【赢在高考】2013届高考数学一轮配套练习 1.1 集合 理 北京

合集下载

2013北京高考理科数学试题(修正版)(答案为官方正式答案)

2013北京高考理科数学试题(修正版)(答案为官方正式答案)

2013北京高考理科数学试题第一部分 (选择题 共40分)选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤ x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限 3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为A.1B.23C.1321 D.6109875.函数f(x)的图象向右平移1个单位长度,所得 图象与y=ex 关于y 轴对称,则f(x)=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b -=A.y=±2xB.y=C.12y x =±D.y x=7.直线l 过抛物线C: x2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A.43B.2C.83D.38.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m 的取值范围是A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭ 第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 .10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q= ;前n 项和Sn= .11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D.若PA=3,916PD DB =::,则PD= ;AB=.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c=λa +μb (λ,μ∈R),则λμ= .14.如图,在棱长为2的正方体ABCD -A1B1C1D1中,E 为BC 的中点,点P 在线段D1E 上,点P 到直线CC1的距离的最小值为 .三、解答题共6小题,共80分。

2013北京高考数学真题(理科)及答案

2013北京高考数学真题(理科)及答案
(Ⅲ)从 3 月 5 日开始连续三天的空气质量指数方差最大. (17)(共 14 分)
解:(Ⅰ)因为 AA1C1C是正方形 ,所以 AA1⊥AC .
因为 平面ABC 平面AA1C1C ,且 AA1 垂直于这两个平面的交线 AC,
所以 AA1 ⊥平面 ABC .
z A1
B1
(Ⅱ)由(Ⅰ)知 AA1⊥AC , AA1 ⊥ AB .
gx
1
f
x=
x2
1 x2
ln
x

当 0<x<1 时, x2 1<0,ln x<0,所以 g x<0,故 g x 单调递减;
当 x>1 时, x2 1>0,ln x>0,所以 g x>0,故 g x 单调递减.
所以 g x>g 1 =0x 0,x 1.
(9)1
(10)2
2n1 2
(11) 9 5
(6)B 4
(7)C
(8)C
(12)96 (13)4
三、解答题(共 6 小题,共 80 分) (15)(共 13 分)
(14) 2 5 5
解:(Ⅰ)因为 a 3 , b 2 6 , B 2A ,
所以在△ABC 中由正弦定理得 3 2 6 . sin A sin 2A
指指指指指指
250 200 150 100 86 50
220 160
143
57
217 160 158
121 86 79
25
37
0 1指
2指
指指 3指 4指 5指 6指 7指 8指 9指 10指 11指 12指13指 14指
(Ⅰ)求此人到达当日空气重度污染的概率; (Ⅱ)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与数学期望; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

2013年北京市高考数学试卷(理科)答案与解析

2013年北京市高考数学试卷(理科)答案与解析

2013年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•北京)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=( ) A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}考点:交集及其运算.专题:集合.分析:找出A与B的公共元素,即可确定出两集合的交集.解答:解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选B点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•北京)在复平面内,复数(2﹣i)2对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限.解解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,答:复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选D.点评:本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.3.(5分)(2013•北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.解答:解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选A.点评:本题考查充要条件的判定,用到的知识是三角函数的图象特征.是基础题.4.(5分)(2013•北京)执行如图所示的程序框图,输出的S值为( ) A.1B.C.D.考点:程序框图.专题:算法和程序框图.分析:从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.解答:解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选C.点评:本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.5.(5分)(2013•北京)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=( ) A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1考点:函数解析式的求解及常用方法;函数的图象与图象变化.专题:函数的性质及应用.分析:首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.解答:解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e ﹣x﹣1.故选D.点评:本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.6.(5分)(2013•北京)若双曲线的离心率为,则其渐近线方程为( )A .y=±2xB .C .D .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a 、b 关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a ,又a 2+b 2=c 2,所以b=a ,所以双曲线的渐近线方程为:y==±x .故选B .点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.7.(5分)(2013•北京)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .B .2C .D .考点:定积分.专圆锥曲线的定义、性质与方程.题:分析:先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分可求直线l与抛物线围成的封闭图形面积.解答:解:抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=( x﹣)|=.故选:C.点评:本题考查封闭图形的面积,考查直线方程,解题的关键是确定直线的方程,求出积分区间,确定被积函数.8.(5分)(2013•北京)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是( ) A.B.C.D.考简单线性规划.点:不等式的解法及应用.专题:先根据约束条件分析:画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.解:先根据约束条件解答:画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选C.点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、填空题共6小题,每小题5分,共30分.9.(5分)(2013•北京)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于 1 .考点:点的极坐标和直角坐标的互化;点到直线的距离公式.专题:直线与圆.分析:先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.解答:解:在极坐标系中,点化为直角坐标为(,1),直线ρsinθ=2化为直角坐标方程为y=2,(,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1,故答案为:1.点评:本题关键是直角坐标和极坐标的互化,体现等价转化数学思想.10.(5分)(2013•北京)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q= 2 ;前n项和S n= 2n+1﹣2 .考点:等比数列的前n项和;等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.解答:解:设等比数列{a n}的公比为q,∵a2+a4=20,a3+a5=40,∴,解得.∴==2n+1﹣2.故答案为:2,2n+1﹣2.点评:熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.11.(5分)(2013•北京)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=  ,AB= 4 .考与圆有关的比例线段.点:专题:直线与圆.分析:由PD:DB=9:16,可设PD=9x,DB=16x.利用切割线定理可得PA2=PD•PB,即可求出x,进而得到PD,PB.AB为圆O的直径,PA为圆O的切线,利用切线的性质可得AB⊥PA.再利用勾股定理即可得出AB.解答:解:由PD:DB=9:16,可设PD=9x,DB=16x.∵PA为圆O的切线,∴PA2=PD•PB,∴32=9x•(9x+16x),化为,∴.∴PD=9x=,PB=25x=5.∵AB为圆O的直径,PA为圆O的切线,∴AB⊥PA.∴==4.故答案分别为,4.点评:熟练掌握圆的切线的性质、切割线定理、勾股定理是解题的关键.12.(5分)(2013•北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 96 .考点:排列、组合及简单计数问题.专题:排列组合.分析:求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.解答:解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种.故答案为:96.点评:本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.13.(5分)(2013•北京)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则= 4 .考点:平面向量的基本定理及其意义.专平面向量及应用.题:分以向量析:、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.解:以向量解答:、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:4点本题给出向量评:用向量、线性表示,求系数λ、μ的比值,着重考查了平面向量的坐标运算法则和平面向量基本定理及其意义等知识,属于基础题.14.(5分)(2013•北京)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为  .考点、线、面间的距离计算.点:专题:空间位置关系与距离.分析:如图所示,取B1C1的中点F,连接EF,ED1,利用线面平行的判定即可得到C1C∥平面D1EF,进而得到异面直线D1E与C1C的距离.解答:解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为点评:熟练掌握通过线面平行的性质即可得到异面直线的距离是解题的关键.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)(2013•北京)在△ABC 中,a=3,b=2,∠B=2∠A .(Ⅰ)求cosA 的值;(Ⅱ)求c 的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)由条件利用正弦定理和二倍角公式求得cosA 的值.(Ⅱ)由条件利用余弦定理,解方程求得c 的值.解答:解:(Ⅰ)由条件在△ABC 中,a=3,,∠B=2∠A ,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,即 c2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得 B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.综上,c=5.点评:本题主要考查正弦定理和余弦定理,以及二倍角公式的应用,注意把c=3舍去,这是解题的易错点,属于中档题.16.(13分)(2013•北京)如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)由题意此人随机选择某一天到达该城市且停留2天,因此他必须在3月1日至13日的某一天到达该城市,由图可以看出期间有2天属于重度污染,据此即可得到所求概率;(Ⅱ)由题意可知X所有可能取值为0,1,2.由图可以看出在3月1日至14日属于优良天气的共有7天.①当此人在3月4号,5号,8号,9号,10号这5天的某一天到达该城市时,停留的2天都不是优良天气;②当此人在3月3号,6号,7号,11号,这4天的某一天到达该城市时,停留的2天1不是优良天气1天是优良天气;③当此人在3月1号,2号,12号,13号,这4天的某一天到达该城市时,停留的2天都是优良天气根据以上分析即可得出P(X=0),P(X=1),p(x=2)及分布列与数学期望.(Ⅲ)由图判断从3月5天开始连续三天的空气质量指数波动最大,因此方差最大.解答:解:(Ⅰ)设“此人到达当日空气重度污染”为事件A.因为此人随机选择某一天到达该城市且停留2天,因此他必须在3月1日至13日的某一天到达该城市,由图可以看出期间有2天属于重度污染,故P(A)=.(Ⅱ)由题意可知X所有可能取值为0,1,2.由图可以看出在3月1日至14日属于优良天气的共有7天.①当此人在3月4号,5号,8号,9号,10号这5天的某一天到达该城市时,停留的2天都不是优良天气,故P(X=0)=;②当此人在3月3号,6号,7号,11号,这4天的某一天到达该城市时,停留的2天中的1天不是优良天气1天是优良天气,故P(X=1)=;③当此人在3月1号,2号,12号,13号,这4天的某一天到达该城市时,停留的2天都是优良天气,故P(X=2)=.故X的分布列为X012P∴E(X)==.(Ⅲ)由图判断从3月5日开始连续三天的空气质量指数波动最大,因此方差最大.点评:本题考查了正确理解题意及识图的能力、古典概型的概率计算、随机变量的分布列及数学期望与方差,考查了数形结合的思想方法及审题与计算的能力.17.(14分)(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.解答:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.点评:本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.(13分)(2013•北京)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.解答:解:(Ⅰ)∵∴∴l的斜率k=y′|x=1=1∴l的方程为y=x﹣1证明:(Ⅱ)令f(x)=x(x﹣1)﹣lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x﹣1)﹣lnx>0,则f′(x)=2x﹣1﹣=∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0∴x∈(0,1)时,f(x)>0,即<x﹣1x∈(1,+∞)时,f(x)>0,即<x﹣1即除切点(1,0)之外,曲线C在直线l的下方点评:本题考查的知识点是导数的几何意义,利用导数研究函数的单调性,是导数的综合应用,难度中档.19.(14分)(2013•北京)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足=r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.解答:解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1设A(1,t),得,解之得t=(舍负)∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|•|B0|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2与椭圆的公共点,解之得=r2﹣1设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足x1=x2=•,或x1=•且x2=﹣•,①当x1=x2=•时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);②若x1=•且x2=﹣•,则x1+x2=0,可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.点评:本题给出椭圆方程,探讨了以坐标原点O为一个顶点,其它三个顶点在椭圆上的菱形问题,着重考查了菱形的性质、椭圆的标准方程与简单几何性质等知识,属于中档题.20.(13分)(2013•北京)已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n﹣B n.(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:d n=﹣d(n=1,2,3…)的充分必要条件为{a n}是公差为d的等差数列;(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.考点:反证法与放缩法;必要条件、充分条件与充要条件的判断;等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)根据条件以及d n=A n﹣B n 的定义,直接求得d1,d2,d3,d4的值.(Ⅱ)设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n﹣1)d,从而证得d n=A n﹣B n=﹣d,(n=1,2,3,4…).若d n=A n﹣B n=﹣d,(n=1,2,3,4…).可得{a n}是一个不减的数列,求得d n=A n﹣B n=﹣d,即 a n+1﹣a n=d,即{a n}是公差为d的等差数列,命题得证.(Ⅲ)若a1=2,d n=1(n=1,2,3,…),则{a n}的项不能等于零,再用反证法得到{a n}的项不能超过2,从而证得命题.解答:解:(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d1=A1﹣B1=2﹣1=1,d2=A2﹣B2=2﹣1=1,d3=A3﹣B3=4﹣1=3,d4=A4﹣B4=4﹣1=3.(Ⅱ)充分性:设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n﹣1)d,∴A n=a n=a1+(n﹣1)d,B n=a n+1=a1+nd,∴d n=A n﹣B n=﹣d,(n=1,2,3,4…).必要性:若 d n=A n﹣B n=﹣d,(n=1,2,3,4…).假设a k是第一个使a k﹣a k﹣1<0的项,则d k=A k﹣B k=a k﹣1﹣B k≥a k﹣1﹣a k>0,这与d n=﹣d≤0相矛盾,故{a n}是一个不减的数列.∴d n=A n﹣B n=a n﹣a n+1=﹣d,即 a n+1﹣a n=d,故{a n}是公差为d的等差数列.(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),首先,{a n}的项不能等于零,否则d1=2﹣0=2,矛盾.而且还能得到{a n}的项不能超过2,用反证法证明如下:假设{a n}的项中,有超过2的,设a m是第一个大于2的项,由于{a n}的项中一定有1,否则与d1=1矛盾.当n≥m时,a n≥2,否则与d m=1矛盾.因此,存在最大的i在2到m﹣1之间,使a i=1,此时,d i=A i﹣B i=2﹣B i≤2﹣2=0,矛盾.综上,{a n}的项不能超过2,故{a n}的项只能是1或者2.下面用反证法证明{a n}的项中,有无穷多项为1.若a k是最后一个1,则a k是后边的各项的最小值都等于2,故d k=A k﹣B k=2﹣2=0,矛盾,故{a n}的项中,有无穷多项为1.综上可得,{a n}的项只能是1或者2,且有无穷多项为1.点评:本题主要考查充分条件、必要条件的判断和证明,等差关系的确定,用反证法和放缩法证明数学命题,属于中档题.。

