1,故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.15.3 4±【解析】【分析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=34 -;当a=-4时,把(-4,0)代入y=kx+3,得k=34;故k的值为34或34-【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.16.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AC,∴AE=2AD,又∵AD=AB,AC′=AC,∴AE=2 2AB=2222⨯AC=12AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.17.x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=6≠0,所以分式方程的解为x=1,故答案为:x=1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.-1【解析】试题分析:根据非负数的性质可得:()()22005b601020a b cac++=⎧⎪+-=⎨⎪-=⎩,解得:1165abc=-⎧⎪=⎨⎪=⎩,则ab+bc=(-11)×6+6×5=-66+30=-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)⊙O的半径为.【解析】【分析】(1)作出相应的图形,如图所示;(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.【详解】解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).(2)∵AD∥BC,∴∠DAB+∠CBA=180°.∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°.∵AB为⊙O的直径,点F在⊙O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°.∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF==.∵AE=4,∴AB=5,∴⊙O的半径为.【点睛】此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.20.(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】【分析】(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键. 21.1-2a=或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.22.(1)见解析;(2)90°;(3)解题思路见解析.【解析】【分析】(1)将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC .(2)先判定△ABD ≌△ACE ,即可得到B ACE ∠=∠,再根据45B ACB ACE ∠=∠=∠=︒,即可得出90ECD ACB ACE ∠=∠+∠=︒;(3)连接DE ,由于△ADE 为等腰直角三角形,所以可求2DE =;由60ADF ∠=︒,7.5CAE ∠=︒ ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;过点A 作AH DF ⊥于点H ,在Rt △ADH 中,由60ADF ∠=︒,AD=1可求AH 、DH 的长;由DF 、DH 的长可求HF 的长;在Rt △AHF 中,由AH 和HF ,利用勾股定理可求AF 的长.【详解】解:()1如图,()2Q 线段AD 绕点A 逆时针方向旋转90o ,得到线段AE .DAE 90∠∴=o ,AD AE =,DAC CAE 90∠∠∴+=o .BAC 90∠=o Q ,BAD DAC 90o ∠∠∴+=.BAD CAE ∠∠∴=,在ABD V 和ACE V 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V. B ACE ∠∠∴=,ABC QV 中,A 90∠=o ,AB AC =,B ACB ACE 45∠∠∠∴===o .ECD ACB ACE 90∠∠∠∴=+=o ;()3Ⅰ.连接DE ,由于ADE V 为等腰直角三角形,所以可求DE =Ⅱ.由ADF 60o ∠=,CAE 7.5∠=o ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长; Ⅲ.过点A 作AH DF ⊥于点H ,在Rt ADH V 中,由ADF 60o ∠=,AD 1=可求AH 、DH 的长; Ⅳ.由DF 、DH 的长可求HF 的长;Ⅴ.在Rt AHF V 中,由AH 和HF ,利用勾股定理可求AF 的长.故答案为(1)见解析;(2)90°;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.23.(1)y=﹣x 2+2x+3;(2)d=﹣t 2+4t ﹣3;(3)P (52,74). 【解析】【分析】(1)由抛物线y=ax 2+bx+3与y 轴交于点A ,可求得点A 的坐标,又OA=OC ,可求得点C 的坐标,然后分别代入B,C 的坐标求出a ,b ,即可求得二次函数的解析式;(2)首先延长PE 交x 轴于点H ,现将解析式换为顶点解析式求得D (1,4),设直线CD 的解析式为y=kx+b ,再将点C (3,0)、D (1,4)代入,得y=﹣2x+6,则E (t ,﹣2t+6),P (t ,﹣t 2+2t+3),PH=﹣t 2+2t+3,EH=﹣2t+6,再根据d=PH ﹣EH 即可得答案;(3)首先,作DK ⊥OC 于点K ,作QM ∥x 轴交DK 于点T ,延长PE 、EP 交OC 于H 、交QM 于M ,作ER ⊥DK 于点R ,记QE 与DK 的交点为N ,根据题意在(2)的条件下先证明△DQT ≌△ECH ,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t ﹣1+(3﹣t ),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A (0,3)即OA=3,∵OA=OC ,∴OC=3,∴C (3,0),∵抛物线y=ax 2+bx+3经过点B (﹣1,0),C (3,0)∴309330a b a b -+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P(52,74).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点. 24.1【解析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.试题解析:解:|﹣1|10﹣(12)﹣1=1+3﹣1﹣2=1.点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.25.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,226.(1)2y x =;1522y x =-+;(2)点P 坐标为(114,98). 【解析】【分析】(1)将F (4,12)代入0n y x x=(>),即可求出反比例函数的解析式2y x =;再根据2y x =求出E 点坐标,将E 、F 两点坐标代入y kx b =+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(),解得114x ,∴点P坐标为119 48(,).【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.27.详见解析【解析】【分析】由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.【详解】证明:∵△ABC,△DEB都是等边三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.。

山西省大同市2019-2020学年中考数学第四次调研试卷含解析

山西省大同市2019-2020学年中考数学第四次调研试卷含解析

山西省大同市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)'''由△ABC绕点P旋转得到,则点P的坐标为()1.如图,在平面直角坐标系xOy中,△A B CA.(0,1)B.(1,-1)C.(0,-1)D.(1,0)2.如图,点F是Y ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )A.18 B.22 C.24 D.463.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元B.(a+20%)元C.a元D.a元4.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°5.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元6.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .4233π- B .8433π- C .8233π- D .843π- 7.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,53) C .(0,2) D .(0,103) 8.6的相反数为( ) A .-6B .6C .16-D .169.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)10.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A .16B .15C .13D .1211.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .8312.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°,则∠C 的度数是( )A .40°B .65°C .70°D .80°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如果m ,n 互为相反数,那么|m+n ﹣2016|=___________.14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 . 15.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.16.如图,在矩形ABCD 中,顺次连接矩形四边的中点得到四边形EFGH .若AB=8,AD=6,则四边形EFGH 的周长等于__________.17.= .18.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

山西省大同市2019-2020学年中考数学四模试卷含解析

山西省大同市2019-2020学年中考数学四模试卷含解析

山西省大同市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是()A.M>N B.M=N C.M<N D.不能确定2.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.3.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差5.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟6.如图由四个相同的小立方体组成的立体图像,它的主视图是().A.B.C.D.7.关于x的方程=无解,则k的值为()A.0或B.﹣1 C.﹣2 D.﹣38.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )A.10 B.12 C.20 D.249.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<210.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km11.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称12.若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()13.不等式组2672xx-≥⎧⎨+>-⎩的解集是____________;14.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.15.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.16.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.17.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.18.不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是_____.在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.20.(6分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A ,B 都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.21.(6分)先化简,再求值:22111x x x x ⎛⎫-+ ⎪--⎝⎭,其中x 满足2410x x -+=. 22.(8分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?24.(10分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.25.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=2,AE=6,求EC的长.26.(12分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.=-++,其图27.(12分)某种商品每天的销售利润y元,销售单价x元,间满足函数关系式:y x bx c象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】若比较M,N的大小关系,只需计算M-N的值即可.【详解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.2.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形3.B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.4.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.5.D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:5001050(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.6.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.7.A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程无解,∴当整式方程无解时,2k-1=0,k=,当分式方程无解时,①x=0时,k无解,②x=-3时,k=0,∴k=0或时,方程无解,故选A.8.B【解析】求出BC与AC的长度.【详解】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:12×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.9.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.10.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.11.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.12.A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得. 【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)【分析】分别求出两个不等式的解集,再求其公共解集. 【详解】2672x x -≥⎧⎨+>-⎩①②, 解不等式①,得:x≤-1, 解不等式②,得:x >-9,所以不等式组的解集为:-9<x≤-1, 故答案为:-9<x≤-1. 【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 14.1 【解析】分析:根据点P 的移动规律,当OP ⊥BC 时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.详解:∵当OP ⊥AB 时,OP 最小,且此时AP=4,OP=2, ∴AB=2AP=8,AD=2OP=6,∴C 矩形ABCD =2(AB+AD )=2×(8+6)=1. 故答案为1.点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2. 15.1 【解析】 【分析】先根据勾股定理求得AC 的长,从而得到C 点坐标,然后根据平移的性质,将C 点纵轴代入直线解析式求解即可得到答案. 【详解】解:在Rt △ABC 中,AB=﹣1﹣(﹣1)=3,BC=5, ∴, ∴点C 的坐标为(﹣1,1). 当y=﹣2x ﹣6=1时,x=﹣5, ∵﹣1﹣(﹣5)=1,∴点C 沿x 轴向左平移1个单位长度才能落在直线y=﹣2x ﹣6上.故答案为1. 【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可. 16.1 1 【解析】 【分析】根据长方形的对边相等,每一个角都是直角可得AB=CD ,AD=BC ,∠BAD=∠C=90°,然后利用“边角边”证明Rt △ABD 和Rt △CDB 全等;根据等底等高的三角形面积相等解答. 【详解】有,Rt △ABD ≌Rt △CDB ,理由:在长方形ABCD 中,AB=CD ,AD=BC ,∠BAD=∠C=90°, 在Rt △ABD 和Rt △CDB 中,90AB CD BAD C AD BC ⎧⎪∠∠︒⎨⎪⎩====, ∴Rt △ABD ≌Rt △CDB (SAS );有,△BFD 与△BFA ,△ABD 与△AFD ,△ABE 与△DFE ,△AFD 与△BCD 面积相等,但不全等. 故答案为:1;1. 【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等. 17.13. 【解析】试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4影部分的概率为:6÷(2=6÷18=13.考点:求随机事件的概率. 18.37【解析】 【分析】一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 【详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球, ∴从袋子中随机取出1个球,则它是黑球的概率是:37故答案为:37. 【点睛】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【发现】(3)MN n的长度为π3;(2)【探究】:点P 的坐标为10(,);或0)或 03-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析. 【解析】 【分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA=3,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](3)∵P (2,0),∴OP=2.∵OA=3,∴AP=3,∴·MN的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r=2﹣3=3,当t=2时,如图3,点N 与点A 重合,∴PA=r=3,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQ 12=PA 12=,∴AQ=AP×cos30°=S 重叠部分=S △APQ 12=PQ×AQ =[探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC=r=3. ∵∠OAB=30°,∴AP=2,∴OP=OA ﹣AP=3﹣2=3;∴点P的坐标为(3,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPDPDOP=,∴OP123303cos==︒,∴点P的坐标为(233,0);③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP233 =;∴点P的坐标为(233-,0);[拓展]t的取值范围是2<t≤3,2≤t<4,理由:如图4,当点N运动到与点A重合时,·MN与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t411-==3,·MN与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=4;∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.20.见解析 【解析】 【详解】解:不公平,理由如下: 列表得:由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为3193=、乙获胜的概率为29,∵1239≠, ∴这个游戏对甲、乙双方不公平. 【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.21x x+,1.【解析】 【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将2410x x -+=变形为214x x +=,整体代入计算即可. 【详解】解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=---321(1)x x x x x -+-=-2(1)(1)(1)x x x x x -+-=-21x x+= ∵2410x x -+=, ∴214x x +=, ∴原式44x x== 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【解析】 【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1. (3)运用变化规律计算 【详解】 解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-();(3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 23.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球 【解析】 【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元; (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球. 【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.24.(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.25.(1)证明见解析;(2)1.【解析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考点:1、切线的判定;2、勾股定理26.(12;(2)AD﹣2BD;(3)2+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案. 【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌, ∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴2, ∴2BD , 2. (2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==∴21BD AD ==.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.27.(1)10,1;(2)812x ≤≤.【解析】【分析】(1)将点(5,0),(8,21)代入2y x bx c =-++中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),再根据图象判断出x 的取值范围即可.【详解】解:(1)2y x bx c =-++图象过点(5,0),(8,21),255064821b c b c -++=⎧∴⎨-++=⎩, 解得2075b c =⎧⎨=-⎩22075y x x ∴=-+-.222075(10)25y x x x =-+-=--+Q .22075y x x ∴=-+-的顶点坐标为(10,25).10-<Q ,∴当10x =时,y 最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数22075y x x =-+-图象的对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),又∵函数22075y x x =-+-图象开口向下,∴当812x ≤≤时,21y ≥.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.。

