高分子科学的发展历程..

合集下载

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维等。

本文将对高分子材料的发展历程以及未来发展趋势进行详细的探讨。

二、高分子材料的发展历程1. 早期发展阶段高分子材料的早期发展可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。

这些材料具有一定的弹性和韧性,但存在着一些缺陷,如耐候性差、易老化等。

2. 合成高分子材料的突破20世纪初,合成高分子材料的研究取得了重大突破。

1907年,化学家蔡斯勒发现了合成橡胶的方法,这标志着合成高分子材料的时代的开始。

随后,聚合物的合成方法不断改进,如聚乙烯、聚丙烯等材料的合成,为高分子材料的广泛应用奠定了基础。

3. 高分子材料的工业化应用20世纪中叶,高分子材料开始在工业领域得到广泛应用。

塑料制品、橡胶制品、纤维制品等在日常生活中得到了广泛应用。

高分子材料的特点,如轻质、耐腐蚀、绝缘性能好等,使其成为替代传统材料的理想选择。

4. 高分子材料的改性与功能化近年来,高分子材料的改性与功能化成为研究的热点。

通过添加改性剂、填充剂等,可以改善高分子材料的性能,如增加强度、提高耐热性等。

同时,高分子材料的功能化也受到了广泛关注,如具有自愈合能力的材料、具有导电性能的材料等。

三、高分子材料的未来发展趋势1. 绿色环保随着环保意识的提高,高分子材料的绿色环保性将成为未来发展的重要趋势。

研究人员将致力于开发可降解高分子材料,以减少对环境的影响。

同时,通过改进合成方法和降低能源消耗,减少对环境的污染。

2. 高性能未来高分子材料的发展将注重提高其性能。

研究人员将致力于开发具有更高强度、更好耐热性、更低摩擦系数等性能的高分子材料,以满足不同领域的需求。

3. 智能化高分子材料的智能化将成为未来的发展方向。

研究人员将致力于开发具有自愈合能力、自感应能力、自适应能力等智能功能的高分子材料。

这些材料可以在受到外界刺激时实现自我修复或自我调节,具有广泛的应用前景。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类由大量重复单元组成的大分子化合物,具有独特的物理和化学性质。

自20世纪初以来,高分子材料在各个领域得到了广泛应用,如塑料、橡胶、纤维、涂料等。

本文将探讨高分子材料的发展历程以及未来的发展趋势。

二、高分子材料的发展历程1. 早期发展阶段高分子材料的研究始于19世纪末,最早的高分子材料是天然高分子,如橡胶和木材。

20世纪初,人们开始研究合成高分子材料,首次成功合成的是合成橡胶和合成纤维。

这些材料具有良好的物理性能和耐久性,推动了高分子材料的进一步研究和应用。

2. 高分子材料的革命性突破20世纪中叶,高分子材料经历了一次革命性的突破,即聚合物合成技术的发展。

通过不同的聚合方法和反应条件,可以合成出具有不同性质和应用的高分子材料。

例如,聚乙烯、聚丙烯、聚氯乙烯等材料的合成大大推动了塑料工业的发展。

3. 高分子材料的多样化发展随着科学技术的进步,高分子材料的种类越来越多样化。

在20世纪末和21世纪初,新型高分子材料如聚酰亚胺、聚酯、聚醚等相继问世,具有优异的性能和广泛的应用前景。

此外,高分子复合材料、高分子纳米材料等也成为研究热点。

三、高分子材料的未来发展趋势1. 绿色环保随着人们对环境保护意识的提高,高分子材料的绿色环保性能将成为未来发展的重要趋势。

例如,可降解高分子材料的研究和应用将有助于减少塑料垃圾对环境的污染。

此外,绿色合成方法和可再生资源的利用也将成为高分子材料发展的方向。

2. 功能性材料未来高分子材料的发展将更加注重功能性。

例如,具有自修复、自清洁、自感应等特性的高分子材料将广泛应用于汽车、建筑、电子等领域。

此外,高分子材料的导电性、光学性能等也将得到进一步的改善和应用拓展。

3. 新型制备技术随着制备技术的不断发展,高分子材料的制备方法也将得到改进。

例如,3D打印技术的应用将使高分子材料的制备更加灵活和精确。

此外,纳米技术、超临界流体技术等也将推动高分子材料的制备方法的创新。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元构成的大分子化合物,具有轻质、高强度、耐腐蚀等优点,在各个领域得到广泛应用。

