2018年山西省中考数学卷--解析版

合集下载

2018年山西省中考数学试卷(含答案解析版)

2018年山西省中考数学试卷(含答案解析版)

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)(2018•山西)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)(2018•山西)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)(2018•山西)下列一元二次方程中,没有实数根的是()A.x2﹣20 B.x2+4x﹣1=0 C.2x2﹣43=0 D.3x2=5x﹣25.(3.00分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件 B.332.68万件 C.338.87万件 D.416.01万件6.(3.00分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)(2018•山西)如图,在△中,∠90°,∠60°,6,将△绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)(2018•山西)用配方法将二次函数2﹣8x﹣9化为(x﹣h)2的形式为()A.(x﹣4)2+7 B.(x﹣4)2﹣25 C.(4)2+7 D.(4)2﹣25 10.(3.00分)(2018•山西)如图,正方形内接于⊙O,⊙O的半径为2,以点A为圆心,以长为半径画弧交的延长线于点E,交的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)(2018•山西)计算:(3+1)(3﹣1)= .12.(3.00分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13.(3.00分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115.某厂家生产符合该规定的行李箱.已知行李箱的宽为20,长与高的比为8:11,则符合此规定的行李箱的高的最大值为.14.(3.00分)(2018•山西)如图,直线∥,直线分别与,相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交于点C,交于点D;②分别以C,D为圆心,以大于长为半径作弧,两弧在∠内交于点E;③作射线交于点F.若2,∠60°,则线段的长为.15.(3.00分)(2018•山西)如图,在△中,∠90°,6,8,点D是的中点,以为直径作⊙O,⊙O分别与,交于点E,F,过点F作⊙O的切线,交于点G,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)(2)2﹣|﹣43﹣1×6+20.(2)•﹣.17.(2018•山西)如图,一次函数y11(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容 课题测量斜拉索顶端到桥面的距离 测量示意图说明:两侧最长斜拉索,相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内. 测量数据 ∠A 的度数∠B 的度数 的长度 38°28° 234米… … (1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到的距离(参考数据:38°≈0.6,38°≈0.8,38°≈0.8,28°≈0.5,28°≈0.9,28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.(2018•山西)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形的和两边上分别取一点X和Y,使得.(如图)解决这个问题的操作步骤如下:第一步,在上作出一点D,使得,连接.第二步,在上取一点Y',作Y'Z∥,交于点Z',并在上取一点A',使Z'A''Z'.第三步,过点A作∥A'Z',交于点Z.第四步,过点Z作∥,交于点Y,再过点Y作∥,交于点X.则有.下面是该结论的部分证明:证明:∵∥A'Z',∴∠'Z'=∠,又∵∠A''=∠.∴△'Z'~△.∴.同理可得.∴.∵Z'A''Z',∴.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形'Z'Y'放大得到四边形,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移 B.旋转 C.轴对称 D.位似22.(2018•山西)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,2,E是延长线上一点,且,连接,交于点M,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:证明:∵,∴2.∵2,∴.∵四边形是矩形,∴∥.∴.(依据1)∵,∴.∴.即是△的边上的中线,又∵,∴⊥.(依据2)∴垂直平分.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点G在线段的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接,以为一边在的右上方作正方形,可以发现点C,点B都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.(2018•山西)综合与探究如图,抛物线﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接,.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作⊥x轴,垂足为点M,交于点Q,过点P作∥交x轴于点E,交于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段的长,并求出m为何值时有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)(2018•山西)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【考点】18:有理数大小比较.【专题】1 :常规题型.【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【考点】1O:数学常识.【专题】1 :常规题型.【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)(2018•山西)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【考点】35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式;6A:分式的乘除法.【专题】11 :计算题;512:整式.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)26,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)(2018•山西)下列一元二次方程中,没有实数根的是()A.x2﹣20 B.x2+4x﹣1=0 C.2x2﹣43=0 D.3x2=5x﹣2【考点】:根的判别式.【专题】1 :常规题型.【分析】利用根的判别式△2﹣4分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程20(a≠0)的根与△2﹣4有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件 B.332.68万件 C.338.87万件 D.416.01万件【考点】W4:中位数.【专题】1 :常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)(2018•山西)如图,在△中,∠90°,∠60°,6,将△绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【考点】:含30度角的直角三角形;R2:旋转的性质.【专题】55:几何图形.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△绕点C按逆时针方向旋转得到△A'B'C',∴'C,'B,∠∠'B'=60°,∴△'C是等边三角形,∴∠'60°,∴∠B'A'180°﹣60°=60°=60°,∵将△绕点C按逆时针方向旋转得到△A'B'C',∴∠'=∠'=60°,'C,∠'A'=∠90°﹣60°=30°,∴△'是等边三角形,∴∠'60°,∵∠'A'=30°,∴∠A'B'30°,∴∠B''=180°﹣60°﹣30°=90°,∵∠90°,∠60°,6,∴12,∴A'﹣'﹣6,∴B'6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)(2018•山西)用配方法将二次函数2﹣8x﹣9化为(x﹣h)2的形式为()A.(x﹣4)2+7 B.(x﹣4)2﹣25 C.(4)2+7 D.(4)2﹣25【考点】H9:二次函数的三种形式.【专题】1 :常规题型.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:2﹣8x﹣92﹣816﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)(2018•山西)如图,正方形内接于⊙O,⊙O的半径为2,以点A为圆心,以长为半径画弧交的延长线于点E,交的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【考点】:正方形的性质;:扇形面积的计算.【专题】559:圆的有关概念及性质.【分析】利用对称性可知:阴影部分的面积=扇形的面积﹣△的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形的面积﹣△的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)(2018•山西)计算:(3+1)(3﹣1)= 17 .【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360 度.【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115.某厂家生产符合该规定的行李箱.已知行李箱的宽为20,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 .【考点】C9:一元一次不等式的应用.【专题】12 :应用题.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:1920≤115,解得:x≤5,故行李箱的高的最大值为:1155,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)(2018•山西)如图,直线∥,直线分别与,相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交于点C,交于点D;②分别以C,D为圆心,以大于长为半径作弧,两弧在∠内交于点E;③作射线交于点F.若2,∠60°,则线段的长为 2 .【考点】:平行线的性质;N2:作图—基本作图;T7:解直角三角形.【专题】13 :作图题;551:线段、角、相交线与平行线.【分析】作高线,根据直角三角形30度角的性质得:1,,可得的长.【解答】解:∵∥,∴∠∠60°,由题意得:平分∠,∴∠1=∠2=30°,∵∠∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴,,∵2,∴1,∴,∴22,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)(2018•山西)如图,在△中,∠90°,6,8,点D是的中点,以为直径作⊙O,⊙O分别与,交于点E,F,过点F作⊙O的切线,交于点G,则的长为.【考点】:等腰三角形的判定与性质;:直角三角形斜边上的中线;:勾股定理;M5:圆周角定理;:切线的性质.【专题】11 :计算题.【分析】先利用勾股定理求出10,进而求出5,再求出4,进而求出3,再判断出⊥,利用面积即可得出结论.【解答】解:如图,在△中,根据勾股定理得,10,∴点D是中点,∴5,连接,∵是⊙O的直径,∴∠90°,∴4,∴3,连接,∵,,∴∥,∴∠∠B,∵是⊙O的切线,∴∠90°,∴∠∠90°,∴∠∠90°,∴⊥,∴S△××,∴,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出⊥是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)(2)2﹣|﹣43﹣1×6+20.(2)•﹣.【考点】2C:实数的运算;6C:分式的混合运算;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题;511:实数;513:分式.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.(2018•山西)如图,一次函数y11(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【专题】31 :数形结合.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y11的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y12.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【考点】V5:用样本估计总体;:扇形统计图;:条形统计图;X4:概率公式.【专题】54:统计与概率.【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容 课题测量斜拉索顶端到桥面的距离 测量示意图说明:两侧最长斜拉索,相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内. 测量数据 ∠A 的度数∠B 的度数 的长度 38°28° 234米… … (1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到的距离(参考数据:38°≈0.6,38°≈0.8,38°≈0.8,28°≈0.5,28°≈0.9,28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】(1)过点C作⊥于点D.解直角三角形求出即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作⊥于点D.设米,在△中,∠90°,∠38°.∵,∴.在△中,∠90°,∠28°.∵,∴.∵234,∴.解得72.答:斜拉索顶端点C到的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;。

2018年山西省中考数学试卷含答案解析

2018年山西省中考数学试卷含答案解析

2018 年山西省中考数学试卷第I 卷选择题(3分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633()2b ba a-=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.87 1-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D.416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC=63 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O的半径为 2,以点 A 为圆心,以 AC 为半径画弧交AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠B AD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交 PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC , B C 交于点 E , F ,过点 F 作⊙ O 的切线 FG ,交 AB 于点 G ,则 FG 的长为 _____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12 BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x - 17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ;(2)当 x 为何值时,y1 > 0 ;(3)当 x 为何值时,y1 <y2 ,请直接写出 x 的取值范围.【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表.项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平面 内.测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°.AD + BD = AB = 234 . ∴54x + 2x = 234. 解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“ 复 兴 号 ” 列 车 时 速 更 快 , 安 全 性 更 好 .已 知 “ 太 原 南 -北 京 西 ” 全程大约 500 千 米 ,“ 复 兴 号 ”G92 次 列 车 平 均 每 小 时 比 某 列“ 和 谐 号 ”列车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两 列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G 92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点X.则有 AX=BY=XY.下面是该结论的部分证明:证明: AZ/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZABZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '.YZ BZ ZA YZ...Z'A' =Y 'Z' , ∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中,AD=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 .探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法:证明: B E = A B , ∴ AE = 2 A BAD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C . ∴EM EB DM AB=( 依 据 1 ) BE = AB , ∴1EM DM =∴ E M = DM . 即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反思交流:(1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ;探索发现:(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等【解析】(1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) .答:点 A 在线段 GF 的垂直平分线上. (2) 证明:过点G 作 GH ⊥BC 于点 H,四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC =∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为正方形,∴CG =CE, ∠GCE =90︒.∠1+∠3 = 90︒. ∴∠2=∠3.∴△GHC ≌△CBE. ∴H C =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, BE =AB, ∴B C = 2BE =2HC. ∴H C =BH.∴GH 垂直平分 BC.∴点 G 在 BC 的垂直平分线上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.23. (本题 13 分)综合与探究1 2 如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F . ( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 52 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