赢在高考2013年一轮复习数学配套练习1.3

赢在高考2013年一轮复习数学配套练习1.3

1.如果一个命题的否命题是真命题,那么这个命题的逆命题是)A.真命题B.假命题C.不一定是真命题D.不一定是假命题【答案】A2.与命题”若则”等价的命题是( )A.若则B.若则C.若则D.若则【答案】D【解析】因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D.3.条件p:条件q:则p是q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】条件q:则.故p是q的必要不充分条件.4.”或”是””的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】一方面,由”或”不能推出””,例如但xy=-4;另一方面由-能推出”或”,这是因为当”x=2且-时,必有”xy=-4”.综上所述,”或”是-4”的必要不充分条件.5.(2012陕西咸阳月考)已知p:那么命题p的一个必要不充分条件是( )A.0<x<1B.-1<x<1C. D.【答案】B【解析】由得0<x<1.设p的一个必要不充分条件为q,则但qp.故选B.1.命题”若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数【答案】B【解析】原命题的否命题是既否定条件,又否定结论.应选2.设a,b是向量,命题”若a=-b,则|a|=|b|”的逆命题是( )A.若ab,则|a||b|B.若a=-b,则|a||b|C.若|a||b|,则abD.若|a|=|b|,则a=-b【答案】D【解析】∵逆命题是以原命题的结论为条件,条件为结论的命题,∴这个命题的逆命题为:若|a|=|b|,则a=-b.3.下列说法中,正确的是( )A.命题”若则a<b”的逆命题是真命题B.命题” R”的否定是” R”C.命题”p∨q”为真命题,则命题p和命题q均为真命题D.已知R,则”x>1”是”x>2”的充分不必要条件【答案】B【解析】对于选项A,当a<b,m=0时,不能得到因此A不正确;对于选项B,易知是正确的;对于选项C,由命题”p∨q”为真命题知,p,q中至少有一个是真命题,不能得到p,q均为真命题,因此C 不正确;对于选项D,由”x>1”不能得到”x>2”,由”x>2”可得”x>1”,因此”x>1”是”x>2”的必要不充分条件,D 是错误的.综上所述,选B.4.下列命题错误的是( )A.命题”若则x=1”的逆否命题为”若则”B.若p且q为假命题,则p,q均为假命题C.对于命题p:存在R,使得则p为:对任意的x∈R,均有D.”x>2”是””的充分不必要条件【答案】B【解析】易知A,C,D均正确,对B,∵p且q为假命题,∴p,q可能均为假命题,也可能一真一假.∴B错误.5.设集合M={x||x--3)<0},那么是””的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由|x-1|<2,得-2<x-1<2,即-1<x<3;由-解得0<x<3,从而可知集合N是集合M的真子集,故””不一定能推出””,但””一定可以推出””,所以””是””的必要不充分条件6.有下列四个命题:(1)”若则x,y互为倒数”的逆命题;(2)”面积相等的三角形全等”的否命题;(3)”若则方程有实数解”的逆否命题;(4)”若则”的逆否命题.其中真命题个数为…( )A.1B.2C.3D.4【答案】D【解析】(1)、(2)、(4)显然成立.(3)∵有实数解,∴即可知(3)成立.7.已知集合A={x|x>5},集合B={x|x>a},若命题””是命题””的充分不必要条件,则实数a的取值范围是.【答案】a<5【解析】由题意得,命题””是命题””的充分不必要条件,故A是B的真子集,画数轴可知a<5为所求.8.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤”若m>1,则x+m+3>0的解集为R”的逆命题.其中真命题是.(把你认为正确命题的序号都填在横线上)【答案】②③⑤【解析】原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式x+m+3>0的解集为R,由.故⑤正确.9.已知p: q:则p是q的条件.【答案】充分不必要【解析】由得1<x<3,即由x(x-3)<0得0<x<3,即∵(1,3)(0,3),∴p是q的充分不必要条件.10.把下列命题改写成”若p则q”的形式,并写出它的否命题和逆否命题,最后判断所有命题的真假. ;(2)已知x、y为正整数,当y=x+1时,y=3,x=2;(3)当时无实根;(4)若则x=3或x=-1.【解】(1)原命题:若ac>bc,则a>b.(假)否命题:若则.(假)逆否命题:若则.(假)(2)原命题:已知x、y为正整数,若y=x+1,则y=3且x=2.(假)否命题:已知x、y为正整数,若则或.(真)逆否命题:已知x、y为正整数,若或则+1.(假)(3)原命题:若则无实根.(真)否命题:若则有实根.(真)逆否命题:若有实根,则.(真)(4)原命题:若则x=3或x=-1.(真)否命题:若则且.(真)逆否命题:若且则.(真)11.已知P={x|},S={x||x-1|}.是否存在实数m,使是的充要条件?当存在时,求出m的取值范围.【解】若是的充要条件,则S=P.由∴P=[-2,10].由|x-1|∴S=[1-m,1+m].要使P=S,则∴∴这样的m不存在.高:考я试[题∷库。