本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。

一、发展历程1.1 早期发展高分子材料的发展可以追溯到19世纪,当时科学家开始研究天然高分子材料,如橡胶和淀粉等。

1.2 合成高分子材料20世纪初,科学家开始合成高分子材料,如聚乙烯、聚丙烯等,为高分子材料的工业化应用奠定了基础。

1.3 高分子材料的广泛应用随着科技的不断进步,高分子材料在汽车、航空航天、医疗器械等领域得到广泛应用,推动了高分子材料产业的发展。

二、未来发展趋势2.1 绿色环保未来高分子材料的发展将更加注重环保,研发更多可降解、可循环利用的高分子材料,减少对环境的影响。

2.2 高性能随着科技的不断进步,未来高分子材料将更加注重提高材料的性能,如强度、耐热性等,以满足不同领域的需求。

2.3 智能化未来高分子材料将朝着智能化方向发展,研发具有自修复、自感应等功能的高分子材料,为人类生活带来更多便利。

三、应用领域拓展3.1 医疗器械未来高分子材料将在医疗器械领域得到更广泛的应用,如生物可降解材料用于医疗缝合线等。

3.2 航空航天高分子材料在航空航天领域的应用将更加广泛,如轻质高强度的复合材料用于飞机制造。

3.3 汽车工业未来高分子材料在汽车工业中的应用将更加普遍,如高强度塑料用于汽车零部件制造。

四、材料结构设计4.1 多孔结构未来高分子材料的设计将更加注重多孔结构,提高材料的吸附性能和透气性。

4.2 分子链控制通过控制高分子材料的分子链结构,可以调控材料的性能,如强度、硬度等。

4.3 功能性设计未来高分子材料的设计将更加注重功能性,研发具有特定功能的高分子材料,如抗菌、防水等功能。

五、国际合作与竞争5.1 国际合作未来高分子材料领域将更加注重国际合作,共同推动高分子材料的发展,实现互利共赢。

《高分子科学的历史》课件

《高分子科学的历史》课件
高分子化学和高分子物理的建立与发展。
早期的科学家和他们的贡献
拜耳
德国化学家,提出了高分子概念,并研究了天然橡胶的化学改性 。
卡罗瑟斯
美国化学家,发明了聚合物合成方法,并合成了尼龙-66等聚合物 。
皮尔兹
德国化学家,研究了聚合物结构和性能的关系,提出了高分子链的 构象统计理论。
01
高分子科学的发展 历程
动态共价键聚合
动态共价键聚合是一种基于可逆共价键的聚合方法,通过可逆共价键的断裂和重组实现聚合物的合成和 降解。这种方法具有环境友好、可逆性强、结构可控等优点,为高分子材料的研究和应用提供了新的方 向。
高分子材料的性能优化
高性能聚合物
智能高分子材料
高分子复合材料
高性能聚合物是指具有优异力学性能 、耐高温、耐腐蚀等性能的聚合物材 料。近年来,通过分子设计、化学改 性等方法,不断开发出高性能聚合物 ,如聚酰亚胺、聚醚醚酮等,这些聚 合物在航空航天、电子信息等领域具 有广泛的应用前景。
20世纪初的发展
1906年,拜耳(A.Bayer)和哈克(C.W.Hackh)提出了高分子学说,标 志着高分子科学的诞生。
1920年,费歇尔(F.C.Fischer)和斯图姆普(R.M.Stumpf)首次合成了 聚合物,为高分子合成奠定了基础。
1927年,美国杜邦公司成功开发了尼龙-66,引发了合成纤维的革命。
对社会的影响
促进经济发展
高分子材料广泛应用于工 业、医疗、交通等领域, 为社会经济发展提供了重 要支撑。
提高生活质量
高分子材料在日常生活用 品、医疗器械、电子产品 等方面的应用,提高了人 们的生活质量。
推动科技进步
高分子科学的发展促进了 相关领域的科技进步,如 化学、物理、生物医学等 。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类具有特殊结构和性质的材料,由于其独特的性能和广泛的应用领域,成为现代材料科学的重要研究方向之一。

本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。

二、高分子材料的发展历程1. 起源和发展初期高分子材料的起源可以追溯到19世纪末,当时科学家开始研究天然高分子材料,如橡胶和丝绸。

20世纪初,合成高分子材料的研究逐渐兴起,其中最具代表性的就是合成橡胶和塑料。

20世纪30年代至50年代,高分子材料的研究进一步发展,出现了聚合物材料的合成和改性技术,使高分子材料的应用领域得到了拓展。

2. 高分子材料的应用领域扩展随着科技的进步和社会的发展,高分子材料的应用领域不断扩展。

在电子行业,高分子材料被广泛应用于电子元件的封装和绝缘材料;在汽车工业,高分子材料被用于制造轻量化零部件,提高汽车的燃油效率;在医疗领域,高分子材料被用于制造人工器官和药物传递系统等。

此外,高分子材料还在航空航天、建筑、纺织、包装等领域得到了广泛应用。

3. 高分子材料的研究进展近年来,高分子材料的研究进展主要集中在以下几个方面:(1) 新型高分子材料的合成:研究人员通过改变合成方法和反应条件,设计和合成了许多新型高分子材料,如聚合物纳米复合材料、共聚物、高分子水凝胶等。