山西省大同市2019-2020学年中考数学一模考试卷含解析

山西省大同市2019-2020学年中考数学一模考试卷含解析

山西省大同市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形2.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.3.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°4.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20195.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20186.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.2+3B.23C.3+3D.337.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与12D.2与|﹣2|8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.9.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )A.7 B.﹣7 C.1 D.﹣110.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣311.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×10812.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5OE ,则四边形EFCD的周长为()A .14B .13C .12D .10二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为 . 14.分解因式:a 2-2ab+b 2-1=______.15.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.16.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.17.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.18.已知,正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm (结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC 长为4米,求新传送带AC 的长及新、原传送带触地点之间AB 的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.41420.(6分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0my m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?21.(6分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 1 1.5 2 2.5 3 3.5 4y/cm 0 3.7 ______ 3.8 3.3 2.5 ______ (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.22.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x轴的交点坐标.23.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表成绩x(分)等级人数≥ A 12x9075x90≤< B m≤< C n60x75< D 9x60请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上(包括B 级)的学生人数.24.(10分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.25.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为_____.26.(12分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.27.(12分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.2.C【解析】【分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.3.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.4.C【解析】【分析】+x2+…+x7;经过观察分析可得每4个数的和为2,把2019个根据各点横坐标数据得出规律,进而得出x1数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律5.A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m 的倒数是﹣1,则m=-1, 然后再代入m 2018计算即可. 【详解】因为m 的倒数是﹣1, 所以m=-1,所以m 2018=(-1)2018=1,故选A. 【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则. 6.A 【解析】 【分析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可. 【详解】设AC=a ,则BC=30AC tan ︒,AB=30ACsin ︒=2a ,∴BD=BA=2a ,∴CD=()a ,∴tan ∠故选A. 【点睛】本题主要考查特殊角的三角函数值. 7.A 【解析】 【分析】根据相反数的定义,对每个选项进行判断即可. 【详解】解:A 、(﹣1)2=1,1与﹣1 互为相反数,正确; B 、(﹣1)2=1,故错误; C 、2与12互为倒数,故错误; D 、2=|﹣2|,故错误;【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义. 8.C 【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形. 故选C .考点:简单组合体的三视图. 9.C 【解析】试题分析:原式去括号可得b-c+d+a=(a+b )-(c-d )=4-(-3)=1. 故选A .考点:代数式的求值;整体思想. 10.A 【解析】 【分析】方程变形后,配方得到结果,即可做出判断. 【详解】方程2410x x +=﹣, 变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣), 故选A . 【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式. 11.C 【解析】 【分析】依据科学记数法的含义即可判断. 【详解】解:48511111=4.85×117,故本题选择C. 【点睛】把一个数M 记成a×11n (1≤|a|<11,n 为整数)的形式,这种记数的方法叫做科学记数法.规律: (1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是1的数字前1的个数,包括整数位上的1.12.C【解析】【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22262x xy y z -++【解析】试题分析:依题意知()()524334325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭ =22262x xy y z -++考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。

〖精选4套试卷〗山西省大同市2020年中考第四次模拟数学试题

〖精选4套试卷〗山西省大同市2020年中考第四次模拟数学试题

2019-2020学年数学中考模拟试卷一、选择题1.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A.2B.3C.4D.5 2.分式方程216111x x x +-=--的解是( ) A .x =﹣2B .x =2C .x =3D .无解3.下列说法中: ①估计65的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a >b ,则a ﹣b >0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';正确的有( )A .1个B .2个C .3个D .4个4.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相垂直平分的四边形是正方形D .对角线互相平分的四边形是平行四边形5.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .2B .3C .3D .56.如图,直线AB :y =12x +1分别与x 轴、y 轴交于点A 、B ,直线CD : y =x +b 分别与x 轴、y 轴交于点C 、D .直线AB 与CD 相交于点P ,已知S △ABD =4,则点P 的坐标是 ( )A .(3,4)B .(8,5)C .(4,3)D .(12,54) 7.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC V 的面积为( )A .1B .2C .4D .88.如图,AD 是△ABC 外接圆的直径.若∠B =64°,则∠DAC 等于( )A .26°B .28°C .30°D .32°9.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,线段AB =1,点P 是线段AB 上一个动点(不包括A 、B )在AB 同侧作Rt △PAC ,Rt △PBD ,∠A =∠D =30°,∠APC =∠BPD =90°,M 、N 分别是AC 、BD 的中点,连接MN ,设AP =x ,MN 2=y ,则y 关于x 的函数图象为( )A. B.C. D.11.某城市轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( )A .30301.50.5x x +=B .30301.50.5x x -=C .30300.5 1.5x x +=D .30300.5 1.5x x-= 12.如图,点O 1是△ABC 的外心,以AB 为直径作⊙O 恰好过点O 1,若AC =2,BC =42,则AO 1的长是( )A .32B .26C .25D .210二、填空题 13.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,连接PD ,PG ,则PD+PG 的最小值为_____.14.不等式组()121231x x x +≤⎧+>-⎨⎩的解集为______. 15.如图,a ∥b ,∠1=110°,∠3=50°,则∠2的度数是_____.16.已知一次函数的图象经过点(-1,2)和(-3,4),则这个一次函数的解析式为________.17.△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是_____.18.分解因式:ax2﹣ax=_____.三、解答题19.如图,PA、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:∠APO=∠CPO;(2)若⊙O的半径为3,OP=6,∠C=30°,求PC的长.20.如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数;(3)若AO=4,DF=10,求tan ADF∠的值.21.先化简再求值:2 2221111x x xxx x--⎛⎫÷--⎪-+⎝⎭,其中x是不等式组30223xxx+>⎧⎪-⎨<+⎪⎩的最大整数解.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?23.某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.I.请问1辆大货车和1辆小货车一次可以分别运货多少吨;Ⅱ.目前有46.4吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完.其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?24.某市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车 乙种客车 载客量/(人/辆)30 42 租金/(元/辆) 300 400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)①既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,需租用几辆客车; ②求租车费用的最小值.25.计算:()221122cos3022-⎛⎫-+-︒- ⎪⎝⎭【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B B D D D B C A D BD B 13.3﹣2 .14.x≤1.15.6016.1y x =-+17.20181218.ax (x ﹣1).三、解答题19.(1)详见解析;(2)63.【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC =90°,根据勾股定理求出AP ,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA 、PB 是⊙O 的切线,∴∠APO =∠CPO ;(2)解:∵PA 是⊙O 的切线,∴∠PAC =90°,∴AP 22OP 0A 33-=,在Rt △CAP 中,∠C =30°,∴PC =2AP =3.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.20.(1)见解析;(2)90AOD ??;(3)tan ∠ADF 的值为12. 【解析】【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.(3)根据(2)得到AO 2=OF·OD,再设OF=x,DO=10-x ,求出x 即可解答【详解】(1)在正方形ABCD 中,DA=AB,90DAF ABE ∠=∠=︒,又AF=BEAD AB DAF ABE AF BE =⎧⎪=⎨⎪=⎩∠∠ ∴DAF ∆≌ABE ∆ (SAS)(2)由(1)得 DAF ∆≌ABE ∆ ,∴ ∠ADF=∠BAE,又 ∠BAE+∠DAO=90︒,∴∠ADF+∠DAO=90︒90AOD ∴∠=︒(3)由(2)得∠AOD=900 ∴△AOF ∽△DOA ∴AO 2=OF·OD设OF=x,DO=10-x ∴x(10-x)=16 解得x=2或x=8(舍去)∴tan ∠ADF=48AO OD = ∴tan ∠ADF 的值为12. 【点睛】 此题考查了正方形的性质,三角形全等的判定和性质,三角形相似,解题关键在于利用好正方形的性质证明三角形全等21.13-【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+ (2)1(1)(1)(2)x x x x x x x -+=•+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0解不等式组,得﹣3<x≤2,则x 整数解为x =﹣2,﹣1,0,1,2,∴x =﹣2 原式=13-.【点睛】本题考查了分式方程的化简求值,不等式组的求解,中等难度,正确化简并利用分式有意义的条件求出x 的值代入是解题关键.22.运动1秒或5秒后△DPQ 的面积为31cm 2.【解析】【分析】设运动x 秒钟后△DPQ 的面积为31cm 2,则AP=xcm ,BP=(6-x )cm ,BQ=2xcm ,CQ=(12-2x )cm ,利用分割图形求面积法结合△DPQ 的面积为31cm 2,即可得出关于x 的一元二次方程,解之即可得出结论【详解】解:设运动x 秒钟后△DPQ 的面积为31cm 2,则AP=xcm ,BP=(6-x )cm ,BQ=2xcm ,CQ=(12-2x )cm , S △DPQ =S 矩形ABCD -S △ADP -S △CDQ -S △BPQ ,=AB•BC -12AD•AP -12CD•CQ -12BP•BQ, =6×12-12×12x -12×6(12-2x )-12(6-x )•2x, =x 2-6x+36=31,解得:x 1=1,x 2=5.答:运动1秒或5秒后△DPQ 的面积为31cm 2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.I.1辆大货车一次可以运货5吨,1辆小货车一次可以运货3.5吨;Ⅱ.当该货运公司安排大货车8辆,小货车2辆时花费最少.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货29吨、2辆大货车与6辆小货车一次可以运货31吨”列方程组求解可得;(2).设货运公司安排大货车m 辆,则小货车需要安排()10m -辆,根据46.4吨货物需要一次运完得出不等式,求出m 的范围,从而求出如何安排车辆最节省费用.【详解】解:I.设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨.根据题意可得3x 4y 292x 6y 31{+=+=,,解得x 5y 3.5{==,,答:1辆大货车一次可以运货5吨,1辆小货车一次可以运货3.5吨.Ⅱ.设货运公司安排大货车m 辆,则小货车需要安排()10m -辆,根据题意可得()5m 3.510m 46.4+-≥,解得m 7.6≥∵m 为正整数,∴m 可以取8,9,10.当m 8=时,该货运公司需花费500830024600⨯+⨯=元.当m 9=时,该货运公司需花费50093004800⨯+=元.当m 10=时,该货运公司需花费500105000⨯=元。

