全国高中数学 青年教师展评课 基本不等式教学设计(宁夏北方民族大学附中)
高中数学第五届全国青年教师观摩与评比活动《基本不等式》教学设计
基本不等式(第一课时)一、教学目标1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式2ba ab +≤的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略.以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2ba ab +≤ 的证明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式. 三、教学过程: 1.动手操作,几何引入如图是2002年在召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.探究一:在这X “弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD 中有4个全等的直角三角形.设直角三角形两条直角边长为b a ,,那么正方形的边长为22b a +.于是,4个直角三角形的面积之和ab S 21=, 正方形的面积222b a S +=. 由图可知12S S >,即ab b a 222>+.探究二:先将两X 正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a ≥),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?通过学生动手操作,探索发现:2ba ab +≤ 2.代数证明,得出结论根据上述两个几何背景,初步形成不等式结论: 若+∈R b a ,,则ab b a 222>+. 若+∈R b a ,,则2ba ab +≤. 学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:(1)若+∈R b a ,,则ab b a 222≥+;(2)若+∈R b a ,,则2ba ab +≤ 请同学们用代数方法给出这两个不等式的证明. 证法一(作差法): 0)(2222≥-=-+b a ab b aab b a 222≥+∴,当b a =时取等号.(在该过程中,可发现b a ,的取值可以是全体实数) 证法二(分析法):由于+∈R b a ,,于是 要证明ab ba ≥+2, 只要证明 ab b a 2≥+, 即证 02≥-+ab b a ,即 0)(2≥-b a ,该式显然成立,所以ab ba ≥+2,当b a =时取等号. 得出结论,展示课题内容 基本不等式: 若+∈R b a ,,则2ba ab +≤(当且仅当b a =时,等号成立) 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立) 深化认识:称ab 为b a ,的几何平均数;称2ba +为b a ,的算术平均数 基本不等式2ba ab +≤又可叙述为: 两个正数的几何平均数不大于它们的算术平均数 3.几何证明,相见益彰探究三:如图,AB 是圆O 的直径,点C 是AB 上一点,a AC =,b BC =.过点C 作垂直于AB 的弦DE ,连接BD AD ,.根据射影定理可得:ab BC AC CD =⋅= 由于Rt COD ∆中直角边<CD 斜边OD , 于是有2ba ab +<当且仅当点C 与圆心O 重合时,即b a =时等号成立. 故而再次证明: 当0,0>>b a 时,2ba ab +≤(当且仅当b a =时,等号成立) (进一步加强数形结合的意识,提升思维的灵活性) 4.应用举例,巩固提高例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 对于+∈R y x ,,AB(1)若p xy =(定值),则当且仅当b a =时,y x +有最小值p 2; (2)若s y x =+(定值),则当且仅当b a =时,xy 有最大值42s .(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)例2.求)0(1≠+=x xx y 的值域. 变式1. 若2>x ,求21-+x x 的最小值. 