(2) 高分子材料的功能化改性:通过添加特定的功能单体或化合物,可以赋予高分子材料特殊的性能,如导电性、光学性能、生物相容性等。

(3) 高分子材料的可持续发展:随着环境保护意识的增强,研究人员开始关注高分子材料的可持续发展,提出了许多可降解高分子材料和可回收利用的研究方向。

三、高分子材料的未来发展趋势1. 功能化高分子材料的发展随着科学技术的进步,人们对高分子材料的功能性要求越来越高。

未来,高分子材料将朝着多功能、智能化的方向发展,例如具有自修复能力、自感应能力和自适应能力的高分子材料将会得到更广泛的应用。

2. 绿色高分子材料的研究环境保护和可持续发展已成为全球研究的热点。

高分子科学的发展历程

高分子科学的发展历程

1948年美国Paul Flory 建立了高分子长链结构的数 学理论,1974年荣获诺贝尔化学奖
主要贡献:
利用等活性假设及直接的统计方法,他计算了高分子 分子量分布,即最可几分布,并利用动力学实验证实 了等活性假设; 引入链转移概念,将聚合物统计理论用于非线性分子, 产生了凝胶理论; Flory-Huggins格子理论; 1948年作出了最重要的贡献,即提出“排除体积” 理论和θ温度概念; 他的著作“Principles of polymer chemistry” (1953)是高分子学科中的Bible。
Heeger、 MacDiarmid(美)、 白川英树(日) 2000 化学奖 导电高分子研究,聚乙炔掺杂后,电导率从 3.2x10-6Ω-1cm-1增加到38Ω-1cm-1,提高了1000万倍(接近铝、铜) 提出孤子概念
Alan J. Heeger
1936
Alan G. MacDiarmid
b. 1927
Hideki Shirakawa
b. 1936
白川英树(Shirakawa)从事聚乙炔聚合机理研究
韩国研修生出现幸运的失误,使白川得到膜状聚乙炔
偶然的机遇,麦克迪尔米德(MacDiarmid)首先注意 到白川的聚乙炔膜。
Hale Waihona Puke 三人在美国合作研究。 黑格(Heeger)为了说明聚乙炔的导电性,提出孤子的
高分子科学 发展历程
由碳纤维和铝合 金制成的赛车底 盘
1839年 美国人 Charles Goodyear 发现天然橡胶与硫磺 共热后明显地改变了 性能,使它从硬度较 低、遇热发粘软化、 遇冷发脆断裂的不实 用的性质,变为富有 弹性、可塑性的材料。
橡胶园

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。

下面将介绍高分子材料的发展历程。

1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。

这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。

2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。

1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。

随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。

3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。

在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。

例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。

4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。

通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。

这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。

二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。

1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。

研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。

同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。

2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。

例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。

同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。

高分子化学发展史

高分子化学发展史

高分子化学发展史一、引言高分子化学是研究高分子材料的合成、结构、性能和应用的学科,它是现代化学的一个重要分支。

随着人类对材料需求的不断增加,高分子化学得到了迅猛发展。

本文将从高分子化学的起源开始,梳理高分子化学的发展历程,介绍了一些重要的里程碑事件和关键技术。

二、高分子化学的起源高分子化学的起源可以追溯到19世纪初。

当时,化学家们开始对天然高分子材料进行研究,例如橡胶、木材和丝绸等。

他们发现这些材料具有特殊的性质,如弹性、可塑性和柔韧性。

这引发了对高分子化学的兴趣,许多科学家开始致力于研究高分子化合物的合成和性质。

三、早期研究的成果19世纪末,德国的赫尔曼·斯坦凡(Hermann Staudinger)提出了高分子化合物是由大量重复单元组成的理论,即聚合理论。

他的理论认为,高分子化合物是由许多较小的单体分子通过共价键连接而成,这一理论为高分子化学的发展奠定了基础。

随后,聚合物的合成方法也逐渐得到了改进和发展。

20世纪初,德国化学家弗里德里希·奥斯瓦尔德(Friedrich Oskar Giesel)首次成功地合成了聚氯乙烯(PVC),这是人类历史上第一个合成的高分子材料。

此后,人们又相继合成了聚丙烯、聚苯乙烯等重要的高分子材料。

四、高分子化学的突破与应用20世纪20年代,德国化学家赫尔曼·斯托伊希(Hermann Staudinger)发现了天然橡胶分子的结构,为高分子化学的理论研究提供了重要的支持。

此后,高分子化学的研究进入了一个新的阶段。

在20世纪40年代,合成橡胶成为了一个重要的研究方向。

人们发现通过改变合成条件可以得到不同性能的橡胶材料,从而推动了橡胶行业的发展。

同时,高分子材料的应用也得到了广泛拓展,例如塑料制品、纤维素材料、涂料和胶粘剂等。

五、高分子化学的发展进程20世纪50年代至70年代,高分子化学得到了快速发展。

在这一时期,人们开发出了新的合成方法和技术,例如聚合反应、共聚反应和交联反应等。

高分子发展史

高分子发展史

高分子发展史
重要会议
高分子发展趋势
1、生物医学中的人工组织支架、缓释药物胶囊
2、光电信息高分子材料
3、自组装、芯片封装材料等
4、燃料电池与锂离子电池、导电高分子材料
5、环境协调与友好性高分子材料:生物可降解高分子材料、绿色建筑涂料、
健康环保装饰材料
6、现代高分子膜分离技术等等
7、高性能化: 耐磨、耐高温、耐老化、耐腐蚀等
8、高功能化: 电磁、光学、生物等功能高分子材料、高分子分离膜、催化剂