山西省大同市2019-2020学年中考第四次大联考数学试卷含解析

山西省大同市2019-2020学年中考第四次大联考数学试卷含解析

山西省大同市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π2.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+=B.8184 2.5x x+=C.88152.5x x=+D.8812.54x x=+3.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.1254.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是()A.10m B.20m C.30m D.40m5.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是()A.﹣9997199B.10001199C.10001201D.99972016.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,67.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣79.一元二次方程4x2﹣2x+14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断10.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.11.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.1612.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元B.(a+20%)元C.a元D.a元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.14.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.15.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F 是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)16.正八边形的中心角为______度.17.分解因式:ax2﹣2ax+a=___________.18.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.20.(6分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?21.(6分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,6,求⊙O的半径.22.(8分)如图,∠A=∠B=30°(1)尺规作图:过点C 作CD ⊥AC 交AB 于点D ; (只要求作出图形,保留痕迹,不要求写作法) (2)在(1)的条件下,求证:BC 2=BD•AB .23.(8分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y=ax 2+bx 与直线y=x 只有一个交点;②对于任意实数x ,a (-x+5)2+b (-x+5)=a (x-3)2+b (x-3)都成立. (1)求二次函数y=ax 2+bx 的解析式;(2)若当-2≤x≤r (r≠0)时,恰有t≤y≤1.5r 成立,求t 和r 的值.24.(10分)如图,已知在梯形ABCD 中,355AD BC AB DC AD sinB ∥,===,=,P 是线段BC 上一点,以P 为圆心,PA 为半径的P e 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP x =.(1)求证:ABP ECP V V ∽;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设APQ V 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果QED V与QAP V 相似,求BP 的长. 25.(10分)如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)26.(12分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图.(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?27.(12分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.2.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x千米,根据题意可列方程为:8812.54x x=+.故选D.点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.3.B【解析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185.【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点, ∴BE=3, 又∵AB=4, ∴222243AB BE +=+=5,∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245,∵FE=BE=EC , ∴∠BFC=90°, ∴2222246()5BC BF -=-185 .故选B . 【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 4.B 【解析】 【分析】利用配方法求二次函数最值的方法解答即可. 【详解】∵s=20t-5t 2=-5(t-2)2+20, ∴汽车刹车后到停下来前进了20m . 故选B .此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键. 5.C 【解析】 【分析】根据按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,21n +型;分子为21n +型,可得第100个数为210011000121001201+=⨯+. 【详解】按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,21n +型;分子为21n +型,可得第n 个数为2121n n ++,∴当100n =时,这个数为2211001100012121001201n n ++==+⨯+, 故选:C . 【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键. 6.A 【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答. 平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1. 故选A .考点:中位数;算术平均数. 7.C 【解析】试题分析:设骑车学生的速度为xkm/h ,则汽车的速度为2xkm/h ,由题意得,1010123x x =+.故选C . 考点:由实际问题抽象出分式方程. 8.B 【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14,故选B.9.B【解析】【分析】【详解】试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4×14=0,∴一元二次方程4x2﹣2x+14=0有两个相等的实数根.故选B.考点:根的判别式.10.D【解析】【详解】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.11.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.C【解析】【分析】根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷= a(元),故答案选:C.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键. 14.8 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体, ∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个). 故答案为:8 【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数. 15.①②④ 【解析】 【分析】①根据ASA 可证△BOE ≌△COF ,根据全等三角形的性质得到BE=CF ,根据等弦对等弧得到»»AE BF= ,可以判断①;②根据SAS 可证△BOG ≌△COH ,根据全等三角形的性质得到∠GOH=90°,OG=OH ,根据等腰直角三角形的判定得到△OGH 是等腰直角三角形,可以判断②;③通过证明△HOM ≌△GON ,可得四边形OGBH 的面积始终等于正方形ONBM 的面积,可以判断③; ④根据△BOG ≌△COH 可知BG=CH ,则BG+BH=BC=4,设BG=x ,则BH=4-x ,根据勾股定理得到22BG BH +()224x x +- ,可以求得其最小值,可以判断④. 【详解】 解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°, ∴∠BOE=∠COF , 在△BOE 与△COF 中,OB OC BOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩, ∴△BOE ≌△COF , ∴BE=CF ,∴»»AE BF= ,①正确; ②∵OC=OB ,∠COH=∠BOG ,∠OCH=∠OBG=45°, ∴△BOG ≌△COH ; ∴OG=OH ,∵∠GOH=90°,∴△OGH 是等腰直角三角形,②正确. ③如图所示,∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误; ④∵△BOG ≌△COH , ∴BG=CH , ∴BG+BH=BC=4, 设BG=x ,则BH=4-x ,则22BG BH +()224x x +- ∴其最小值为2 故答案为:①②④ 【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.16.45°【解析】【分析】运用正n边形的中心角的计算公式360n︒计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为360458︒=︒,故答案为45°.【点睛】本题考查了正n边形中心角的计算.17.a(x-1)1.【解析】【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,4. BC==故答案为:4cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)图形见解析,216件;(2)1 2【解析】【分析】(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:1201236360÷=件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品364×36=324件.条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122=.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解析】 【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m 值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可. 【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6 (2)非常了解20%,比较了解60%; 非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人. 【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量. 21.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1. 【解析】 【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,6,∵∠ADC=90°,∴22AC AD -2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴22CD DE +3∵C 为»BE的中点,∴3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴22AC BC +.∴半径为1.122.见解析【解析】【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.【详解】(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴BC AB BD BC=,∴BC2=BD•AB.【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)y=12-x2+x;(2)t=-4,r=-1.【解析】【分析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论; (2)进行分类讨论,分别求出t 和r 的值. 【详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0, Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1,∴2ba -=1, ∴a=12-,∴y=12-x 2+x.(2)因为y=12-x 2+x=12-(x-1)2+12, 所以顶点(1,12)当-2<r<1,且r≠0时, 当x=r 时,y 最大=12-r 2+r=1.5r ,得r=-1, 当x=-2时,y 最小=-4, 所以,这时t=-4,r=-1. 当r≥1时,y 最大=12,所以1.5r=12, 所以r=13,不合题意,舍去,综上可得,t=-4,r=-1. 【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.24.(1)见解析;(2)312(4 6.5)y x x =-<<;(3)当5PB =或8时,QED V与QAP V 相似. 【解析】 【分析】(1)想办法证明B C APB EPC ∠∠∠∠=,=即可解决问题;(2)作A AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.想办法求出AQ 、PN 的长即可解决问题;(3)因为DQ PC P ,所以EDQ ECP V V ∽,又ABP ECP V V ∽,推出EDQ ABP V V ∽,推出ABP △相似AQP V 时,QED V与QAP V 相似,分两种情形讨论即可解决问题; 【详解】(1)证明:Q 四边形ABCD 是等腰梯形,B C ∴∠∠=,PA PQ Q =, PAQ PQA ∴∠∠=,AD BC ∵∥,PAQ APB PQA EPC ∴∠∠∠∠=,=,APB EPC ∴∠∠=, ABP ECP ∴V V ∽.(2)解:作AM BC ⊥于M ,PN AD ^于N.则四边形AMPN 是矩形.在Rt ABM V 中,3sin ,55AM B AB AB ===Q , 34AM BM ∴=,=,43PM AN x AM PN ∴==﹣,==,PA PQ PN AQ ⊥Q =,, 224AQ AN x ∴==(﹣),1312(4 6.5)2y AQ PN x x ∴=⋅⋅=-<<.(3)解:DQ PC Q P ,EDQ ECP ABP ECP ∴V V QV V ∽,∽, EDQ ABP ∴V V ∽,ABP ∴V 相似AQP V 时,QED V 与QAP V 相似, PQ PA APB PAQ ∠∠Q =,=,∴当BA BP =时,BAP PAQ V V ∽,此时5BP AB ==,当AB AP =时,APB PAQ V V ∽,此时28PB BM ==,综上所述,当PB=5或8时,QED V与△QAP V 相似. 【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.25.6.58米【解析】试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解.试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米, BE=AB•cos62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18米,∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.26.(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.【解析】【分析】(1)根据统计图即可得出结论;(2)先计算出优秀的学生,再补齐统计图即可;(3)根据图2的数值计算即可得出结论.【详解】(1)本班有学生:20÷50%=40(名),本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同学优秀;(2)成绩一般的学生有:40×30%=12(名),成绩优秀的有4名同学,补全的条形统计图,如图所示;(3)3000×50%=1500(名),答:该校3000人有1500人成绩良好.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点. 27.(1)k=b2+4b;(2).【解析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy 为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.。