(完整word版)【真题】2018年山西省中考数学试卷含答案解析(Word版),推荐文档

(完整word版)【真题】2018年山西省中考数学试卷含答案解析(Word版),推荐文档

2018年山西省中考数学试卷(解析版)第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合 题目要求,请选出并在答题卡上将该项涂黑)1. 下面有理数比较大小,正确的是()A. 0 V - 2B. -5 V 3C. -2 V -3D. 1 V - 4【答案】B【考点】有理数比较大小2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监 算学 科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我 国古代 数学著作的是()解 析】《几何原本》的作者是欧几里得3. 下列运算正确的是() A.a 3 2 a 6 B. 2a 2 3a 2 6a 2 C. 2a 2 a 3 答案】D考点】整式运算 【解析】A. a 3 a 6B 2a 2 3a 2 5a 2C. 2a 2 a 32a 54•下列一元二次方程中,没有实数根的是() A. x 2 2x 0 B. x 2 4x 1 0 C.2x 2 4x 3 0 D. 3x 2 5x 2【答案】C【考点】一元二次方程根的判别式【解 析】△ > 0,有两个不相等的实数根,△ =0,有两个相等的实数根,△< 0,没有实数根.A. △ =4B. △ =20C. △ =-8D. △ =15.近年来快递业发展迅速下表是2018年1-3月份我省部分地市邮政快递业务量的统计结果单 位:万件)A.《九章算术》B. 【答案】B【考点】数学文化C. 《海岛算经》D.2a 6 D.少《几何原本》 〈〈周髀算A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即338.87 万件.6•黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位, 则其年平均流量可用科学计数法表示为A. 6.06 104立方米/时B. 3.136 1 06立方米/时C. 3.636 106立方米/时D. 36.36 1 05立方米/时【答案】C考点】科学计数法【解析】一秒为1010 立方米,则一小时为1010 X60X 60=363600 0立方米,3636000用科学计数法表示为3.636 X 10 6 .7•在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分A.-B.-C.-D.摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有9种等可能结果,其中两次都摸到黄球的结果有4种,4••• P (两次都摸到黄球)=-98•如图,在Rt △ ABC中,/ ACB=90 ° ,/ A=60 ° , AC=6,将厶ABC绕点C按逆时针方向旋转得到△ A' B' C,此时点A '恰好在AB边上,则点B '与点B之间的距离是()A. 12B. 6C.6 .2D. 6 .3£第&题、【答案】D考点】旋转,等边三角形性质【解 析】连接BB ',由旋转可知AC=A ' C , BC=B ' C ,v / A=60 °,二△ ACA '为等边三角形,/ ACA ' =60°,••• / BCB ' =60°A △ BCB '为等边三角形,/• BB ' =BC= 6 3常厂9•用配方法将二次函数y x 2 8x 9化为y a x h 2 k 的形式为() 2 2 2 2A. y x 4 7B. y x 4 25C. y x 47 D. y x 4 25【答案】B【考点】二次函数的顶点式【解析】y x 2 8x 9 x 2 8x 16 16 9 x 4 2 2510.如图,正方形ABCD 内接于O O, O O 的半径为2 ,以点A 为圆心,以AC 为半径画弧交AB 的 延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A.4 n -4B. 4 n -8C. 8 n -4D. 8 n -8答案】A【考点】扇形面积,正方形性质【解 析】•••四 边形ABCD 为正 方形,• / BAD=90 ° ,可知圆和正方形是中心对称图形,第I 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11. 计算:(3、2 1)(3「2 1) _.【答案】17【考点】平方差公式360AOBD 9Qn>4:2x42(第13趣)【解析】••• (a b )(a b ) a 2 b 2 • (3」2 1)(3「2 1) (3」2 )2 1 18-仁1712. 图1是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状 无一定 规则,代 表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图(第12题图2)(第M 题)【答案】360考点】多边形外角和【解 析】•/任意n 边形的外角和为360°,图中五条线段组成五边形••• 1 2 3 45 360 .13 . 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm. 某厂家生 产符合该规定的行李箱,已知行李箱的宽为20cm ,长与高的比为8:11 ,则符合此规定的行李箱 的高的最大值为 __________ cm.【答案】55考点】一元一次不等式的实际应用【解 析】解:设行李箱的长为8xcm ,宽为11xcm20 8x 11x 115解得x 5•高的最大值为115 55cm14 .如图,直线MN // PQ,直线AB 分别与MN , PQ 相交于点A , B.小宇同学利用尺规按以下步骤作 图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;② 分别以C , D 为圆心,1以 大于丄 CD 长为半径作弧两弧在/ NAB 内交于点E ③作射线AE 交PQ 于点F.若AB=2 , ABP=60 °,2则线段AF 的长为 ___________ . 【答案】2 3考 点】角平分线尺规作图,平行线性质,等腰三角形三线合一 【解析】过点B 作BG 丄AF 交AF 于点G由尺规作图可知,AF 平分/ NAB • / NAF= / BAF •/ MN// PQ• / NAF= / BFA • / BAF= / BFABA=BF=2 BG 丄 AF AG=FG / ABP=60 / BAF= / BFA=30Rt △ BFG 中,FG BF c o s BFAAF 2FG 2、32^MP15 .如图,在Rt △ ABC中,/ ACB=900,AC=6,BC=8,点D是AB的中点,以CD为直径作O 0,OO分别与AC,BC交于点E,F,过点F作O O的切线FG,交AB于点G,则FG的长为_________________________考点】直角三角形斜中线,切线性质, 【解析】连接OF•/ FG 为O 0的切线••• OF 丄FG •/ Rt △ ABC 中,D 为AB 中点 • CD=BD • / DCB=Z B •/ OC=OF• / OCF=Z OFC • / CFO=Z B • OF // BD••• O 为CD 中点 • F 为BC 中点1CF BF 2 BC 43Rt △ ABC 中,s in B -5Rt △ BGF 中,FG BF sin B三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16. (本题共2个小题,每小题5分,共10分) 计算:(1 )(2j?)24 3 1 6 20【考点】实数的计算【解析】解:原式=8-4+2+1=7x 2X 2 11【考点】分式化简2x 2 x 1【解析】解:原式=乞上#1x 1 x 4x 417.(本题8分)如图,一次函数 y 1Kx b(K 0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2 (k 0)的图象相交于点C (-4 , -2), D (2 , 4). (1) 求一次函数和反比例函数的表达式;【答案】12 5平行线分线段成比例,三角函数12(2)x 1 x 2 4x 41 _ x+11 _ xx2x2x2x2(第巧题)(第(2)当x为何值时,y1 0 ;3)当x为何值时,y1y2,请直接写出x的取值范围.【考点】反比例函数与一次函数【解析】(1)解:一次函数y, k i X b的图象经过点C (- 4, -2) D (2 ,4)-^4/ri + b = -2*2k}+/? = 4.k,= 1*解•得・|U = 2-二一次雷数的表达式为耳=龙+ 2・丁反比例函数” =L的图彖经过点D < 2、4 ). 4 = g■.二h = &x 2二应比例惭数的农达贰为临=一・X(2}解]由H >0・御X十2> 6:、X A —2* 二当Jt A —2 时P”¥[ A 0,(3)解:x<^L>Ji0<x<2.(3)解:x 4 或0 x 2.18. (本题9分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动. 教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?19. (本题8分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大 地”的一种象征•某数学“综合与实践”小组的同学把“测量斜拉索顶端到 桥面 的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥 斜拉索完成了实地测量• 测量结果如下 表.(1 tan 380.8,sin 28 0.5,cos 28 0.9,tan 280.5);(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可)7 / 15(3) 若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4) 学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项 目的【【(2)武本\.21%(3)解: 答: (4)解:10+15答:男生所占的500 21%=105 估计其中参15百分比为40%. (人)• 加“书法”15 5项目活动的有105人. 15+10+8+15 48 165正好抽到参加“器乐”活动项目的女生的概率为仝16女生的概率是多少?考点】三角函数的应用 【解析】(1)解:过点C 作CD AB 于点D. 设CD= X 米,在Rt ADC 中,/ ADC=90 ,/ A=385 AD BD AB 234 .- x 2x 234.4解得x 72 .答:斜拉索顶端点C 到AB 的距离为72米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受20. (本题7分)2018年1月20日,山西迎来了 “复兴号”列车,与“和谐号”相比一 一 一4 车 多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的一(两 复5列车中途停留时间均除外).经查询,“复兴号” G92次列车从太原南到北京西,停留10分钟.求乘坐“复兴号” G92次列车从太原南到北京西需要多长时间. 兴 【考点】分式方程应用【解析】解:设乘坐“复兴号” G92次列车从太原南到北京西需要X 小时,500500…由题意,得 二+401 51x (x -)6 4 6经检验,x 8是原方程的根.3列8答:乘坐“复兴号” G92次列车从太原南到北京西需要-小时.3时速CDx 5~ — x0.8 4在 RtABDC 中,.CD tan 28° = —fRDDli解得x83EDtan? K :'更21. (本题8分)请阅读下列材料,并完成相应的任务:8 / 15在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙 利数 学家波 利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使 得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步在CA 上作 出一点D 使得CD=CB 连接BD.第二步在CB 上取一点Y '作Y ' Z ' //CA, 交BD 于点Z ',并在AB 上取一点A ',使Z ' A ' =Y ' Z '.第三步,过点A 作AZ//A ' Z ',交 BD 于点乙第四步,过点Z 作ZY//AC ,交BC 于点Y ,再过Y 作YX//ZA ,交AC 于点X.贝U 有 AX=BY=XY.下面是该结论的部分证明:证D明: A Z/ / A'Z BA' Z ' BAZ_上又 Z A'BZ'= Z ABZ.△BA'Z△ BAZZ ' A' BZ 'CX DAZA BZ .(第21题)同理可得Y ' Z ' BZ ' Z ' A ' Y ' Z 'YZ BZ ZAYZZ'A' Y 'Z ', ZA YZ. ...任务:(1 )请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以 证明;(上述解决问题的过程中,通过作平行线把四边形BA ' Z ' Y '放大得到四边形BAZY ,从而确定了点的位置,这里运用了下面一种图形的变化是 _____________________________________________ .A.平移B.旋转C.轴对称D.位似考点】菱形的性质与判定,图形的位似【解析】 再 (1 )答:四边形AXYZ 是菱形.证明: ZY/ / A C, YX/ / ZA 四边形AXYZ 是平行四边形.上(3)上述解决问题的过程中,通过作平行线把四边形BA ' Z ' Y '放 大得到 四边形BAZY ,从而确定 了点Z ,Y 的位置,这里运用了下面一种图形的变化是D (或位似).,在(1)的基础上完成AX=BY=XY 的证明过程;2Z)(3) ,Y 仔ZA YZ ,(2)答:证 AXYZ 是菱形 明:C D C B 12细 ZY / /AC , 1 3.2= 3 . YB YZ .A.平移B.旋转C.轴对称D.位似阅 四边形AXYZ 是菱形, AX=XY=YZ.、壬 AX=BY=XY.22. (本题12分)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图 1,在矩形 ABCD 中,AD=2AB , E 是AB 延长 线上一点且BE=AB ,连接DE ,交BC 于 点M,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线 段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明: B E A B AE 2AB(第22题图1)反思交流:(1) 上述证明过程中的“依据1 ” “依据2 ”分别是指什么?试判断图1中的点A 是否在线段GF 的垂直平分上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2 ,连接CE ,以CE 为一边在CE 的左下方 作正方 形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:⑶如图3 ,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在 线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还 能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【考点】平行线分线段成比例,三线合一,正方形、矩形性质,全等 【解析】(1) 答: 依据1 :两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例). 依据 2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”.答:点A 在线段GF 的垂直平分线上.⑵ 证明:过点G 作GH BC 于点H ,四边形ABCD 是矩形,点E 在AB 的延长线上,CBE ABC GHC 90. 1+ 2=90 .AD 2AB, AD AE 四 边 形ABCD 是矩形, AD / /BC.EM DM EB AB (依据1 )BE AB ,EM , 1DME M DM .即AM 是△ ADE 的DE 边上的中线,又 AD AE, AM DE.(依据 2 )AM 垂直平分DE .CG CE, GCE 9 0 . 1 3 90.2= 3.△GHC 也△CBE. HC BE. 四边形ABCD 是矩形, A D BC.AD 2AB, BE AB, B C 2BE 2HC. HC BHGH 垂直平分BC. 点G 在BC 的垂直平分线上(第22题图2)四边形CEFG为正方形,(3)答:点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上) 证法一:过点F 作FM BC 于点M ,过点E 作EN FM 于点N.BMN ENM ENF 90 .四边形ABCD 是矩形,点E 在AB 的延长线上,CBE ABC 90.四边形 BENM 为矩形BM EN, BEN90.1 2 90 .四边形CEFG 为正方形,EF EC, CEF90. 2 3 90 . 1 = 3.CBEN F90 ,△ ENF ^A EBC.NE BE. BM BE.四边形ABCD 是矩形,AD BC.AD 2AB, AB BE. BC 2BM . BM MC.FM 垂直平分BC , 点F 在BC 边的垂直平分线上.〔第22题图3)证法二:过F 作FNBE 交BE 的延长线于点N , 连接FB , FC.四边形ABCD 是矩形,点E 在AB的延长线上,/ CBE=Z ABC=Z N=90°./ 1+ / 3=90 ° .四边形CEFG 为正方形, EC=EF ,/ CEF=90 ° ./ 1+ / 2=90 ° ./ 2= / 3.△ ENF A CBE.NF=BE,NE=BC.四边形ABCD 是矩形, AD=BC.AD=2AB , BE=AB. 设 BE=a ,贝U BC=EN=2a,NF=a.= J B M I F W J (如応a.CE =i BE~ =.EL = 41CE - q 瓦.〔第22题图3)GBF=CF. 点F在BC边的垂直平分线上.23. (本题13分)综合与探究1 ,3X 4与X 轴交于A , B 两点(点A 在点B 的左侧),与y 轴交于点C ,3AC , M , (1)(2) 等 BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m , PM 交BC 于点Q ,过点P 作PE // AC 交x 轴于点E ,交BC 于 求 试 A , B , C 三点的坐标; 探究在点P 的运动的过程中,是否存在这样的点Q ,使得以A , 用含m 的代数式表示线段QF 点】 析】 几何与二次函数综合(1)1 2 y0 ,得 §x(2) 4=0并求出m 为何值时QF 有x 0 ,得y 4 .点C 的坐标为C (1 答:5、2 5.2 4):Q (——,,Q 2(1,2 2(3) 过点F 作 FG PQ 于点G .贝U FG // x 轴.由B(4 , 0), C (0 , -4OBC QFG 45 .GQ FG -2P E// AC ,1 2 .F G// x 轴, 2 3 1 3 . 3 A(-3,0)FQ .由 )得A O B C 为等腰直角三角形.X i点A ,,X 24 .B 的坐标分别为 ,B (4, 0)0 , -4).出此FGp 点 Q 的0C 标90若不存在请说△明Aqi.由;FG GP (... FG GP ——=——,即 AO OC,-,©尸■ <;p+ GP ■邑 FQ*- Fp ■ FQ2 36PM 丄x 轴・J.l P 的魅唯标沟讯・45° ” QAf =MH = 4-wi . PM =——tn + -rti + 4矩0“矩『亦+-返肿+痊叭773377过点P 作PM x 轴,垂足为点 点F .C , Q 为顶点的三角形是最大值.1 2 如图,抛物线y -x3。

【真题】2018年山西省中考数学试卷含答案解析(Word版)

【真题】2018年山西省中考数学试卷含答案解析(Word版)

2018 年 山西省中考数学 试 卷(解析版)第 I卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D. 设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作 AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZA BZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '. YZ BZ ZA YZZ'A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

