水源热泵空调系统设计要点

合集下载

浅谈水源热泵空调系统的设计方法

浅谈水源热泵空调系统的设计方法

浅谈水源热泵空调系统的设计方法摘要:最近几年发达国家的水源热泵系统发展越来越快,目前已经形成了比较完善的水源热泵系统,如今对于环保和节约能源的要求越来越高,在这种背景下对于水源热泵系统在节能环保和低消耗方面的要求越来越高,许多国家也都开始关注和重视水源热泵系统的节能环保和低消耗,本文主要围绕着水源热泵系统展开论述。

关键词:水源热泵系统;研究;运用1 水源热泵系统概述热泵技术属于一种清洁可再生技术,该项技术能够提升资源的利用效率,降低能源的浪费,保护环境,促进热转换效率及经济效益的提升。

在水源热泵系统中,热量最初处于低位热源,在高位能作用下,开始向着高位热源流动,达到制热的目的,电厂循环水、地下水等包含的能量即为低位热源,而电能、蒸汽等则属于高位热源。

依据上述依据,水源热泵系统可以分为两种,一种为压缩式热泵;一种为吸收式热泵。

以压缩式热泵为例,其供热原理如下:制热模式下,水源热泵开始运作,此时,系统吸热源为水源;在蒸发器中,液态制冷剂吸热后会发生蒸发,低温低压状态改变,变为气态制冷剂,降低电厂循环水温度;压缩机中进入气态制冷剂,通过绝热压缩,再次转变为制冷剂气体;冷凝器中接收制冷剂气体后,热量被用户侧带走,制冷剂冷凝,恢复为液态制冷剂,处于常温高压状态;继续流进膨胀阀,在节流降压作用下,状态恢复至低温低压;蒸发器使其再次进入到循环中,实现供热。

2 利用电厂余热的水源热泵空调系统设计方法2.1设计方案2.1.1 循环水系统与热泵相结合在循环水池中布置系统的取热换热器,冷却循环水时,采用串联冷却塔与换热器方式,尽管此种方式可满足供暖要求,但是由于会较大幅度降低循环水温度,导致机组真空度、功率受到影响;并联直流式,换热器中直接引入循环水,冷却后,提升水泵压力,使其进入到冷却水池中,或进入到凝汽器中。

此种方式将第一种方式中的串联的换热器省去,使系统简化,而且热泵制热系数能够提高。

基于电厂循环水的特性,文章在设计水源热泵空调系统时,即采取第二种结合方式。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册一、引言水源热泵空调是一种高效、环保的空调系统,它利用地球水体(如地下水、地表水等)作为冷热源,通过热泵技术实现空调制冷、制热和热水供应等功能。

本设计手册旨在为设计人员提供水源热泵空调系统的设计指导,确保系统的性能和可靠性。

二、设计基础1.设计原则:水源热泵空调系统的设计应遵循高效、环保、安全、可靠的原则,同时要满足用户的需求和预算限制。

2.设计流程:设计人员需根据用户需求、场地条件、能源政策等因素,进行系统的初步设计、技术方案制定、详细设计、安装调试等工作。

3.设计规范:设计人员应遵循国家相关标准、规范,如《水源热泵机组能效标准》、《建筑节能设计规范》等。

三、水源热泵原理水源热泵利用地球水体温度相对稳定的特点,通过循环水系统将地球水体中的热量或冷量输送到空调系统,再通过热力循环实现制冷、制热或热水供应。

水源热泵具有高效、环保、节能等优点。

四、系统构成与组件1.水源热泵机组:包括蒸发器、冷凝器、压缩机、膨胀阀等部件,是实现热泵功能的核心设备。

2.循环水系统:包括水泵、管路、阀门等,用于输送地球水体的热量或冷量。

3.控制系统:包括传感器、控制器、执行器等,用于监测和控制系统的运行状态。

五、负荷计算与系统配置1.负荷计算:根据用户需求和场地条件,计算空调系统的制冷、制热和热水供应负荷。

2.系统配置:根据负荷计算结果,选择合适的水源热泵机组和循环水系统,进行系统的详细设计。

六、安装与调试1.安装:按照设计图纸和技术要求,进行水源热泵机组和循环水系统的安装,确保安装质量。

2.调试:在系统安装完成后,进行系统的调试,确保系统正常运行并满足设计要求。

七、维护与保养1.日常检查:定期检查系统的运行状态,如发现异常应及时处理。

2.保养:按照制造商的保养要求,定期对水源热泵机组和循环水系统进行保养,延长设备使用寿命。

3.维修:如发现故障或损坏,应及时进行维修或更换部件。

八、常见问题与解决方案1.水源问题:水源的水量和水质不符合要求是水源热泵空调系统的常见问题之一。

水源热泵系统设计

水源热泵系统设计

水源热泵系统设计一、水源热泵设备选型⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。

传统的系统——用较大的热负荷或冷负荷选择系统。

以出水温度35℃的制冷量或以出水温度18℃的制热量作为选择水源热泵机组的依据。

⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵消。

⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。

⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。

⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进行修正。

二、循环水系统设计水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。

水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。

三、系统水流量设计水源热泵系统夏季需冷量的计算方法与其它系统相同。

根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。

一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。

另水源热泵装置的数量越多,同时使用系数越小,反之则越大。

同时使用系数可按以下原则来确定:⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。

四、系统形式水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册一、概述水源热泵空调是一种利用地下水作为热源和冷源的热泵系统,结合空气调节技术,实现室内温度的调节。