山西省大同市2019-2020学年中考数学四月模拟试卷含解析

山西省大同市2019-2020学年中考数学四月模拟试卷含解析

山西省大同市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)2.某中学篮球队12名队员的年龄如下表:年龄:(岁)13 14 15 16人数 1 5 4 2关于这12名队员的年龄,下列说法错误的是( )A.众数是14岁B.极差是3岁C.中位数是14.5岁D.平均数是14.8岁3.如果关于x的方程x2﹣k x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥44.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.6.不解方程,判别方程2x2﹣2x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根7.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个8.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A .4,30°B .2,60°C .1,30°D .3,60°9.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C ..D .10.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .11.下列二次根式中,是最简二次根式的是( ) A .48B .22x y +C .15D .0.312.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .14.因式分解:3a 3﹣3a=_____.15.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.16.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x +]=5,则x 的取值范围是_____.17.如图,AB 是⊙O 的直径,点E 是»BF的中点,连接AF 交过E 的切线于点D ,AB 的延长线交该切线于点C ,若∠C =30°,⊙O 的半径是2,则图形中阴影部分的面积是_____.18.已知(x-ay)(x+ay)22x 16y =-,那么a=_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x 为非负整数). (1)根据题意,填写下表: 一次复印页数(页) 5 102030…甲复印店收费(元) 0.5 2 … 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.20.(6分)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =40°. (1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的度数.21.(6分)如图,一次函数y=﹣x+的图象与反比例函数y=(k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA+PB 的值最小,并求出其最小值和P 点坐标.22.(8分)如图,直线:3l y x =-+与x 轴交于点M ,与y 轴交于点A ,且与双曲线ky x=的一个交点为(1,)B m -,将直线l 在x 轴下方的部分沿x 轴翻折,得到一个“V ”形折线AMN 的新函数.若点P 是线段BM 上一动点(不包括端点),过点P 作x 轴的平行线,与新函数交于另一点C ,与双曲线交于点D .(1)若点P 的横坐标为a ,求MPD V 的面积;(用含a 的式子表示) (2)探索:在点P 的运动过程中,四边形BDMC 能否为平行四边形?若能,求出此时点P 的坐标;若不能,请说明理由.23.(8分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 试说明AC=EF ;求证:四边形ADFE 是平行四边形.24.(10分)已知A 、B 、C 三地在同一条路上,A 地在B 地的正南方3千米处,甲、乙两人分别从A 、B 两地向正北方向的目的地C 匀速直行,他们分别和A 地的距离s (千米)与所用的时间t (小时)的函数关系如图所示.(1)图中的线段l1是(填“甲”或“乙”)的函数图象,C地在B地的正北方向千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度. 25.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26.(12分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.1227.(12分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤初一 1 2 3 6初二0 1 10 1 8 (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一84 88.5初二84.2 74(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.2.D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.3.D 【解析】 【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围. 【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1. 故选D . 【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键. 4.D 【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3; ∴平均数不发生变化. B. ∵原众数是:3;添加一个数据3后的众数是:3; ∴众数不发生变化; C. ∵原中位数是:3;添加一个数据3后的中位数是:3; ∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-; ∴方差发生了变化. 故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 5.B 【解析】 【分析】根据圆锥的侧面展开图的特点作答. 【详解】A 选项:是长方体展开图.B 选项:是圆锥展开图.C 选项:是棱锥展开图.D 选项:是正方体展开图. 故选B. 【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形. 6.B 【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B7.D 【解析】 【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可. 【详解】解:设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴4144x =+ , 解得:x=12,经检验x=12是原方程的根, 故白球的个数为12个. 故选:D . 【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键. 8.B 【解析】试题分析:∵∠B=60°,将△ABC 沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合, ∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定9.B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.考点:轴对称图形和中心对称图形10.D【解析】【分析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.11.B【解析】【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【详解】A、48=43,不符合题意;B、22x y是最简二次根式,符合题意;C、15=5,不符合题意;D、0.3=30,不符合题意;故选B.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12.B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】【分析】【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.14.3a(a+1)(a﹣1).【解析】【分析】首先提取公因式3a ,进而利用平方差公式分解因式得出答案.【详解】解:原式=3a (a 2﹣1)=3a (a+1)(a ﹣1).故答案为3a (a+1)(a ﹣1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.243255和 【解析】【分析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==Q , 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB.∵,4OD AB OD AD BD ⊥===,∴△AOB 为等腰直角三角形,∴OA t === ;(2)∵BC=AC ,CD 为AB 边的高,∴∠ADC=90°,BD=DA=12AB=4,∴,当AC ∥y 轴时,∠ABO=∠CAB ,∴Rt △ABO ∽Rt △CAD , ∴AO AB CD AC =,即835t =, 解得,t=245, 当BC ∥x 轴时,∠BAO=∠CBD ,∴Rt△ABO∽Rt△BCD,∴AO ABBD BC=,即845t=,解得,t=325,则当t=245或325时,△ABC的边与坐标轴平行.故答案为t=245或325.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.16.11≤x<1【解析】【分析】根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[43x+]=5,得:453463x x +⎧≥⎪⎪⎨+⎪<⎪⎩,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.172 3π【解析】【分析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD 的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.【详解】解:连接OE,OF、EF,∵DE是切线,∴OE⊥DE,∵∠C =30°,OB =OE =2,∴∠EOC =60°,OC =2OE =4,∴CE =OC×sin60°=4sin 6023,⨯=o∵点E 是弧BF 的中点,∴∠EAB =∠DAE =30°,∴F ,E 是半圆弧的三等分点,∴∠EOF =∠EOB =∠AOF =60°,∴OE ∥AD ,∠DAC =60°,∴∠ADC =90°,∵CE =AE =23,∴DE 3∴AD =DE×tan60°333,=∴S △ADE 11333322AD DE =⋅=⨯= ∵△FOE 和△AEF 同底等高,∴△FOE 和△AEF 面积相等,∴图中阴影部分的面积为:S △ADE ﹣S 扇形FOE 23360π2333260π.3⋅⨯=-=- 故答案为33223π- 【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE 和△AEF 面积相等是解题关键.18.±4【解析】【分析】根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =- ∴216a =解得:a=±4 故答案为:±4. 【点睛】本题考查的平方差公式:22()()a b a b a b -=+-.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】【分析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y 1=0.1x (x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y 2=0.12x ,当一次复印页数超过20时,根据题意求得y 2=0.09x+0.6; (3)设y=y 1-y 2,得到y 与x 的函数关系,根据y 与x 的函数关系式即可作出判断.【详解】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2; 当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3; 故答案为1,3;1.2,3.3;(2)y 1=0.1x (x≥0);y 2=0.12x 0x 200.09x+0.6x 20≤≤⎧⎨>⎩()(); (3)顾客在乙复印店复印花费少;当x >70时,y 1=0.1x ,y 2=0.09x+0.6,设y=y 1﹣y 2,∴y 1﹣y 2=0.1x ﹣(0.09x+0.6)=0.01x ﹣0.6,设y=0.01x ﹣0.6,由0.01>0,则y 随x 的增大而增大,当x=70时,y=0.1∴x >70时,y >0.1,∴y 1>y 2,∴当x>70时,顾客在乙复印店复印花费少.【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.20.(1)45°;(2)26°.【解析】【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(1)(2)(0,)【解析】【分析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.【详解】(1)∵反比例函数y= =(k>0)的图象过点A,过 A 点作x 轴的垂线,垂足为M,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=;(2)作点A 关于y 轴的对称点A′,连接A′B,交y 轴于点P,则PA+PB 最小.由,解得,或,∴A(1,2),B(4,),∴A′(﹣1,2),最小值A′B==,设直线A′B 的解析式为y=mx+n,则,解得,∴直线A′B 的解析式为y=,∴x=0 时,y= ,∴P 点坐标为(0,).【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB 最小时,点P 的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键. 22.(1)213222=-++S a a ;(2)不能成为平行四边形,理由见解析 【解析】【分析】(1)将点B 坐标代入一次函数3y x =-+上可得出点B 的坐标,由点B 的坐标,利用待定系数法可求出反比例函数解析式,根据M 点的坐标为(3,0),可以判断出13a -<<,再由点P 的横坐标可得出点P 的坐标是(,3)P a a -+,结合PD ∥x 轴可得出点D 的坐标,再利用三角形的面积公式即可用含a 的式子表示出△MPD 的面积;(2)当P 为BM 的中点时,利用中点坐标公式可得出点P 的坐标,结合PD ∥x 轴可得出点D 的坐标,由折叠的性质可得出直线MN 的解析式,利用一次函数图象上点的坐标特征可得出点C 的坐标,由点P ,C ,D 的坐标可得出PD≠PC ,由此即可得出四边形BDMC 不能成为平行四边形.【详解】解:(1)∵点(1,)B m -在直线3y x =-+上,∴4m =.∵点(1,4)B -在k y x =的图像上, ∴4k =-,∴4y x =-. 设(,3)P a a -+, 则4,33D a a -⎛⎫-+ ⎪-+⎝⎭. ∵(3,0)M ∴13a -<<.记MPD V 的面积为S , ∴14(3)23S a a a -⎛⎫=--+ ⎪-+⎝⎭213222a a =-++.(2)当点P 为BM 中点时,其坐标为(1,2)P ,∴(2,2)D -.∵直线l 在x 轴下方的部分沿x 轴翻折得MN 表示的函数表达式是:3(3)y x x =-…, ∴(5,2)C ,∴3PD =,4PC =∴PC 与PD 不能互相平分,∴四边形不能成为平行四边形.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P ,M ,D 的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.23.证明见解析.【解析】【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.24.(1)乙;3;(2)甲先到达,到达目的地的时间差为32小时;(3)速度慢的人提速后的速度为43千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处. (2)甲先到达.设甲的函数解析式为s=kt,则有4=t,∴s=4t.∴当s=6时,t=3 2 .设乙的函数解析式为s=nt+3,则有4=n+3,即n=1. ∴乙的函数解析式为s=t+3.∴当s=6时,t=3.∴甲、乙到达目的地的时间差为:33322-=(小时).(3)设提速后乙的速度为v千米/小时,∵相遇处距离A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原来相遇后乙行2小时才到达C地,∴乙提速后2千米应用时1.5小时.即322v=,解得:43v=,答:速度慢的人提速后的速度为43千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.25.(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.26.A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.27.(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.【解析】【分析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答.【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.故答案为:1.分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.。