(完整)2018年山西省中考数学试卷(含答案解析版),推荐文档

(完整)2018年山西省中考数学试卷(含答案解析版),推荐文档

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)(2018•山西)下面有理数比较大小,正确的是( )A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣42.(3.00分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)(2018•山西)下列运算正确的是( )A .(﹣a 3)2=﹣a 6B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(‒b 22a )3=‒b 68a 34.(3.00分)(2018•山西)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣25.(3.00分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3.00分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3.00分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .491329198.(3.00分)(2018•山西)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点C 按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB 边上,则点B'与点B 之间的距离为( )6263A.12B.6C.D.9.(3.00分)(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25 10.(3.00分)(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为( )A.4π﹣4B.4π﹣8C.8π﹣4D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)2211.(3.00分)(2018•山西)计算:(3+1)(3﹣1)= .12.(3.00分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13.(3.00分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.(3.00分)(2018•山西)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于CD 长12为半径作弧,两弧在∠NAB 内交于点E ;③作射线AE 交PQ 于点F .若AB=2,∠ABP=60°,则线段AF 的长为 .15.(3.00分)(2018•山西)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.2(2)•﹣.x ‒2x ‒1x 2‒1x 2‒4x +41x ‒217.(2018•山西)如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=的图象相交于点C (﹣4,﹣2),k 2x(k 2≠0)D (2,4).(1)求一次函数和反比例函数的表达式;(2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A ,B ,C 在同一竖直平面内.∠A 的度数∠B 的度数AB 的长度测量数据38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,45“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.(2018•山西)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX=BY=XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD=CB ,连接BD .第二步,在CB 上取一点Y',作Y'Z ∥CA ,交BD 于点Z',并在AB 上取一点A',使Z'A'=Y'Z'.第三步,过点A 作AZ ∥A'Z',交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y 作YX ∥ZA ,交AC 于点X .则有AX=BY=XY .下面是该结论的部分证明:证明:∵AZ ∥A'Z',∴∠BA'Z'=∠BAZ ,又∵∠A'BZ'=∠ABZ .∴△BA'Z'~△BAZ .∴.Z 'A 'ZA =BZ 'BZ 同理可得.∴.Y 'Z 'YZ =BZ 'BZ Z 'A 'ZA =Y 'Z 'YZ ∵Z'A'=Y'Z',∴ZA=YZ .任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 .A .平移B .旋转C .轴对称D .位似22.(2018•山西)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB ,E 是AB 延长线上一点,且BE=AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE=AB ,∴AE=2AB .∵AD=2AB ,∴AD=AE .∵四边形ABCD 是矩形,∴AD ∥BC .∴.(依据1)EM DM =EB AB ∵BE=AB ,∴.∴EM=DM .EM DM =1即AM 是△ADE 的DE 边上的中线,又∵AD=AE ,∴AM ⊥DE .(依据2)∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.(2018•山西)综合与探究如图,抛物线y=x ﹣4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y13x 2‒13轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE ∥AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由;(3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)(2018•山西)下面有理数比较大小,正确的是( )A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣4【考点】18:有理数大小比较.【专题】1 :常规题型.【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【考点】1O:数学常识.【专题】1 :常规题型.【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)(2018•山西)下列运算正确的是( )A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C .2a 2•a 3=2a 6D .(‒b 22a)3=‒b 68a 3【考点】35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式;6A :分式的乘除法.【专题】11 :计算题;512:整式.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A 、(﹣a 3)2=a 6,此选项错误;B 、2a 2+3a 2=5a 2,此选项错误;C 、2a 2•a 3=2a 5,此选项错误;D 、,此选项正确;(‒b 22a)3=‒b 68a 3故选:D .【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)(2018•山西)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2【考点】AA :根的判别式.【专题】1 :常规题型.【分析】利用根的判别式△=b 2﹣4ac 分别进行判定即可.【解答】解:A 、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B 、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C 、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D 、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C .【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.87 1~3月份我省这七个地市邮政快递业务量的中位数是( )A.319.79万件B.332.68万件C.338.87万件D.416.01万件【考点】W4:中位数.【专题】1 :常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时【考点】1I :科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.(3.00分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .49132919【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,49故选:A .【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)(2018•山西)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点C 按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB 边上,则点B'与点B 之间的距离为( )A .12B .6C .D .6263【考点】KO :含30度角的直角三角形;R2:旋转的性质.【专题】55:几何图形.【分析】连接B'B ,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B ,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,3∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )A .y=(x ﹣4)2+7B .y=(x ﹣4)2﹣25C .y=(x +4)2+7D .y=(x +4)2﹣25【考点】H9:二次函数的三种形式.【专题】1 :常规题型.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x 2﹣8x ﹣9=x 2﹣8x +16﹣25=(x ﹣4)2﹣25.故选:B .【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键. 10.(3.00分)(2018•山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .4π﹣4B .4π﹣8C .8π﹣4D .8π﹣8【考点】LE :正方形的性质;MO :扇形面积的计算.【专题】559:圆的有关概念及性质.【分析】利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,90⋅π⋅4236012故选:A .【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)2211.(3.00分)(2018•山西)计算:(3+1)(3﹣1)= 17 .【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】根据平方差公式计算即可.2【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360 度.【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 55 cm.【考点】C9:一元一次不等式的应用.【专题】12 :应用题.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)(2018•山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于CD 长12为半径作弧,两弧在∠NAB 内交于点E ;③作射线AE 交PQ 于点F .若AB=2,∠ABP=60°,则线段AF 的长为 2 .3【考点】JA :平行线的性质;N2:作图—基本作图;T7:解直角三角形.【专题】13 :作图题;551:线段、角、相交线与平行线.【分析】作高线BG ,根据直角三角形30度角的性质得:BG=1,AG=,可得3AF 的长.【解答】解:∵MN ∥PQ ,∴∠NAB=∠ABP=60°,由题意得:AF 平分∠NAB ,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF ,AG=GF ,∵AB=2,∴BG=AB=1,12∴AG=,3∴AF=2AG=2,3故答案为:2.3【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键. 15.(3.00分)(2018•山西)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .125【考点】KJ :等腰三角形的判定与性质;KP :直角三角形斜边上的中线;KQ :勾股定理;M5:圆周角定理;MC :切线的性质.【专题】11 :计算题.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG ⊥BD ,利用面积即可得出结论.【解答】解:如图,在Rt △ABC 中,根据勾股定理得,AB=10,∴点D 是AB 中点,∴CD=BD=AB=5,12连接DF ,∵CD 是⊙O 的直径,∴∠CFD=90°,∴BF=CF=BC=4,12∴DF==3,CD 2‒CF 2连接OF ,∵OC=OD ,CF=BF ,∴OF ∥AB ,∴∠OFC=∠B ,∵FG 是⊙O 的切线,∴∠OFG=90°,∴∠OFC +∠BFG=90°,∴∠BFG +∠B=90°,∴FG ⊥AB ,∴S △BDF =DF ×BF=BD ×FG ,1212∴FG===,DF ×BF BD 3×45125故答案为.125【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG ⊥AB 是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.2(2)•﹣.x ‒2x ‒1x 2‒1x 2‒4x +41x ‒2【考点】2C :实数的运算;6C :分式的混合运算;6E :零指数幂;6F :负整数指数幂.【专题】11 :计算题;511:实数;513:分式.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+113=8﹣4+2+1=7.(2)原式=x ‒2x ‒1⋅(x ‒1)(x +1)(x ‒2)2‒1x ‒2=x +1x ‒2‒1x ‒2=.xx ‒2【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.(2018•山西)如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=的图象相交于点C (﹣4,﹣2),k 2x(k 2≠0)D (2,4).(1)求一次函数和反比例函数的表达式;(2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【专题】31 :数形结合.【分析】(1)将C 、D 两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D 代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y 1=k 1x +b 的图象经过点C (﹣4,﹣2),D (2,4),∴,{‒4k 1+b =‒22k 1+b =4解得.{k 1=1b =2∴一次函数的表达式为y 1=x +2.∵反比例函数的图象经过点D (2,4),y 2=k 2x ∴.4=k 22∴k 2=8.∴反比例函数的表达式为.y 2=8x (2)由y 1>0,得x +2>0.∴x >﹣2.∴当x >﹣2时,y 1>0.(3)x <﹣4或0<x <2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X4:概率公式.【专题】54:统计与概率.【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.1010+15×100%=40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).1515+10+8+15=1548=516答:正好抽到参加“器乐”活动项目的女生的概率为.516【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.∠A 的度数∠B 的度数AB 的长度测量数据38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】(1)过点C 作CD ⊥AB 于点D .解直角三角形求出DC 即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C 作CD ⊥AB 于点D .设CD=x 米,在Rt △ADC 中,∠ADC=90°,∠A=38°.∵,∴.tan 38°=CD AD AD =CD tan 38°=x 0.8=54x 在Rt △BDC 中,∠BDC=90°,∠B=28°.∵,∴.tan 28°=CD BD BD =CD tan 28°=x 0.5=2x ∵AD +BD=AB=234,∴.54x +2x =234解得x=72.答:斜拉索顶端点C 到AB 的距离为72米.。