在运用基本不等式解题的基础上,利用几何画板展示)0(1≠+=x xx y 的函数图象,使学生再次感受数形结合的数学思想.并通过例2及其变式引导学生领会运用基本不等式2ba ab +≤的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.练一练(自主练习): 0,0>>y x ,且182=+yx ,求xy 的最小值. R y x ∈,,且2=+y x ,求y x 33+的最小值.5.归纳小结,反思提高基本不等式:若R b a ∈,,则ab b a 222≥+(当且仅当b a =时,等号成立)若+∈R b a ,,则2ba ab +≤(当且仅当b a =时,等号成立) (1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法. 媒体展示,渗透思想: 若将算术平均数记为21yx z +=,几何平均数记为xy z =2 利用电脑3D 技术,在空间坐标系中向学生展示基本不等式的几何背景:平面21yx z +=在曲面xy z =2的上方6.布置作业,课后延拓(1)基本作业:课本P100习题A组1、2题(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.(3)探究作业:现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.。
高中数学优质课说课基本不等式设计
2.2基本不等式(第1课时)教学设计一、教学内容解析1.内容“基本不等式”是人教版普通高中教科书数学必修1第二章第二节内容,分为两个课时,第1课时内容为基本不等式的定义、证明方法、几何解释及应用。
核心知识是基本不等式的定义;第二节课时内容为基本不等式的实际应用。
2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础。
基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中是一个非常重要的、基础的内容。
基本不等式与很多重要的数学概念和性质相关。
从数与运算的角度,a+b 2是两个正数,a b 的“算术平均数”, √ab 是两个正数,a b 的“几何平均数”。
因此,不等式中涉及的是代数中的“基本量”和最基本的运算。
从几何图形的角度,“周长相等的矩形中,正方形的面积最大”“等圆中,半径不小于半弦”等,都是基本不等式的直观理解。
基本不等式的证明或推导方法很多,“分析法”的证明过程是“执果索因”,从数量关系的角度,利用不等式的性质来推导基本不等式,体现了代数证明的典型方法,是不等式性质应用的一个典型范例,“作差法”依据的是实数大小比较的基本事实,是最基本,最重要的不等式证明方法,学生在今后的学习中难免遇到代数证明的问题,而他们在初中又缺少代数证明的经验,有必要借助基本不等式的证明为学生打下这方面的基础。
从几何图形的角度,借助几何真观,通过数形结合来探究不等式的几何解释,加深对基本不等式的理解;在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法。
因此,基本不等式内容是培养学生逻辑推理、数学运算、直观想象和数学建模素养的重要载体。
基于以上分析,确定本节课的教学重点:基本不等式的定义、证明方法、几何解释及简单应用。
二、教学目标设置1.课程目标 掌握基本不等式)(0,02>>≥+b a ab b a 。
结合具体实例,能用基本不等式解决简单的最大值或最小值问题(这节内容课程目标与单元目标相同)。
高中数学第五届全国青年教师观摩与评比活动基本不等式教案说明
基本不等式(第一课时)一、内容和内容解析本节课是人教版高中数学必修5中第三章第4节的内容。
主要是二元均值不等式。
它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。
这是一个过程性目标。
全国高中数学 青年教师展评课 赵爽弦图中的不等式性质的再探究教学设计(林)
诚西郊市崇武区沿街学校赵爽弦图中的不等式性质的再探究教学设计一.教学内容解析根本不等式是高中最重要的一个不等式,其构造简单、均匀对称,意蕴深沉。