本手册将介绍水源热泵空调系统的设计原理、设计要点以及实施步骤。

二、系统设计原理1. 系统组成水源热泵空调系统由地下水循环系统、空气调节系统和控制系统等组成。

2. 工作原理系统利用地下水作为热源和冷源,通过水泵将地下水引入换热器,与冷凝剂进行热交换,实现冷却或加热。

通过风扇将室内空气引入室内机组,经过换热器与冷凝剂进行热交换,实现室内温度的调节。

三、系统设计要点1. 地下水循环系统的设计- 确定地下水水源的位置和取水方式- 确定地下水取水井深度和井循环时间- 考虑地下水水质对系统的影响,并进行必要的处理2. 空气调节系统的设计- 确定室内机组的数量和布置位置- 确定风道的尺寸和布置- 考虑室内机组的制冷量、供暖量和空气流量等参数的计算3. 控制系统的设计- 设计合理的控制策略,包括温度控制、湿度控制和风速控制等- 选择先进的控制器和传感器,并进行合理配置- 考虑与其他系统的联动,如照明系统、安防系统等四、系统设计步骤1. 方案确定根据项目的具体情况,确定水源热泵空调系统的方案,并进行初步设计。

2. 参数计算根据室内外的气象条件、建筑结构参数等,计算系统运行所需的参数,包括制冷量、供暖量、水流量等。

3. 设备选择根据计算结果选择合适的水泵、换热器、风机等设备,并进行合理的配置。

4. 管网设计设计地下水取水井的位置和尺寸,设计水管和风管的布置和尺寸,保证系统的正常运行。

5. 控制系统设计设计合理的控制策略,选择适用的控制器和传感器,并进行系统的联调测试。

6. 施工与调试按照设计方案进行系统的施工与调试,保证系统能够正常运行。

7. 运行与维护定期检查系统运行情况,进行维护保养,确保系统的高效运行,并及时处理故障与异常情况。

五、总结水源热泵空调系统的设计是一个复杂而精细的过程,需要考虑诸多因素。

建筑节能水源热泵系统设计方案

建筑节能水源热泵系统设计方案

建筑节能水源热泵系统设计方案随着人们对环境保护和能源效率的重视程度不断提高,建筑节能技术成为了当前建筑设计中的重要考虑因素。

水源热泵系统作为一种高效能源利用技术,已经在各种建筑类型中得到了广泛应用。

本文旨在探讨建筑节能水源热泵系统设计方案,以提供给相关从业人员和决策者参考和借鉴。

一、概述建筑节能水源热泵系统是一种利用地下水、湖泊、河流等水源作为冷热源,通过热泵循环系统实现建筑空调供热和供冷的技术。

该系统可以有效利用自然水体的稳定温度,实现可持续能源的利用,提高建筑的能源利用效率。

二、系统设计原则1. 系统能耗分析:在设计过程中需要进行详细的能耗分析,以确定最佳的水源热泵系统配置。

通过对建筑的能源需求进行评估和计算,确定系统的运行参数,包括水源的温度、流量等。

2. 设备选型:根据建筑的规模、使用需求和环境条件等因素,选择合适的水源热泵设备。

设备的选用应考虑效能、功率控制、噪音、维护与管理等方面的要求。

3. 系统布局:根据建筑的特点和空间布局,设计合理的水源热泵系统布局。

主要包括水源井、水管道、水泵、热交换器、水系统以及控制系统等组成部分。

4. 管道设计:合理的管道设计能够提高系统的运行效率,减少能源损耗。

需要考虑管道的绝热性能、径流压力损失、材料选择等因素。

三、水源热泵系统实施方案1. 水源选址:在选择水源的时候,需要考虑水体的稳定性和水质的适宜性。

一般情况下,地下水温度相对稳定,因此地下水是建筑节能水源热泵系统的常用选择。

2. 井场设计:根据地下水位和工程需求,确定井场的位置和井深。

井场应具备良好的井水质量和供水能力,同时确保井场的结构牢固、防渗漏。

3. 管道布置:根据建筑平面布局和空间限制,合理布置冷水管道和热水管道。

冷水管道和热水管道应采用合适的材料,保证管道的传热效果和工程的可持续运行。

4. 热泵设备:根据建筑的热负荷和冷负荷需求,选择合适的水源热泵设备。

考虑到节能性能和系统的可靠性,建议选择具备高能效等级的热泵设备。

酒店湖水源热泵空调系统设计

酒店湖水源热泵空调系统设计

酒店湖水源热泵空调系统设计发布时间:2021-12-16T09:21:18.658Z 来源:《时代建筑》2021年30期10月下作者:院梅[导读] 根据酒店投资运营方管理要求,空调设计须满足舒适、节能、经济、环保的要求。

本文从冷热源、水源取水系统、风系统、水系统、末端设备着手,介绍酒店空调系统的设计要点以及节能方向。

南京市建设工程施工图设计审查管理中心院梅摘要: 根据酒店投资运营方管理要求,空调设计须满足舒适、节能、经济、环保的要求。

本文从冷热源、水源取水系统、风系统、水系统、末端设备着手,介绍酒店空调系统的设计要点以及节能方向。

关键词:水源热泵、取水、节能1.项目概述1)项目简介本工程位于国家5A级风景区、道教圣地茅山西麓,隐于占地约2000多亩的小镇之中,建筑面积近6万平米,由一栋高标准五星级酒店与20栋湖滨别墅组成,是融汇了休闲养生、禅修食辽、生态旅游、餐饮住宿及商务会议五大功能为一体的养生度假型酒店。

2)用户需求绿色低碳是酒店的发展方向,开源节流是酒店的发展趋势,在热舒适度能保证的前提下降低能耗、经济节约,追求利润的最大化是酒店的终极目标,酒店的日常消耗除了场地和人力外,最大的支出为能源消耗,其中的电费,特别是空调耗电是能耗大头,占据了运营成本的很大一部分,所以节流的关键在于节能,尤其是空调节能。