2018年山西省中考数学试题解析版

2018年山西省中考数学试题解析版

2018年山西省中考数学试卷试卷满分:120分教材版本:华师版一、选择题:本大题共10小题,每小题3分,共30分.1.(2018·山西,1,3分)下面有理数比较大小,正确的是( )A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣41.答案:B 解析:负数<0<正数,故A 错误;正数大于一切负数,故B 正确,D 错误;两个负数比较大小,绝对值大的反而小,32--<,故C 错误.2.(2018·山西,2,3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A.《九章算术》B.《几何原本》C.《海岛算经》D.《周脾算经》2.答案:B 解析:《几何原本》是古希腊数学家欧几里得所著的一部数学著作,是欧洲数学的基础,后经明代数学家徐光启与意大利传教士利玛窦合作翻译前6卷传入我国,后9卷由清代数学家李善兰与英国人伟烈亚力合译完成.3.(2018·山西,3,3分)下列运算正确的是( )A.(-a 3)2=﹣a 6B.2a 2+3a 2=6a 2C.2a 2·a 3=2a 6D.363282a b a b -=⎪⎪⎭⎫ ⎝⎛- 3.答案:D 解析:A 选项是积的乘方与幂乘方的综合,将原式利用积的乘方法则转化为两个幂的乘方相乘,即(-a 3)2=(﹣1)2·(a 3)2=a 6,故A 错;B 选项是合并同类项,字母及指数不变,系数相加减,即2a 2+3a 2=(2+3)a 2=5a 2,故B 错;C 选项是单项式与单项式相乘,先将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母连同它的指数一起作为积的一个因式,即2a 2·a 3=(2×1)(a 2·a 3)=2a 5,故C 错;D 选项是分式的乘方,就是将它们的分子、分母分别乘方,故D 正确.4.(2018·山西,4,3分)下列一元二次方程中,没有实数根的是( )A.x 2-2x =0B.x 2+4x -1=0C.2x 2-4x +3=0D.3x 2=5x -24.答案:C 解析:分别计算判别式Δ=b 2-4ac 的值,并与0比较大小,作出判断.A 选项中,Δ=b 2-4ac =(﹣2)2-4×1×0=4>0,方程有两个不相等的实数根;B 选项中,Δ=b 2-4ac =42-4×1×(﹣1)=16+4=20>0,方程有两个不相等的实数根;C 选项中,Δ=b 2-4ac =(﹣4)2-4×2×3=16-24=﹣8<0,方程没有实数根;D 选项中,Δ=b 2-4ac =(﹣5)2-4×3×2=25-24=1>0,方程有两个不相等的实数根.5.(2018·山西,5,3分)近年来快递也发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件)1~3月份我省这七个地市邮政快递业务量的中位数是( )A.319.79万件B.332.68万件C.338.87万件D.416.01万件 5.答案:C 解析:将所有数据按大小顺序排列为:3303.78万件,725.86万件,416.01万件,338.87万件,332.68万件,319.79万件,302.34万件,处于最中间的数为338.87万件,即中位数是338.87万件.6.(2018·山西,6,3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时6.答案:C 解析:瀑布的年平均流量1010立方米/秒,所以,以小时作时间单位的年平均流量为:1010×60×60=3636000=3.636×106(立方米/时).7.(2018·山西,7,3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( )A.94 B.31 C.92 D.91 7.答案:A 解析:借助树状图或列表可知摸到球的情况共有9种,其中两次都摸到黄球的情况 有4种,所以P (两次都摸到黄球)=94.8.(2018·山西,8,3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A ´B ´C ,此时点A ´恰好在AB 边上,则点B ´与点B 之间的距离为( )A.12B.6C.26D.368.答案:D 解析:在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,所以BC =ACtan ∠A =6×tan 60°=36,由旋转的性质得:A ´C =AC =6,B ´C =BC ,∠ACA ´=∠BCB ´.又因为∠A =60°,所以∠ACA ´=∠BCB ´=∠A =60°,即△BCB ´是等边三角形,所以BB ´=BC =36.ACA ´BB ´9.(2018·山西,9,3分)用配方法将二次函数y =x 2-8x -9化为y =a (x -h )2+k 的形式为( )A.y =(x -4)2+7B.y =(x -4)2-25C.y =(x +4)2+7D.y =(x +4)2-259.答案:B 解析:y =x 2-8x -9=x 2-8x -9=(x 2-8x +16-16)-9=(x -4)2-16-9=(x -4)2-25.10.(2018·山西,10,3分)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A.4π-4B.4π-8C.8π-4D.8π-810.答案:A 解析:由正方形的特征可知:∠BAD =90°,AO ⊥BD ,AO =BO =DO =2,再由正方形与圆的轴对称性可知S 弓形AB =S 弓形BC ,S 弓形AD =S 弓形CD ,所以阴影部分的面积=S 扇形AEF -S △ABD =3604902⨯π-21×4×2=4π-4.二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2018·山西,11,3分)计算:(32+1)(32-1)= . 11.答案:17解析:(32+1)(32-1)=(32)2-1=18-1=17.12.(2018·山西,12,3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案汇总提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.12.答案:360 解析:任意多边形的外角和都是360°.13.(2018·山西,13,3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.1345213.答案:55解析:由题意可设行李箱的长与高分别为8xcm 和11xcm ,根据不等关系“行李箱的长、宽、高之和不超过115cm”列不等式为8x +11x +20≤115,解得x≤5,所以行李箱的高的最大值为11×5=55.14.(2018·山西,14,3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C 、D 为圆心,以大于21CD 长为半径作弧,两弧在∠NAB 内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 .14.答案:23 解析:如图,过点A 作AG ⊥PQ 于点G ,由平行线的性质可知:∠BAC =∠ABP =60°,再由作图过程可知:AF 平分∠BAC ,即∠BAF =21∠BAC =30°.∠ABP 是△ABF 的一个外角,由三角形的外角性质得:∠AFB =∠ABP -∠BAF =30°.在Rt △ABG中,AG =ABs i n ∠ABP =2s i n 60°=3,在Rt △AFG 中,AF =AFB sin ∠AG=︒30sin 3=23.15.(2018·山西,15,3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .MPANQBDCEFG MPANQ BDCEF15.答案:512 解析:如图,连结OF 、FD ,在Rt △ABC 中,由勾股定理得:AB =10.在⊙O 中,由圆周角定理可知:∠CFD =90°,结合“∠ACB =90°,点D 是AB 的中点”得:BF =21BC =4即点F 是BC 的中点,BD =21AB =5.在Rt △BFD 中,由勾股定理得:FD =3.由三角形的中位线性质和判定得:OF ∥BD 即∠OFD =∠BDF .由切线性质得∠OFG =90°即∠OFD +∠DFG =90°,所以∠BDF +∠DFG =90°.在Rt △ABC 中,由等面积法得FG =BD FD BF ∙=534⨯=512.三、解答题(本大题共8小题,满分75分,解答应写出文字说明、证明过程或演算步骤) 16.(2018·山西,16,10分)计算:(1)(22)2-4-+3﹣1×6+20.(2)214411222--+--∙--x x x x x x . 16.思路分析:(1)先利用乘方、绝对值、负整指数幂和零指数幂的意义对原式化简,再按照实数的运算法则运算;(2)分式的混合运算与整式的混合运算类似,先乘除后加减,有括号时先算括号里的.解答过程:(1)(22)2-4-+3﹣1×6+20=8-4+2+1=7(2)214411222--+--∙--x x x x x x =()()()21211122---+-∙--x x x x x x =2121---+x x x 2-x x.17.(2018·山西,17,8分)如图,一次函数y 1=k 1x +B (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,与反比例函数y 2=xk 2(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4). (1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;E ▪D OAGBC FD OAGBC F▪E(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.17.思路分析:(1)将点C 、D 的坐标代入一次函数解析式,得到关于k 1和b 的二元一次方程组解之;将点C (或点D )的任一坐标代入反比例函数解析式解得k 的值即可;(2)令一次函数解析式中的y 1>0,即得到关于x 的不等式解之;(3)y 1<y 2反映在图象上就是直线在双曲线的下方,利用“数形结合”的思想,在图象上找到x 的取值范围.解答过程:(1)∵一次函数y 1=k 1x +b (k 1≠0)的图象经过点C (﹣4,﹣2),D (2,4),∴⎩⎨⎧+=+-=-b k b k 112442,解得:⎩⎨⎧==211b k ,∴一次函数的表达式为:y 1=x +2. ∵反比例函数y 2=xk 2(k 2≠0)的图象经过点D (2,4), ∴4=22k 即k 2=8, ∴反比例函数的表达式为:y 2=x8; (2)令y 1=x +2中y 1>0,即x +2>0,解得x >﹣2, ∴当x >﹣2时,y 1>0;(3)由图像可知:当x <﹣4或0<x <2时,y 1<y 2.18.(2018·山西,18,9分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查.并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整). 请解答下列问题:(1)请补全条形统计图和扇形统计图:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人? (4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?A OB CD xy18.思路分析:(1)用24比100即为扇形统计图中“器乐”项目所占的百分比,用100%分别减去剪纸、书法、器乐所占的百分比即为“武术”所占的百分比;用100ד武术”所占的百分比减去“武术”项目中男生的人数即为“武术”项目的女生人数;通过观察条形统计图可知参加器乐的人数为24人,(2)用“剪纸”项目中男生的15人除以“剪纸”项目的总人数即可;(3)扇形统计图中“书法”的百分比乘以500即为该校七年级参加“书法”项目的人数;(4)用参加“器乐”的女生人数比所有项目中女生的人数总和即为所求.解答过程:(1)(9+15)÷100×100%=24%,100%-25%-21%-24%=30%,100×30%-20=10(人),(2)151010+×100%=40%,答:男生所占的百分比是40%.(3)500×21%=105(人),答:估计其中参加“书法”项目活动的有105人. (4)1654815158101515==+++,答:正好抽到参加“器乐”活动项目的女生的概率为165.19.(2018·山西,19,8分)祥云桥位于省城太原南部,该桥塔主体有三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容 课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC 、BC 相交于点C ,分别与桥面交于A 、B 两点,且点A 、B 、C 在同一竖直平面内 测量数据 ∠A 的度数 ∠B 的度数 AB 的长度 38° 28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:s i n 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,s i n 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).19.思路分析:(1)欲求“点C 到AB 的距离”实质就是求“点C 到AB 的垂线段的长度”,如图过点C 作CD ⊥AB 于点D ,分别在Rt △ADC 和Rt △BDC 中,利用锐角三角函数表示AD 、BD 的长,再由“AB 的长度为234米”建立方程解之;(2)围绕“活动”进行的各个环节写出项目即可,例20 1015 15 1389人数(人) 项目25 20 15 10 5剪纸武术书法器乐男生 女生剪纸 25% 书法 21%AB C如,活动中需要测量长度即项目可以是“测量工具”等,答案不唯一,是一道开放性题目. 解答过程:(1)如图,C 作CD ⊥AB 于点D ,设CD =x 米,在Rt △ADC ,∠ADC =90°,∠A =38°,∵tan 38°=AD CD ,∴AD =︒38tan CD =8.0x =x 45. Rt △BDC 中,∠BDC =90°,∠B =28°,∵tan 28°=BD CD ,∴BD =︒28tan CD =5.0x=2x .∵AD +BD =AB =234,∴x 45+2x =234,解得:x =72,答:斜拉索顶端点C 到AB 的距离为72米.(2)答案不唯一,可以是:测量工具、计算过程、人员分工、指导教师、活动感受等.20.(2018·山西,20,7分)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原男—北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的54(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.20.思路分析:抓住等量关系“‘复兴号’G 92次列车的速度比某列“和谐号”列车的速度多40千米”列分式方程解之即可.解答过程:设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,由题意得:4045500500+=x x ,解得x =25, 经检验,x =25是原方程的解,25+61=38(小时),答:乘坐“复兴号”G 92次列车从太原南到北京西需要38小时. 21.(2018·山西,21,8分)请阅读下列材料,并完成相应的任务:AB C D任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请在仔细阅读上面的操作步骤,在(1)的基础上完成AX =BY =XY 的证明过程;(3)上述解决问题的过程中,通过平行线把四边形BA ´Z ´Y ´放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 .A.平移B.旋转C.轴对称D.位似21.思路分析:(1)由ZY ∥AC ,YX ∥ZA 可知:四边形AXYZ 为平行四边形,结合ZA =YZ 由菱形的判定可知:四边形AXYZ 为菱形;(2)由平行线的性质得∠YZB =∠CDB ,结合CD =CB 由等角对等边得:∠CBD =∠CDB ,所以∠YZB =∠CBD 即BY =Y Z ,由菱形的性质得:YZ =AX =XY ,等量代换可得:AX =BY =XY ;(3)由位似定义即可判定.解答过程:(1)四边形AXYZ 为菱形,证明:∵ZY ∥AC ,YX ∥ZA ,∴四边形AXYZ 为平行四边形, ∵ZA =YZ ,∴□AXYZ 为菱形.(2)∵CD =CB ,∴∠CBD =∠CDB ,∵ZY ∥AC ,∴∠YZB =∠CDB ,∴∠YZB =∠CBD 即BY =Y Z , ∵四边形AXYZ 为菱形,∴YZ =AX =XY , ∴AX =BY =XY . (3)D22.(2018·山西,22,12分)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD =2AB ,E 是AB 延长线上一点,且BE =AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:ABDC FEMG图1在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问 题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中 有这样一个例子:试问如何在一个三角形ABC 的AC 和BC 两边上分别取 一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在 CB 上取一点Y ´,作Y ´Z ´∥CA ,交BD 于点Z ´,并在AB 上取一点A ´,使 Z ´A ´=Y ´Z ´.第三步,过点A 作AZ ∥A ´Z ´,交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y 作YX ∥ZA ,交AC 于点X . 则有AX =BY =XY .下面是该结论的部分证明: 证明:∵AZ ∥A ´Z ´,∴∠BA ´Z ´=∠BAZ ,又∵∠ABZ ´=∠ABZ .∴△BA ´Z ∽△BAZ 。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .B .C .D .《九章算术》《几何原本》《海岛算经》《周髀算经》3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b68a34.(3分)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68302.34319.79 725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.(3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A 'B 'C ,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .6√2D .6√39.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB2内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据 ∠A 的度数∠B 的度数AB 的长度 38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB 上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴Z′A′ZA=BZ′BZ.同理可得Y′Z′YZ =BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.如图,抛物线y=13x2−13x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x 轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2 C .2a 2•a 3=2a 6 D .(−b 22a )3=−b 68a3 【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断. 【解答】解:A 、(﹣a 3)2=a 6,此选项错误; B 、2a 2+3a 2=5a 2,此选项错误; C 、2a 2•a 3=2a 5,此选项错误;D 、(−b 22a )3=−b68a3,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2【分析】利用根的判别式△=b 2﹣4ac 分别进行判定即可.【解答】解:A 、△=4>0,有两个不相等的实数根,故此选项不合题意; B 、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意; C 、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D 、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件 D .416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78 由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87故选:C . 6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:1010×3600=3.636×106立方米/时,故选:C .7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A.49B.13C.29D.19【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.6√2D.6√3【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6√3,故选:D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=90⋅π⋅42360﹣12×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3√2)2﹣12=18﹣1=17故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知, ∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 55 cm .【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可. 【解答】解:设长为8x ,高为11x , 由题意,得:19x +20≤115, 解得:x ≤5,故行李箱的高的最大值为:11x =55, 答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 2√3 .【分析】作高线BG ,根据直角三角形30度角的性质得:BG =1,AG =√3,可得AF 的长. 【解答】解:∵MN ∥PQ , ∴∠NAB =∠ABP =60°, 由题意得:AF 平分∠NAB , ∴∠1=∠2=30°, ∵∠ABP =∠1+∠3, ∴∠3=30°, ∴∠1=∠3=30°, ∴AB =BF ,AG =GF , ∵AB =2, ∴BG =12AB =1,∴AG =√3,∴AF =2AG =2√3,故答案为:2√3.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为125.【分析】先利用勾股定理求出AB =10,进而求出CD =BD =5,再求出CF =4,进而求出DF =3,再判断出FG ⊥BD ,利用面积即可得出结论. 【解答】解:如图,在Rt △ABC 中,根据勾股定理得,AB =10, ∴点D 是AB 中点, ∴CD =BD =12AB =5,连接DF ,∵CD 是⊙O 的直径, ∴∠CFD =90°, ∴BF =CF =12BC =4,∴DF =√CD 2−CF 2=3, 连接OF ,∵OC =OD ,CF =BF , ∴OF ∥AB , ∴∠OFC =∠B , ∵FG 是⊙O 的切线, ∴∠OFG =90°,∴∠OFC +∠BFG =90°, ∴∠BFG +∠B =90°, ∴FG ⊥AB ,∴S △BDF =12DF ×BF =12BD ×FG , ∴FG =DF×BF BD =3×45=125,故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得; (2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得. 【解答】解:(1)原式=8﹣4+13×6+1=8﹣4+2+1 =7.(2)原式=x−2x−1⋅(x−1)(x+1)(x−2)2−1x−2=x+1x−2−1x−2 =x x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.【分析】(1)将C 、D 两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D 代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案. (3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y 1=k 1x +b 的图象经过点C (﹣4,﹣2),D (2,4),∴{−4k 1+b =−22k 1+b =4,解得{k 1=1b =2.∴一次函数的表达式为y 1=x +2.∵反比例函数y 2=k2x 的图象经过点D (2,4),∴4=k22.∴k2=8.∴反比例函数的表达式为y2=8x.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15×100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)1515+10+8+15=1548=516.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB 的长度38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C 作CD ⊥AB 于点D .解直角三角形求出DC 即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等 【解答】解:(1)过点C 作CD ⊥AB 于点D .设CD =x 米,在Rt △ADC 中,∠ADC =90°,∠A =38°. ∵tan38°=CD AD ,∴AD =CD tan38°=x 0.8=54x . 在Rt △BDC 中,∠BDC =90°,∠B =28°.∵tan28°=CD BD ,∴BD =CD tan28°=x 0.5=2x . ∵AD +BD =AB =234,∴54x +2x =234.解得x =72.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据速度=路程÷时间结合“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:500x=50054x+40,解得:x =52,经检验,x =52是原分式方程的解, ∴x +16=83.答:乘坐“复兴号”G 92次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在CB 上取一点Y ',作Y 'Z '∥CA ,交BD 于点Z ',并在AB 上取一点A ',使Z 'A '=Y 'Z '.第三步,过点A 作AZ ∥A 'Z ',交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y作YX ∥ZA ,交AC 于点X .则有AX =BY =XY . 下面是该结论的部分证明:证明:∵AZ ∥A 'Z ',∴∠BA 'Z '=∠BAZ , 又∵∠A 'BZ '=∠ABZ .∴△BA 'Z '~△BAZ .∴Z′A′ZA =BZ′BZ .同理可得Y′Z′YZ=BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z 'A '=Y 'Z ',∴ZA =YZ .任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX =BY =XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA 'Z 'Y '放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 D (或位似) .A .平移B .旋转C .轴对称D .位似【分析】(1)四边形AXYZ 是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ 是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX =XY =YZ .根据等量代换得到AX =BY =XY . (3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ 是菱形. 证明:∵ZY ∥AC ,YX ∥ZA , ∴四边形AXYZ 是平行四边形. ∵ZA =YZ ,∴平行四边形AXYZ 是菱形.(2)证明:∵CD =CB , ∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,。

2018年山西省中考数学试卷(含详细答案及解析)中考真题

2018年山西省中考数学试卷(含详细答案及解析)中考真题

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S=DF×BF=BD×FG,△BDF∴FG===,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。

)1.(3分) 下面有理数比较大小,正确的是()A。

<﹣2B。

﹣5<3C。

﹣2<﹣3D。

1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》3.(3分) 下列运算正确的是()A。

(﹣a3)2=﹣a6B。

2a2+3a2=6a2C。

2a2•a3=2a6D。

(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。

| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。

【数学】山西省2018年中考数学试卷(word,带解析)

【数学】山西省2018年中考数学试卷(word,带解析)

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S=DF×BF=BD×FG,△BDF∴FG===,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y 的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请。

2018年山西省中考数学试卷(附详细答案)

2018年山西省中考数学试卷(附详细答案)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算12-+的结果是 ( )A .3-B .1-C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=oC .14∠=∠D .34∠=∠3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 ( )A .众数B .平均数C .中位数D .方差4.将不等式组260,40x x -⎧⎨+>⎩≤的解集表示在数轴上,下面表示正确的是( )ABAB 5.下列运算错误的是( )A.0(31)1-=B .291(3)44-÷= C .22256x x x -=-D .3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '△,C D '与AB 交于点E .若135∠=o ,则2∠的度数为( )A .20oB .30oC .35oD .55o 7.化简2442x xx x ---的结果是 ( )A .22x x -+B .26x x -+C .2xx -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( ) A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.2是无理数的证明如下:假设2是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()(2)2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以22(2)2m p =,222p m =,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知“2是有理数”的假设不成立,所以,2是无理数.这种证明“2是无理数”的方法是 ( ) A .综合法 B .反证法 C .举反例法 D .数学归纳法 10.如图是某商品的标志图案.AC 与BD 是O e 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若10cm AC =,36BAC ∠=o ,则图中阴影部分的面积为( )A .25cm πB .210cm π C .215cm πD .220cm π第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:41892-= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知ABC △三个顶点的坐标分别为(0,4)A ,(1,1)B -,(2,2)C -.将ABC △向右平移4个单位,得到A B C '''△,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o ,得到A B C ''''''△,点,,A B C '''的对应点分别为''A ,''B ,''C ,则点''A 的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54o .已知测角仪的架高 1.5CE =米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090=o,cos540.5878=o,tan 54 1.3764=o ).15.一副三角板按如图方式摆放,得到ABD △和BCD △,其中90ADB BCD ∠=∠=o ,60A ∠=o ,45CBD ∠=o .E 为AB 的中点,过点E 作EF CD ⊥于点F .若4cm AD =,则EF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分)(1)计算:231(2)8sin 453-⎛⎫-+- ⎪⎝⎭o g .(2)分解因式:22(2)(2)y x x y +-+.17.(本小题满分6分)已知:如图,在ABCD Y 中,延长AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.(本小题满分7分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF ,EF . (1)求函数ky x=的表达式,并直接写出E ,F 两点的坐标; (2)求AEF △的面积.19.(本小题满分7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.山西省有着“小杂粮王国”的美誉,谷子作为山西省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2 000万亩,年总产量为150万吨,山西省谷子平均亩产量为160 kg ,国内其他地区谷子的平均亩产量为60 kg .请解答下列问题: (1)求山西省2016年谷子的种植面积是多少万亩.(2)2017年,若山西省谷子的平均亩产量仍保持160 kg 不变,要使山西省谷子的年总产量不低于52万吨,那么,2017年山西省至少应再多种植多少万亩的谷子?20.(本小题满分12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是 亿元;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页) 数学试卷 第6页(共28页)②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号,,,A B C D 表示).21.(本小题满分7分)如图,ABC △内接于O e ,且AB 为O e 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O e 的切线交于点D . (1)若4AC =,2BC =,求OE 的长;(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.(本小题满分12分) 综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或,形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD 中,8cm AD =,12cm AB =.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '△,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形;(2)请在图4中判断NF 与ND '的数量关系,并加以证明; (3)请在图4中证明AEN △是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称. 23.(本小题满分14分) 综合与探究如图,抛物线2y x x =+x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t秒(0t >).(1)求直线BC 的函数表达式;(2)①直接写出,P D 两点的坐标(用含t 的代数式表示,结果需化简); ②在点P ,Q 运动的过程中,当PQ PD =时,求t 的值.(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案. 【考点】有理数的加法 2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=o ,25∠=∠,43∠=∠,可得35180∠+∠=o ,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可. 【考点】平行线的判定 3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好. 【考点】数据的集中趋势和离散程度 4.【答案】A 【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:5/ 14则点A''的坐标为(6,0).数学试卷第11页(共28页)数学试卷第12页(共28页)13.8 1.515.3mAB AD BD∴=+=+=.27/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)画树状图为:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)312A A ∠=∠+∠=∠Q ,2CDE A ∴∠=∠.(2)连接OC ,由等腰三角形的性质得出1A ∠=∠,由切线的性质得出OC CD ⊥,得出290CDE ∠+∠=o ,证出3CDE ∠=∠,再由三角形的外角性质即可得出结论.【考点】圆的有关性质,切线的性质,相似三角形的判定和性质22.【答案】(1)证明:Q 四边形ABCD 是矩形,90D DAE ∴∠=∠=o ,由折叠的性质得,AE AD =,90AEF D ∠=∠=o ,90D DAE AEF ∴∠=∠=∠=o ,∴四边形AEFD 是矩形,AE AD =Q ,∴矩形AEFD 是正方形;(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=o ,HF HD HD '==,Q 四边形AEFD 是正方形,90EFD ∴∠=o ,90AD H ∠'=o Q ,90HD N '∴∠=o ,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)Q 四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+Q ,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE Q ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =Q :,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=o ,由折叠的性质得到AE AD =,90AEF D ∠=∠=o ,。