由两个正数通过加法、乘法、除法和开方四种运算,产生了它们的算术平均数和几何平均数的内在规律,实现了概念原理、符号语言、图形语言与自然语言的有机结合和高度统一,数学之美、数学之奇、数学之简、数学之趣尽在其中,蕴含了丰富的数学文化特征和多样的数学智慧因素。
赵爽弦图中的不等式性质的再探究是根本不等式内容的延伸。
教学中选用“赵爽弦图〞作为“数学探究〞的素材和平台,以问题为线索,以TI-NspireCX-CCAS〔图形计算器〕为手段,搭建探究平台,引导学生通过观察,试验,猜想、验证及应用,并适当进展扩大或者者引伸,从中获得新的结果,新的方法,新的思想,体验数学发现和创造的历程。
不仅扩大了学生的数学视野,促进对数学本质的理解,而且逐渐优化认知构造,使学生更深化体会数学的文化价值和应用价值。
基于以上的分析,本节课的教学重点确定为:在利用赵爽弦图学习勾股定理和根本不等式的根底上,进一步挖掘和探究弦图中蕴含的不等式性质及其数学内涵.二.教学目的设置本节课立足学生的思维程度和认知特点,着眼于培养学生的探究、发现才能,详细教学目确实定为以下三点:〔1〕利用赵爽弦图,深化挖掘其中说蕴含的丰富的不等关系〔即根本不等式链〕。
〔2〕启动观察、分析、归纳、总结、抽象概括等思维活动,经历根本不等式链的发现、建构、应用,感受数学的拓广过程,体会数形结合思想,进步数学的归纳才能和抽象才能。
〔3〕通过赵爽弦图中不等式性质的探究,培养学生擅长考虑、乐于探究的良好品质.三.学情分析学生在初中时通过赵爽弦图学习了勾股定理,在推导根本不等式时学生再次学习赵爽弦图,一样的图形背景,不同的问题指向,从等量关系〔勾股定理222c b a=+〕到不等关系〔根本不等式ab b a 2≥+〕,从平面几何到不等式的研究,是知识和思维的延续、拓展.此前学生已经学习了不等式及其性质、解三角形、解析几何等有关知识,具备了必要的认知根底,也具有了一定的观察分析、抽象概括才能,并能用TI 〔图形计算器〕解决常用的数学问题。
高中数学《基本不等式》评课稿
《基本不等式》评课稿
分析这堂课主要有以下几个亮点:
1、注重思想方法的渗透
教学中以基本不等式的获得与证明及简单应用为明线,以数学思想方法的渗透和体会为暗线,整个教学过程中,明暗线交相呼应,贯穿始终。
对重要不等式和基本不等式的探究和证明,都注重从数和形两个角度进行阐释;甚至对后面的例题,也是先引导学生用代数方法解决问题,再用几何画板中的图形变化验证代数结论,增强学生从数、形两个角度思考问题的意识和能力,体会数形结合思想方法的优势。
2、注重知识的生成
本节课通过抽象出数学家大会会标中的图形面积的不等关系,得到重要不等式;通过折纸游戏提炼出基本不等式,又从几何代数多个角度认识和证明基本不等式,加深了学生对基本不等式本质的理解。
3、注重学生的实质性参与,设计的活动形式多样化
通过动画,让会标在转动中变化,引导学生分析变化始末大正方形的面积与四个直角三角形的面积和的关系,得出重要不等式,动画形式直观形象,学生在欣赏数学美的同时,又获得数学知识,所以情感上会很乐意参与问题的探究。
接着,设计折纸游戏发现基本不等式,形式新颖,充满乐趣。
后面的例题探究,鼓励学生从多个角度寻找解决问题的思路和方法,并让他们上来演示自己
的分析过程,既锻炼了学生的胆量和表达能力,也让他们获得成就感和满足感。
最后,课堂小结环节,让学生自己说在知识、思想方法上的收获,有学生回顾了重要不等式和基本不等式的探究过程及运用基本不等式求最值的条件,有学生说出了分析法的特点。
可以看出,学生在课堂上的收获是不少的。
一堂课下来,学生还感觉意犹未尽。
总之,这节课真正体现了“学生为主体,教师为主导”的教学思想。
《基本不等式》高中数学同课异构讲课教学教学设计
《基本不等式》的教学设计一、教材分析基本不等式是本章最后一节,是继一元二次不等式、简单线性规划之后又一工具性的知识, 它是高中数学中解决最值问题的一个重要工具,同时在实际生活中也有着非常广泛的应用。
本节课的主要学习任务是通过赵爽弦图中面积的直观比较抽象出基本不等式,在此基础上探究基本不等式的证明,了解分析法的思维过程,使学生体会数形结合的思想,进一步培养学生的抽象能力和推理论证能力。
其中基本不等式的证明是从代数、几何两个方面展开,既有逻辑推理,又有直观的几何图形,使得不等式的证明成为本节课的核心部分,自然也是本节课的重点。
二、学情分析学生在此之前,已经具备了圆和三角形的基本知识,熟知了三角函数的定义,掌握了不等式的性质和比较法证明不等式。