9、复合化: 纤维增强材料,高性能的结构复合材料
10、精细化: 向高纯化、超净化、精细化、功能化等
11、智能化: 预知预告性、自我诊断、自我修复
12、自我增殖、认识识别能力等
总结
20世纪20~40年代是高分子科学建立和发展的时期;30~50年代是高分子材料工业蓬勃发展的时期;60年代以来则是高分子材料大规模工业化、特种化、高性能化和功能化的时期。

作为新兴材料科学的一个分支,高分子材料目前已经渗透到工业、农业、国防、商业、医药以及人们的衣、食、住、行的各个方面。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类以高分子化合物为基础制备的材料,具有广泛的应用领域和巨大的市场潜力。

本文将介绍高分子材料的发展历程,包括其起源、发展阶段和主要应用领域,并展望未来高分子材料的发展趋势。

二、高分子材料的起源高分子材料的起源可以追溯到20世纪初,当时人们开始研究和应用天然高分子材料,如橡胶和纤维素。

随着科学技术的进步,人们开始研究合成高分子材料,首次成功合成高分子材料的里程碑是由赛门·诺瓦克于1907年合成的硅橡胶。

三、高分子材料的发展阶段1. 早期阶段(1907年-1945年):在这个阶段,人们主要关注天然高分子材料的研究和应用,如橡胶、纤维素和天然胶等。

同时,也开始尝试合成高分子材料,如合成橡胶和合成纤维。

2. 发展阶段(1945年-1980年):在二战后的这个阶段,高分子材料的研究和应用得到了极大的推动。

人们成功合成了许多新型高分子材料,如聚乙烯、聚丙烯、聚氯乙烯等。

这些材料具有良好的物理性能和化学稳定性,广泛应用于塑料制品、纺织品、电子产品等领域。

3. 现代阶段(1980年至今):在这个阶段,高分子材料的研究重点逐渐转向功能性高分子材料的开发。

人们开始研究和合成具有特殊功能的高分子材料,如高温耐磨材料、导电高分子材料、生物可降解材料等。

这些材料在航空航天、电子信息、医疗健康等领域有着广泛的应用前景。

四、高分子材料的主要应用领域1. 塑料制品:高分子材料是塑料制品的主要原料,广泛应用于日常生活中的各个方面,如食品包装、家居用品、汽车零部件等。

2. 纤维材料:高分子材料在纺织行业中有着重要的地位,用于制造各种纤维材料,如聚酯纤维、尼龙纤维等。

3. 电子产品:高分子材料在电子产品中的应用越来越广泛,如导电高分子材料用于制造柔性显示屏、电子纸等。

4. 医疗健康:高分子材料在医疗健康领域有着重要的应用,如生物可降解材料用于制造医用缝线、植入器械等。

五、高分子材料的未来发展趋势1. 功能性高分子材料的发展:随着科学技术的不断进步,人们对高分子材料的功能要求也越来越高。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势高分子材料是一类以聚合物为基础的材料,具有重要的应用价值和广泛的应用领域。

本文将详细介绍高分子材料的发展历程以及未来的发展趋势。

一、发展历程1. 早期发展阶段(20世纪初-20世纪30年代)在20世纪初,人们开始研究可塑性高分子材料,如塑料。

1907年,白朗宁发明了世界上第一个合成塑料——尼龙。

随后,人们开始研究其他合成塑料材料,如聚乙烯、聚丙烯等。

这一时期的高分子材料主要应用于日常生活用品和包装材料。

2. 高分子材料的快速发展(20世纪40年代-20世纪80年代)在第二次世界大战期间,高分子材料得到了快速发展。

人们开始研究高分子材料的结构和性能,并开发了更多种类的高分子材料,如聚氯乙烯、聚苯乙烯、聚碳酸酯等。

这些材料具有优异的物理和化学性能,被广泛应用于汽车、电子、建筑等领域。

3. 高分子材料的功能化发展(20世纪90年代至今)随着科学技术的进步,人们开始对高分子材料进行功能化改性,使其具有更多的特殊性能和应用功能。

例如,人们通过添加纳米材料、改变分子结构等方法,使高分子材料具有优异的导电性、热稳定性、抗菌性等特殊功能。

此外,人们还研究了生物可降解高分子材料,以应对环境问题和可持续发展的需求。

二、未来发展趋势1. 绿色环保未来,高分子材料的发展趋势将更加注重绿色环保。

人们将致力于研究生物可降解高分子材料,以替代传统的塑料材料。

这些生物可降解材料可以在自然环境中迅速分解,减少对环境的污染。

此外,人们还将研究可回收利用的高分子材料,以实现资源的循环利用。

2. 高性能未来,高分子材料的发展将趋向于高性能化。

人们将继续研究功能化改性的方法,使高分子材料具有更多的特殊性能,如高强度、高导电性、高热稳定性等。

这将推动高分子材料在电子、航空航天、能源等领域的应用。

3. 多功能化未来,高分子材料将趋向于多功能化的发展。

人们将研究制备具有多种特殊功能的高分子材料,以满足不同领域的需求。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元组成的聚合物材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于塑料、橡胶、纤维等领域。