2.冷热源初步方案确定1)常规冷热源方案五星级酒店通常采用传统的冷热源方案——冷水机组加锅炉的四管制系统。

冷水机组采用电制冷压缩式离心或螺杆机组,锅炉采用燃油燃气两用热水锅炉,并在室外设置储油罐作为备用热源燃料。

该方案在过渡季节可同时供冷供热,能满足不同客户的需求,可靠程度较高。

2)本工程冷热源方案工程所在地属于长江中下游地区,地表水资源非常丰富,项目紧邻湖畔,湖面面积约30平方公里,是集防洪、供水、灌溉、养殖为一体的一个较大型湖泊。

将湖水源热泵作为本工程空调系统的冷热源,用湖水的低位热能转换为高位热能,以达到节约石油、煤、燃气等高品位能源的目的,将在能源节约利用上具有显著意义。

水源热泵方案设计思路

水源热泵方案设计思路

水源热泵方案设计思路一、项目前期调研在设计水源热泵方案之前,需要对项目进行充分的前期调研。

这包括了解项目所在地的气候条件、地质水文情况、建筑物的用途和功能、用户的需求和期望等。

1、气候条件了解当地的气温、湿度、降雨量、太阳辐射等气候参数,这些参数将直接影响水源热泵系统的负荷计算和设备选型。

2、地质水文情况对项目所在地的地质结构、地下水水位、水质、水温等进行勘察和分析。

地下水的水量和水温是决定水源热泵系统能否稳定运行的关键因素。

如果采用地表水作为热源或热汇,还需要了解河流、湖泊的流量、水质等情况。

3、建筑物用途和功能不同类型的建筑物(如住宅、商业、工业等)对空调系统的需求和使用时间不同。

例如,商业建筑在白天的空调负荷较大,而住宅建筑在晚上的负荷较大。

了解建筑物的用途和功能有助于合理确定系统的运行模式和设备容量。

4、用户需求和期望与用户进行充分沟通,了解他们对室内温度、湿度、舒适度的要求,以及对系统运行成本、维护管理等方面的期望。

二、负荷计算负荷计算是水源热泵方案设计的基础。

准确的负荷计算可以为设备选型和系统优化提供依据,确保系统能够满足建筑物的冷热需求。

1、建筑围护结构传热计算根据建筑物的结构、材料、朝向、窗户面积等参数,计算通过墙体、屋顶、窗户等围护结构的传热量。

2、室内人员、设备、照明散热计算考虑建筑物内人员的数量、活动情况,以及设备、照明的功率和使用时间,计算室内的散热负荷。

3、新风负荷计算根据建筑物的使用功能和人员密度,确定新风量,并计算新风处理所需的冷热量。

4、同时使用系数和负荷系数的确定考虑建筑物内不同区域、不同设备的使用时间和负荷变化情况,确定同时使用系数和负荷系数,以对计算得到的负荷进行修正。

三、水源系统设计水源系统是水源热泵系统的重要组成部分,其设计的合理性直接影响系统的性能和运行效率。

1、水源类型选择根据项目所在地的地质水文条件和用户需求,选择合适的水源类型。

常见的水源类型有地下水、地表水(河流、湖泊)和城市再生水等。

水源热泵空调系统的特点及设计方法

水源热泵空调系统的特点及设计方法

水源热泵空调系统的特点及设计方法水源热泵空调系统的特点及设计方法水源地源特点, 地源热泵系统, 水源地源, 空调设计, 水源热泵当今社会环境污染和能源危机严重地威胁着人类地生存与发展,如何理解这一问题已成为全人类的头等课题。

在这种背景下,以环保和节能为特征的绿色建筑和与之相应地空调系统应运而生。

而热泵系统正是满足这些要求的中央空调系统之一。

水源热泵具有节能、经济、运行可靠等特点。

目前,国内已有多家水源热泵的专业生产厂,水源热泵空调系统的应用范围正在逐步扩展。

水源热泵技术可利用地球表面浅层水源如地下水、河流和湖泊中吸收地太阳能和地热能而形成地低温低位热能资源,并采用热泵原理,即通过少量的高位热能的输入,把不能直接利用的低位热能转化为可以利用的高位能,从而达到节约部分高位能的目的。

在国外,水源热泵技术已经相当成熟;而在我国,对于水源热泵技术的研究才刚刚起步,同国外相比,还存在着差距。

1、水源热泵的特点空调热泵按其热源来分可分为空气源热泵和水源热泵。

1.1 空气源热泵的优缺点从热泵技术被引入中国后,空气源热泵机组在我国一直有相当广泛的应用。

空气源热泵系统简单,初投资较低。

空气源热泵虽然较之以前的冷水机组有许多优点,但是它的缺点也日益暴露出来:1.1.1 空气源热泵体型较大,占地面积大1.1.2 噪声较高1.1.3 需要定期除霜在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量,特别是在寒冷地区和高湿度地区,热泵蒸发器的结霜可成为较大的技术障碍。

1.1.4 受室外环境制约这是空气源热泵的主要缺点。

在遇到夏季高温和冬季寒冷的天气时热泵的效率大大降低,而且制热量随室外空气温度降低而减少,制冷量随室外温度升高而降低,这与建筑热负荷需求趋势正好相反。

1.2 水源热泵的特点水源热泵基本上克服了空气源热泵的上述缺点,并且具有如下的特点:1.2.1 属于可再生能源利用技术水源热泵是具备了利用地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册I. 简介水源热泵空调系统是一种利用地下水、湖水、海水等水源进行热交换的空调系统。