由于没有基础,学生会对分析法感到陌生,加上基本不等式的几何证明中线段间的关系比较隐蔽,学生不易发现。
因而本节课的难点仍然是基本不等式的证明。
三、教学目标《课程标准》对本节课有以下两个方面的要求:1. 探索并了解基本不等式的证明过程; 2.会用基本不等式解决简单的最值问题;结合“课标”的要求和学生的实际,我将本节课的教学目标确定为以下三点: 1. 通过观察背景图形,抽象出基本不等式;2. 了解分析法的证明思路,理解基本不等式的几何背景;3. 体会数形结合的数学思想,培养学生的抽象能力和推理能力;四、教学重点:应用数形结合的思想理解不等式,2a b+≤的证明过程;五、教学难点:2a b+≤等号成立条件。
六、课堂结构设计首先从背景图象出发,抽象出基本不等式,再从代数、几何两个方面进行证明,然后通过例题理解基本不等式的初步应用;最后通过课堂小结提高学生认识,加深印象。
七、教学媒体设计为了顺利完成教学任务,实现教学目标,帮助学生理解教学难点,在媒体的使用上我做了以下安排:制作了多媒体课件,借助动画视频和几何画板动态地展示了知识的背景,增加了学生的感性认识,分解了难点;aba 2+b 2八、教学过程设计本节课我设计了以下七个步骤:步骤一:多媒体播放动画视频,引入课题:(李老师到超市里购买商品,由于天平制造得不精确,两臂长度略有不同。
高中数学基本不等式教案设计(优秀3篇)
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
2014年全国高中数学 青年教师展评课 基本不等式教学设计(北方民族大学附中)
《基本不等式》教学设计一.教学内容分析《基本不等式》是高中教材人教A 版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一.就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想.本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习选修2-3中推理与证明和选修4-5中不等式选讲时再次得到加强.基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分.本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式222(,)a b ab a b R +≥∈.在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式.其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力.这就使得不等式的证明成为本节课的核心内容.因此,我认为本节课的教学重点为:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程.二.教学目标设置《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题.根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:(1)通过观察图形,抽象出基本不等式,培养学生的抽象概括能力和逻辑推理能力;(2)让学生经历基本不等式的证明过程,理解基本不等式的几何背景,体会数形结合的数学思想.(3)通过运用基本不等式解决简单的最大(小)值问题,加深学生对基本不等式的理解,认识数学的对称性与完整性.三.学生学情分析学生在此之前已经具备了平面几何的基本知识,掌握了不等式的基本性质和比较法证明不等式.同时,高二学生具备了良好的图形分析能力、抽象概况能力以及一定层次上的交流沟通能力.这些都为学习本节内容奠定了基础.在学习本节课前尽管学生已经学习了函数的最值问题以及不等式的性质和解法,但对于用不等式模型来解决问题及基本不等式的各种几何背景学生还是有一些困难,一时很难接受;从重要不等式到基本不等式的简洁结构使得变量范围是从全体实数变化为正实数,很不好理解;对于变量存在和或者积为定值也需仔细观察,在整体的变化过程中取最值是整体与局部的数学思想容易忽视.另外,教材中提出探究基本不等式的几何解释需要学生具备良好的逻辑推理能力,而且图形中线段间的关系也比较隐蔽,不易被发现.