山西省2018年中考数学试卷与答案解析(Word版)

山西省2018年中考数学试卷与答案解析(Word版)

.专业.专注.2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4【答案】 B【考点】 有 理 数 比 较 大 小2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B【考点】 数学文化【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( ) A. (- a3 )2= -a 6 B.2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算 【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C【考点】 一 元 二 次 方 程 根 的 判 别 式【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45 千米处,是黄河上最具气势的自然景观,其落差约30 米,年平均流量1010 立方米/秒. 若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为1010 立方米,则一小时为1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有9 种等可能结果,其中两次都摸到黄球的结果有4 种,∴P(两次都摸到黄球)=4 98. 如图,在 Rt△A BC 中,∠A CB=90°,∠A=60°,AC=6,将△A BC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△A CA’为等边三角形,∴∠A CA’=60°,∴∠B CB’=60°∴△B CB’为等边三角形,∴B B’=BC= 6 3 .9. 用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形ABCD 内接于⊙O,⊙O的半径为2,以点A 为圆心,以AC 为半径画弧交AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形ABCD 为正方形,∴∠B AD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题3 分,共15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为8xcm,宽为11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线MN∥PQ,直线AB 分别与MN,PQ 相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交AN 于点 C,交 AB 于点 D;②分别以 C,D 为圆心,以大于12CD 长为半径作弧,两弧在∠N AB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠A BP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作BG⊥A F 交 AF 于点 G由尺规作图可知,A F 平分∠N AB∴∠N AF=∠B AF∵M N∥P Q∴∠N AF=∠B FA∴∠B AF=∠B FA∴B A=BF=2∵B G⊥A F∴A G=FG∵∠A BP=600∴∠B AF=∠B FA=300Rt△B FG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△A BC 中,∠A CB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】125【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵F G 为⊙0的切线∴O F⊥F G∵R t△A BC 中,D为 AB 中点∴C D=BD∴∠D CB=∠B∵O C=OF∴∠O CF=∠O FC∴∠C FO=∠B∴O F∥B D∵O为 CD 中点∴F为 BC 中点∴CF =BF=12BC = 4Rt△A BC 中,s i n∠B =3 5Rt△B GF 中,FG =BF sin ∠B = 4 ⨯35=125三、解答题(本大题共8 个小题,共75 分.解答应写出文字说明,证明过程或演算步骤)16.(本题共 2 个小题,每小题5 分,共10 分)计 算 :( 1)210(22)4362---+⨯+【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ; ( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x 的取 值 范 围 . 【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 = k 1 x + b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),(3)解:x <-4 或0 <x <2.18.(本题9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500 人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【考点】条形统计图,扇形统计图【解析】(1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , BC 相 交 于 点 C , 分别 与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据 ∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可). 【考点】 三 角 函 数 的 应 用【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中,∠ A DC=90°, ∠ A =38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“ 复 兴 号 ” 列 车 时 速 更 快 , 安 全 性 更 好 .已 知 “ 太 原 南 -北 京 西 ” 全程大约 500 千 米 ,“ 复 兴 号 ”G92 次 列 车 平 均 每 小 时 比 某 列“ 和 谐 号 ”列车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两 列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G 92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G 92 次列车从太原南到 北 京西需要多长时间 .【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时,由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 .答 : 乘 坐 “ 复 兴 号 ” G 92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形ABC 的AC 和 BC 两边上分别取一点X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交BD 于点Z’,并在AB 上取一点A’,使Z’A’=Y’Z’.第三步,过点 A 作AZ//A’Z’,交BD 于点 Z.第四步,过点Z 作 ZY//AC,交BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ ' . ZA BZ同理可得Y ' Z '=B Z ' . ∴Z ' A ' =Y ' Z ' . YZ BZ ZA YZZ' A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA’Z’Y’放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形..专业.专注.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B, ∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 .探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法:证明: B E = A B , ∴ AE = 2 ABAD = 2 AB , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / BC . ∴EM EB DM AB=( 依 据 1 ) BE = AB , ∴ 1EM DM=∴ EM = DM . 即 AM 是△ A DE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 :(1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ;探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等【解析】(1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角形的“三线合一 ”) .② 答:点 A 在 线 段 GF 的垂直平分线上 . (2)证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒. 四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3.∴△GHC ≌ △CBE . ∴ HC = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD =2AB, BE =AB, ∴BC = 2BE =2HC. ∴HC =BH.∴GH 垂直平分 BC.∴点G 在 BC 的垂直平分线上(3)答:点 F 在 BC 边的垂直平分线上(或点F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴BM =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴NE =BE. ∴BM =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2AB, AB =BE. ∴BC = 2BM . ∴BM =MC.∴FM 垂直平分 BC,∴点F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠C BE=∠A BC=∠N=90°. ∴∠1+∠3=90°.四边形CEFG 为正方形,∴EC=EF,∠C EF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△E NF ≅△C BE.∴NF=BE,NE=BC.四边形ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设BE=a,则 BC=EN=2a,NF=a..专业.专注.1 2 ∴BF=CF. ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .23. (本题 13 分 )综 合 与 探 究 如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ A C 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 . ∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ A C , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