2013年北京卷高考试题及答案理数

2013年北京卷高考试题及答案理数

掌门1对1教育 高考真题2013年普通高等学校招生全国统一考试数学(理)(北京卷)第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为A.1B.23C.1321D.6109875.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex 关于y 轴对称,则f(x)=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b -=3A.y=±2xB.y=2x ±C.12y x =±D.22y x =±7.直线l 过抛物线C:x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83 D.1628.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0)满足x 0-2y 0=2.求得m 的取值范围是 A.B. 1,3⎛⎫-∞ ⎪⎝⎭C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分) 二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsinθ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = .11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA=3,PD:DB=9:16,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ= .14.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E 上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共80分。

2013北京高考理科数学试题(修正版)(答案为官方正式答案)

2013北京高考理科数学试题(修正版)(答案为官方正式答案)

2013北京高考理科数学试题 第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限 3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A.1 B.23 C.1321D.6109875.函数f (x )的图象向右平移1个单位长度,所得 图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --6.若双曲线22221x y a b -=A.y =±2xB.y= C.12y x =±D.y x =7.直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83D.38.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.2,3⎛⎫-∞- ⎪⎝⎭ D.5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 . 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD= ;AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ= .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。

2013年高考试题及解析:理科数学(北京卷)

2013年高考试题及解析:理科数学(北京卷)

2013北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解.2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限【答案】D【解析】【难度】容易【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】.【难度】容易【点评】本题考察简易逻辑关系,.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,例题中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合、简易逻辑相关知识的总结讲解.4.执行如图所示的程序框图,输出的S值为( )A.1B.23C.1321D.610987【答案】C【解析】【难度】中等【点评】本题算法初步。

在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。

在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。

5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= ( )A.1e x +B. 1e x -C. 1e x -+D. 1e x --【答案】D【解析】【难度】中等【点评】本题考查分段函数值域求解。