因此,我以为本节课的教学难点为:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值.四.教学策略分析本节课采用探究式课堂教学模式,即在教学过程中,在教师的引导下,以学生的自主探究与合作交流为前提,以问题为导向设计教学情境,以“基本不等式的发现与证明”为基本研究内容,为学生提供自由表达、质疑、探究、讨论问题的机会,让学生在知识的形成、发展过程中展开思维,逐步提高学生发现问题、探索问题、解决问题的能力.五、教学过程设计1.创设情境【课前预习】赵爽利用弦图证明勾股定理的过程.(请学生在学案上课前完成:4S S S =+大正方形直角三角形小正方形()2222142c ab a b a b ∴=⨯+-=+.)【引言】右图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像个风车,代表了中国人民的友好好客.【思考1】赵爽利用弦图最先完成了勾股定理的证明,你还记得这个证明过程吗?(请学生表述推导过程,教师课件展示.)【过渡】在弦图中,由面积间的相等关系,得到了勾股定理这一经典等式.然而,相对关系与不等关系是相对存在的.在弦图中存在着怎样的不等关系呢?【思考2】观察变化的弦图,你能在图中找出面积间的不等关系吗?(教师利用几何画板改变弦图中两直角边的长度,展示运动变化的弦图,请学生观察并归纳:生1:4S S ≥大正方形直角三角形,得ab b a 222≥+;生2:0S ≥小正方形,得()02≥-b a .) 【设计意图】介绍国际数学家大会以及赵爽的相关背景,体现数学的文化价值,渗透爱国主义教育.课前完成利用弦图证明勾股定理的过程,一方面展现了赵爽证明的构图巧妙、精致,是数与形的完美统一,让学生对弦图的认识清晰、完整;另一方面为提出弦图中面积间的不等关系做铺垫,体会相对关系与不等关系的辩证统一.同时,通过运动变化将直观的面积关系转化为隐含的数值关系.【归纳】对于两直角边a b 、,有222a b ab +≥.【思考3】上式中何时等号成立?(请学生说明:当a b =时, 222a b ab +=;当a b ≠,222a b ab +>.教师归纳:当且仅当a b =时,等号成立.)【探究1】上式对正实数是成立的,那么对任意实数a b 、,上式都成立吗?请证明自己的结论.(请学生自主探究完成证明,学生比较自然的想到用“比较法”证明.教师利用投影仪展示学生的完整证明过程.强调a b =和a b ≠两种情况,说明“当且仅当”的含义.)【归纳】由图形中面积间的不等关系,我们发现了两实数间的这一事实:对任意实数a b 、,有222a b ab +≥,当且仅当a b =时,等号成立.【设计意图】思考2请学生讨论等号成立的条件,了解“当且仅当”的含义,由于此时学生还没有学习简易逻辑的相关知识,无需从“充分必要条件”的角度加以说明.探究1给学生提供思维发展的空间,让学生从对知识的直观感知上升到理性证明,既体现了数学知识发生发展的过程及其严谨性,又巩固了证明不等式的基本方法,为后续证明基本不等式做铺垫.在此过程中给学生提供了一种研究思路:由图形中的不等关系可以获得相应实数间的一些不等式,渗透数形结合思想.2.基本不等式0,0)2a b a b +≥>> 【过渡】实际上,在不同的图形中上述不等式有不同的体现,我们再看这样一个情境.【探究2】如图,取正方形对角线上任意一点,分别作正方形两邻边的垂线,切分出两个正方形和两个矩形,设切分出的两正方形边长分别为a b 、,问:切分出的两正方形面积和与两矩形面积和的大小关系?(请学生自主探究完成,并说明:生1:22S S a b +=+12,32S S ab +=4,由不等式 222a b ab +≥3S S S S +≥+124得: ,当且仅当a b =时,等号 成立.生2:由正方形的对称性,将切分出的两矩形及较小的正方形分别向较大的正方形翻折,并没有将较大的正方形完全覆盖,故:3S S S S +≥+124 )【引申】若设切分出的两正方形的面积分别为a b 、, 根据上述不等关系,又可以得到怎样的不等式呢?(请学生说明:若两正方形的面积分别为a b 、,则其边长分别为b a 、,得:)0,0a b a b +≥>>当且仅当a b =时,等号成立.)【归纳】由图形中面积间的不等关系,我们又可以得到不等式)0,0a b a b +≥>>,当且仅当a b =时,等号成立.