2018年山西省中考数学试卷及答案.doc

2018年山西省中考数学试卷及答案.doc

题绝密★启用前-------------在山西省 2018 年高中阶段教育学校招生统一考试数学 (1)_ 山西省 2018 年高中阶段教育学校招生统一考试数学答案解析 (7)_____ 无___ --------------------__ 此_____ 山西省 2018 年高中阶段教育学校招生统一考试数学号生考_ 效本试卷满分 120 分 , 考试时间120 分钟 .___ --------------------_ 第Ⅰ卷 ( 选择题共 30 分)_ 卷_____ 一、选择题: ( 本大题共 10 小题 , 每小题 3 分 , 共 30 分 . 在每小题给出的四个选项中, 只___ 有一项是符合题目要求的)__名1. 下面有理数比较大小 , 正确的是( ) 姓_ A. 0<2 B. 5<3 C. 2< 3 D. 1<4_ --------------------_ 上___ 2. “算经十书”是指汉唐一千多年间的十部著名数学著作, 它们曾经是隋唐时期国子监____ 算学科的教科书 , 这些流传下来的古算书中凝聚着历代数学家的劳动成果. 下列列四___ 部著作中 , 不属于我国古代数学著作的是( ) 校学业毕--------------------答-----------------A. 《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》3. 下列运算正确的是()A. ( a3)2 a6B. 2a2 3a2 6a2C. 2a2ga3=2 a6D. ( b2)3 b62a 8a34. 下列一元二次方程中,没有实数根的是()A. x2 2 x=0B. x2 4x 1 0C. 2x2 4x 3 0D. 3x2 5x 25.近年来快递业发展迅速 , 下表是 2018 年 1— 3 月份山西省部分地市邮政快递业务量的统计结果 ( 单位:万件 )太原市大同市长治市晋中市运城市临汾市吕梁市3 303.78 332.68 302.34 319.79 725.86 416.01 338.87 1— 3 月份我省这七个地市邮政快递业务量的中位数是( )A. 31979.万件B. 332.68万件C. 33887.万件D. 416.01万件6.黄河是中华民族的象征 , 被誉为母亲河 , 黄河壶口瀑布位于山西省吉县城西 45 千米处 , 是黄河上最具气势的自然景观 . 其落差约 30 米 , 年平均流量 1 010立方米 / 秒 . 若以小时作时间单位, 则其年平均流量可用科学记数法表示为( )A. 6.06 104立方米/时B. 3.136 106立方米/时C. 3.636 106立方米/时D. 36.36 105立方米/时7. 在一个不透明的袋子里装有两个黄球和一个白球, 它们除颜色外都相同, 随机从中摸出一个球 , 记下颜色后放回袋子中, 充分摇匀后, 再随机摸出一个球, 两次都摸到黄球的概率是()A. 4B.1C.2D.1 93998.如图 , 在Rt△ABC中 , ∠ACB=90° , ∠A=60°, AC=6 , 将△ABC绕点 C 按逆时针方向旋转得到△A B C,此时点A恰好在AB边上,则点 B 与点 B 之间的距离为()C. 62D. 6 39. 用配方法将二次函数y x28x 9 化为 y a( x h)2k 的形式为()A. y( x 4) 27B. y( x 4)225C. y(x+4) 27D. y( x+4) 22510. 如图 , 正方形ABCD内接于e O , e O的半径为2, 以点A为圆心 , 以AC长为半径画弧交AB 的延长线于点 E ,交 AD 的延长线于点 F ,则图中阴影部分的面积是()A. 4π4B. 4π8C. 8π4D. 8π8第Ⅱ卷 ( 非选择题共90分)二、填空题:( 本大题共 5 小题 , 每小题 3 分 , 共 15 分 . 请把答案填写在题中的横线上)11. 计算:(3 2 1)(3 2 1). 12.图 1 是我国古代建筑中的一种窗格 , 其中冰裂纹图案象征着坚冰出现裂纹并开始消溶 ,形状无一定规则 , 代表一种自然和谐美 . 图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形, 则∠1+∠2+∠3+∠4+∠5=度.图 1图 2年国内航空公司规定:旅客乘机时, 免费携带行李箱的长、宽、高之和不超过 115 cm .某厂家生产符合该规定的行李箱, 已知行李箱的宽为20 cm ,长与高的比为8:11 ,则符合此规定的行李箱的高的最大值为cm .14.如图 , 直线MN∥PQ , 直线AB分别与MN , PQ相交于点 A , B .小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交AN 于点 C ,交AB 于点 D ;②分别别以 C , D 为圆心,以大于1CD 长为半径作弧,两2弧在∠NAB 内交于点E;③作射线 AE 交 PQ 于点 F .若 AB =2 ,∠ ABP=60°,则线段 AF 的长为.15.如图 , 在Rt△ABC中 , ∠ACB=90°, AC =6 , BC =8 , 点D是AB的中点 , 以CD为直径作 e O , e O 分别与AC,BC交于点E,F,过点F作 e O 的切线FG,交AB于点G,则 FG 的长为.三、解答题:( 本大题共8 个小题 , 共 75 分 . 解答应写出必要的文字说明、证明过程或演算步骤 )16.( 本小题满分10 分 , 每题 5 分 )计算:(1) (22) 2| 4 | 3 1620;(2) x2 gx2x2 1 1 . x 1 4x 4 x 217.( 本小题满分8 分)如图 , 一次函数y1 k1 x b(k1 0) 的图象分别与x 轴, y 轴相交于点 A , B ,与反比例函数 y2 k2 ( k2 0) 的图象相交于点 C( - 4, - 2) , D(2,4) . x(1)求一次函数和反比例函数的表达式;(2)当 x 为何值时, y1>0 ;(2) 当x为何值时 , y1<y2 , 请直接写出x 的取值范围. 18.( 本小题满分9 分 )在“优秀传统文化进校园”活动中, 学校计划每周二下午三节课时间开展此项活动, 拟开展活动项目为:剪纸, 武术 , 书法 , 器乐 , 要求七年级人人参加 , 并且每人只能参加其中一项活动 . 教务处在该校七年级学生中随机抽取了 100 名学生进行调查 , 并对此进行统计 , 绘制了如图所示的条形统计图和扇形统计图均不完整 )请解答下列问题:(1)请补全条形统计图和扇形统计图(2)在参加“剪纸”活动项目的学生中 , 男生所占的百分比是多少(3)若该校七年级学生共有 500 人 , 请估计其中参加“书法”项目活动的有多少人(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体况,那么正好抽到参加“器乐”活动项目的女生的概率是多少19.( ------------- 在本小分8 分 ) 祥云位于省城太原南部 , 塔主体由三根曲塔柱合而成 , 全共 13 直型斜拉索 , 造型新 , 是“三晋大地”的一种象征 . 某数学“ 合与践”小的同学把“ 量斜拉索端到面的距离”作一活, 他制了量方案 , 并利用余借助斜拉索完成了地量 . 量果如下表.20.( 本小分7 分 )2018 年 1 月 20 日, 山西迎来了“复号”列, 与“和号”相比 , “复号”列列速更快, 安全性更好 . 已知“太原南一北京西”全程大500 千米 , “复号”G92 次列平均每小比某列“和号”列多行40 千米 ,其行是列“和号”列行的4( 两列号中5途停留均除外)., “复号”G92 次列从太原南到北京西, 中途只有石家庄一站 , 停留10 分 . 求乘坐“复号”G92 次列从太原南到北京西需要多无目内容--------------------此量斜拉索端到面的距离量示意明:两最斜拉索AC , BC 相交于点 C ,分与面交于 A , B 两点,且点 A , B , C 在同一直平面内效-------------------- ∠ A 的度数 B 的度数AB 的度卷量数据38°28°234 米⋯⋯(1) 帮助小根据上表中的量数据, 求斜拉索端点 C 到 AB 的距离(参考数据sin38 °0.6 , cos38°0.8 , tan38°0.8 , sin28°0.5 , cos28°0.9 , tan28°0.5 ) ;--------------------上(2)小要写出一份完整的活告 , 除上表的目外 , 你需要充哪些目 ( 写出一个即可 ).--------------------答.21.( 本小分8 分)下列材料, 并完成相的任:在数学中 , 利用形在化程中的不性, 常常可以找到解决的法. 著名美籍匈牙利数学家波利在他所著的《数学的》一中有一个例子:如何在一个三角形ABC 的 AC 和BC 两上分取学的点X 和 Y ,使得 AX = BY= XY .(如)解决个的操作步如下:第一步 , 在CA上作出一点 D ,使得 CD CB ,接 BD .第二步 , 在CB上取一点Y ,作Y Z∥CA,交 BD 于点 Z ,并在 AB 上取一点A ,使 Z A YZ .第三步 , 点A作AZ∥A Z , 交BD于点Z .第四步 , 点Z作ZY∥AC , 交BC于点Y , 再点Y作YX∥ZA , 交AC于点X有 AX BY XY .-----------------下面是的部分明明:∵ AZ∥ A Z ,∴∠BA Z =∠ BAZ 又∵∠ A BZ =∠ ABZ .∴△BA Z ∽△ BAZ ∴Z ABZ , ZA BZ同理可得:Y ZBZ , ∴Z A Y Z YZ BZ ZA YZ∵ Z A Y Z ,∴ ZA YZ .⋯任: (1) 根据上面的操作步及部分明程, 判断四形AXYZ 的形状,并加以明 .(2)再仔上面的操作步 , 在 (1) 的基上完成AX =BY =XY的明程(3) 上述解决的程中, 通作平行把四形BA Z Y 放大得到四形 BAZY ,从而确定了点 Z , Y 的位置,里运用了下面一种形的化是.A. 平移旋 C. 称 D. 位似22.( 本小分12 分 )合与践情境:在数学活上, 老出示了一个:如1, 在矩形ABCD中 , AD =2 AB , E 是 AB 延上一点,且 BE =AB ,接 DE ,交 BC 于点 M ,以 DE 一在 DE 的左下方作正方形DEFC ,接 AM .判断段 AM 与 DE 的位置关系. 探究展示:勤小, AM垂直平分DE , 并展示了如下的明方法:明:∵ BE= AB ,∴ AE=2 AB ∵ AD=2 AB ,∴ AD=AE∵四形 ABCD 是矩形,∴ AD∥ BC ∴EM EB.( 依据 1)DM AB∵ BE =AB ,∴EM1 ,∴ EM DM .DM即AM 是△ ADE 的 DE 上的中,又∵ AD =AE ,∴ AM ⊥ DE .(依据2)∴. AM垂直平分DE反思交流(1)①上述明程中的“依据1”“依据 2”分是指什么② 判断 1 中的点A是否在段GF 的垂直平分上, 直接回答 , 不必明:(2) 新小受到勤小的启,行探究,如2,接CE,以CE一在 CE 的左下方作正方形CEFG ,点 G 在段 BC 的垂直平分上,你出明;探索:(3) 如 3,接CE,以CE一在CE的右上方作正方形CEFG ,可以点C ,点 B 都在段 AE 的垂直平分上,除此之外,察矩形ABCD 和正方形CEFG 的点与,你能哪个点在哪条的垂直平分上,写出一个你的,并加以明;图 1图2图323.( 本小题满分13 分 )综合与探究如图,抛物线y 1 x231 x34 与x 轴交于 A , B 两点(点 A 在点B 的左侧) ,与y 轴交于点 C ,连接AC , BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为 m ,过点P 作PM x 轴,垂足为点M , PM 交 BC 于点Q ,过点P 作 PE∥ AC 交 x 轴于点 E ,交BC 于点F .(1)求 A , B , C 三点的坐标;(2) 试探究在点P 运动动的过程中,是否存在这样的点Q ,使得以 A , C , Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由;(3) 请用含m的代数式表示线段QF 的长,并求出m 为何值时 QF 有最大值.山西省 2018 年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题1. 【答案】 B【解析】 A 中,0 2 ,错;B中, 5 3 ,正确;C中, 2 3,错误;D中, 1 4 ,错误,故选 B.【考点】有理数的大小比较.2.【答案】 B【解析】“算经十书”包括《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算经》在四个选项中《几何原经》是古希腊数学家欧几里得所著的一部数学著作,故选 B.【考点】我国古代数学著作.3.【答案】 D【解析】 A 中,( a3 )2 ( 1)2 ( a3 )2 a6 ,错误; B 中,2a2 3a2 5a2,错误;C中,2 3 5b2 3 b62a g a =2a ,错误; D 中,( 2a )8a3,正确,故选D.【考点】整式的运算 .4. 【答案】 C【解析】 A 中,b2 4ac ( 2)2 4 0 ,此方程有两个不相等的实数根,不符合题意; B 中,b2 4ac 42 4 1 ( 1) 20 0 ,此方程有两个不相等的实数根,不符合题意; C 中,b2 4ac ( 4) 2 4 2 3 8 0 ,此方程没有实数根,符合题意;D 中,原方程变形为3x2 5x 2 0 ,b2 4ac ( 5)2 4 3 2 1 0 .此方程有两个不相等的实数根,不符合题意,故选 C.【考点】一元二次方程根的判别式.5. 【答案】 C【解析】把这7 个数据按从小到大的顺序排列为302.34, 319.79, 332.68, 338.87,416.01, 725.86, 303.78,位于最中间的数据为338.87故选C.【考点】中位数.6.【答案】 C【解析】立方米 / 秒1 010 3 600立方米 / 时=3 636 000立方米 / 时3.63661 010 10立方米 / 时,故选 C.【考点】科学记数法.7.【答案】 A【解析】画树状图如图所示,共有9 种等可能的结果,其中两次摸出的小球都是黄球的结果有 4 种,所以P (两次都摸到黄球) =4,故选 A.9【考点】列表法或画树状图法求概率.8.【答案】 D【解析】连接 BB ,由旋转的性质知,AC =A C ,又∠A60°,∴△ACA是等边三角形∴∠ACA =60°,由旋转可知∠ BCB =∠ ACA =60°,BC B C ,∴△ BCB 为等边三角形,∴ BBBC . 在 Rt △ABC 中, BC ACtan606 3 6 3 ,∴点 B 与°°【解析】由多边形的外角和为360 ,知∠ +∠ +∠ +∠ +∠12345=360 .点 B 之的距离是 6 3 ,故选 D.【考点】多边形的外角和定理 .【考点】旋转的性质、等边三角形的判定与性质、锐角三角函数.13. 【答案】 559. 【答案】 B【解析】设长为8x cm ,高为 11x cm ,根据题意,得 8x+11x+20 115,解得 x 5,【解析】 yx 2 8x 9 x 2 8x 16 16 9 ( x 4) 2 25 ,故选 B.11x 55 ,即符合此规定的行李箱的高的最大值为55 cm【考点】二次函数表达式的一般式与顶点式的转换.【考点】一元一次不等式的应用 .10. 【答案】 A14. 【答案】 23【解析】∵四边形ABCD 为正方形,∴ AB BC CD AD , AC BD 4,【解析】 如图, 过点 A 作 AG PQ 于点 G ,由尺规作图可知, ∠1=∠2 ,∵ MN ∥PQ ,∴S弓形 ABS弓形 AD S弓形BCS弓形 CD.如图 所示,∴ ∠1=∠3 . ∴ ∠2=∠3 . ∵ ∠ ABP=60°, ∴ ∠2= ∠3=30°.在 Rt △ABG 中32AGABsin60 °°2 3 .S扇形 AEFS△ ABD90π 4 123 . 在 Rt △ AGF 中,∵ ∠3=30 ,∴ AF 2 AGS阴影4 2 4 4 ,故选 A.2360 2【考点】正方形的性质、扇形的面积公式.第Ⅱ卷【考点】解直角三角形、角平分线的作法、平行线的性质、三角形外角的性质 .15. 【答案】12二 . 填空题511. 【答案】 17【解析】 如图, 连接 EF , DE , DF . ∵ ∠ACB=90°,∴ EF 为 e O 的直径, ∴ EF 必过圆心 O ∵ CD 为 e O 的直径,∴ DE AC ,BC ,∵ ∠ ACB=90 °,( 3 2)21218 1 17 .AD BD【解析】原式∴ CDAD BD 5, ∴ AECE 3 , CFBF 4 , ∴ EF ∥ AB , ∴【考点】平方差公式∠FGB∠OFG , ∵ FG 为 e O 的 切 线, ∴ ∠OFG =90°, ∴ ∠FGB =90°, 在Rt △ CDF 中 , DFCD 2 CF 25242 3 , 在 Rt △ BDF 中 , ∵12. 【答案】 360DF gBF BD gFG ,∴FG DF gBF 3 4 12 .BD 5 5三、解答题16.【答案】 (1)7(2)x x 2【解析】 (1) 原式8 4 2 17(2) 原式x 2 g ( x 1)(x 1) 1x 1 ( x 2)2 x 2 ∴一次函数的表达式为y1x 2.∵反比例函数y2k2的图象经过点 D(2,4),x∴4=k2,∴ k2 =8 .2∴反比例函数的表达式为y28.x(2) 由 y1 >0 ,得x+2 0 .∴x 2 .∴当 x 2 时,y1 0.(3) x 4 或 0 x 2 .【解析】解: (1) ∵一次函数y1k1 x b 的图象经过点C( - 4, - 2) , D(2,4) ,x+1 1∴4k1b2,x 2 x 2x.x 2【考点】实数的运算、分式的混合运算.17. 【答案】解:(1) ∵一次函数y1k1 x b 的图象经过点 C (- 4,- 2) , D(2,4) ,4k1 b 2,∴2k1 b 4.k11,解,得:b 2.2k1b 4.k11,解,得:b 2.∴一次函数的表达式为y1x 2.∵反比例函数y2k2的图象经过点 D (2,4),x∴4=k2,∴ k2 =8 .28(3) 500 21%=105∴反比例函数的表达式为y2( 人 ).x答:估计其中参加“书法”项目活动的有105 人 .(2) 由y1>0,得 x+2 0 .(4)15 15 5 ∴ x 2 . 15+10+8+15 48 .16∴当 x 2 时,y1 0 . 答:正好抽到参加“器乐”活动项目的女生的概率为 5.16 (3) x 4 或 0 x 2 .【解析】解: (1) 补全条形统计图和扇形统计图如图所示. 【考点】待定系数法求一次函数与反比例函数的解析式、一次函数与反比例函数交点问题.18. 【答案】解:(1) 补全条形统计图和扇形统计图如图所示.(2) 10 100% 40% .10+15答:男生所占的百分比为 40% .(2) 10 (3) 500 ( 人 )10+15答:估计其中参加“书法”项目活动的有105 人 .答:男生所占的百分比为40% .15 15 5【解析】解: (1) 过点 C 作 CD AB 于点 D .(4)48 16 .15+10+8+15答:正好抽到参加“器乐”活动项目的女生的概率为5.16【考点】条形统计图、扇形统计图、概率公式.19. 【答案】解: (1) 过点 C 作 CD AB 于点 D .设 CD x 米,在 Rt △ ADC 中,∠ ADC 90 , ∠A=38 .∵ tan38CD CD x 5,∴ ADtan380.8 x .AD4在 Rt △ BDC 中, ∠ BDC90 , ∠B 28 .∵ tan28CD CD x ,∴ BDtan282x .BD0.5设 CDx 米,在 Rt △ ADC中,∠ ADC 90 , ∠ A=38 .∵ tan38CD,∴ ADCD x5x .ADtan380.8 4在 Rt △ BDC 中, ∠ BDC 90 , ∠ B 28 .∵ tan28CD,∴ BDCD x 2x .BDtan28 0.5∵ AD BDAB 234,∴ 5x 2x 234 .4解,得 x 72 .答:斜拉索顶端点C 到桥面的距离为 72 米.(2) 还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等 .∵ ADBDAB 234,∴ 5x 2 x 234 .4【考点】解直角三角形的应用 .解,得 x 72 .20. 【答案】解法一:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,答:斜拉索顶端点 C 到桥面的距离为 72 米 .由题意,得 50050040 .5( xx1 1 ) (2) 还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.6 4 6解,得 x 8 3经检验, x 8是原方程的根 . 3答:乘坐“复兴号"G92 次列车从太原南到北京西需要8小时 . 3解法二:设“复兴号” G92 次列车从太原南到北京西的行驶时间需要x 小时,由题意,得50050040 . x 5 x45解,得 x.2经检验, x 5是原方程的根. 25 1 8( 小时 ).2 6 3答:乘坐“复兴号” C92 次列车从太原南到北京西需要8个小时 . 3【解析】解法一:设乘坐“复兴号” G92 次列车从太原南到北京西需要x 小时,由题意,得500 5005( x40 . x 1 1)6 4 6解,得x 83经检验,x 8是原方程的根 . 3答:乘坐“复兴号"G92 次列车从太原南到北京西需要8小时 .3由题意,得500500 40 .x 5x45解,得 x.25是原方程的根 .经检验, x25 1 8( 小时 ).2 6 3答:乘坐“复兴号” C92 次列车从太原南到北京西需要8个小时.3【考点】分式方程的应用.21.【答案】解: (1) 四边形AXYZ是菱形 .证明:∵ ZY∥AC , YX∥ZA ,∴四边形 AXYZ是平行四边形.∵ZA=YZ ,∴ YAXYZ是菱形.(2) 证明:∵CD CB ,∴1= 2 .∵ ZY∥AC ,∴1= 3 .解法二:设“复兴号” G92次列车从太原南到北京西的行驶时间需要x 小时,∴2= 3 .∴ YB=YZ .∵四边形AXYZ是菱形,∴AX =XY=YZ .∴AX=BY=XY .(3)D( 或位似 )【解析】解:(1) 四边形AXYZ是菱形 .证明:∵ ZY∥AC , YX∥ZA ,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴ Y AXYZ是菱形.(2)证明:∵ CD CB ,∴ 1= 2 .∵ZY∥AC ,∴ 1= 3.∴2= 3 .∴ YB=YZ .∵四边形AXYZ是菱形,∴AX =XY=YZ .∴AX=BY=XY .(3)D( 或位似 )【考点】菱形的判定与性质、等腰三角形的判定与性质、相似三角形的判定与性质、位似.22. 【答案】 (1) ①依据 1:两条直线被一组平行线所截,所得的对应线段成比例( 或平行线分线段成比例).依据 2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合( 或等腰三角形的“三线合一”).②点 A 在线段 GF 的垂直平分线上.(2) 证明:过点G 作 GH BC 于点 H ,∵四边形 ABCD 是矩形,点 E 在 AB的延长线上,∴∠ CBE =∠ ABC=∠ GHC =90°.∴∠1+∠ 2=90 .∵四边形 CEFG 为正方形,∴CG CE ,∠CCE=90∴∠1+∠ 3=90 ∴∠2=∠3.∴△ GHC≌△CBE .∴HC BE .∵四边形 ABCD 是矩形,∴AD BC .∵ AD 2AB , BE AB,∴ BC 2BE 2HC .∴HC BH .∴ GH 垂直平分 BC .∴点 G 在 BC 的垂直平分线上.(3)点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上). 证法一:过点 F 作 FM BC 于点 M ,过点 E 作 EN FM 于点 N . ∴∠BMN∠ENM∠ENF90 .∵四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠ CBE∠ ABC90°,∴四边形BENM 为矩形.∴ BM EN ,∠BEN90 ,∴∠1+∠ 2 90 .∵四边形 CEFG 为正方形,∴ EF EC ,∠CEF 90°,∴∠2+∠ 3 90°,∴∠1∠3.∵∠CBE∠ENF90 ,∴△ENF≌△EBC .∴ NE BE .∴ BM BE . ∵四边形 ABCD 是矩形,∴AD BC .∵ AD 2AB . AB BE ,∴ BC 2BM ,∴ BM MC .∴ FM 垂直平分 BC ,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作FN BE 交BE的延长线于点N ,连接 FB , FC .四边形 ABCD 是矩形,点 E 在 AB的延长线上,∴∠ CBE∠ABC∠ N90 .∴∠1+∠3 90 ,∵四边形 CEFG 为正方形,∴EC EF ,∠CEF 90.∴∠1+∠ 2 90 ∴∠2∠3.∴ △ ENF ≌△ CBE .∴ NF BE , NE BC .∵四边形 ABCD 是矩形,∴AD BC .∵AD 2AB , BE AB .∴设 BE a ,则 BC EN 2a , NF a .∴ BF BN 2FN 2 = (3a) 2a210a .CF BC 2BE 2 = (2a)2a25a .CF CE 2EF 2 = 2CE10a .∴ BF CF ,∴点 F 在 BC 边的垂直平分线上.【解析】 (1) ①依据1:两条直线被一组平行线所截,所得的对应线段成比例( 或平行线分线段成比例).依据 2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合( 或等腰三角形的“三线合一”).②点 A 在线段 GF 的垂直平分线上.(2) 证明:过点G 作 GH BC 于点 H ,∵四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC =∠GHC =90°.∴∠1+∠ 2=90 .∵四边形 CEFG 为正方形,∴∠1+∠ 3=90 ∴∠2=∠3.∴△ GHC≌△CBE .∴HC BE .∵四边形 ABCD 是矩形,∴AD BC .∵ AD 2AB , BE AB ,∴ BC 2BE 2HC .∴ HC BH .∴ GH 垂直平分 BC .∴点 G 在 BC 的垂直平分线上.(3)点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上). 证法一:过点 F 作 FM BC 于点 M ,过点 E 作 EN FM 于点 N . ∴∠ BMN∠ ENM∠ ENF90 .∵四边形 ABCD 是矩形,点 E 在 AB的延长线上,∴∠ CBE∠ ABC90°,∴四边形BENM 为矩形.∴ BM EN ,∠BEN90 ,∴∠1+∠ 2 90 .∴ CG CE ,∠CCE=90∵四边形CEFG为正方形,∴ EF EC ,∠CEF 90°,∴∠2+∠ 3 90°,∴∠1∠3.∵∠CBE∠ENF90 ,∴△ENF≌△EBC .∴NE BE .∴ BM BE .∵四边形 ABCD 是矩形,∴AD BC .∵ AD 2AB . AB BE ,∴ BC 2BM ,∴ BM MC .∴ FM 垂直平分 BC ,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作FN BE 交BE的延长线于点N ,连接 FB , FC .四边形 ABCD 是矩形,点 E 在 AB的延长线上,∴∠ CBE ∠ ABC ∠N 90 .∴∠1+∠ 3 90 ,∵四边形 CEFG 为正方形,∴ EC EF ,∠CEF90 .∴∠1+∠ 2 90 ∴∠2∠3. ∴ NF BE , NE BC .∵四边形 ABCD 是矩形,∴AD BC .∵AD 2AB , BE AB .∴设 BE a ,则 BC EN 2a , NF a .∴ BF BN 2FN 2 = (3a)2a210a .CF BC2BE 2 = (2a) 2a25a .CF CE2EF 2 = 2CE10a .∴ BF CF ,∴点 F 在 BC 边的垂直平分线上.【考点】平行线分线段成比例、等腰三角形的性质矩形的性质、全等三角形的判定与性质、正方形的判定与性质、线段垂直平分线的判定定理.23. 【答案】 (1) 由y 0 ,得1x 2 1 x 4 0 .3 3解,得 x1 3 , x2 4 .∴点 A , B 的坐标分别为A( 3,0) , B(4,0) .由 x 0 ,得y 4 .∴点C的坐标为 C(0,4) .(2) Q1 (5 2,52 4) , Q2 (1, 3) .2 2(3) 过点 F 作FG PQ 于点G,∴ △ ENF ≌△ CBE .则FG∥x 轴.由B(4,0) , C(0, 4) .得△ OBC 为等腰直角三角形. ∴∠OBC∠ QFG45 .∴ GQ FG 2FQ . 2∵PE∥AC ,∴∠1 ∠2 .∴FG∥x 轴,∴∠2 ∠3,∴∠1 ∠3.∵∠FGP∠AOC90 ,∴△FGP∽△AOC . ∴FG GP ,即 FG GP .AO OC 34∴ GP 4FG 4 g2FQ2 2FQ .3 3 2 3∴ QP GQ GP 2FQ 2 2 FQ7 2FQ ,∴ FQ3 2QP ,2 3 6 7∴ PM x轴,点 P 的横坐标为m,∠MBQ 45 ,∴ QM MB 4 m , PM 1 m21m 4 .3 3∴ QP PM -QM 1 m21m 4 (4 m)1m2 +4m .3 3 3 3∴ FQ 3 2 QP 3 2 ( 1 m2+ 4 m) 2 m24 2m .7 7 3 3 7 724 2∵m72 时, QF 有最大值.0 ,∴ QF 有最大值,∴当7 2( 2 )7【解析】 (1) 由 y 0 ,得1x21x 4 0 .3 3解,得 x1 3 , x2 4 .∴点 A , B 的坐标分别为A( 3,0) , B(4,0) .由 x 0 ,得y 4 .∴点C的坐标为 C(0,4) .(2)5 2 5 24) , Q2 (1, 3) .Q1 ( ,22(3) 过点 F 作 FG PQ 于点G,则FG∥x 轴.由B(4,0) , C(0, 4) .得△ OBC 为等腰直角三角形. ∴∠OBC∠ QFG45 .∴ GQ FG 2FQ . 2∵PE∥AC ,∴∠1 ∠2 .∴FG∥x 轴,∴∠2 ∠3 ,∴∠1 ∠3.∵∠FGP∠ AOC90 ,∴△FGP∽△AOC . ∴FG GP ,即 FG GP .AO OC 34∴ GP 4FG 4 g2FQ2 2FQ .3 3 2 3∴ QP GQ GP 2FQ 2 2 FQ7 2FQ ,∴ FQ3 2QP ,2 3 6 7∴ PM x轴,点 P 的横坐标为m,∠MBQ 45 ,∴ QM MB 4 m , PM 1 m21m 4 .3 3∴ QP PM - QM 1 m21m 4 (4 m)1m2 +4m .3 3 3 3∴ FQ 3 2 QP 3 2 ( 1 m2+ 4 m) 2 m24 2m .7 7 3 3 7 724 2∵72 时, QF 有最大值.0 ,∴ QF 有最大值,∴当 m7 2( 2 )7解法二:提示,先分别求出BQ 和BF关于m的代数式,再由 QF BF-BQ 得到 QF 关于 m 的代数式【考点】抛物线的性质、等腰三角形的性质、二次函数与一元二次方程的关系、勾股定理、相似三角形的判定与性质 .。