【赢在高考】2013届高考数学一轮复习 11.2合情推理与演绎推理配套练习

【赢在高考】2013届高考数学一轮复习 11.2合情推理与演绎推理配套练习

第2讲 合情推理与演绎推理随堂演练巩固1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.13n n a -=B.3n n a =C.32n n a n =-D.1323n n a n -=+- 【答案】 A【解析】 123413927a a a a =,=,=,=.归纳推理:13n n a -=.2.“所有9的倍数都是3的倍数,某奇数是9的倍数,故此奇数是3的倍数”,上述推理是( )A.小前提错B.结论错C.正确的D.大前提错【答案】 C【解析】 这是演绎推理的一般模式“三段论”.前提和推理形式都正确,因此结论也正确.3.有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b ∥平面α,直线a ⊂平面α,则直线b ∥直线a”,结论显然是错误的,这是因为 ( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【答案】 A【解析】 由演绎推理的三段论可知答案应为A.4.观察下列各式:237497343=,=,47=2 401,…,则20117的末两位数字为( )A.01B.43C.07D.49 【答案】 B 【解析】 (方法一)由题意得2011502434502377(7)7⨯+,==⋅,由于472= 401末位为1,倒数第二位为0,因此2502401的末两位定为01.又37=343,∴45023(7)7⋅的末两位定为43.(方法二)用归纳法:∵234749734372=,=,=54017,=16 68077,=117 76497, 823=543,…,由上知末两位有周期性且T=4.又20115024377⨯+=,∴20117的末两位与37的末两位一样,为43. 5.在等差数列{n a }中,若100a =,则有等式12a a ++…12n a a a +=++…19(19n a n -+<,且n ∈N )*成立.类比上述性质,相应地,在等比数列{n b }中,若91b =,则有等式 成立.【答案】 12b b ⋅⋅…12n b b b ⋅=⋅⋅…17n b -⋅【解析】 对于等差数列{n a },若有0k a =,根据等差中项的知识,有121222323n k n n k n n k n k a a a a a a a +--+--+--+=+=+=+k a =0,所以必有12a a ++…12n a a a +=++…n a ++12(n n a a ++++…2221)k n k n a a ----++(21n k n <-,∈N )*.∵此时有100a =,即k=10.∴12a a ++…12n a a a +=++…12(n n n a a a ++++++…181912)n n a a a a --++=++…19n a -+.类似地:对于等比数列{n b },若1k b =,由等比中项的知识,有121222323n k n n k n n k n b b b b b b +--+--+--⋅=⋅=⋅=…=1k k b b ⋅=.∴12b b ⋅⋅…12n b b b ⋅=⋅⋅…12(n n n b b b ++⋅⋅⋅…2221)k n k n b b ----⋅⋅.∵91b =,∴k=9.∴12b b ⋅⋅…12n b b b ⋅=⋅⋅…12(n n n b b b ++⋅⋅⋅…18218112)n n b b b b ----⋅⋅=⋅⋅…17n b -⋅.课后作业夯基基础巩固1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤【答案】 D【解析】 归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a ⋅b=b ⋅a ”;②“(m+n)t=mt+nt”类比得到“(a +b ) ⋅c=a ⋅c+b ⋅c ”;③“()()m n t m n t ⋅=⋅”类比得到“(a ⋅b )⋅c =a ⋅(b ⋅c )”;④“0t mt xt m x ≠,=⇒=”类比得到“p ≠0, a ⋅p =x ⋅p ⇒a =x ”;⑤“|m n ⋅|=|m|⋅|n|”类比得到“| a ⋅b |=|a |⋅|b |”; ⑥“ac a bc b =”类比得到“a c a b c b ⋅=⋅”.以上式子中,类比得到的结论正确的个数是( )A.1B.2C.3D.4【答案】 B【解析】 ①②正确;③④⑤⑥错误.3.已知△ABC 中30A ,∠=60B ,∠=,求证:a<b .证明:∴a<b.框内部分是演绎推理的( )A.大前提B.小前提C.结论D.三段论【答案】 B4.根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图中有个点.( )A.21n +B.2n n -C.n+1D.21n n -+【答案】 D【解析】 第(2)个图形,中间有1个点,另外的点指向两个方向,每个方向一个点,共有2(21)1⨯-+第(3)个图形,中间有1个点,另外的点指向三个方向,每个方向两个点,共有3(31)1⨯-+个点;第(4)个图形,中间有1个点,另外的点指向四个方向,每个方向三个点,共有4(41)1⨯-+个点;第(5)个图形,中间有1个点,另外的点指向五个方向,每个方向四个点,共有5(51)1⨯-+个点;……由上面的变化规律,可猜测,第n 个图形中心有1个点,另外的点指向n 个方向,每个方向n-1个点,共 有n(n-1)211n n +=-+个点.5.下列推理是归纳推理的是( )A.A,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,则P 点的轨迹为椭圆B.由1131n a a n =,=-,求出123S S S ,,,猜想出数列的前n 项和n S 的表达式C.由圆222x y r +=的面积π2r ,猜想出椭圆22221y x a b +=的面积S=πabD.以上均不正确【答案】 B【解析】 从123S S S ,,猜想出数列的前n 项和n S ,是从特殊到一般的推理,所以B 是归纳推理.6.如图,椭圆中心在坐标原点,F 为左焦点,当FB AB ⊥时,其离心率为512-,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.512+B.512-C.51-D.51+【答案】 A【解析】 B(0,b),F(-c,0),A(a,0).在“黄金双曲线”中,∵FB AB ⊥,∴0FB AB ⋅=.∴2b ac =.而222b c a =-,∴22c a ac -=.在等号两边同除以2a 得512e +=. 7.观察下列等式: 33212(12)+=+,31+3323333223(123)1234(1234)+=++,+++=+++,…,根据上述规律,第四个等式为 .【答案】 33333212345(12345)(++++=++++或215)【解析】 332333212(12)123(123)+=+,++=++,…,所以333332225(15)12345(12345)[]152+++++=++++==.8.在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2、3、4、…堆最底层(第一层)分别按如下图所示 方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球, 以f(n)表示第n 堆的乒乓球总数,则f(3)= ;f(n)= (答案用n 表示).【答案】 10 (1)(2)6n n n ++【解析】 f(1)=1,由题图可得f(2)=3+1=42(21)(1)2f +=+,f(3)=6+3+1=103(31)(2)2f +=+.f(4)=10+6+3+1=204(41)(3)2f +=+.可知,下一堆的球的个数是上一堆球的个数加上其第一层的球的个数,而第一层的球的个数满足1,3,6,10,…,其通项公式是(1)2n n +.∴f(5)=f(4)+155(51)(4)2f +=+,…,f(n)=f (1)(1)2n n n +-+.∴2(21)3(31)()(1)22f n f ++-=++ (1)2n n ++22332222++=++ (2)2n n ++222232322n n ++++++=+(1)(21)(1)1124n n n n n+++=+-(1)(2)16n n n ++=-.∴(1)(2)()6n n n f n ++=.9.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为 .【答案】 5+6+7+8+9+10+11+12+13=81【解析】 观察等式左侧:第一行有1个数是1,第二行是3个连续自然数的和,第一个数是2,第三行 是5个连续自然数的和,第一个数是3,第四行是7个连续自然数的和,第一个数是4,第5行应该是连 续9个自然数的和,第一个数为5,∴第5行左侧:5+6+7+8+9+10+11+12+13;等式右侧:第一行1=12,第二行9=32,第三行25=52,第四行49=72,则第5行应为81=92,∴第五个等式为5+6+7+8+9+10+11+12+13=81.10.设等差数列{n a }的前n 项和为n S ,则4841281612S S S S S S S ,-,-,-成等差数列.类比以上结论 有:设等比数列{n b }的前n 项积为n T ,则4T , , 1612T T ,成等比数列.【答案】 84T T 128T T【解析】 对于等比数列,通过类比,可得8161244812T T T T T T T ,,,成等比数列.11.已知等式:sin 25+23355354cos sin cos +=;223154515454sin cos sin cos ++=;223306030604sin cos sin cos ++=;….由此可归纳出对任意角度θ都成立的一个等式,并予以证明.【证明】 归纳已知可得:2sin θ+2cos (30θ+)+sin θcos (30θ+3)4=.证明如下:∵sin 2θ+cos 2(30θ+)+sin θcos (30θ+)=sin 23(2θ+cos 12θ-sin 2)θ+sin 3(2θcos 12θ-sin )θ =sin 23(2θ+cos 12θ-sin 3)(2θcos 12θ+sin )θ =sin 234θ+2cos 14θ-2sin 34θ=. ∴等式成立.12.已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为PM k 、PN k 时,那么PM k 与PN k 之积是与点P 的位置无关的定值.试对双曲线22221y x a b-=写出具有类似特性的性质,并加以证明.【解】 类似的性质为:若M 、N 是双曲线22221y x a b-=上关于原点对称的两个点,点P 是双曲线上 任意一点,当直线PM 、PN 的斜率都存在,并记为PM k 、PN k 时,那么PM k 与PN k 之积是与点P 的 位置无关的定值.证明:设点M 、P 的坐标分别为(m,n)、(x,y),则N(-m,-n).因为点M(m,n)在已知双曲线上,所以22222b n m b a =-.同理22222b y x b a=-. 则2222PM PN y n y n y n k k x m x m x m -+-⋅=⋅==-+-22b a ⋅2222x m x m -=-22b a 定值). 13.已知等差数列{n a }的公差d=2,首项15a =.(1)求数列{n a }的前n 项和n S ;(2)设(25)n n T n a =-,求12345S S S S S ,,,,;12345T T T T T ,,,,,并归纳出n S 与n T 的大小规律.【解】 (1)(1)52(4)2n n n S n n n -=+⨯=+. (2)(25)[2(n n T n a n =-=2n+3)-5],∴24n T n n =+.∴2212354221843339T T T =,=⨯+=,=⨯+=, 224544468455105T T =⨯+=,=⨯+=.12352(24)123(34)21S S S =,=⨯+=,=⨯+=,454(44)325(54)45S S =⨯+=,=⨯+=.由此可知11S T =,当2n ≥时n n S T ,<.归纳猜想:当2n n ≥,∈N 时n n S T ,<.拓展延伸14.设2()41f n n n n =++,∈N *,计算f(1),f(2),f(3),f(4),…,f (10)的值,同时作出归纳推理,并用 n=40验证猜想是否正确.解:2(1)114143f =++=,2(2)224147f =++=,2(3)334153f =++=,2(4)444161f =++=,2(5)554171f =++=,2(6)664183f =++=,2(7)774197f =++=,2(8)8841113f =++=,2(9)9941131f =++=,2(10)101041151f =++=.∵43,47,53,61,71,83,97,113,131,151都为质数,∴归纳猜想:当n ∈N *时2()41f n n n ,=++的值都为质数.∵n=40时2(40)40404140(f ,=++=40+1)+414141=⨯,∴f(40)是合数.因此,由上面归纳推理得到的猜想不正确.。