本手册旨在提供水源热泵空调系统的设计指南,包括系统原理、设计要点、安装方法等。

II. 系统原理水源热泵空调系统基于热泵技术,通过地下水等水源进行热交换,从而实现冷热能的调节。

其基本原理如下:1. 热能采集水源热泵空调系统首先利用水源(地下水、湖水等)作为冷热源,通过水泵将水送入热交换器。

在热交换器中,采用换热管将水体与制冷剂进行热交换,从而将水体中的热能传递给制冷剂。

2. 热能转换经过热交换器后,制冷剂被蒸发器中的蒸发器风扇吹入室内机组内部。

在蒸发器内,制冷剂吸收室内空气的热量,从而实现室内空气的降温。

同时,制冷剂发生相变并变为气态。

3. 热能分发气态制冷剂经过压缩机的作用,形成高压高温的气体,然后通过换热器将其与水进行热交换。

热能再次传递给水,以实现供热的目的。

III. 设计要点1. 选择水源在进行水源热泵空调系统设计之前,需要进行水源调研和评估。

选择水质优良、容易获取的水源,以确保热交换效果和系统稳定性。

2. 确定制冷剂合适的制冷剂是水源热泵空调系统设计的关键因素之一。

应根据系统的制冷和供热需求,综合考虑制冷剂的性能、环保性以及可靠性等因素进行选择。

3. 确定热交换器热交换器的设计与选择对系统的性能和效率有着直接影响。

应综合考虑热交换器的换热效率、压降、耐久性等因素,选择合适的热交换器类型(如管式、板式等)和尺寸。

4. 选用适当的水泵和风扇水泵和风扇的选用对系统运行效率和能源消耗有着重要影响。

应根据系统的热负荷、水流量、风量等参数合理选定水泵和风扇的类型和规格。

5. 考虑系统的管路设计合理的管路设计可有效减少压降和能源损耗,提高系统的性能和效率。

应在设计过程中综合考虑管路长度、直径、材料等因素,确保系统的稳定性和经济性。

IV. 安装方法1. 水源系统的安装水源系统包括水源井、水泵等设备的安装。

水源热泵系统设计介绍资料

水源热泵系统设计介绍资料
一般为6~7mH2O; (据体值可参看产品样本) 3.回水过滤器阻力,一般为3~5mH2O; 4.分水器、集水器水阻力:一般一个为3mH2O; 5. 系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O; 综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。 注意:扬程的计算要根据系统的具体情况而定 在水泵样本中选取水泵时,以上中下三列中的中间栏数据为准。
即进行水源热泵主机选择时也不宜超过三台。
潜水泵的选择
流量的确定:
一般按照水源热泵样本中提供的制热/制冷时的井水流量 来选取,还可以按照如下公式进行计算选取,公式中的Q 为热泵机组制热/制冷量,N为机组输入功率;
制热时: L(m3/h) = 制冷时: L(m3/h) =
Q热-N热
温差x1.163
Q冷+N冷
集分水器尺寸确定
管径的确定
按并连接管的总流量通过集管断面流速V=1.0-1.5m/s确定,最大不 宜超过4m/s。分支管管内流速一般为V=2.0m/s。
【例】集管上拟连接4根DN80管道,这些管内的流速均等于2m/s,试确定集管 的直径. 【解】DN80钢管内径81mm,其断面积 F=1/4πd2n=1/4×3.1416×812=5153mm2 连接管断面积和:∑F=5153×4=20612mm2 取: V=1.2.0m/s 则:集管应有断面积为:F’=20612×2.0/1.2=34353mm2
➢ 大部分建筑需要考虑房间的同时使用率,一般建筑的同 时使用率为70~80%,特殊情况需根据建筑功能和使用 情况确定。
➢ 根据计算出的总冷、热负荷,以其中较大值来确定主机 型号,注意机组在偏离额定工况时需进行参数修正。
➢ 制冷同时制取卫生时的参数修正

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册
水源热泵空调系统是一种利用水源热能进行制冷和供暖的绿色能源系统。

它可以在不同季节和气候条件下,为建筑物提供舒适的室内环境。

本手册将介绍水源热泵空调系统的设计原理、组成部分、安装调试、运行维护等内容,旨在为相关工程师和技术人员提供一份全面的设计手册。

第一章设计原理
水源热泵空调系统利用水源热能进行热交换,通过热泵循环过程实现制冷和供暖。

系统包括蒸发器、冷凝器、压缩机和膨胀阀等主要组成部分。

设计原理涉及热能传递、制冷剂循环、热泵循环等方面的基本理论。

第二章组成部分
水源热泵空调系统由水源换热器、蒸发器、压缩机、冷凝器、膨胀阀、水泵、管路系统等组成。

本章将详细介绍各组成部分的功能、特点和选型原则,并结合案例对常用配置进行分析和比较。

第三章设计与安装
水源热泵空调系统的设计需要考虑建筑物的使用需求、水源条件、系统容量、管道布局等因素。

本章将介绍系统设计的步骤、设计参数的确定、水源热泵的选择等内容,并对系统的安装调试要点进行详细说明。

第四章运行与维护
水源热泵空调系统的运行稳定性和能效性与系统的维护有密切关系。

本章内容将围绕系统的运行管理、定期检查与维护、故障排除等方面展开,提供系统维护的相关知识和经验。

结语
水源热泵空调系统以其高效节能、环保健康的特点,在建筑环境中得到了广泛应用。

希望本手册能够帮助读者更好地理解水源热泵空调系统的设计与应用,为相关工程实践提供指导。

同时也期待读者在实际工程中不断总结和创新,推动水源热泵空调技术的发展与应用。

水源热泵空调的能耗分析与设计

水源热泵空调的能耗分析与设计

水源热泵空调的能耗分析与设计随着城市化进程的不断加快,空调的普及率也在逐年提升。

而随着节能减排的全球倡导,各企事业单位、政府,以及普通家庭大力推广使用低碳环保的空调产品,水源热泵空调就应运而生。

它不仅具备传统空调的制冷、制热、换气、湿度调节等功能,而且具备强大的节能功能,既能保证室内环境的舒适度,还能大幅降低能耗。

在本文中,将进行水源热泵空调的能耗分析与设计,希望能对广大读者的日常生活带来帮助。

一、水源热泵空调的工作原理水源热泵空调(Water Source Heat Pump Air Conditioner)是指以地下水或河流湖泊等为热源、冷源的舒适型调节设备。