本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。

一、发展历程1.1 早期发展阶段在20世纪初,高分子材料的概念开始逐渐形成,人们开始研究合成聚合物材料的方法,如合成橡胶。

1.2 工业化生产20世纪中叶,高分子材料进入了工业化生产阶段,塑料、橡胶等产品开始大规模应用于工业生产和生活中。

1.3 高分子材料的应用拓展近年来,高分子材料的应用领域不断拓展,如高性能聚合物材料、生物可降解材料等新型材料的研究逐渐成为热点。

二、未来发展趋势2.1 绿色环保未来高分子材料的发展将更加注重环保和可持续性,研究生物可降解材料、再生塑料等绿色材料将成为发展趋势。

2.2 高性能材料随着科技的不断进步,高分子材料的性能将不断提升,如高强度、高耐磨、高耐高温等性能的材料将得到更广泛的应用。

2.3 智能材料未来高分子材料将向智能化方向发展,研究开发具有自修复、自感应等功能的智能材料,应用于航空航天、医疗器械等领域。

三、材料设计与制备技术3.1 分子设计未来高分子材料的研究将更加注重分子设计,通过精确设计分子结构,实现材料性能的精准调控。

3.2 先进制备技术随着纳米技术、3D打印技术等的发展,高分子材料的制备技术将更加先进,实现复杂结构的制备和加工。

3.3 多功能材料未来高分子材料将向多功能化发展,研究开发具有多种功能的材料,如导电、光学、传感等功能集于一体的材料。

四、产业应用4.1 化工行业高分子材料在化工行业中的应用将继续扩大,如塑料、橡胶、纤维等产品将得到更广泛的应用。

4.2 医疗领域高分子材料在医疗器械、生物医药等领域的应用将不断增加,如生物可降解材料、人工器官材料等将成为研究热点。

4.3 新兴产业随着新兴产业的发展,高分子材料在新能源、新材料、智能制造等领域的应用将不断拓展,为产业升级注入新动力。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类具有高分子结构的材料,具有独特的物理性质和化学性质。

随着科学技术的发展,高分子材料在各个领域得到广泛应用,如医药、电子、航空航天等。

本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。

一、高分子材料的发展历程1.1 早期发展阶段在20世纪初期,高分子材料的研究主要集中在合成橡胶和塑料方面。

最早的合成高分子材料是由化学家发现的,如合成橡胶和聚乙烯等。

1.2 高分子材料的应用拓展随着科学技术的不断进步,高分子材料的应用领域逐渐扩大,如高分子纤维、高分子涂料、高分子膜等,广泛应用于纺织、建筑、航空等领域。

1.3 高分子材料的研究成果高分子材料的研究成果不断涌现,如聚合物合成技术的改进、高分子材料性能的优化等,为高分子材料的应用提供了坚实的基础。

二、高分子材料的未来发展趋势2.1 绿色环保未来高分子材料的发展趋势将更加注重绿色环保,提倡可降解高分子材料的研究和应用,减少对环境的污染。

2.2 高性能材料未来高分子材料将朝着高性能材料的方向发展,如高强度、高韧性、高温耐受性等,以满足各个领域对材料性能的需求。

2.3 智能化材料未来高分子材料的发展将趋向于智能化材料,如具有自修复功能、自感应功能等,以满足未来科技发展对材料的需求。

三、高分子材料的应用前景3.1 医疗领域高分子材料在医疗领域的应用前景广阔,如生物医用材料、医用高分子膜等,为医疗器械和医疗治疗提供了新的解决方案。

3.2 电子领域高分子材料在电子领域的应用前景也很广泛,如柔性电子材料、有机光电材料等,为电子产品的发展提供了新的可能性。

3.3 航空航天领域高分子材料在航空航天领域的应用前景也十分广泛,如高强度高韧性的高分子复合材料,为航空航天器件的制造提供了新的选择。

四、高分子材料的挑战与机遇4.1 挑战高分子材料在研发过程中面临着一些挑战,如材料的稳定性、可降解性等问题,需要不断进行研究和改进。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言:高分子材料是一类由大量重复单元组成的大分子化合物,具有广泛的应用领域。