2018年山西省中考数学试卷(带解析答案)

2018年山西省中考数学试卷(带解析答案)
10.(3 分)如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心, 以 AC 长为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影 部分的面积为( )
第 5页(共 21页)
A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8
【解答】解:利用对称性可知:阴影部分的面积=扇形 AEF 的面积﹣△ABD 的面
第 2页(共 21页)
故选:C.
5.(3 分)近年来快递业发展迅速,下表是 2018 年 1~3 月份我省部分地市邮政 快递业务量的统计结果(单位:万件):
太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68 302.34 319.79 725.86 416.01 338.87 1~3 月份我省这七个地市邮政快递业务量的中位数是( ) A.319.79 万件 B.332.68 万件 C.338.87 万件 D.416.01 万件 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01, 725.86,3303.78 由于这组数据有奇数个,中间的数据是 338.87 所以这组数据的中位数是 338.87 故选:C.
3.(3 分)下列运算正确的是( ) A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2
C.2a2•a3=2a6 D. t ﷽
t﷽
【解答】解:A、(﹣a3)2=a6,此选项错误;
B、2a2+3a2=5a2,此选项错误;
C、2a2•a3=2a5,此选项错误;
D、 t ﷽ 故选:D.
t
,此选项正确; ﷽
2.(3 分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋 唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳 动成果.下列四部著作中,不属于我国古代数学著作的是( )

山西省2018年中考数学试卷及答案解析(Word版)

山西省2018年中考数学试卷及答案解析(Word版)