山西省大同市2020年中考第四次模拟数学试题

山西省大同市2020年中考第四次模拟数学试题

山西省大同市2020年中考第四次模拟数学试题一、选择题1.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.10 B.8 C.14 D.132.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为()A.32B.3 C.94D.1543.已知22xy=-⎧⎨=⎩是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣54.如图,是由4个大小相同的正方体组合而成的几何体,其主视图是( )A. B. C. D.5.若数轴上表示﹣2和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.3 D.56.如图,在▱ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论正确的是()A.DE=DFB.AG=GFC.AF=DFD.BG=GC7.如图,点E、F是正方形ABCD的边BC上的两点(不与B、C两点重合),过点B作BG⊥AE于点G,连接FG 、DF ,若AB =2,则DF+GF 的最小值为( )A. ﹣1B.C.3D.48.如图,点D 、E 分别在△ABC 的边AB 、AC 上,且AB =9,AC =6,AD =3,若使△ADE 与△ABC 相似,则AE 的长为( )A .2B .92C .2或92D .3或929.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cmC .12cm D .1cm10.如图:A B C D E F ∠∠∠∠∠∠+++++等于( )A .180oB .360oC .540oD .720o 11.不等式组9511x x x m +<+⎧⎨>+⎩的解集是 x >2,则m 的取值范围是( ) A .m <1 B .m≥1 C .m≤1 D .m >112.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x > 二、填空题13.已知二次函数y =ax 2+2ax+3a 2(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且﹣2≤x≤1时,与其对应的函数值y 的最大值为6,则a 的值为_____.14.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.15.因式分解:a 3-ab 2=______________.16.在函数31x y +=中,自变量x 的取值范围是__________. 17.如图,在平面直角坐标系xOy 中,已知抛物线233384y x x =--与x 轴交于点A 、(B A 在B 左侧),与y 轴交于点C ,经过点A 的射线AF 与y 轴正半轴相交于点E ,与抛物线的另一个交点为F ,13AE EF =,点D 是点C 关于抛物线对称轴的对称点,点P 是y 轴上一点,且AFP DAB ∠∠=,则点P 的坐标是______.18.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.三、解答题19.如图,已知AB是⊙O的直径,⊙O与Rt△ACD的两直角边分别交于点E、F,点F是弧BE的中点,∠C=90°,连接AF.(1)求证:直线DF是⊙O的切线.(2)若BD=1,OB=2,求tan∠AFC的值.20.先化简,再求值:2211121x xx x x----÷++,其中x=sin60°﹣121.如图,将等腰直角三角形ABC的直角顶点置于直线l上,过A,B两点分别作直线l的垂线,垂足分别为D,E,求证:BE=DC.22.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.23.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.24.有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=23,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.25.第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,这些球除颜色外都相同,分别从每个盒中随机取出一个球.(1)求取出的两个球中一个是白球,一个是黄球的概率;(2)若第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,其他条件不变,则取出的两个球都是黄球的概率为________.【参考答案】一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C B D D C A C D B C B二、填空题13.114.415.a (a+b )(a ﹣b )16.13x ≥-且2x ≠17.()0,6或1020,7P ⎛⎫-⎪⎝⎭ 18.(0,21009) 三、解答题19.(1)详见解析;(2)5【解析】【分析】(1)连结OF ,BE ,根得到BE ∥CD ,根据平行线的性质得到∠OFD=90°,根据切线的判定定理证明;(2)由OF ∥AC 可得比例线段求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,tan ∠AFC 的值可求.【详解】(1)证明:连结OF ,BE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD ,∴BE ∥CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C=∠OFD=90°,∴AC ∥OF ,∴△OFD ∽△ACD ,∴OF OD AC AD=, ∵BD=1,OB=2,∴OD=3,AD=5,∴251033AC ⨯==, ∴22AD AC -22105()3-553,∵CF CD OA AD=, ∴CD OA CF AD ⨯=∴tan ∠AFC=10AC CF == 【点睛】本题考查的是切线的判定、三角函数的计算,掌握切线的判定定理是解题的关键.20.﹣11x +;﹣3. 【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2211121x x x x x----÷++, =﹣1﹣2(1)(1)(1)1x x x x x +-⋅+- =﹣1+1x x + =11x x x --++ =﹣11x +, 当x =sin60°﹣1=2﹣1=﹣3. 【点睛】 本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE=DC.【点睛】此题考查三角形全等的判定与性质,难度不大22.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣32,﹣74)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23.(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】【分析】(1)将点A和点B的坐标代入抛物线的解析式得到关于b、c的方程组,然后求得a,b的值,从而得到问题的答案;(2)把A(﹣1,0)代入y=mx+12求得m的值,可得到直线AQ的解析式,设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),然后用含n的式子表示出PN、NF的长,然后依据PN=2NF列方程求解即可;(3)连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小,先求得点M的坐标,然后求得AM和DE的解析式,最后在求得两直线的交点坐标即可.【详解】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM 的函数解析式为y =32x+32. ∵D 为AC 的中点,∴D (﹣12,1). 设直线AC 的解析式为y =kx+2,将点A 的坐标代入得:﹣k+2=0,解得k =2,∴AC 的解析式为y =2x+2.设直线DE 的解析式为y =﹣12x+c ,将点D 的坐标代入得:14 +c =1,解得c =34, ∴直线DE 的解析式为y =﹣12x+34. 将y =﹣12x+34 与y =32x+32联立,解得:x =﹣38 ,y =1516 . ∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (﹣38,1516). 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、二次函数的性质,用含n 的式子表示出PN 、NF 的长是解答问题(2)的关键;明确相互垂直的两直线的一次项系数乘积为﹣1是解答问题(3)的关键.24.(1)3;(2)3;(3)22(03)(36)t S t +<=-<<…. 【解析】【分析】 (1)根据,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)分两种情形分别求解:当0<t≤3时,作CD ⊥FM 于D .根据S =S △MEB ﹣2S △MDC ,计算即可.②当3<t <6时,S =S △MEB .【详解】解:(1)在Rt △MON 中,∵∠MON =90°,ON =M =30°∴OM=6,∵△ABC 为等边三角形∴∠AOC =60°,∴∠OAM =90°∴OA ⊥MN ,即△OAM 为直角三角形,∴OA =12OM =12×6=3. 故答案为3.(2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,所以t =3.故答案为3.(3)易知:OM =6,MN =,S △OMN =12×6=∵∠M =30°,∠MBA =60°,∴∠BEM =90°.①当0<t≤3时,作CD ⊥FM 于D .∵∠ACB =60°,∠M =30°,∠FCB =∠M+∠CFM ,∴∠CFM =∠M =30°,∴CF =CM ,∵CD ⊥FM ,∴DF =DM ,∴S △CMF =2S △CDM ,∵△MEB ∽△MON , ∴2MEB MON S BM S MB ⎛⎫= ⎪⎝⎭V V , ∴S △MEB =23333822t -+, ∵△MDC ∽△MON , ∴2MDC MON S MC S MN ⎛⎫= ⎪⎝⎭V V , ∴S △MDC =23333848t -+, ∴S =S △MEB ﹣2S △MDC 2393+. ②当3<t <6时,S =S △MEB 233393 综上所述,S =22393(03)8433393(36)t t t +<⎪<<… . 【点睛】 本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(1)12(2)16【解析】【分析】(1) 找出1个白球、1个黄球所占结果数,然后根据概率公式求解(2)先计算出所有60种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解;【详解】(1)记第一个盒子中的球分别为白1、白2、黄1,第二个盒子中的球分别为白3、黄2,由列举可得:(白1白3)、(白2白3)、(黄1白3)、(白1黄2)、(白2黄2)、(黄1黄2),共6种等可能结果,即n=6,记“一个是白球,一个是黄球”为事件A,共3种,即m=3,∴P(A)=12;(2)画树状图为如下,则共有6种等可能的结果数,其中2个球都是黄球占1种所以取出的2个球都是黄球的概率=16.【点睛】此题考查了列表法和画树状图,解题关键在于列出可能出现的结果。