它的工作原理就是利用水源热泵循环水流,将水源热能从地下或水体中吸收,再通过加压便能瞬间将热转移到热源器。

空向循环次数多,温度升高,达到制冷或制热的目的。

二、水源热泵空调的能耗优势传统空调系统的设备大都是单向的制冷或制热,效率较低,能耗较高。

而水源热泵空调具有多种对能耗优化的特点。

1、高效节能:水源热泵空调具有高效节能的特点,当室外环境温度较低时,系统可以获取与运行能耗比较接近的能量,从而减少失掉的能量,并提高能量利用率。

同时,水源热泵空调的回收率比传统空调高30%左右,可以节省大量能源。

2、环保:使用水源热泵空调,不会产生热染污染、声染污染及噪音等对人体有害影响。

油烟、燃烧物等有害物质不会排放,在室内环保不受污染。

3、安全稳定:水源热泵空调的制冷剂是水,不易燃爆,不会产生电磁辐射,不会损害设备的长期使用稳定性。

三、水源热泵空调能耗分析1、制冷时的能耗分析:水源热泵空调制冷时,采用地下水或水源热泵,通过热交换器将水源的热能转化为制冷制热,以制冷为例,在制冷状态下,水源掉温、压缩机及循环泵的耗能是比较大的,所以能耗的核心就是制冷机的制冷效果。

2、制热时的能耗分析:制热状态下,由于室外温度低,制冷机的效率变低,制热能力就受限制,同时电动机、压缩机及循环泵的消耗也会增加。

浅谈水源热泵多联机系统设计要点

浅谈水源热泵多联机系统设计要点

浅谈水源热泵多联机系统设计要点水源热泵多联机系统是一种高效节能的供暖、供冷系统,通过利用水源热泵的工作原理,将水源热泵与多个室内机相连,实现多个房间的供暖、供冷需求。

在设计水源热泵多联机系统时,需要注意一些关键的要点。

首先,系统的总体设计要合理。

在设计水源热泵多联机系统时,需要综合考虑房间的大小、布局、朝向以及使用频率等因素,合理规划室内机的数量和位置。

不同房间的室内机应当根据其负荷需求进行配置,以确保室内温度的均衡和舒适度。

此外,还需要考虑系统的总容量,以满足整个楼宇的供暖、供冷需求。

其次,系统的水源热泵选择要科学。

水源热泵是系统的核心设备,其选择和配置直接影响系统的性能和能耗。

在选择水源热泵时,需要考虑以下几个因素:地下水源的温度和水质特点,地下水的供应量和旺季和淡季的波动情况,以及系统的负荷需求。

合理选择水源热泵的型号和容量,可以充分利用地下水资源,提高系统的效率和稳定性。

再次,系统的水循环设计要合理。

水源热泵多联机系统的工作过程中,需要通过水泵将水源热泵和室内机之间的水循环起来。

在设计水循环时,需要考虑水泵的类型、容量和水泵的位置。

水泵的类型可以选择离心泵或者电磁泵,其容量应该根据系统的总容量和水流量来确定。

同时,水泵的位置也需要合理选择,以便确保水泵的正常工作和便于维护。

最后,系统的控制策略要科学。

水源热泵多联机系统的控制策略直接影响系统的运行效果和能耗。

在设计系统的控制策略时,需要充分考虑室内温度的变化和需求,合理调节水源热泵和室内机之间的运行模式和风量。

同时,还需考虑节能控制方式,比如利用可变频调速技术来减少系统的能耗。

综上所述,设计水源热泵多联机系统需要注意以上几个要点。

科学合理的总体设计、水源热泵选择、水循环设计和控制策略,可以提高系统的效率和性能,实现供暖、供冷的舒适度和节能环保的目标。

同时,还需要根据实际情况,灵活应用各种技术手段和控制策略,不断优化系统的设计和运行方式,以确保系统的稳定性和可靠性。

水源热泵设计完整方案

水源热泵设计完整方案

水源热泵设计完整方案
项目背景
某公司要在新建办公楼中安装空调,为了减少能源消耗并满足
环保要求,决定使用水源热泵。

方案概述
本方案旨在为该公司提供水源热泵设计方案,满足新办公楼空
调需求。

设计要点
1. 采用水源热泵系统,通过水循环来完成热的传递,减少能耗。

2. 风机盘管宜选用静压小、风量大的品牌,结合水泵组成系统。

3. 管道宜采用热传导性能较好的材料,如钢材、铜材等,以保
证系统的热传递效率。

4. 综合考虑气候条件,建议选择散热面积适合的散热器。

设计步骤
1. 确定冷热水温度范围及负荷流量。

2. 选定合适的水源热泵型号和组合。

3. 根据选型结果,确定空调末端设备数量和型号,如风机盘管、新风机组等。

4. 设计管道布局方案,确定管径和绝缘层厚度等。

5. 设计散热器,确定散热面积和材料等。

6. 绘制水源热泵系统图。

7. 编写设计说明,包括建议型号、技术参数、维护要求等。

设计效果
本方案基于水源热泵系统,配合其他末端设备和散热器,可为
新办公楼提供舒适的室内空气环境,同时减少能源消耗,满足环保
要求。

总结
水源热泵系统具有能耗低、环保等优点,在新建办公楼中应用
前景广阔。

本方案提供完整的设计方案,并严格按照设计流程进行
操作,保证最终设计效果的高质量和高效率。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册水源热泵空调系统是一种依靠水源进行换热的空调系统,通过水源热泵系统可以利用水源进行热交换,实现冬暖夏凉的舒适效果。