.2018年X X 省中考数学试卷(解析版)第I 卷选择题〔共30分〕一、选择题〔本大题共10个小题,每小题 3分,共30分,在每个小题给出的四个选项中,只有 一项符合题目要求,请选出并在答题卡上将该项涂黑〕 1.下面有理数比较大小,正确的是〔〕A.0<-2B.-5<3C.-2<-3D.1<-4 [答案]B[考点]有理数比较大小2.“算经十书〞是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我 国古代数学著作的是〔〕A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》 [答案]B[考点]数学文化 [解析]《几何原本》的作者是欧几里得 3.下列运算正确的是〔〕A.(-a 3)2=-a 6B.2a 2 +3a 2 =6a 2C.2a 2 ⋅a 3 =2a 6D.2633()2b b a a-=- [答案]D[考点]整式运算[解析]A.(-a 3)2=a 6 B 2a 2 +3a 2 =5a 2 C. 2a 2 ⋅a 3 =2a 54.下列一元二次方程中,没有实数根的是〔〕A.x 2 -2x =0B.x 2 +4x -1=0C.2x 2 -4x +3=0D.3x 2 =5x -2[答案]C[考点]一元二次方程根的判别式[解析]△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C .△=-8D .△=15.近年来快递业发展迅速,下表是2018年1-3月份我省部分地市邮政快递业务量的统计结果〔单 位:万件〕A.319.79万件B.332.68万件C.338.87万件D.416.01万件[答案]C[考点]数据的分析[解析]将表格中七个数据从小到大排列,第四个数据为中位数,即338.87万件.6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A.6.06⨯104立方米/时B. 3.136⨯106立方米/时C.3.636⨯106立方米/时D. 36.36⨯105立方米/时[答案]C[考点]科学计数法[解析]一秒为1010立方米,则一小时为1010×60×60=3636000立方米,3636000用科学计数法表示为3.636×106.7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是〔〕A.49B.13C.29D.19[答案]A[考点]树状图或列表法求概率[解析]由表格可知,共有9种等可能结果,其中两次都摸到黄球的结果有4种,∴P〔两次都摸到黄球〕=498.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A’B’C,此时点A’恰好在AB边上,则点B’与点B之间的距离是〔〕D.[答案]D[考点]旋转,等边三角形性质[解析]连接BB’,由旋转可知AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC=6 3.9.用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为〔〕A.y=(x-4)2+7B.y=(x-4)2-25C.y=(x+4)2+7D.y=(x+4)2-25[答案]B[考点]二次函数的顶点式[解析]y=x2-8x-9=x2-8x+16-16-9=(x-4)2-2510.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积是〔〕A.4π-4B.4π-8C.8π-4D.8π-8[答案]A[考点]扇形面积,正方形性质[解析]∵四边形ABCD为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题〔共90分〕二、填空题〔本大题共 5个小题,每小题3分,共 15分〕11.计算:+-1)= .[答案]17[考点]平方差公式[解析]∵(a+b)(a-b)=a2-b2∴+-1)=)2-1=18-1=1712.图1是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2是从图 1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.[答案]360[考点]多边形外角和[解析]∵任意n边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2+∠3+∠4+∠5=360︒.13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为_____cm.[答案]55[考点]一元一次不等式的实际应用[解析]解:设行李箱的长为8xcm,宽为11xcm20+8x+11x≤115解得x≤5∴高的最大值为11⨯5=55cm14.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交 AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=600,则线段长为______.[答案][考点]角平分线尺规作图,平行线性质,等腰三角形三线合一[解析]过点B作BG⊥AF交AF于点G由尺规作图可知,AF平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG中,FG=BF⋅co s∠BFA=2⨯2∴AF=2FG=15.如图,在Rt△ABC中,∠ACB=900,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.[答案]125[考点]直角三角形斜中线,切线性质,平行线分线段成比例,三角函数 [解析]连接OF∵FG 为⊙0的切线∴OF ⊥FG ∵Rt △ABC 中,D 为AB 中点 ∴CD=BD ∴∠DCB=∠B ∵OC=OF∴∠OCF=∠OFC ∴∠CFO=∠B ∴OF ∥BD∵O 为CD 中点 ∴F 为BC 中点∴CF =BF =12BC =4Rt △ABC 中,sin ∠B =35Rt △BGF 中,FG =BF sin ∠B =4⨯35=125三、解答题〔本大题共 8个小题,共75分.解答应写出文字说明,证明过程或演算步骤〕 16.〔本题共2个小题,每小题5分,共10分〕计算:〔1〕2104362---+⨯+ [考点]实数的计算[解析]解:原式=8-4+2+1=7〔2〕222111442x x x x x x --⋅---+- [考点]分式化简[解析]解:原式=222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.〔本题8分〕如图,一次函数 y 1 =k 1x +b (k 1 ≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反 比例函数y 2=(k ≠0) 的图象相交于点C 〔-4,-2〕,D 〔2,4〕. 〔1〕求一次函数和反比例函数的表达式; 〔2〕当x 为何值时,y 1 >0;〔3〕当x 为何值时,y 1 <y 2,请直接写出x 的取值X 围.[考点]反比例函数与一次函数[解析]〔1〕解:一次函数y1 =k1x+b的图象经过点C〔-4,-2〕,D〔2,4〕,〔3〕解:x<-4或0<x<2.18.〔本题9分〕在“优秀传统文化进校园〞活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图〔均不完整〕.请解答下列问题:〔1〕请补全条形统计图和扇形统计图;〔3〕若该校七年级学生共有500人,请估计其中参加“书法〞项目活动的有多少人?〔4〕学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器 乐〞活动项目的女生的概率是多少?[考点]条形统计图,扇形统计图 [解析]〔1〕解:〔2〕解:1010+15⨯100%=40%. 答:男生所占的百分比为40%. 〔3〕解:500⨯21%=105〔人〕.答:估计其中参加“书法〞项目活动的有105人.〔4〕解:15155==15+10+8+1548165答:正好抽到参加“器乐〞活动项目的女生的概率为516.19.(本题8分)祥云桥位于省城XX 南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地〞的一种象征.某数学“综合与实践〞小组的同学把“测量斜拉索顶端到 桥面的距离〞作为一项课题活动,他们制订了测量方案,并利用课余时 间借助该桥斜拉索完成了实地测量. 测量结果如下表.∠A 的度数38°(1) tan38︒≈0.8,sin28︒≈0.5,cos28︒≈0.9,tan28︒≈0.5〕;[考点]三角函数的应用 [解析]〔1〕解:过点C 作CD ⊥AB 于点D. 设CD=x 米,在Rt ∆ADC 中, ∠ADC=90°,∠A=38°.AD +BD =AB =234.∴54x +2x =234.解得x =72.答:斜拉索顶端点C 到AB 的距离为72米.〔2〕解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教 师,活动感受等.20.(本题7分)2018年1月20日,XX 迎来了“复兴号〞列车,与“和谐号〞相比,“复兴号〞列车时速更快,安全性更好.已车多行驶40千米,其行驶时间是该列“和谐号〞列车行驶时间的45〔两列车中途停留时间均除外〕.经查询,“复兴号〞G92次列车从XX 南到西,中途只有XX 一站,停留10分钟.求乘坐“复兴号〞G92次列车从X X 南到西需要多长时间. [考点]分式方程应用 [解析]解:设乘坐“复兴号〞 G92次列车从XX 南到西需要x 小时, 由题意,得500500=+40151()646x x --解得x =83 经检验,x =83是原方程的根. 答:乘坐“复兴号〞G92次列车从XX 南到西需要83小时.21.〔本题8分〕请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙 利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX=BY=XY.〔如图〕解决这个问题的操作步骤如下: 第一步,在CA 上作出一点D ,使得CD=CB ,连接BD.第二步,在CB 上取一点Y ’,作Y ’Z ’//CA,交BD 于点Z ’,并在AB 上取一点A ’,使Z ’A ’=Y ’Z ’.第三步,过点A 作AZ//A ’Z ’,交BD 于点Z.第四步,过点Z 作ZY//AC ,交BC 于点Y ,再过Y 作YX//ZA ,交AC 于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:A Z //A'Z ∴∠BA 'Z '=∠BAZ又∠A'BZ'=∠ABZ.∴△BA 'Z△BAZ∴Z'A '=BZ '.ZABZ同理可得 Y 'Z '= BZ ' .∴Z 'A '=Y 'Z '.YZBZZAYZZ 'A '=Y 'Z ',∴ZA =YZ ....任务:〔1〕请根据上面的操作步骤与部分证明过程,判断四边形AXYZ 的形状,并加以证明; 〔2〕请再仔细阅读上.,在〔1〕的基础上完成AX=BY=XY 的证明过程; 〔3〕上述解决问题的过程中,通过作平行线把四边形BA ’Z ’Y ’放大得到四边形BAZY ,从而确 定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 . A.平移B.旋转C.轴对称D.位似[考点]菱形的性质与判定,图形的位似 [解析]〔1〕答:四边形AXYZ 是菱形.证明:Z Y //A C , Y X //Z ∴A ,四边形AXYZ 是平行四边形. ZA =YZ , ∴AXYZ 是菱形〔2〕答:证明:C D = C B ,∴∠1=∠2 ZY //AC ,∴∠1=∠3. ∴∠2=∠3. ∴YB =YZ .四边形AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA ’Z ’Y ’放大得到四边形BAZY ,从而 确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 D 〔或位似〕. A.平移B.旋转C.轴对称D.位似.22.(本题12分)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB ,E 是AB 延长线上一点,且BE=AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG , 连接AM .试判断线段 AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:B E = A B , ∴AE =2AB AD =2AB , ∴AD =AE四边形ABCD 是矩形,∴AD //BC .∴EM EBDM AB=〔依据1〕 BE =AB , ∴1EMDM=∴EM =DM .即AM 是△ADE 的DE 边上的中线, 又AD =AE ,∴AM ⊥DE . 〔依据2〕∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1〞“依据2〞分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.[考点]平行线分线段成比例,三线合一,正方形、矩形性质,全等 [解析] (1)答:①依据1:两条直线被一组平行线所截,所得的对应线段成比例〔或平行线分线段 成比例〕.依据2:等腰三角形顶角的平分线,底边上的中线与底边上的高互相重合〔或等腰三角 形的“三线合一〞〕. ②答:点A 在线段GF 的垂直平分线上. (2)证明:过点G 作GH ⊥BC 于点H ,四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE =∠ABC =∠GHC =90︒.∴∠1+∠2=90︒.四边形CEFG 为正方形,∴CG =CE ,∠GCE =90︒.∠1+∠3=90︒.∴∠2=∠3. ∴△GHC ≌△CBE . ∴HC =BE . 四边形ABCD 是矩形,∴AD =BC .AD =2AB ,BE =AB ,∴BC =2BE =2HC . ∴HC =BH .∴GH 垂直平分BC.∴点G 在BC 的垂直平分线上.. .〔3〕答:点F 在BC 边的垂直平分线上〔或点F 在AD 边的垂直平分线上〕.证法一:过点F 作FM ⊥BC 于点M ,过点E 作EN ⊥FM 于点N.∴∠BMN =∠ENM =∠ENF =90︒.四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE =∠ABC =90︒.∴四边形BENM 为矩形.∴BM =EN ,∠BEN =90︒.∴∠1+∠2 =90︒. 四边形CEFG 为正方形,∴EF =EC ,∠CEF =90︒.∴∠2+∠3=90︒.∴∠1=∠ 3.∠CBE =∠ENF =90︒,∴△ENF ≌△EBC.∴NE =BE .∴BM =BE .四边形ABCD 是矩形,∴AD =BC .AD =2AB ,AB =BE . ∴BC =2BM . ∴BM =MC .∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN ⊥BE 交BE 的延长线于点N ,连接FB ,FC.四边形ABCD 是矩形,点E 在AB 的延长线上,∴∠CBE=∠ABC=∠N=90°.∴∠1+∠3=90°.四边形CEFG 为正方形,∴EC=EF ,∠CEF=90°.∴∠1+∠2=90°.∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形ABCD 是矩形,∴AD=BC.AD=2AB ,BE=AB.∴设BE=a ,则BC=EN=2a,NF=a.∴BF=CF.∴点F 在BC 边的垂直平分线上... . 1 223.(本题13分)综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点〔点A 在点B 的左侧〕,与y 轴交于点C ,连接 AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足 为点M ,PM 交BC 于点Q ,过点P 作PE ∥AC 交x 轴于点E ,交BC 于点F .〔1〕求A ,B ,C 三点的坐标;〔2〕试探究在点P 的运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在.写出此时点Q 的坐标;若不存在,请说明理由; 〔3〕请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.[考点]几何与二次函数综合[解析] 〔1〕解:由y =0,得2114=033x x -- 解得x 1 =-3,x 2 =4.∴点A ,B 的坐标分别为A(-3,0),B 〔4,0〕 由x =0,得y =-4.∴点C 的坐标为C 〔0,-4〕.〔2〕答:Q (5 2,5 2 2-4),Q (1,-3). 2 〔3〕过点F 作FG ⊥PQ 于点G . 则FG ∥x 轴.由B 〔4,0〕,C 〔0,-4〕,得△OB C 为等腰直角三角形.∴∠OBC =∠QFG =45︒. ∴GQ =FGFQ . PE ∥AC , ∴∠1=∠2.FG ∥x 轴,∴∠2=∠3. ∴∠1=∠3.∠FGP =∠AOC =90︒, ∴△FGP ∽△AOC .。

2018年山西中考数学试卷及答案解析

2018年山西中考数学试卷及答案解析

2018年山西中考数学试卷及答案解析2018年山西中考数学试卷及答案解析在许多考生和家长心中是非常重要的,熟悉试卷和答案解析有助于考生对本次中考数学科目有一个全面的了解。

2018年山西中考数学试卷共分为4大题,分别是:第一大题为数学初步,第二大题为几何图形的分析和应用,第三大题为代数运算和数轴,第四大题为数学应用。

在试题中,考生需要掌握的知识点有:相似三角形、正多边形、体积公式、分数和小数的计算、比例、等比和等差数列、直线和圆的方程、函数概念和图象、概率等。

答案解析则是介绍各题的正确答案,以及每道题的解题思路,考生可以借鉴思路,解题时有所参考。

此外,答案解析里还有分数及小数的运算原理,等比数列的求和公式,几何图形的特点,函数的性质和图象等必要知识,为考生查漏补缺提供了便利。

以上就是2018年山西中考数学试卷及答案解析,熟悉试卷和答案解析将有助于考生对了解本次中考数学科目。

考生需要根据试卷和答案解析把握重点知识,认真复习,为中考拼搏奋斗!除了复习试题及答案解析外,考生还需要认真研究中考数学科目的知识点,有的放矢的掌握考点,以便在考试时能够有较好的表现。

尤其对于考生来说,需要根据学习情况,结合自身的能力,制定一个适当的复习计划,比如安排好上课和复习的时间,并根据自身情况安排更多的练习,这样才能有效地掌握知识点。

另外,考生可以选择一些好的数学参考资料,如书籍、视频教程等,以扩大自己的知识面,培养一定的解题思路,为考试复习提供更多的指导和帮助。

最后,要记住,如果想在中考中取得好成绩,复习要认真、踏实,不松懈,要坚持不懈地锻炼自己的数学能力,以期在中考中取得更好的成绩。

2018年山西省中考数学试卷含答案解析(Word版)

2018年山西省中考数学试卷含答案解析(Word版)

2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 63 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D. 设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作 AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZA BZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '. YZ BZ ZA YZZ'A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山西省普通高中招生考试 数学卷
第Ⅰ卷 选择题(共30分)
一、选择题:(本大题共10个小题,每小题3分,共30分) 1.下面有理数比较大小,正确的是( B )
A.20<
B.35<-
C.32-<-
D.41-< 考点:有理数比较大小
解析:两个有理数比较大小,正数比0大,负数比0小,正数大于负数;两个负数比较大小,绝对值大的反而小,故选B
2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列列四部著作中,不属于我国古代数学著作的是( B )
A. 九章算术
B.几何原本
C.海岛算经
D.周髀算经 考点:数学文化
解析:《几何原本》(希腊语:Στοιχεῖα)又称《原本》。

是古希腊数学家 欧几里得所著的一部数学著作。

它是欧洲数学的基础,总结了平面几何五大公设,被广泛的认为是历史上最成功的教科书。

故选B
3. 下列运算正确的是( D )
A.()
6
2
3a a
-=- B.222632a a a =+ C.63222a a a =⋅ D.363
282a b a b -=⎪⎪⎭
⎫ ⎝⎛-
考点:整式的运算
解析:选项A 负数的偶次幂是正数,所以错误 ;选项B 合并同类项,是将它们的系数相加减,答案应为2
5a ,所以错误 ;选项C 为单项式乘单项式,同底数幂相乘时,底数不变指数相加,所以错误,故选D 4. 下列一元二次方程中没有实数根的是( C )
A.022
=-x x B.0142
=-+x x C.03422
=+-x x D.2532
-=x x 考点:一元二次方程根与系数的关系
解析:选项A 运用因式分解法可得两个实数根()02=-x x ,01=x ,22=x ; 选项B 为()020114442
2
>=-⨯⨯-=-ac b ,有两个不相等的实数根;
选项C 为()08324442
2
<-=⨯⨯--=-ac b 项没有实数根;
选项D 为()01234542
2
>=⨯⨯--=-ac b ,有两个不相等的实数根;故选C ,
5. 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件)
1~3月份我省这七个地市邮政快递业务量的中位数是( C )
A .319.79万件
B .332.68万件
C .338.87万件
D .416.01万件 考点:统计,中位数
解析:中位数是指把一组数据按从小到大(或从大到小)的顺序排列,处于中间位置的数。

中位数的求法:将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。

故选C
6. 黄河是中华民族的象征,被誉为母亲河,黄河壶壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( C )
A .4
1006.6⨯立方米/时 B .6
10136.3⨯立方米/时 C .6
10636.3⨯立方米/时 D .5
1036.36⨯立方米/时 考点:科学记数法
解析:把一个数表示成n a 10⨯(1≤a<10,n 为整数)的形式,这种记数法叫做科学记数法。

以小时作时间单位,年平均流量=1010立方米/秒×3600=3636000=610636.3⨯立方米/时,故选C
7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( A ) A .
94 B .31 C .92 D .9
1 考点:概率
解析:因为袋子里共有3个球,随机摸出一个球,两次摸出球的结果共有9种,其中两次都摸到黄球的共有4种,故选C
8. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A ’B ’C ’,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( D ) A .12 B .6 C .26 D .36 考点:旋转的性质、等边三角形的判定、解直角三角形
解析:由旋转可得:CA=CA`,CB=CB`,因为∠A=60°,所以△CAA`是等边三角
形,所以∠ACA`=60°,由旋转角都相等可得∠BCB`=60°,所以△CBB`是等边三角形,所以点B '与点B 之间的距离即为BC 的长,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,因为
tanA=AC
BC
,BC=ACtan60°=36,故选D
9. 用配方法将二次函数982
--=x x y 化为()k h x a y +-=2
的形式为( B )
A.()742
+-=x y B.()2542
--=x y C .()742
++=x y D.()2542
-+=x y
考点:二次函数配方法化一般式为顶点式
解析:配方法:()25494482
2
22--=--+-=x x x y 故选B
10. 如图,正方形ABCD 内接于0,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( A )
A.4π-4
B.4π-8
C.8π-4
D.8π-8
考点:正方形的性质,扇形面积计算
解析:等面积阴影区域转化法:阴影区域面积=扇形AEF 的面积—△ABD 的面积 由正方形的性质可知:∠BAD=90°,阴影区域面积=()()44r 22
1212412
2
-=⨯⨯-
ππr 故选A 第Ⅱ卷非选择题(共90分)
(第8题)
(第10题)。

相关文档
最新文档