本文将介绍高分子材料的发展历程,并展望其未来的发展趋势。

一、发展历程1. 早期发展阶段高分子材料的研究起源于19世纪末20世纪初,当时主要研究天然高分子材料,如橡胶和纤维素。

这些材料具有良好的柔韧性和可塑性,但缺乏稳定性和耐久性。

2. 合成高分子材料的突破1920年代至1930年代,德国化学家赫尔曼·斯托德尔成功合成了世界上第一个合成高分子材料——聚合物。

这一突破开启了合成高分子材料的新时代。

随后,聚合物的合成方法不断改进,推动了高分子材料的快速发展。

3. 高分子材料的广泛应用20世纪50年代至70年代,高分子材料的应用领域不断扩大。

聚合物被广泛用于塑料制品、纤维材料、涂料、胶粘剂等领域。

同时,高分子材料的性能也得到了极大的提升,如力学性能、耐热性、耐腐蚀性等。

二、未来发展趋势1. 绿色环保未来高分子材料的发展将更加注重环境友好性。

研究人员将致力于开发可降解的高分子材料,以减少对环境的污染。

同时,节能减排和资源循环利用也将成为高分子材料研究的重点。

2. 功能性材料随着科技的进步,高分子材料将朝着功能性方向发展。

例如,研究人员正在开发具有特殊功能的高分子材料,如自修复材料、智能材料和生物医用材料。

这些材料将在医疗、电子、能源等领域发挥重要作用。

3. 纳米技术的应用纳米技术的发展将为高分子材料带来新的突破。

通过纳米级的改变,高分子材料的性能可以得到进一步提升。

例如,纳米复合材料具有优异的力学性能和导电性能,将成为未来高分子材料的重要研究方向。

4. 多功能复合材料未来高分子材料的发展将趋向多功能化。

研究人员将探索不同材料的复合,以获得更好的性能和应用。

例如,高分子基复合材料可以结合金属、陶瓷等材料的优点,具有更高的强度和耐用性。

5. 智能化和自适应性未来高分子材料将朝着智能化和自适应性方向发展。

高分子发展史

高分子发展史

日本筑波大学 美国宾夕法尼亚大学 美国加利福尼亚大学
白川英树 艾伦-G-马克迪尔米德
艾伦-J-黑格
22
导电高分子电路板
23
高分子在现实生活中的应用

食科技Biblioteka 用 行住24
塑料瓶底数字的秘密 三角形代表可回收利用,里面数字代表材质。
PET制成,可在短时期内装常温水,不能装高 温水,也不宜装酸碱性饮料。 高密度聚乙烯,常见于白色药瓶、清洁用品、 沐浴产品。不易彻底清洁,不适合做水杯等, 勿循环使用。
19
1963年诺贝尔化学奖 ✓ Ziegler—Natta催化剂
✓ 配位聚合乙烯、丙烯 ✓ 实现乙烯、丙烯
工业化生产
Karl Ziegler
Giulio Natta
(1898-1973) (1903-1979)
德国科学家(Karl Ziegler)与意大利科学家 (Giulio Natta)分别发明用三乙基铝和三氧化钛组成 的金属络合催化剂合成低压聚乙烯与聚丙烯的方法20。
➢高性能化: 耐磨、耐高温、耐老化、耐腐蚀等 ➢高功能化: 电磁、光学、生物等功能高分子材料、
高分子分离膜、催化剂等 ➢复 合 化: 纤维增强材料,高性能的结构复合材料 ➢精 细 化: 向高纯化、超净化、精细化、功能化等 ➢智 能 化: 预知预告性、自我诊断、自我修复、
自我增殖、认识识别能力等
34
谢谢
1991年诺贝尔物理学奖
因其在对液晶、聚合物及其界面等 科学的研究中获得重大突破,并提 出了高分子标度理论,而荣获1991 年诺贝尔物理学奖,被瑞典皇家科 学院誉为“当今的牛顿”。
Pierre -Gilles de Gennes (1932-2007)

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和多样的物理、化学性质。

自20世纪初以来,高分子材料在各个领域中得到广泛应用,并在科学技术的推动下不断发展。

本文将介绍高分子材料的发展历程以及未来发展的趋势。

一、早期发展阶段1.1 天然高分子材料的发现- 人们早在古代就开始使用天然高分子材料,如皮革、天然橡胶等。

- 1839年,美国化学家查尔斯·戴克斯特尔发现了天然橡胶的弹性,并将其命名为“弹性体”。

1.2 合成高分子材料的诞生- 1907年,美国化学家莱昂纳德·巴斯德成功合成了世界上第一个合成高分子材料——酚醛树脂。

- 1920年代,德国化学家赫尔曼·斯托德尔合成了聚氯乙烯(PVC)。

1.3 高分子材料的应用拓展- 1930年代,高分子材料开始应用于塑料制品、橡胶制品等领域。

- 1940年代,高分子材料在航空、航天等高科技领域得到广泛应用。

二、中期发展阶段2.1 高分子材料的改性与合金化- 1950年代,人们开始将高分子材料进行改性,以改善其性能。

- 1960年代,高分子材料与其他材料进行合金化,形成了高分子合金材料。

2.2 高分子材料的新型结构与功能- 1970年代,人们开始研究高分子材料的新型结构,如共聚物、交联聚合物等。

- 1980年代,高分子材料开始展现出多种新的功能,如导电、光学、生物相容性等。

2.3 高分子材料的环保与可持续发展- 1990年代,人们开始关注高分子材料的环境影响,并提出了环保的研究方向。

- 21世纪初,高分子材料的可持续发展成为研究的热点,如生物可降解材料的研究与应用。

三、近期发展阶段3.1 高分子材料的纳米化与智能化- 近年来,人们将高分子材料进行纳米化处理,以获得更好的性能。

- 同时,高分子材料的智能化也成为研究的重点,如自修复材料、自感应材料等。

3.2 高分子材料的多功能与多场耦合- 近期,高分子材料的多功能化与多场耦合成为研究的热点,如光电、磁电、压电等多种功能的结合。

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势高分子材料是一类由大量重复结构单元组成的聚合物材料,具有重要的应用价值和广泛的应用领域。