为了使水源热泵空调系统能够更好地工作,设计手册是至关重要的。

下面将从水源选择、工程设计、系统运行维护等方面进行详细的介绍,以便于工程师和设计师在设计水源热泵空调系统时有一个全面的指导。

一、水源选择1. 地下水:地下水是一种常见的水源,通过井水或者地下水泵将地下水抽上来进行热交换。

在选择地下水源时,需要考虑地下水的水质情况和用水量,以及井水或者地下水泵的选址和安装。

2. 表层水体:如湖泊、河流等表层水体也是一种常见的水源,通过在水体中安装换热器进行热交换。

在选择表层水源时,需要考虑水质、水体的面积和水深等因素,同时还需要考虑安装换热器的方式和位置。

3. 冷却塔水:在一些情况下,可以利用冷却塔的冷却水进行热交换。

在选择冷却塔水源时,需要考虑冷却水的温度和流量,以及冷却塔系统的运行情况。

二、工程设计1. 换热器设计:根据选择的水源类型和水质情况,需要设计合适的换热器。

换热器的设计需要考虑热交换效率、材质选用、换热面积、防腐蚀措施等因素。

2. 系统设计:包括水源热泵系统的布置、管道设计、泵的选型等方面。

系统设计需要考虑整个系统的热平衡、节能性能、安全性能等方面。

3. 控制系统设计:水源热泵系统的控制系统需要设计合理的控制逻辑,包括温度控制、流量控制、压力控制等。

通过控制系统的设计,可以实现系统的自动化运行和故障保护。

三、系统运行维护1. 运行监控:对水源热泵系统的运行情况进行实时监控,包括水源的温度、流量、系统的工作状态等。

通过运行监控,可以及时发现系统运行中的问题并进行处理。

2. 系统清洗维护:定期对水源热泵系统进行清洗和维护,包括换热器的清洗、管道的清洗、泵的维护保养等。

这样可以保证系统的换热效率和安全性能。

3. 水质监测:定期对水源的水质进行监测,包括水质的主要指标如PH值、浊度、含氧量等。

最全面的地、水源热泵设计与施工要点

最全面的地、水源热泵设计与施工要点

最全面的地、水源热泵设计与施工要点一、土壤式地源热泵空调系统设计1.水平与垂直埋管2.地下换热器设计串联方式并联方式单一流通通路,空气容易排除需较大直径管子,换热量较大,但成本高,适用于小型的系统。

可使用较小的管径,成本低,设计安装必须注意保持较高的流体流速,以充分排除空气应同程设计,各并联管路长度一致。

垂直U 型埋管并联系统实例认识埋管材料UPV C PB PP-R PEX ABS铝塑复合管PE/AL塑复铜管PE长期使用时温度/℃≤45≤90≤70≤90≤60HDPE≤60XLPE≤90≤80≤70公称压力/Mpa.1.61.6~2.5(冷水)1.0(热水)2.0(冷水)1.0(热水)1.6(冷水)1.0(热水)1.61.0PH管可达2.02.0 1.25膨胀系统/(m/m·℃)7x10-513x10-511x10-515x10-511x10-52.5x10-51.18x10-5 1.5x10-4导热系数/0.160.220.240.410.260.450.49(W/(m·K))弹性摸量/(N/cm2)3.5x1053.5x1051.1x1050.6x1058x104膨胀力/MPa(D=32mm ,t=50℃,L=10m)31 4.817.825.3来自暖通南社整理81.5管壁厚度一般最薄最厚一般一般厚薄一般单价便宜贵贵较贵较贵较贵贵较贵外径/mm 20~31516~11020~1116~6315~30016~6315~5520~730寿命/a5050505050505050连接方式弹性密封或粘接夹紧式,热熔连接,插接电熔合连接热熔连接夹紧式,采用金属或尼龙接头粘接夹紧式,采用金属或尼龙接头焊接式,夹紧式夹紧式,热熔连接,插接电熔合连接要求导热系数大流动阻力小热膨胀性好工作压力符合系统要求工作温度-20~70℃价格低常见塑料管规格Φ20x2Φ25x2.3Φ32x2.9Φ40x3.7Φ50x4.6Φ63x5.8不同土质对换热的影响k导热系数W/(m·K)a扩散率10-6 m2/sρ密度kg/m3c热容量kJ/(kg·K)花岗岩3.5 1.333330.84大理石2.4 1.0329170.84致密湿土1.30.6521830.88致密干土0.90.5220830.84轻质湿土0.90.521667 1.05轻质干土0.350.2815000.84密度越大,导热系数越大。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册第一章绪论1.1 水源热泵空调系统概述水源热泵空调系统是利用水源热泵原理,通过地下水、湖泊水、江河水等水源作为热源,采用空气冷凝器进行换热,实现建筑物的供暖、制冷与热水供应等多种功能的综合利用系统。

本手册旨在介绍水源热泵空调系统的设计原理、选型规范、施工安装以及运行维护等内容,为相关专业人士提供设计与实施的指导。

1.2 水源热泵空调系统的优势• 高效节能:利用水资源作为热源,换热效率高,节能环保。

• 环境友好:减少对大气环境的污染,减缓城市热岛效应。

• 多功能应用:能够同时满足供暖、制冷和热水等多种需求。

• 灵活性强:适用于不同地区、不同规模的建筑物,具有较强的适用性。

• 操作维护便捷:系统设备简单,运行稳定,维护成本低。

第二章系统设计2.1 设计原则水源热泵空调系统的设计应充分考虑建筑物的用途、热负荷、水源条件等因素,合理确定系统参数和设备容量,确保系统能够满足各项运行要求。

2.2 设计步骤• 需求分析:根据建筑物的使用需求,确定系统的功能要求。

• 热负荷计算:通过对建筑物的热传递过程进行分析,确定系统的热负荷。

• 系统选择:根据热负荷计算结果,选择合适的水源热泵机组和相关设备。

• 系统布局:设计系统的设备布置、管道布局和控制方式等。

• 设备选型:选取合适的水泵、换热器、管道、阀门等设备,并进行整体配套。

第三章施工安装3.1 施工准备• 系统设备进场:对各项设备进行验收,并按照说明书要求进行存放。

• 施工方案制定:根据设计方案进行施工计划制定,并做好相关安全预防措施。

• 施工人员培训:对施工人员进行系统设备的操作和安装培训。

3.2 安装步骤• 水源热泵机组安装:按照机组布置图进行机组的吊装和安装。

• 管道安装:根据设计要求进行管道的敷设和连接,并进行密封性测试。

• 控制系统安装:安装控制柜、传感器、执行器等设备,并进行联调测试。

3.3 质量验收• 对施工完成的系统进行验收,确保系统设备安装质量和性能达到设计要求。

水源热泵方案

水源热泵方案

水源热泵方案一、水源热泵空调系统介绍水源热泵空调系统是利用地下水,通过水泵把地下水提取出来,从而实现地下水和空调主机的能量提取目的。

夏季通过机组将房间内的热量转移到地下,对房间进展降温。

冬季通过热泵将地下水中的热量转移到房间,对房间进展供暖,实现了能量的季节转换。

机组运行过程:冬天热泵中制冷剂正向流淌,压缩机排出的高温高压 R22 气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。