山西省大同市2019-2020学年中考数学第四次押题试卷含解析

山西省大同市2019-2020学年中考数学第四次押题试卷含解析

山西省大同市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°2.在△ABC中,∠C=90°,1cos2A ,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°3.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣44.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A.10cm B.30cm C.45cm D.300cm5.sin45°的值等于()A.2B.1 C.32D.226.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)7.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A .35°B .45°C .55°D .65°8.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25πcmB .210πcmC .215πcmD .220πcm9.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .10.如图,A ,C ,E ,G 四点在同一直线上,分别以线段AC ,CE ,EG 为边在AG 同侧作等边三角形△ABC ,△CDE ,△EFG ,连接AF ,分别交BC ,DC ,DE 于点H ,I ,J ,若AC=1,CE=2,EG=3,则△DIJ 的面积是( )A 3B .3C .12D 311.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a212.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:n n;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()①AB CDA.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.14.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.15.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.16.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.17.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.18.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)下面是一位同学的一道作图题:已知线段a 、b 、c (如图),求作线段x ,使::a b c x =他的作法如下:(1)以点O 为端点画射线OM ,ON .(2)在OM 上依次截取OA a =,AB b =.(3)在ON 上截取OC c =.(4)联结AC ,过点B 作//BD AC ,交ON 于点D .所以:线段________就是所求的线段x .①试将结论补完整②这位同学作图的依据是________③如果4OA =,5AB =,AC π=u u u r u r ,试用向量πu r 表示向量DB uuu r .20.(6分)已知:不等式23x -≤2+x (1)求不等式的解;(2)若实数a 满足a >2,说明a 是否是该不等式的解.21.(6分)计算:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1. 22.(8分)如图,矩形ABCD 中,AB =4,AD =5,E 为BC 上一点,BE ∶CE =3∶2,连接AE ,点P 从点A 出发,沿射线AB 的方向以每秒1个单位长度的速度匀速运动,过点P 作PF ∥BC 交直线AE 于点F.(1)线段AE =______;(2)设点P 的运动时间为t(s),EF 的长度为y ,求y 关于t 的函数关系式,并写出t 的取值范围;(3)当t 为何值时,以F 为圆心的⊙F 恰好与直线AB 、BC 都相切?并求此时⊙F 的半径.23.(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)24.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1.(2)先化简,再求值:(x﹣1)÷(21x﹣1),其中x为方程x2+3x+2=0的根.25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.(1)求证:DE为⊙O的切线.(2)若⊙O的半径为256,AD=203,求CE的长.26.(12分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m 经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.27.(12分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质2.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A ,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.3.B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.A【解析】【分析】根据已知得出直径是60cm 的圆形铁皮,被分成三个圆心角为120︒半径是30cm 的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。

山西省大同市2019-2020学年中考数学模拟试题(4)含解析

山西省大同市2019-2020学年中考数学模拟试题(4)含解析

山西省大同市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.函数2(0)y x x=->的图像位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列图形中,哪一个是圆锥的侧面展开图?( )A .B .C .D .3.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 2s 0.51=甲,2s 0.62=乙,2s 0.48=丙,2s 0.45=丁,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是( ) A .180个,160个 B .170个,160个 C .170个,180个D .160个,200个5.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y= 1x的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 36.一个正方形花坛的面积为7m 2,其边长为am ,则a 的取值范围为( ) A .0<a <1B .l <a <2C .2<a <3D .3<a <47.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( ) A .103块B .104块C .105块D .106块8.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π-9.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.1210.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则y1>y1.其中说法正确的是()A.①②B.②③C.①②④D.②③④11.如图所示的正方体的展开图是()A.B.C.D.12.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.14.抛物线y =﹣x 2+bx+c 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+bx+c =0的解为_____.15.如图,在Rt ABC V 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.16.双曲线11y x =、23y x=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则BDCE= .17.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 18.计算:()()a a b b a b +-+=_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长. (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)20.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)21.(6分)如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A(3,0)、B(0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.22.(8分)如图所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD. (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.23.(8分)计算:(﹣2)2+201803624.(10分)计算:22b a b -÷(aa b-﹣1) 25.(10分)观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D 落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是 ,位置关系是 .探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.26.(12分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m 个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP 与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.27.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据反比例函数中kyx=,当0k<,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数2(0)y xx=->的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.2.B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.3.D【解析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.4.B【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y 2<y 1<y 1. 故选D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键. 6.C 【解析】 【分析】先根据正方形的面积公式求边长a ,再根据无理数的估算方法求取值范围. 【详解】解:∵一个正方形花坛的面积为27m ,其边长为am ,a ∴=23∴则a 的取值范围为:2a 3<<. 故选:C . 【点睛】此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键. 7.C 【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x 块, 550×60+(x ﹣60)×500>55000 解得,x >104 ∴这批电话手表至少有105块 考点:一元一次不等式的应用 8.D 【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×2,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×43π﹣ 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 9.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 10.C 【解析】∵二次函数的图象的开口向上,∴a >0。

山西省大同市2019-2020学年中考数学考前模拟卷(4)含解析

山西省大同市2019-2020学年中考数学考前模拟卷(4)含解析

山西省大同市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列二次根式,最简二次根式是( ) A .8B .12C .13D .0.12.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )A .15,0.125B .15,0.25C .30,0.125D .30,0.253.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ) A .24d h πB .22d h πC .2d h πD .24d h π4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数 45678人数36542每天加工零件数的中位数和众数为( ) A .6,5 B .6,6C .5,5D .5,65.﹣18的相反数是( ) A .8B .﹣8C .18D .﹣186.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( ) A .B .C .D .A.B.C.D.8.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是269.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖10.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE 折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°11.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件12.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.14.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为_____.15.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________. 16.如图,已知在△ABC 中,∠A=40°,剪去∠A 后成四边形,∠1+∠2=______°.17.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;x x 甲乙 =8,则这两人5次射击命中的环数的方差S 甲2_____S 乙2(填“>”“<”或“=”). 18.若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小,则m 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C 2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a 元/学时,高峰时段和节假日时段都为b 元/学时. (1)小明和小华都在此驾校参加C 2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a ,b 的值. 学员培训时段 培训学时 培训总费用小明普通时段 20 6000元 高峰时段 5节假日时段 15小华普通时段 305400元节假日时段8(2)小陈报名参加了C 2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的12,若小陈普通时段培训了x 学时,培训总费用为y 元 ①求y 与x 之间的函数关系式,并确定自变量x 的取值范围; ②小陈如何选择培训时段,才能使得本次培训的总费用最低?20.(6分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒. (1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?21.(6分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( ) A .58B .38C .1116D .1222.(8分)已知关于x 的一元二次方程kx 2﹣6x+1=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.23.(8分)先化简,再求值:(12a +-1)÷212a a -+,其中a =31+ 24.(10分)已知:AB 为⊙O 上一点,如图,12AB =,43BC =,BH 与⊙O 相切于点B ,过点C 作BH 的平行线交AB 于点E.(1)求CE 的长;(3)在(2)的条件下,连结GC 并延长GC 交BH 于点D ,求证:BD BG =25.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.26.(12分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.27.(12分)如图,抛物线y=ax 2+2x+c 与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形为直角三角形?若存在,试求出点Q 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】A =B 2=,不是最简二次根式,故本选项不符合题意;CD 10=,不是最简二次根式,故本选项不符合题意. 故选C . 【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键. 2.D 【解析】 分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断. 详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2, ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25, 又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30. 综上所述,选项D 中数据正确. 故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系. 3.A 【解析】圆柱体的底面积为:π×(2d)2, ∴矿石的体积为:π×(2d )2h= 2π4d h .故答案为2π4d h .4.A 【解析】 【分析】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18,故选C.6.D【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.C【解析】【分析】【详解】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.8.C根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.9.D【解析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件10.D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.11.A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.12.D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.亏损 1【解析】【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【详解】设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=10;设亏本20%的电子琴的成本为y元,y(1-20%)=960,解得y=1200;∴960×2-(10+1200)=-1,∴亏损1元,故答案是:亏损;1.【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.14.1【解析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1, 故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变. 16.220. 【解析】试题分析:△ABC 中,∠A =40°,18040B C ∠+∠=-o o =140o ;如图,剪去∠A 后成四边形∠1+∠2+B C ∠+∠=360o ;∠1+∠2=220° 考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键 17.> 【解析】 【分析】分别根据方差公式计算出甲、乙两人的方差,再比较大小. 【详解】∵x x =甲乙=8,∴2S 甲=15[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=15(1+1+0+4+4)=2,2S 乙=15[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=15(1+0+1+0+0)=0.4,∴2S 甲>2S 乙.故答案为:>. 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 18.m >2 【解析】 试题分析:有函数的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小可得m-2>0,解得m>2,19.(1)120,180;(2)①y=-60x+7200,0≤x≤403;②x=403时,y 有最小值,此时y 最小=-60×403+7200=6400(元).【解析】【分析】 (1)根据小明和小华的培训结算表列出关于a 、b 的二元一次方程组,解方程即可求解;(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y 与x 之间的函数关系式,进而确定自变量x 的取值范围;②根据一次函数的性质结合自变量的取值范围即可求解.【详解】(1)由题意,得{20a 20b 600030a 10b 5400+=+=, 解得{a 120b 180==,故a ,b 的值分别是120,180;(2)①由题意,得y=120x+180(40-x ),化简得y=-60x+7200, ∵普通时段的培训学时不会超过其他两个时段总学时的12, ∴x≤12(40-x ), 解得x≤403, 又x≥0,∴0≤x≤403; ②∵y=-60x+7200,k=-60<0,∴y 随x 的增大而减小,∴x 取最大值时,y 有最小值,∵0≤x≤403; ∴x=403时,y 有最小值,此时y 最小=-60×403+7200=6400(元). 【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键. 20.(1)35元/盒;(2)20%.【解析】【分析】【详解】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.21.A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105168=, 故选:A . 点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m 除以所有等可能发生的情况数n 即可,即m P n =. 22.(1)k k ≠<9且0(2) 11=2x ,21=4x 【解析】【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k 的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k 的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得()20640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k 9<且k 0≠;(2) ∵k 是小于9的最大整数,∴k=8,此时的方程为28x 6x 10-+=, 解得11x =2,21x =4. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.23.【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式3==- 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.24.;(2);(3)证明见解析.【解析】【分析】(1)只要证明△ABC ∽△CBE ,可得BC AB CE AC=,由此即可解决问题; (2)连接AG ,只要证明△ABG ∽△FBE ,可得BG BE AB BF =,由BE4,再求出BF ,即可解决问题;(3)通过计算首先证明CF =FG ,推出∠FCG =∠FGC ,由CF ∥BD ,推出∠GCF =∠BDG ,推出∠BDG =∠BGD 即可证明.【详解】解:(1)∵BH 与⊙O 相切于点B ,∴AB ⊥BH ,∵BH ∥CE ,∴CE ⊥AB ,∵AB 是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC ,∴△ABC ∽△CBE , ∴BC AB CE AC=,∵=∴.(2)连接AG .∵∠FEB=∠AGB=90°,∠EBF=∠ABG ,∴△ABG ∽△FBE , ∴BG BE AB BF=,∵,∴=, ∴12BG =,∴.(3)易知,∴GF=BG ﹣,∴CF=GF ,∴∠FCG=∠FGC ,∵CF ∥BD ,∴∠GCF=∠BDG ,∴∠BDG=∠BGD ,∴BG=BD .【点睛】本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.25.(1)14(2)316【解析】【详解】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=41 164;(2)P(两次取得小球的标号的和等于4)=3 16.考点:概率的计算.26.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.27.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.。