赢在高考2013年一轮复习数学配套练习1.2

赢在高考2013年一轮复习数学配套练习1.2

1.命题”p∧q”与命题”p∨q”都是假命题,则下列判断正确的是( )A.命题“p”与“q”真假不同B.命题“p”与“q”至多有一个是假命题C.命题“p”与“q”真假相同D.命题“p且q”是真命题【答案】D【解析】p∧q是假命题,则p与q中至少有一个为假命题∨是假命题,则p与q都是假命题.2.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是( )A.( p)∨qB.p∧qC.( p)∧(q)D.( p)∨(q)【答案】D【解析】p为真命题,q为假命题,所以只有(p)∨(q)为真命题.3.(2011北京高考,文4)若p是真命题,q是假命题,则…… ()A.p∧q是真命题B.p∨q是假命题C. p是真命题D. q是真命题【答案】D【解析】由”且”命题一假则假,”或”命题一真则真,命题与命题的否定真假相反,得A、B、C错.4.已知命题p: N1 000,则p为()A. N 000B. N 000C. N 000D. N 000【答案】A【解析】特称命题的否定为全称命题.””变””,”>“变””,故选A.5.已知p(x):如果p(1)是假命题,p(2)是真命题,则实数m的取值范围是.【答案】【解析】因为p(1)是假命题,所以解得又因为p(2)是真命题,所以4+4-m>0,解得m<8,故实数m的取值范围是.1.由”p:8+7=16,q:>3”构成的复合命题,下列判断正确的是( )A.p∨q为真,p∧q为假, p为真B.p∨q为假,p∧q为假, p为真C.p∨q为真,p∧q为假, p为假D.p∨q为假,p∧q为真, p为假【答案】A【解析】因为p假q真,所以p∨q为真,p∧q为假, p为真.2.若p、q是两个简单命题,且”p∨q”的否定是真命题,则必有)A.p真q真B.p假q假C.p真q假D.p假q真【答案】B【解析】∵”p∨q”的否定是真命题,∴”p∨q”是假命题.∴p,q都为假命题.3.命题”存在Z,使”的否定是( )A.存在Z,使B.不存在Z,使C.对任意Z,都有D.对任意Z,都有【答案】D【解析】特称命题的否定是全称命题.4.若p: R,sin则( )A. p:R,sinB. p:R,sinx>1C. p:R,sinD. p:R,sin【答案】A【解析】由于命题p是全称命题,对于含有一个量词的全称命题p:它的否定为p:p (x故应选A.5.已知命题P:当a+b=1时;命题Q: R恒成立,则下列命题是假命题的是)A.( P)∨(Q)B.( P)∧(Q)C.( P)∨QD.( P)∧Q【答案】B【解析】由基本不等式可得: 2+故命题P为假命题, P为真命题,R故命题Q为真命题, Q为假命题. 因此(P)∧(Q)为假命题,选B.6.(2012山东潍坊月考)已知定义在R上的函数f(x),写出命题”若对任意实数x都有f(-x)=f(x),则f(x)为偶函数”的否定: .【答案】若存在实数使得则f(x)不是偶函数【解析】所给命题是全称命题,其否定为特称命题.7.已知命题p: R.若命题p是假命题,则实数a的取值范围是.【答案】(0,1)【解析】∵p是假命题,∴对R.∴即4a(a-1)<0,得0<a<1.8.已知命题p:不等式|x|+|x-1|>m的解集为R,命题q:函数f(x)=是减函数.若p或q为真命题,p且q为假命题,则实数m的取值范围是.【答案】【解析】p:∵|x|+|x-1|的最小值为1,∴m<1.q:5-2m>1,∴m<2.∵p∨q为真,p∧q为假,∴p真q假或p假q真.∴或∴.9.写出由下列各组命题构成的”p∨q”“p∧q”“p”形式的新命题,并判断真假.(1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程的两实根的符号相同,q:方程-1=0的两实根的绝对值相等.【解】(1)p∨q:2是4的约数或2是6的约数,真命题;p∧q:2是4的约数且2也是6的约数,真命题;p:2不是4的约数,假命题.(2)p∨q:矩形的对角线相等或互相平分,真命题;p∧q:矩形的对角线相等且相互平分,真命题;p:矩形的对角线不相等,假命题.(3)p∨q:方程的两个实数根符号相同或绝对值相等,假命题;p∧q:方程的两个实数根符号相同且绝对值相等,假命题;p:方程x2+x-1=0的两实数根符号不同,真命题.10.P:函数y=log在内单调递减;Q:曲线与x轴交于不同的两点.如果P与Q有且只有一个为真,求a的取值范围.【解】当0<a<1时,函数y=log在内单调递减;当a>1时,函数y=log在内单调递增曲线1与x轴交于不同的两点等价于即或.情形(1):P真Q假.因此即.情形(2):P假Q真.因此即.综上,a的取值范围是.11.设命题p:函数f(x)=log|x|在上单调递增;q:关于x的方程log的解集只有一个子集.若”p∨q”为真,” (p)∨(q)”也为真,求实数a的取值范围.【解】当命题p是真命题时,应有a>1;当命题q是真命题时,关于x的方程log无解,所以log解得.由于”p∨q”为真,所以p和q中至少有一个为真,又”(p)∨(q)也为真,所以p和q中至少有一个为真,即p和q中至少有一个为假,故p和q中一真一假.p假q真时,a无解;p真q假时.综上所述,实数a的取值范围是.12.已知R,命题p:对任意不等式恒成立;命题q:对任意R,不等式|1+sin2x-cos2x||cos|恒成立.(1)若p为真命题,求m的取值范围;(2)若p且q为假,p或q为真,求m的取值范围.【解】(1)令f(x)=log (x+1),则f(x)在上为减函数.因为所以当x=8时.不等式log恒成立,等价于解得.(2)不等式|1+sin2x-cos2x||cos|,即|2sinx(sinx+cosx)| |sinx+cosx|,所以|sinx|.即命题q:.若p且q为假,p或q为真,则p与q有且只有一个为真.若p为真,q为假,那么则.若p为假,q为真,那么则m>2.综上所述或m>2.故m的取值范围是.高$考ω试≧题-库。