如此循环往复将地下低温热能“搬运”到室内,从而不断的向用户供给45℃-50℃的热水。

夏天热泵中制冷剂逆向流淌,与用户换热的冷凝器变为蒸发器从集水器中的低温水〔7-12℃〕提取热能,与地下水的蒸发器变为冷凝器向地下水排放热量,如此循环往复连续地向用户提供7-12℃的冷水。

二、水源空调系统的特点〈1〉水源热泵与常规空调技术相比有着无可比较的优势。

〈2〉利用可再生能源:属可再生能源利用技术水源热泵从常温地下水中吸热或向其排热,利用的是可再生的清洁能源,可持续使用。

〈3〉高效节能,运行费用低:属经济有效的节能技术水源热泵的冷热源温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得水源热泵比传统空调系统运行效率要高40%,因此要节能和节约运行费用40%左右。

另外,地下水温度较恒定的特性,使得热泵机组运行更牢靠、稳定,也保证了系统的高效性和经济性。

在制热制冷时,输入 1KW 的电量可以得到 5KW 以上的制冷制热量。

运行费用比常规中心空调系统低 40%左右。

〈4〉节水省地:1〕以水为冷热源,向其放出热量或吸取热量,不消耗水资源,不会对其造成污染。

2〕省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节约建筑空间,也有利于建筑的美观〔5〕环境效益显著该装置的运行没有任何污染,在供热时,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,不会产生城市热岛效应,对环境格外友好,是抱负的绿色环保产品。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册水源热泵空调系统作为一种节能环保的供暖空调系统,在建筑节能减排方面具有重要的意义。

为了更好地推广水源热泵空调技术,现编制相关设计手册,以便工程师和设计师参考使用。

本手册主要包括水源热泵空调系统的原理介绍、设计参数、工程实施要点等内容,旨在为相关从业人员提供完整的设计流程和实施指南。

一、水源热泵空调系统原理介绍水源热泵空调系统是利用水体、地源或井水等自然资源进行循环加热和制冷,通过热泵循环原理实现室内供暖和制冷的系统。

其基本原理为利用水源换热器从自然水体中吸热或散热,传递给热泵,经过压缩、膨胀等过程完成制冷或供暖效果。

水源热泵空调系统的优势在于能够充分利用自然资源,减少对环境和能源的影响,具有较高的节能性能。

二、水源热泵空调系统设计参数1. 设计制冷量和制热量:根据建筑的实际需求确定水源热泵空调系统的制冷和制热量,考虑建筑的朝向、隔热性能、建筑面积等因素综合确定系统的设计参数。

2. 系统热源和冷源:选择适合的水体、地源或井水等自然资源作为系统的热源和冷源,确保其水质和温度能够满足系统的工作需求。

3. 系统管道布局:合理设计水源热泵空调系统的管道布局,减少管道阻力和热损失,提高系统的工作效率。

4. 系统控制策略:采用先进的智能控制技术,实现系统运行参数的自动调节和优化,提高系统的稳定性和节能性能。

三、水源热泵空调系统工程实施要点1. 地质勘察和水源调查:在安装水源热泵空调系统前,对地质和水源进行充分的勘察和调查,确保选择合适的水源和地热资源。

2. 设备选型和安装:根据实际需求和设计参数选择合适的水源热泵设备,并在施工时按照相关标准和规范进行设备的安装和调试。

3. 系统运行监测:系统安装完成后,进行系统的运行监测和调试,及时发现和解决系统运行中的问题。

4. 环境保护和能源管理:在使用水源热泵空调系统时,加强对水源和环境的保护,合理利用自然资源,提高系统的能源利用率。

水源热泵空调系统的设计手册是一个重要的工程技朧文献,对于提高整体的节能环保水平具有重要的意义。

水源热泵空调设计手册

水源热泵空调设计手册

水源热泵空调设计手册水源热泵空调系统是一种通过水源进行热交换的空调系统,它利用地下水、湖泊水或近地表水来进行热交换,从而实现空调和供暖的效果。

本手册将介绍水源热泵空调系统的原理、设计要点、安装调试和维护等内容,以提供相关工程师和技术人员参考和学习。

一、水源热泵空调系统原理水源热泵空调系统利用水源进行热交换,通过热泵工作原理,将地下水或湖泊水中的低温热量吸收并转化为高温热量,然后传递给建筑内部的热交换器,实现供暖或空调的效果。