山西省大同市数学中考四模试卷

山西省大同市数学中考四模试卷

山西省大同市数学中考四模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·大安期末) 的绝对值是()A .B . 2C .D .2. (2分)(2019·长春模拟) 如图,智博会上使用的演讲台俯视图是()A .B .C .D .3. (2分)下列计算正确的是()A . x3+2x2=3x5B . (﹣3x3)2=6x6C . (﹣x)4÷(﹣x)2=﹣x2D . (﹣x3)•(﹣x)2=﹣x54. (2分)下列说法错误的是()A . 等腰三角形两腰上的中线相等B . 等腰三角形两腰上的高线相等C . 等腰三角形的中线与高重合D . 等腰三角形底边的中线上任一点到两腰的距离相等5. (2分)下列语句不正确的是()A . 所有的正比例函数都是一次函数B . 一次函数的一般形式是y=kx+bC . 正比例函数和一次函数的图象都是直线D . 正比例函数的图象是一条过原点的直线6. (2分) (2016九上·顺义期末) 如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A . 30°B . 45°C . 60°D . 75°7. (2分)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A .B .C .D .8. (2分)矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A . 正方形B . 菱形C . 矩形D . 平行四边形9. (2分)如图所示,四边形ABCD的四个顶点都在⊙O上,称这样的四边形为圆的内接四边形,则图中∠A+∠C=()度.A . 90°B . 180°C . 270°D . 360°10. (2分) (2019七下·巴南期中) 若,则点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共3题;共3分)11. (1分)(2019·金华) 不等式3x-6≤9的解是________.12. (1分)边长为1的正六边形的外接圆半径是________.13. (1分)(2019·合肥模拟) 反比例函数与一次函数的图象有一个交点是,则它们的另一个交点的坐标是________.三、解答题 (共12题;共88分)14. (1分)(2017·陕西模拟) 如图,BD为矩形ABCD的对角线,AE⊥BD,垂足为E,t an∠BAE= ,BE=1,点P、Q分别在BD、AD上,连接AP、PQ,则AP+PQ的最小值为________.15. (5分)(2019·湟中模拟) 计算17. (5分)(2018·覃塘模拟) 根据要求尺规作图,并在图中标明相应字母 (保留作图痕迹,不写作法).如图,已知△ABC中,AB=AC,BD是BA边的延长线.(1)①作∠DAC的平分线AM;②作AC边的垂直平分线,与AM交于点F,与BC边交于点E;(2)联接AF,则线段AE与AF的数量关系为________.18. (5分) (2016九上·滁州期中) 如图,在△PAB中,∠APB=120°,M,N是AB上两点,且△PMN是等边三角形,求证:BM•PA=PN•BP.19. (11分)(2018·秀洲模拟) 为了解学生对篮球、羽毛球、乒乓球、踢毽子、跳绳等5项体育活动的喜欢程度,某校随机抽查部分学生,对他们最喜欢的体育项目(每人只选一项)进行了问卷调查,并将统计数据绘制成如下两幅不完整的统计图:请解答下列问题:(1) m=________%,这次共抽取了________名学生进行调查;请补全条形统计图;(2)若全校有800名学生,则该校约有多少名学生喜爱打篮球?(3)学校准备从喜欢跳绳活动的4人(二男二女)中随机选取2人进行体能测试,求抽到一男一女学生的概率是多少?20. (5分)如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC、AB上,AD与HG的交点为M. 求矩形的长与宽.21. (10分) (2018九上·丰台期末) 如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE 交BC于点F,连接DF.已知AB = 4cm,AD = 2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2 .小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是________;(2)通过取点、画图、测量、分析,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53 3.5…y/cm2 4.0 3.7________ 3.9________ 3.8 3.3 2.0…(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为________cm.22. (6分) (2019九上·赣榆期末) 在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.(1)如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?(2)在(1)的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.23. (10分)(2011·茂名) 如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A 的直线AB与y轴的正半轴交于点B,与⊙P交于点C.(1)已知AC=3,求点B的坐标;(2)若AC=a,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为O1,函数的图象经过点O1,求k的值(用含a的代数式表示).24. (10分)(2012·湖州) 如图1,已知菱形ABCD的边长为2 ,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)25. (15分) (2020九上·泰兴期末) 在矩形ABCD中,AB=3,BC=2,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0°<α<180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.(1)如图①,当点E落在DC边上时,直写出线段EC的长度为________;(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,①求证:△ACD≌△CAE;②直接写出线段DH的长度是多少?(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共3题;共3分)11-1、12-1、13-1、三、解答题 (共12题;共88分)14-1、15-1、17-1、17-2、18-1、19-1、19-2、19-3、20-1、21、答案:略22-1、22-2、23-2、24-1、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年数学中考模拟试卷一、选择题1.如图,A ,B 是半径为1的O e 上两点,且60AOB ∠=︒.点P 从A 出发,在O e 上以每秒3π个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,则下面图象中可能..表示y 与x 的函数关系的是( )A.①或②B.②或③C.③或④D.①或④ 2.下列运算正确的是( ) A.34a a a ⋅=B.532-=C.52102()a b a b -=-D.222(23)469a b a ab b +=++ 3.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.4.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转得△A′B′C,且点B 在A′B′ 上,CA′ 交AB 于点D ,则∠BDC 的度数为( )A .40°B .50°C .60°D .70°5.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④6.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=52,BC=245.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.7.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.8.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.25cm C.8cm D.45cm9.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF10.如图,在Rt△ABC中,已知∠ACB=90°,BC=3,AB=5,扇形CBD的圆心角为60°,点E为CD上一动点,P为AE的中点,当点E从点C运动至点D,则点P的运动路径长是 ( )A .2πB .6πC .πD .3211.如图,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连结BD ,如果∠DAC=∠DBA ,那么∠BAC 度数是( )A .32°B .35°C .36°D .40°12.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG=2∠ABF ;②BA 平分∠CBG ;③∠ABG=∠ACB ;④∠CFB=135°.其中正确的结论是( )A .①③B .②④C .①③④D .①②③④二、填空题 13.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O 、B 、C 是格点,则扇形OBC 的面积等于___(结果保留π)14.若最简二次根式1a +与42a -是同类二次根式,那么a =________。