本文将介绍高分子材料的发展历程以及未来的发展趋势。

一、高分子材料的发展历程1. 早期阶段(19世纪末-20世纪初)在19世纪末至20世纪初,人们开始研究天然高分子材料,如橡胶和纤维素。

1884年,美国化学家约瑟夫·普利斯特利发现了硝化纤维素,为合成高分子材料奠定了基础。

2. 合成高分子材料的突破(20世纪20年代-40年代)20世纪20年代至40年代,合成高分子材料取得了重大突破。

1928年,英国化学家亚历山大·弗莱明发现了聚合物材料聚乙烯,开创了合成高分子材料的新时代。

随后,聚合物材料如聚丙烯、聚苯乙烯等相继问世。

3. 高分子材料的广泛应用(20世纪50年代-70年代)20世纪50年代至70年代,高分子材料得到了广泛的应用。

聚合物材料在塑料制品、橡胶制品、纤维材料等领域得到了大规模的应用,推动了工业的发展和生活的改善。

4. 高分子材料的功能性和特殊性发展(20世纪80年代至今)20世纪80年代至今,高分子材料的研究重点逐渐转向功能性和特殊性。

人们开始研究和开发具有特殊功能的高分子材料,如高强度聚合物材料、高温耐性聚合物材料、导电聚合物材料等。

这些材料在航空航天、电子、医疗等领域发挥着重要作用。

二、高分子材料的未来发展趋势1. 绿色环保未来,高分子材料的发展将更加注重绿色环保。

人们将致力于开发可降解的高分子材料,减少对环境的污染。

同时,将推动高分子材料的回收利用,实现资源的循环利用。

2. 高性能高分子材料的未来发展将更加注重高性能。

人们将致力于开发具有更高强度、更好耐热性和更好导电性的高分子材料,以满足不同领域的需求。

3. 功能性未来,高分子材料的发展将更加注重功能性。

人们将致力于开发具有特殊功能的高分子材料,如自修复材料、传感材料等,以满足不同领域的需求。

高分子化学发展简史

高分子化学发展简史

编辑ppt
24
RO组件及其装置
编辑ppt
25
电渗析
电渗析是一种膜分离设备,是利用膜的选择透过性对水 中的物质进行分离而达到除盐等预期目的的一种水处理 设备。电渗析是在外加直流电场的作用下,利用阴离子 交换膜(简称阴膜,它只允许阴离子通过而阻挡阳离子) 和阳离子交换膜(简称阳膜,它只允许阳离子交换膜通 过而阻挡阴离子)的选择透过性,使一部分离子透过离 子交换膜迁移到另一部分水中去,从而使一部分水淡化 而另一部分水浓缩。
● 海水淡化、苦咸水淡化、饮用水降氟:苦限水经过电渗析处 理后可达到饮用水的标准。 ● 饮用纯净水的制取:配合预处理过滤、脱色设备及反渗透、 超滤、消毒设备制取饮用纯净水。 ● 锅炉用软化水、去离子水的制取:与离子交换相比,软化程 度高、效果好,经 电渗析处理后的水的硬度可低于进水的5%。对环境危害小。 ● 食品、制药用水的制取 ● 电子工业用超纯水的制取 ● 液体分离、浓缩、提纯、贵重物质的回收 ● 废水处理:造纸、电镀等工艺废水的处理
编辑ppt
22
丙交酯及共聚物
由丙交酯(LA)及与其它单体,如乙交酯(GA)在催化剂的作用
下聚合而成的高分子共聚物。由于其良好的生物降解性和生物相容性, 可广泛应用与生物医学组织工程,如药物控制释放体系、生物体吸收缝 合材料、骨科固定及组织修复材料等。该材料已被美国FDA批准可用于缓 释药物载体和其他人体植入的装置。我公司研制开发的PLGA,主要应用 于多肽、蛋白质药物的控制释放体系。多肽、蛋白质类药物经PLGA包埋, 制成缓释微球注射剂,可有效拓宽给药途径,提高药物的生物利用率, 减少给药次数和药量,减轻患者的痛苦,最大限度减少药物对全身特别 是肝、肾的毒副作用。
编辑ppt
9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1948年美国Paul Flory 建立了高分子长链结构的数 学理论,1974年荣获诺贝尔化学奖
主要贡献:
利用等活性假设及直接的统计方法,他计算了高分子 分子量分布,即最可几分布,并利用动力学实验证实 了等活性假设; 引入链转移概念,将聚合物统计理论用于非线性分子, 产生了凝胶理论; Flory-Huggins格子理论; 1948年作出了最重要的贡献,即提出“排除体积” 理论和θ温度概念; 他的著作“Principles of polymer chemistry” (1953)是高分子学科中的Bible。
Heeger、 MacDiarmid(美)、 白川英树(日) 2000 化学奖 导电高分子研究,聚乙炔掺杂后,电导率从 3.2x10-6Ω-1cm-1增加到38Ω-1cm-1,提高了1000万倍(接近铝、铜) 提出孤子概念
Alan J. Heeger
1936
Alan G. MacDiarmid
概念,才有了薄膜显示材料的诞生。
“For the discovery and development of conductive polymers”
至今高分子科学诺贝尔奖获得者