2013年高考数学真题-北京卷(理)答案

2013年高考数学真题-北京卷(理)答案

数学试题答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【分析】化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限.【解答】解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.3.【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选:A.【点评】本题考查充要条件的判定,用到的知识是三角函数的图象特征.是基础题.4.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.5.【分析】首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选:D.【点评】本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.6.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选:B.【点评】本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.7.【分析】先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分可求直线l与抛物线围成的封闭图形面积.【解答】解:抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=(x﹣)=.故选:C.【点评】本题考查封闭图形的面积,考查直线方程,解题的关键是确定直线的方程,求出积分区间,确定被积函数.8.【分析】先根据约束条件画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选:C.【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、填空题共6小题,每小题5分,共30分.9.【分析】先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.【解答】解:在极坐标系中,点化为直角坐标为(,1),直线ρsinθ=2化为直角坐标方程为y=2,(,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1,故答案为:1.【点评】本题关键是直角坐标和极坐标的互化,体现等价转化数学思想.10.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a及q,再利用等比数1列的前n项和公式即可得出.【解答】解:设等比数列{a n }的公比为q ,∵a 2+a 4=a 2(1+q 2)=20①a 3+a 5=a 3(1+q 2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q =2,将q =2带入①中可求出a 2=4则a 1===2∴数列{a n }时首项为2,公比为2的等比数列.∴数列{a n }的前n 项和为:S n ===2n +1﹣2.故答案为:2,2n +1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n 项和公式是解题的关键.11.【分析】由PD :DB =9:16,可设PD =9x ,DB =16x .利用切割线定理可得PA 2=PD •PB ,即可求出x ,进而得到PD ,PB .AB 为圆O 的直径,PA 为圆O 的切线,利用切线的性质可得AB ⊥PA .再利用勾股定理即可得出AB .【解答】解:由PD :DB =9:16,可设PD =9x ,DB =16x .∵PA 为圆O 的切线,∴PA 2=PD •PB ,∴32=9x •(9x +16x ),化为,∴.∴PD =9x =,PB =25x =5.∵AB 为圆O 的直径,PA 为圆O 的切线,∴AB ⊥PA .∴==4.故答案分别为,4.【点评】熟练掌握圆的切线的性质、切割线定理、勾股定理是解题的关键.12.【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种.故答案为:96.【点评】本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.13.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:4【点评】本题给出向量用向量、线性表示,求系数λ、μ的比值,着重考查了平面向量的坐标运算法则和平面向量基本定理及其意义等知识,属于基础题.14.【分析】如图所示,取B 1C 1的中点F ,连接EF ,ED 1,利用线面平行的判定即可得到C 1C ∥平面D 1EF ,进而得到异面直线D 1E 与C 1C 的距离.【解答】解:如图所示,取B 1C 1的中点F ,连接EF ,ED 1,∴CC 1∥EF ,又EF ⊂平面D 1EF ,CC 1⊄平面D 1EF ,∴CC 1∥平面D 1EF .∴直线C 1C 上任一点到平面D 1EF 的距离是两条异面直线D 1E 与CC 1的距离.过点C 1作C 1M ⊥D 1F ,∵平面D 1EF ⊥平面A 1B 1C 1D 1.∴C 1M ⊥平面D 1EF .过点M 作MP ∥EF 交D 1E 于点P ,则MP ∥C 1C .取C 1N =MP ,连接PN ,则四边形MPNC 1是矩形.可得NP ⊥平面D 1EF ,在Rt△D 1C 1F 中,C 1M •D 1F =D 1C 1•C 1F ,得=.∴点P 到直线CC 1的距离的最小值为.故答案为【点评】熟练掌握通过线面平行的性质即可得到异面直线的距离是解题的关键.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.【分析】(Ⅰ)由条件利用正弦定理和二倍角公式求得cos A 的值.(Ⅱ)由条件利用余弦定理,解方程求得c 的值,再进行检验,从而得出结论.【解答】解:(Ⅰ)由条件在△ABC 中,a =3,,∠B =2∠A ,利用正弦定理可得,即=.解得cos A =.(Ⅱ)由余弦定理可得a 2=b 2+c 2﹣2bc •cos A ,即9=+c 2﹣2×2×c ×,即c 2﹣8c +15=0.解方程求得c =5,或c =3.当c =3时,此时a =c =3,根据∠B =2∠A ,可得B =90°,A =C =45°,△ABC 是等腰直角三角形,但此时不满足a 2+c 2=b 2,故舍去.当c =5时,求得cos B ==,cos A ==,∴cos2A =2cos 2A ﹣1==cos B ,∴B =2A ,满足条件.综上,c =5.【点评】本题主要考查正弦定理和余弦定理,以及二倍角公式的应用,注意把c =3舍去,这是解题的易错点,属于中档题.16.【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)由题意可知X 所有可能取值为0,1,2,得出P (X =0),P (X =1),p (x =2)及分布列与数学期望;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:设A i 表示事件“此人于5月i 日到达该地”(i =1,2, (13)依据题意P (A i )=,A i ∩A j =∅(i ≠j )(Ⅰ)设B 表示事件“此人到达当日空气质量优良”,则P (B )=…(3分)(Ⅱ)X 的所有可能取值为0,1,2P (X =0)=,P (X =1)=,P (X =2)=…(6分)∴X 的分布列为X 012P…(8分)∴X 的数学期望为E (X )=…(11分)(Ⅲ)从5月5日开始连续三天的空气质量指数方差最大.…(13分)【点评】本题考查了正确理解题意及识图的能力、古典概型的概率计算、随机变量的分布列及数学期望与方差,考查了数形结合的思想方法及审题与计算的能力.17.【分析】(I )利用AA 1C 1C 是正方形,可得AA 1⊥AC ,再利用面面垂直的性质即可证明;(II )利用勾股定理的逆定理可得AB ⊥AC .通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III )设点D 的竖坐标为t ,(0<t <4),在平面BCC 1B 1中作DE ⊥BC 于E ,可得D ,利用向量垂直于数量积得关系即可得出.【解答】(I )证明:∵AA 1C 1C 是正方形,∴AA 1⊥AC .又∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,∴AA 1⊥平面ABC .(II )解:由AC =4,BC =5,AB =3.∴AC 2+AB 2=BC 2,∴AB ⊥AC .建立如图所示的空间直角坐标系,则A 1(0,0,4),B (0,3,0),B 1(0,3,4),C 1(4,0,4),∴,,.设平面A 1BC 1的法向量为,平面B 1BC 1的法向量为=(x 2,y 2,z 2).则,令y 1=4,解得x 1=0,z 1=3,∴.,令x 2=3,解得y 2=4,z 2=0,∴.===.∴二面角A 1﹣BC 1﹣B 1的余弦值为.(III )设点D 的竖坐标为t ,(0<t <4),在平面BCC 1B 1中作DE ⊥BC 于E ,可得D ,∴=,=(0,3,﹣4),∵,∴,∴,解得t =.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.【分析】(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.【解答】解:(Ⅰ)∵∴∴l 的斜率k =y ′|x =1=1∴l 的方程为y =x ﹣1证明:(Ⅱ)令f (x )=x (x ﹣1)﹣lnx ,(x >0)曲线C 在直线l 的下方,即f (x )=x (x ﹣1)﹣lnx >0,则f ′(x )=2x ﹣1﹣=∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又f (1)=0∴x ∈(0,1)时,f (x )>0,即<x ﹣1x ∈(1,+∞)时,f (x )>0,即<x ﹣1即除切点(1,0)之外,曲线C 在直线l 的下方【点评】本题考查的知识点是导数的几何意义,利用导数研究函数的单调性,是导数的综合应用,难度中档.19.【分析】(I )根据B 的坐标为(2,0)且AC 是OB 的垂直平分线,结合椭圆方程算出A 、C 两点的坐标,从而得到线段AC 的长等于.再结合OB 的长为2并利用菱形的面积公式,即可算出此时菱形OABC 的面积;(II )若四边形OABC 为菱形,根据|OA |=|OC |与椭圆的方程联解,算出A 、C 的横坐标满足=r 2﹣1,从而得到A 、C 的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B 不是W 的顶点时,四边形OABC 不可能为菱形.【解答】解:(I )∵四边形OABC 为菱形,B 是椭圆的右顶点(2,0)∴直线AC 是BO 的垂直平分线,可得AC 方程为x =1设A (1,t ),得,解之得t =(舍负)∴A 的坐标为(1,),同理可得C 的坐标为(1,﹣)因此,|AC |=,可得菱形OABC 的面积为S =|AC |•|BO |=;(II )∵四边形OABC 为菱形,∴|OA |=|OC |,设|OA |=|OC |=r (r >1),得A 、C 两点是圆x 2+y 2=r2与椭圆的公共点,解之得=r 2﹣1设A 、C 两点横坐标分别为x 1、x 2,可得A 、C 两点的横坐标满足x 1=x 2=•,或x 1=•且x 2=﹣•,①当x 1=x 2=•时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若x 1=•且x 2=﹣•,则x 1+x 2=0,可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.【点评】本题给出椭圆方程,探讨了以坐标原点O 为一个顶点,其它三个顶点在椭圆上的菱形问题,着重考查了菱形的性质、椭圆的标准方程与简单几何性质等知识,属于中档题.20.【分析】(Ⅰ)根据条件以及d n =A n ﹣B n 的定义,直接求得d 1,d 2,d 3,d 4的值.(Ⅱ)设d 是非负整数,若{a n }是公差为d 的等差数列,则a n =a 1+(n ﹣1)d ,从而证得d n =A n ﹣B n =﹣d ,(n =1,2,3,4…).若d n =A n ﹣B n =﹣d ,(n =1,2,3,4…).可得{a n }是一个不减的数列,求得d n =A n ﹣B n =﹣d ,即a n +1﹣a n =d ,即{a n }是公差为d 的等差数列,命题得证.(Ⅲ)若a 1=2,d n =1(n =1,2,3,…),则{a n }的项不能等于零,再用反证法得到{a n }的项不能超过2,从而证得命题.【解答】解:(Ⅰ)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d 1=A 1﹣B 1=2﹣1=1,d 2=A 2﹣B 2=2﹣1=1,d 3=A 3﹣B 3=4﹣1=3,d 4=A 4﹣B 4=4﹣1=3.(Ⅱ)充分性:设d 是非负整数,若{a n }是公差为d 的等差数列,则a n =a 1+(n ﹣1)d ,∴A n =a n =a 1+(n ﹣1)d ,B n =a n +1=a 1+nd ,∴d n =A n ﹣B n =﹣d ,(n =1,2,3,4…).必要性:若d n =A n ﹣B n =﹣d ,(n =1,2,3,4…).假设a k 是第一个使a k ﹣a k ﹣1<0的项,则d k =A k ﹣B k =a k ﹣1﹣B k ≥a k ﹣1﹣a k >0,这与d n =﹣d ≤0相矛盾,故{a n }是一个不减的数列.∴d n =A n ﹣B n =a n ﹣a n +1=﹣d ,即a n +1﹣a n =d ,故{a n }是公差为d 的等差数列.(Ⅲ)证明:若a 1=2,d n =1(n =1,2,3,…),首先,{a n }的项不能等于零,否则d 1=2﹣0=2,矛盾.而且还能得到{a n }的项不能超过2,用反证法证明如下:假设{a n }的项中,有超过2的,设a m 是第一个大于2的项,由于{a n }的项中一定有1,否则与d 1=1矛盾.当n ≥m 时,a n ≥2,否则与d m =1矛盾.因此,存在最大的i 在2到m ﹣1之间,使a i =1,此时,d i =A i ﹣B i =2﹣B i ≤2﹣2=0,矛盾.综上,{a n }的项不能超过2,故{a n }的项只能是1或者2.下面用反证法证明{a n }的项中,有无穷多项为1.若a k 是最后一个1,则a k 是后边的各项的最小值都等于2,故d k =A k ﹣B k =2﹣2=0,矛盾,故{a n }的项中,有无穷多项为1.综上可得,{a n }的项只能是1或者2,且有无穷多项为1.【点评】本题主要考查充分条件、必要条件的判断和证明,等差关系的确定,用反证法和放缩法证明数学命题,属于中档题.。