15.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为_______°.16.如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=2.运动过程中点D 到点O 的最大距离是______.17.若一次函数(为常数)的图象经过第二、三、四象限,则的值可以是______(写出一个即可). 18.若点(a ,b )在一次函数y =2x ﹣3的图象上,则代数式4a ﹣2b ﹣5的值是_____.三、解答题19.如图,港口B位于港口A的南偏西45°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的南偏东45°方向的D处,它沿正北方向航行18.5km到达E处,此时测得灯塔C在E的南偏西70°方向上,求E处距离港口A有多远?(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.某水果店经销一批柑橘,每斤进货价是3元.试销期间发现每天的销售量y(斤)与销售単价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用800元.销售单价x(元) 3.5 5.5销售量y(斤)2800 1200(2)如果每天获得1600元的利润,销售单价为多少元?(3)当销售价定为多少元时,每天的利润最大?最大利润是多少元?21.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):b.关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 1111 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:问题平均数中位数众数面向未来的学校教育11 10 9家庭教育12 m 10(1)表中m的值为______;(2)在此次采访中,参会教师更感兴趣的问题是______(填“面向未来的教育”或“家庭教育”),理由是______;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有______位.22.如图,在△ABC 中,∠B =90°,AB =4,BC =8.(1)在BC 上求作一点P ,使PA+PB =BC ;(尺规作图,不写作法,保留作图痕迹)(2)求BP 的长.23.已知,O e 的半径为1;直线CD 经过圆心O ,交O e 于C 、D 两点,直径AB CD ⊥,点M 是直线CD 上异于C D O 、、的一个动点,直线AM 交O e 于点N ,点P 是直线CD 上另一点,且PM PN =.(Ⅰ)如图1,点M 在O e 的内部,求证:PN 是O e 的切线;(Ⅱ)如图2,点M 在O e 的外部,且30AMO ︒∠=,求OP 的长.24.计算: 1116|2|3-⎛⎫+-- ⎪⎝⎭. 25.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知线段a 和∠α,求作:等腰△ABC ,使得顶角∠A =∠α,a 为底边上的高线.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A A C B D B D B AC C13.54π 14. 15.3516.2 +1 17.-1(答案不唯一)18.1 三、解答题19.5 km .【解析】【分析】过点B 作BM ⊥AD ,垂足为M ,过点C 作CN ⊥AD ,垂足为N ,设CN =x km ,在Rt △ACN 中,利用∠A 的正切值可得AN=x ,在Rt △ECN 中,利用∠CEN 的正切值可得EN=tan 70x ︒,根据平行线分线段成比例性质可得AC CN AN AB BM AM==,可得BM=2x ,AN=MN ,在Rt △BMD 中,利用∠MDB 的正切值可得DM=2x ,根据DE-DM-EN=MN 列方程即可求出x 的值,进而可得AE 的长.【详解】如图,过点B 作BM ⊥AD ,垂足为M ,过点C 作CN ⊥AD ,垂足为N .设CN =x km .在Rt △ACN 中,∠A =45°,∴tan45°=CN AN , ∴AN =tan 45CN ︒=tan 45x ︒=x ,在Rt △ECN 中,∠CEN =70°,∵tan70°=CN EN , ∴EN =tan 70CN ︒=tan 70x ︒. ∵CN ⊥AD ,BM ⊥AD ,∴∠ANC =∠AMB =90°.∴CN ∥BM .∴AC CN AN AB BM AM==.又∵C 为AB 中点,∴AB =2AC ,AC =BC .∴BM =2CN =2x ,AN =MN .由题可知,∠MDB =45°.在Rt △BMD 中,∠MDB =45°, ∵tan45°=BM DM , ∴DM =tan 45BM ︒=2tan 45x ︒=2x . ∴18.5-2x -tan 70x ︒=x ∴x =18.5tan 7013tan 70⨯︒+⨯︒≈5.5. ∴AE =AN -EN =5.5-5.5tan 70︒=3.5. 因此,E 处距离港口A 大约3.5km .【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.20.(1)y =﹣800x+5600;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是2400元.【解析】【分析】(1)设y =kx+b ,将两组数据代入即可求解(2)设销售单价为x 元,用销售量×每斤利润-其他各项费用=总利润即可得出(x ﹣3)(﹣800x+5600)﹣800=1600,求解即可得到答案(3)由题意可得w =(x ﹣3)(﹣800x+5600)﹣800,整理一下,在x 范围内用二次函数的最值公式即可求解【详解】(1)设y =kx+b ,将x =3.5,y =2800;x =5.5,y =1200代入,得 3.528005.51200k b k b +=⎧⎨+=⎩, 解得8005600k b =-⎧⎨=⎩ , 则y 与x 之间的函数关系式为y =﹣800x+5600;(2)由题意,得(x ﹣3)(﹣800x+5600)﹣800=1600,整理,得x 2﹣10x+24=0,解得x 1=4,x 2=6.∵3.5≤x≤5.5,∴x =4.答:如果每天获得1600元的利润,销售单价为4元;(3)由题意得:w =(x ﹣3)(﹣800x+5600)﹣800=﹣800x 2+8000x ﹣17600=﹣800(x ﹣5)2+2400,∵3.5≤x≤5.5,∴当x=5时,w有最大值为2400.故当销售单价定为5元时,每天的利润最大,最大利润是2400元.【点睛】此题主要考查二次函数的实际应用,熟练运用待定系数法是解题关键21.(1)11;(2)家庭教育问题,理由见解析;(3)210位.【解析】【分析】(1)根据频数(率)分布直方图中数据即可得到结论;(2)根据表中数据即可得到结论;(3)所有参会教师人数×在“家庭教育”这个问题上发言次数超过8次的参会教师占在“家庭教育”这个问题上发言的参会教师的人数即可得到结论.【详解】解:(1)根据题意可知关于“家庭教育”问题发言次数的中位数落在8≤x<12这一组,∴m=11,故答案为:11;(2)在此次采访中,参会教师更感兴趣的问题是家庭教育问题,理由:“家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数;故答案为:家庭教育,家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数;(3)300×4260=210位,答:发言次数超过8次的参会教师有210位.【点睛】本题考查了频数(率)分布直方图,正确的理解题意是解题的关键.22.(1)见解析;(2)3.【解析】【分析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解. 【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.【点睛】考核知识点:勾股定理和线段垂直平分线.23.(Ⅰ)证明见解析;(Ⅱ)OP=23. 【解析】【分析】 (Ⅰ)连接ON ,根据等边对等角即可证得∠1=∠2,∠PNM=∠4,然后根据直角三角形两锐角互余即可证得∠PNO=90°,即可得结论;(Ⅱ)连接ON ,由∠3=30°可得∠1=60°,即可证明△AON 是等边三角形,可得∠5=30°,根据等腰三角形的性质可得∠3=∠4=30°,进而可证明∠PNO=90°,利用∠3的余弦值求出OP 的长即可.【详解】(Ⅰ)如图,连接ON ,∵AB CD ⊥,∴1390∠∠+=︒.∵OA ON =,∴12∠∠=.∵P PM N =,∴4PNM ∠∠=.∵34∠∠=,∴290PNM ∠∠+=︒,即PN ON ⊥.又∵ON 是半径,点N 在O e 上,∴PN 是O e 的切线.(Ⅱ)解:如图,∵330∠=︒,∴160∠=︒,∵ON=OA ,∴AON V 是等边三角形.∴530∠=︒.∵PM PN =,∴4330∠∠==︒.∴∠OPN=60°,∴90PNO ∠=︒.∴135303ON OP cos cos ∠===︒.【点睛】本题考查了切线的判定与锐角三角函数定义,证明切线的常用方法是连接圆心和直线与圆的公共点,然后证明垂直.熟练掌握三角函数的定义是解题关键.24.5【解析】【分析】原式利用算术平方根定义,负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【详解】原式=4+3﹣2=5.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.见解析【解析】【分析】先作∠MAN=∠α,在作∠MON的平分线AP,在AP上截取AD=a,然后过点D作AP的垂线分别交AM、AN 于B、C,则△ABC为所作.【详解】解:如图,△ABC为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定定理.2019-2020学年数学中考模拟试卷一、选择题1.在1x,12,212x+,3xyπ,3x y+,1am+中分式的个数有()A.2 个B.3 个C.4 个D.5 个2.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.3C.4 D.53.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④4.如图,在☉O中,弦AB⊥BC,AB=3,BC=4,D是BC n上一点,弦AD与BC所夹的锐角度数是72°,则扇形BOD的面积为 ( )A.π2B.5π8C.3π5D.3π45.如图是二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)图象的一部分,与x轴的右交点在点(2,0)和(3,0)之间,对称轴是x=1,对于下列说法:①abc<0;②2a+b=0;③3a+c>0;④当﹣1<x<2时,y>0;⑤b2﹣4ac>0.其中正确的个数是()A.2B.3C.4D.56.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x>4,那么符合条件的所有整数a的值之和是()A.7B.8C.4D.57.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A.B.C.D.8.下列算式运算结果正确的是()A.(2x5)2=2x10B.(﹣3)﹣2=1 9C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 9.下列图像中既不是中心对称图形又不是轴对称图形的是( )A. B.C. D.10.sin30︒的值等于( )A.12B.1 C.22D.311.函数11yx=-中自变量x的取值范围是()A.x>1 B.x≤1C.x<1 D.x≥112.已知边长为m的正方形面积为12,则下列关于m的说法中:①m2是有理数;②m的值满足m2﹣12=0;③m满足不等式组4050mm->⎧⎨-<⎩;④m是12的算术平方根. 正确有几个()A.1个B.2个C.3个D.4个二、填空题13.若x1=﹣1是关于x的方程2x mx50+-=的一个根,则方程的另一个根x2= .14.方程3xx-=1xx+的解是_____.15.二次函数y=x2-2x+2图像的顶点坐标是______.16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为_____.17.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.18.九年级(1)班共50名同学,图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为数),若将不低于29分的成绩评为优秀,则该班此次成绩达到优秀的同学的人数占全班人数的百分比是_____.三、解答题19.某城市响应“绿水青山就是金山银山”的号召,准备在全市宣传开展“垃圾分类”活动,先对随机抽取的1000名公民的年龄段分布情况和对“垃圾分类”所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)补全条形图;(2)扇形图中态度为“一般”所对应的扇形的圆心角的度数是;(3)这次随机调查中,年龄段是“25岁一下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,这个城市总人口大约500万人,则对开展“垃圾分类”持“支持”态度的估计有多少万人?20.为响应我市中考改革,我市第四中学组织了一次全校2000名学生参加的“中考模拟”测试,测试结束后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次模拟测试的成绩分布情况,学校随机抽取了其中100名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 5 0.0560≤x<70 10 0.1070≤x<80 a 0.1580≤x<90 30 b90≤x≤10040 0.40(1)a=___,b=___;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在___分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次模拟测试的2000名学生中成绩“优”等的概率为多少?21.计算:2sin30°+32 ﹣2019022.如图,一次函数y=kx+b 与反比例函数y k x'=(x>0)的图象交于点A(a ,3)和B(3,1).(1)求一次函数的解析式.(2)观察图象,写出反比例函数值小于一次函数值时x 的取值范围.(3)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,交反比例函数图象于点Q ,连接OP 、OQ ,若△POQ 的面积为12,求P 点的坐标。

相关文档
最新文档