H. Staudinger (德国) : 把“高分子”这个概念引进科学 领域,并确立了高分子溶液的粘度与分子量之间的关系(1953 年诺贝尔奖) K.Ziegler (德国), G.Natta (意大利) : 乙烯、丙烯配 位聚合 (1963年诺贝尔奖) P. J. Flory (美国): 聚合反应原理、高分子物理性质与结 构的关系(1974年诺贝尔奖)。 R· B· Merriffield将功能化的聚苯乙烯用于多肽和蛋白质的合成 (1984的诺贝尔奖)。 H. Shirakawa白川英树(日本), Alan G. MacDiarmid (美国), Alan J. Heeger (美国) :对导电聚合物的发现和发展(2000 年诺贝尔奖)。
高分子科学 发展历程
由碳纤维和铝合 金制成的赛车底 盘
1839年 美国人 Charles Goodyear 发现天然橡胶与硫磺 共热后明显地改变了 性能,使它从硬度较 低、遇热发粘软化、 遇冷发脆断裂的不实 用的性质,变为富有 弹性、可塑性的材料。
橡胶园
丑却受宠的合成橡胶
1869年 美国人海厄特(John Wesley Hyatt) 把硝化纤维、樟脑和乙醇的混合物在高压下共热, 制造出了第一种人工合成塑料“赛璐珞” (celluloid )。这是人类发明的第一种合成塑料。三 年后,第一个生产赛璐珞的工厂在美国建成投产, 标志着塑料工业的开始。 赛璐珞现在主要用于制造乒乓球、眼镜架、玩 具、钢笔杆、装潢品等。
纤维的发展
•1855年瑞士人奥蒂玛 斯把纤维素放在硝酸 中得到硝化纤维素溶 液,制得第一根人造 纤维; •1884年查唐纳脱把硝 化纤维素放在酒精和 乙醚中得到溶液,得 到人造丝;
1909年美国人贝克兰(Baekeland)用苯酚与甲醛反应制造 出第一种完全人工合成的塑料——酚醛树酯。拉开了人类 应用合成高分子材料的序幕。
1956年Szwarc提出活性聚合概念, 高分子进入分子设计时代。1956年发现 了在负离子聚合反应过程中可使链终止反 应停止进行,从而得到活的高分子负离子。 用这个方法可制得多种嵌段共聚物(见嵌 段共聚合)、其他“分子设计”成的高分 子,以及单分散高分子等。 1971年S. L Wolek 发明可耐300℃高 温的Kevlar。Βιβλιοθήκη Paul J. Flory
“For his fundamental achievements, both theoretical and experimental, in the physical chemistry of the macromolecules”
1953年齐格勒在 低压条件下合成 出聚乙烯,随后 纳塔合成出聚丙 烯,1963齐格勒、 纳塔获得诺贝尔 化学奖。
梅里菲尔德在20世纪50和60年代发展的革新方法,是基于构想多肽 合成的关键在于将第一个氨基酸固定在不溶性固体上,其他氨基酸随后 便可一个接一个地连于固定端,顺序完成后所形成的链即可轻易地与固 体分离。这一过程可利用机器操作,经证明效率很高。在激素和酶等物 质的研究上,以及在胰岛素等药物和干扰素等物质的工业生产上有重大 意义。梅里菲尔德因发展出这种依预定顺序合成氨酸链或多肽的简单而 巧妙的方法,而获得1984年诺贝尔化学奖。
b. 1927
Hideki Shirakawa
b. 1936
白川英树(Shirakawa)从事聚乙炔聚合机理研究
韩国研修生出现幸运的失误,使白川得到膜状聚乙炔
偶然的机遇,麦克迪尔米德(MacDiarmid)首先注意 到白川的聚乙炔膜。
三人在美国合作研究。
黑格(Heeger)为了说明聚乙炔的导电性,提出孤子的
De Gennes(法)

1991
物理奖
对液晶和高分子物质有序现象提出了标度理论 从临界现象认识分子,在物理-化学之间架设了 桥梁 提出“软物质”概念
世界性人才、当代之牛顿
De Gennes “for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers ”
1935年 杜邦公司基础化学研究所有机化学部的Carothers合成出 聚酰胺66,即尼龙(耐纶 锦纶)。尼龙在1938年实现工业化生产,是 最早实现工业化的合成纤维品种 。 1930年 德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和 丁苯橡胶。 1940年英国人T. R. Whinfield合成出聚酯纤维(PET)。 1940年代Peter Debye 发明了通过光散射测定高分子物质分 子量 的方法。
保温材料之王——酚醛泡沫
1922年, 德国人Hermann Staudinger发表了 “关于聚合反应”的划时代的论文,提出:高分子 物质是由具有相同化学结构的单体经过化学反应 (聚合),通过化学键连接在一起的大分子化合物, 高分子或聚合物一词即源于此。
1932年他发表了专著《高分子有机化合物》, 标志着高分子科学的正式诞生。为表彰他对高分子 科学作出的巨大贡献,1953 年获得诺贝尔化学奖 正式授予了他 , 从而使他成为世界上获此殊荣的第 一位高分子学者。
相关文档
最新文档