2013年北京高考理科数学试题及答案(word)-推荐下载

2013年北京高考理科数学试题及答案(word)-推荐下载

A. ex1
B. ex1
(6)若双曲线 x2 y2 1的离心率为 3 ,则其渐近线方程为 a2 b2
A. y 2x
B. y 2x
C. ex1
(7)直线 l 过抛物线 C : x2 4 y 的焦点且与 y 轴垂直,则 l 与 C 所围成的图形的面积等于
A. 4 3
(8)设关于
A.充分而不必要条件
C.充分必要条件
(4)执行如图所示的程序框图,输出的 S 值为
A.1
B. 2 3
C. 13 21
B.必要而不充分条件
D.既不充分也不必要条件
D. 610 987
(5)函数 f x 的图象向右平移 1 个单位长度,所得图象与曲线 y ex 关于 y 轴对称,则 f x
取值范围是
A.


x

,4 3

y
的不等式组
B.
B.2


2x y 1 0,

x

m
y m 0
,1 3


C.
0


C. 8 3


C. y 1 x 2
D. e x1
D. 16 2 3
D. y 2 x 2
表示的平面区域内存在点 P x0 ,y0 ,满足 x0 2 y0 2 ,求得 m 的



;前 n 项和
B
O D
A
b c
a
D1 A1
D A
C1
B1
P C
E B
P
(16)(本小题共 13 分) 下图是某市 3 月 1 日至 14 日的空气质量指数趋势图,空气质量指数小于 100 表示空气质量优良,空气质量指 数大于 200 表示空气重度污染.某人随机选择 3 月 1 日至 3 月 15 日中的某一天到达该市,并停留 2 天.

2013年北京市高考数学试卷(理科)附送答案

2013年北京市高考数学试卷(理科)附送答案

2013年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.5.(5分)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1 C.e﹣x+1D.e﹣x﹣16.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.7.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2 C.D.8.(5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.二、填空题共6小题,每小题5分,共30分.9.(5分)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于.10.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n项和S n=.11.(5分)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=,AB=.12.(5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.13.(5分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.16.(13分)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.19.(14分)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20.(13分)已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n﹣B n.(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:d n=﹣d(n=1,2,3…)的充分必要条件为{a n}是公差为d的等差数列;(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.2013年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•北京)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选B2.(5分)(2013•北京)在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限.【解答】解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选D.3.(5分)(2013•北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选A.4.(5分)(2013•北京)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选C.5.(5分)(2013•北京)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1 C.e﹣x+1D.e﹣x﹣1【分析】首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y 轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.6.(5分)(2013•北京)若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.7.(5分)(2013•北京)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2 C.D.【分析】先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分可求直线l与抛物线围成的封闭图形面积.【解答】解:抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=(x﹣)|=.故选:C.8.(5分)(2013•北京)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.【分析】先根据约束条件画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选C.二、填空题共6小题,每小题5分,共30分.9.(5分)(2013•北京)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于1.【分析】先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.【解答】解:在极坐标系中,点化为直角坐标为(,1),直线ρsinθ=2化为直角坐标方程为y=2,(,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1,故答案为:1.10.(5分)(2013•北京)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q= 2;前n项和S n=2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=20,a3+a5=40,∴,解得.∴==2n+1﹣2.故答案为:2,2n+1﹣2.11.(5分)(2013•北京)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=,AB=4.【分析】由PD:DB=9:16,可设PD=9x,DB=16x.利用切割线定理可得PA2=PD•PB,即可求出x,进而得到PD,PB.AB为圆O的直径,PA为圆O的切线,利用切线的性质可得AB⊥PA.再利用勾股定理即可得出AB.【解答】解:由PD:DB=9:16,可设PD=9x,DB=16x.∵PA为圆O的切线,∴PA2=PD•PB,∴32=9x•(9x+16x),化为,∴.∴PD=9x=,PB=25x=5.∵AB为圆O的直径,PA为圆O的切线,∴AB⊥PA.∴==4.故答案分别为,4.12.(5分)(2013•北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是96.【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种.故答案为:96.13.(5分)(2013•北京)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=4.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:414.(5分)(2013•北京)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.【分析】如图所示,取B1C1的中点F,连接EF,ED1,利用线面平行的判定即可得到C1C∥平面D1EF,进而得到异面直线D1E与C1C的距离.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)(2013•北京)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【分析】(Ⅰ)由条件利用正弦定理和二倍角公式求得cosA的值.(Ⅱ)由条件利用余弦定理,解方程求得c的值,再进行检验,从而得出结论.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得a2=b2+c2﹣2bc•cosA,即9=+c2﹣2×2×c×,即c2﹣8c+15=0.解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.16.(13分)(2013•北京)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)由题意可知X所有可能取值为0,1,2,得出P(X=0),P(X=1),p(x=2)及分布列与数学期望;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:设A i表示事件“此人于5月i日到达该地”(i=1,2, (13)依据题意P(A i)=,A i∩A j=∅(i≠j)(Ⅰ)设B表示事件“此人到达当日空气质量优良”,则P(B)=…(3分)(Ⅱ)X的所有可能取值为0,1,2P(X=0)=,P(X=1)=,P(X=2)=…(6分)∴X的分布列为X012P…(8分)∴X的数学期望为E(X)=…(11分)(Ⅲ)从5月5日开始连续三天的空气质量指数方差最大.…(13分)17.(14分)(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.18.(13分)(2013•北京)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.【分析】(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.【解答】解:(Ⅰ)∵∴∴l的斜率k=y′|x=1=1∴l的方程为y=x﹣1证明:(Ⅱ)令f(x)=x(x﹣1)﹣lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x﹣1)﹣lnx>0,则f′(x)=2x﹣1﹣=∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0∴x∈(0,1)时,f(x)>0,即<x﹣1x∈(1,+∞)时,f(x)>0,即<x﹣1即除切点(1,0)之外,曲线C在直线l的下方19.(14分)(2013•北京)已知A,B,C是椭圆W:上的三个点,O 是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.【分析】(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足=r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.【解答】解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1设A(1,t),得,解之得t=(舍负)∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|•|BO|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2与椭圆的公共点,解之得=r2﹣1设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足x1=x2=•,或x1=•且x2=﹣•,①当x1=x2=•时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);②若x1=•且x2=﹣•,则x1+x2=0,可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.20.(13分)(2013•北京)已知{a n}是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n﹣B n.(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:d n=﹣d(n=1,2,3…)的充分必要条件为{a n}是公差为d的等差数列;(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.【分析】(Ⅰ)根据条件以及d n=A n﹣B n 的定义,直接求得d1,d2,d3,d4的值.(Ⅱ)设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n﹣1)d,从而证得d n=A n﹣B n=﹣d,(n=1,2,3,4…).若d n=A n﹣B n=﹣d,(n=1,2,3,4…).可得{a n}是一个不减的数列,求得d n=A n﹣B n=﹣d,即a n+1﹣a n=d,即{a n}是公差为d的等差数列,命题得证.(Ⅲ)若a1=2,d n=1(n=1,2,3,…),则{a n}的项不能等于零,再用反证法得到{a n}的项不能超过2,从而证得命题.【解答】解:(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d1=A1﹣B1=2﹣1=1,d2=A2﹣B2=2﹣1=1,d3=A3﹣B3=4﹣1=3,d4=A4﹣B4=4﹣1=3.(Ⅱ)充分性:设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n ﹣1)d,∴A n=a n=a1+(n﹣1)d,B n=a n+1=a1+nd,∴d n=A n﹣B n=﹣d,(n=1,2,3,4…).必要性:若d n=A n﹣B n=﹣d,(n=1,2,3,4…).假设a k是第一个使a k﹣a k﹣1<0的项,则d k=A k﹣B k=a k﹣1﹣B k≥a k﹣1﹣a k>0,这与d n=﹣d≤0相矛盾,故{a n}是一个不减的数列.∴d n=A n﹣B n=a n﹣a n+1=﹣d,即a n+1﹣a n=d,故{a n}是公差为d的等差数列.(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),首先,{a n}的项不能等于零,否则d1=2﹣0=2,矛盾.而且还能得到{a n}的项不能超过2,用反证法证明如下:假设{a n}的项中,有超过2的,设a m是第一个大于2的项,由于{a n}的项中一定有1,否则与d1=1矛盾.当n≥m时,a n≥2,否则与d m=1矛盾.因此,存在最大的i在2到m﹣1之间,使a i=1,此时,d i=A i﹣B i=2﹣B i≤2﹣2=0,矛盾.综上,{a n}的项不能超过2,故{a n}的项只能是1或者2.下面用反证法证明{a n}的项中,有无穷多项为1.若a k是最后一个1,则a k是后边的各项的最小值都等于2,故d k=A k﹣B k=2﹣2=0,矛盾,故{a n}的项中,有无穷多项为1.综上可得,{a n}的项只能是1或者2,且有无穷多项为1.。