其工作原理主要包括蒸发、压缩、冷凝和膨胀等过程,通过这些过程实现热量的传递和转换。

二、水源热泵空调系统设计要点1.水源选址:选择合适的水源是水源热泵系统设计的首要考虑因素,一般选择地下水、湖泊水或近地表水,需进行水质分析和水量评估。

2.热泵选型:根据建筑的需求和水源的特点,选择适合的热泵型号和规格。

3.循环水系统设计:设计循环水系统的管道布局、泵站设置和加热器等设备,保证水源与热泵之间的热交换效果。

4.控制系统设计:设计可靠的控制系统,实现对水源热泵系统的监控、调节和保护,确保系统的稳定运行。

三、水源热泵空调系统安装调试1.系统安装:根据设计图纸和规范要求,进行水源热泵系统的安装施工,包括设备安装、管道连接、电气接线等。

2.系统启动调试:进行系统的初次启动和调试,包括各设备的功能调试、参数设置和系统联调。

3.性能检测:对系统进行性能测试,检测热泵的制热制冷效果、能耗情况和系统运行稳定性等。

四、水源热泵空调系统维护管理1.定期检查:定期对水源热泵系统进行检查,包括设备运行状态、水质情况和循环水系统的清洗保养。

2.故障处理:及时处理系统故障,保证系统的稳定运行并避免损坏设备。

3.能耗监测:对系统的能耗进行监测,并根据监测情况进行节能优化措施。

总结:水源热泵空调系统是一种环保、高效的供暖和空调方式,但在设计、安装和运行过程中需要综合考虑水源的选择、热泵的选型和系统的运行管理等因素,才能确保系统的安全、稳定和节能运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机组容量的确定
总冷负荷+空气处理过程(i-d图) 水源热泵 机组样本的特性曲线或性能表(不同进风湿球温 度和不同进水温度下的供冷量),使冷量和出风 温度符合设计要求,选取机组型号。
环路水温:13~35℃;冬季:13~20 ℃,低于13 ℃辅助加热;夏季:室外计算湿球温度加3~4 ℃。 开启式办公室:大型机组;周边区:冬、夏季设 计工况;内区:夏季设计工况。
水系统的水处理
问题:水垢、腐蚀、泥渣和水藻
系统初次清洗。 闭式循环系统防腐蚀,亚硝酸钠、硼酸盐、 硅酸盐。 开式循环系统防垢、防腐蚀、防水藻。防垢 使用软化水,防水藻加氯化酚等。 水过滤,金属网、尼龙网、Y型管道式过滤 器和通式除污器等。
排热设备选用
当水温高于32 ℃时,排热设备启动
管径的确定
系统水流量范围(每千瓦)0.04~ 0.06L/s。南方地区按夏季定,寒冷地区 取冬、夏最大值。 水循环管管径的确定应保证能够输送设 计流量并使阻力损失和水流噪声最小。 水循环管可选用焊接钢管、铜管、PVC 或CPVC塑料管。
水系统定压
膨胀水箱定压 气体定压罐 补给水泵定压
水源热泵空调系统设计要点
建筑物的供暖和供冷负荷
供冷负荷:为了保持建筑物的热湿环境 在某一时间需向房间供应的冷量。 供暖负荷:为了补偿房间损失的热量需 向房间供应的热量。
室内外气象参数为依据 程序精算 工程概算
• 热湿负荷计算
影响空气状态的干扰源(环境内部和外部) 热湿负荷的分类 (维护机构、玻璃窗、人体、 工艺设备、照明;人体、潮湿地面) 室内热、湿负荷的计算依据 (夏季:26~ 28℃,40%~60%,0.2~0.5m/s;冬季: 18~22℃, ﹥ 35%,0.15~0.3m/s )
排热设备选用
加热设备的选用
当水温降至13℃,必须启动加热设备。 加热方法:1、水的加热设备将外部热量加入水循 环管路中; 2、空气电加热器将外部热量直接加入室内循环空气 中。 加热设备:电热锅炉、燃油(气)炉、水-水换热 器、汽-水换热器、太阳能集热器等。 最大供热量条件:冬季采暖室外计算温度;建筑物 无人居住;室温为设计温度。
蓄热水箱
蓄热水箱
新风与排风系统
独立新风系 统:定风量 新风系统、 变风量新风 系统。 非独立新风 系统
低温送风独对空气物理 性质的影响 • 空气的主要状态参 数 • 湿空气的焓湿图及 其应用
送风量的确定
1、夏季送风状态及送风量
送风量的确定
1、夏季送风状态及送风量
热平衡
湿平衡
Q Gh0 Q GhN hN h0 G W Gd 0 W Gd N d N d 0 G
空气处理方法
典型处理过程
加热或冷却过程 加湿过程 减湿过程
机组的选择和布置
水平式:节省设备占用建筑面积,顶部吊装, 可连接送、回风管道,注意漏水问题。 立式:安装面积小,可连接送、回风管道。 坐地明装机组:周边区,窗台下或走廊处。 立柱式机组:多层建筑的墙角处安装。 屋顶式机组:屋顶上安装连接风管,工业建 筑或新风处理机组。
热湿比
Q hN h0 W d N d0
Q W G hN h0 d N d0
送风量
送风量的确定
1、夏季送风状态及送风量
新风量的确定
一般规定,空调系统的新风占送风量的百分 数不应低于10%,而且不应小于下列三项风量中 的最大值:
长期滞留的房间,每人所需新风量30-40m3/h; 短期滞留的房间,每人所需新风量10-15m3/h. 至少补充与局部排风量相等的新风量. 必须使房间内部为正压,一般为5~10Pa
机组风道的设计
水源热泵机组属于余压型水/空气热泵机组,设计中考虑机外 余压值的影响。 机组风管多为低压小风管,风速2~3m/s,风管断面尺寸采 用摩擦损失法确定,长100米损失67Pa。 风管上采取消声措施。 送风管和回风管应保持最短长度,风道的转向处加装导向叶 片,风管内装设平衡风阀。 防止结露,送风管保温处理。 风管满足防火要求。 回风管设计同送风管,容量小机组可不设。 送、回风口的形式和位置设计合理。
水循环管路
循环水温度超过35℃需进行冷却,循环水水质要求 高,采用闭式冷却塔,循环水和冷却水分开时,可 以采用开式冷却塔。 冷却塔出水温度要比当地夏季空调室外计算湿球温 度高3~5 ℃,冷却水温差为4~6 ℃。循环水的出 水温度比冷却水供水温度高2 ℃左右,循环水的温 差为5 ℃左右。 冷却水循环泵前设过滤器和电子式水处理器,起杀 菌、防藻及防堵塞作用。
相关文档
最新文档