2013年北京高考数学试题及答案(理科)

2013年北京高考数学试题及答案(理科)

2013北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A.1 B.23 C.1321 D.6109875.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b-=A.y =±2xB.y =C.12y x =±D.2y x =± 7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A.43B.2C.838.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞- ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭ 第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,PA=3,916PD DB =,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ) ,则λμ=14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 集合与常用逻辑用语
第一节 集合
强化训练
1.设全集U ={x |x 是平行四边形},A={x |x 是菱形},B={x |x 是矩形},则下列关于集合的运算正确的是( ) A.A B U ⋃=
B.A B ⋂={x |x 是正方形}
C.U A B =ð
D.U B A =ð
答案:B
解析:既是菱形又是矩形的四边形是正方形,故选B. 2.设全集U =Z ,集合M={1,2},P ={-2,-1,0,1,2},则P ⋂U M ð等于( ) A.{0} B.{1} C.{-2,-1,0} D. ∅ 答案:C
解析:集合P ={-2,-1,0,1,2},M={1,2},U M =ð{x ∈Z |12x x ≠,≠}, ∴P ⋂U M =ð{-2,-1,0}.故选C.
3.已知A={x |512
x -<-},若B={x |x +4<-x },则集合A B ð等于( )
A.{x |23x -≤<}
B.{x |23x -<≤}
C.{x |-2<x <3}
D.{x |23x -≤≤}
答案:A
解析:集合A={x |x <3},B={x |x <-2},故选A.
4.设集合A={x ||x -a |1x <,∈R },B={x |15x x <<,∈R },若A B ⋂=∅,则实数a 的取值范围是 . 答案:0a ≤或6a ≥
解析:由|x -a |<1得-1<x -a <1,即a -1<x <a +1.如图所示.
由图可知11a +≤或15a -≥,所以0a ≤或a ≥6.
课后作业
题组一 集合的基本概念 1.设全集U =R ,A={x |10x
<},则U A ð等于( )
A.{x |10x
>}
B.{x |x >0}
C.{x |0x ≥}
D.{x |10x
≥}
答案:C
解析:∵A={x |x <0},∴U A =ð{x |0x ≥}. 题组二 集合间的基本关系 2.含有三个实数的集合可以表示为{1y
x x
,,},也可以表示为{0,|x |,x +y },则53x y -的值为( )
A.-1
B.0
C.1
D.-1或1 答案:A
解析:由题意知01x x ,≠,≠,故有
01y x
x x x y
⎧=,⎪⎪
=||,⎨⎪=+⎪

或 01y
x x x y x ⎧=,⎪⎪=+,⎨⎪||=,⎪⎩ 即 01()y x =,⎧⎨=⎩舍 或 01y x =,⎧⎨=-.⎩
故531x y -=-,选A.
题组三 集合的运算
3.设集合A={1,2,3},集合B={2,3,4},则A B ⋂等于( ) A.{1} B.{1,4} C.{2,3} D.{1,2,3,4} 答案:C
解析:∵A={1,2,3},B={2,3,4},∴A B ⋂={1,2,3}⋂{2,3,4}={2,3},故选C. 4.已知集合M={x |2
4x <},N={x |2
230x x --<},则集合M N ⋂等于( ) A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3} 答案:C
解析:∵M={x |-2<x <2},N={x |-1<x <3},∴M ⋂N={x |-1<x <2},故选C.
5.(2011湖北高考,理2)已知U ={y |y =log 21x x ,>},P ={y |y =12x x
,>},则U P =ð( )
A.1[)2
,+∞
B.1(0)2,
C.(0),+∞
D.1(0][)2
-∞,⋃,+∞
答案:A
解析:因为当x >1时,y =log 2x >log 210=,当x >2时,y =11(0)2
x ∈,,
所以得U ={y |y >0},P ={y |0<12y <},故1[2
U P =,ð)+∞.
6.如图所示,U 是全集,A B U 、是的子集,则阴影部分所表示的集合是( )
A.A B ⋂
B.(B ⋂)U A ð
C.A B ⋃
D.(A ⋂)U B ð
答案:B
解析:由题中韦恩图可知,选B.
7.(2011广东高考,理2)已知集合A={(x ,y )|x ,y 为实数,且2
x +2
1y =},B={(x ,y )|x ,y 为实数,
且y =x },则A B ⋂的元素个数为( ) A.0 B.1 C.2 D.3 答案:C
解析:法一:解方程组22
1x y y x ⎧+=,
⎨=⎩ 得
x y ⎧
=⎪⎨
⎪=


2
x y ⎧=⎪⎪⎨⎪=-
⎪⎩
所以A B ⋂=
{(,}. 法二:圆221x y +=的圆心(0,0)在直线y =x 上,故直线y =x 与圆221x y +=有两个交点,故选C.
8.设全集U ={x |x 是不大于9的正整数},A={1,2,3},B={3,4,5,6},则图中阴影部分所表示的集合为( )
A.{1,2,3,4,5,6}
B.{7,8}
C.{7,8,9}
D.{1,2,4,5,6,7,8,9} 答案:C
解析:题图中阴影部分所表示的集合为()U A B ⋃,ð
∵U ={1,2,3,4,5,6,7,8,9}A B ,⋃={1,2,3,4,5,6},∴()U A B ⋃=ð{7,8,9}.故选C. 题组四 集合的综合应用
9.给定集合A 、B,定义A*B={x |x m n m A =-,∈,n ∈B},若A={4,5,6},B={1,2,3},则集合A*B 中的所有元素之和为( ) A.15 B.14 C.27 D.-14 答案:A
解析:由题意可得A*B={1,2,3,4,5},又1+2+3+4+5=15,故选A.
10.设A={x |2
8150x x -+=},B={x |ax -1=0},若B A ⊆,则实数a 组成的集合C 为 . 答案:{11035,,}
解析:A={x |2
8150x x -+=}={3,5}, ∵B A ⊆,∴B=∅,或B={3},或B={5}. 当B=∅时,方程ax -1=0无解,所以a =0;
将x =3,或x =5代入方程ax -1=0得13a =,或15a =.故C={11035
,,}.
11.设A={x |240x x +=},B={x |22(1)x a ++x +2
10a -=}.若A B B ⋃=,求a 的值. 分析:A B B ⋃=等价于A B ⊆,把这个问题搞清楚,问题就好解决了.
解:∵A B B ⋃=,∴A B ⊆.又∵A={0,-4},而B 中最多有两个元素,∴B=A={0,-4},∴a =1.
12.(1)已知A={a +222
(1)33a a a ,+,++}且1A ∈,求实数a 的值. (2)已知M={2,a ,b},N={2
22a b ,,}且M=N,求a 、b 的值.
解:(1)由题意知,a +2=1或2(1)1a +=或2
331a a ++=,解得a =-1或a =-2或a =0, 据元素的互异性可知,a =-1与a =-2均不合题意,∴a =0.
(2)由题意知22a a b b ⎧⎪

⎪⎩
=,
= 或22a b b a ⎧=,⎨=,⎩
解得
1
a
b
=,


=


a
b
=,


=


1
4
1
2
a
b
⎧=,


⎪=.

根据集合中元素的互异性,得
1
a
b
=,


=


1
4
1
2
a
b
⎧=,


⎪=.
⎩。

相关文档
最新文档