【设计意图】从学生比较熟悉的图形背景中再一次认识不等式222a b ab +≥,既可以根据已知的不等式探究图形中面积间的不等关系,又可以运用“割补法”在图形中体现不等式222a b ab +≥.进而提出引申问题,自然地由不等式222a b ab +≥过渡到)0,0a b a b +≥>>,为基本不等式的产生构造几何背景,并在图形中揭示不等式222a b ab +≥与不等式)0,0a b a b +≥>>的内在联系.【思考4】回顾不等式()0,02>>≥+b a ab b a (①)的生成过程中,你发现它与不等式ab b a 222≥+(②)有怎样的联系呢?(请学生说明: 生1:()222222244,0,0a b aba b ab ab a b ab a b a b +≥∴++≥∴+≥>>∴+≥生2:因为0,0a b >>ab 即得①式.生3:在②式中用a 代替2a ,b 代替2b 即得①式.)【设计意图】激发学生的思维,使其从多角度发现不等式222a b ab +≥与不等式)0,0a b a b +≥>>的内在联系,认识到它们是对同一个事实的两种不同描述,其本质是一致的.同时也能促进学生形成对学习进行反思的意识与习惯.【说明】通常我们把上式写作0,0)2a b a b +≥>>,称为基本不等式,本节课我们就来研究基本不等式.(引入课题并板书)【思考5】你能否证明基本不等式?(请学生思考完成.生1:(比较法)210222a b a b +-=≥+∴≥ 当且仅当a b =时,等号成立;生2:(综合法)(20a b a b -≥∴+≥当且仅当a b =时,等号成立;生3:(分析法)()()()()2200a b a b a b a b +≥∴+≥∴+-≥∴≥∴+≥要证只要证只要证只要证上式显然成立。
高中数学教学课例《基本不等式》课程思政核心素养教学设计及总结反思
3、能力提升(前面已对利用基本不等式求函数和 三角形面积最值类型题目进行过简单练习,现将对利用 基本不等式求最值进行能力提升)
4、课后作业(对本节课所学再次进行巩固提升, 加强对此类题型的认知与理解)
5、课堂小结 (1)利用基本不等式证明不等式或求最值时注意 确保做到:一“正”,二“定”,三“相等”;(2) 利用基本不等式求最值,关键是对式子进行恰当的变 形,合理构造“和式”与“积式”的互化,必要时可多 次应用基本不等式;(3)一定要求出使“=”成立的 自变量的值,这也是进一步检验是否存在最值的重要依 据。
随着课程改革的推广,高效课堂成为课堂改革的一 个重要目标。每个学校都在摸索高效课堂的建设。在上 高效课堂的过程中,我认为要改变以前老式的数学教学 方式方法,要以学生为主体,教师为主导,充分发挥学 生的能动作用,激发学生对数学的兴趣,启发他的数学 教学策略选 思维。在 40 分钟里,突出“高效”两个字。在高中数 择与设计 学高效课堂的教学过程中,应注意以下几个点:
情感态度与价值观:激发学生学习和应用数学知识
的兴趣,培养严谨的科学态度。
学生学习能
基本不等式在不等式知识体系中起了承上启下的
力分析 作用,同时在生活及生产实际中有着广泛的应用,它也
是对学生进行情感价值观教育的好素材,近几年高考对 不等式的证明要求有所降低,主要以求最值等形式出 现,所以利用基本不等式求最值应重点研究。本节课是 《基本不等式》的第二课时,通过本节课的学习,让学 生自己观察、分析、发现解题规律,进而归纳总结出一 般方法。
高中数学教学课例《基本不等式》教学设计及总结反思
学科
高中数学
教学课例名
高中数学《基本不等式》(2课时)教学设计
基本不等式(2课时)教学设计一、内容和内容解析1.内容:基本不等式的定义、几何解释、证明方法与应用.2. 内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础.基本不等式是一种重要而基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容.基本不等式与很多重要的数学概念和性质相关. 从数与运算的角度,是两个正数a,b的“算术平均数”,是两个正数a,b,的“几何平均数”.因此,不等式中涉及的是代数中的“基本量”和最基本的运算. 从几何图形的角度,“周长相等的矩形中,正方形的面积最大”,“等圆中,弦长不大于直径”,等等,都是基本不等式的直观理解.其次,基本不等式的证明或推导方法很多,上面的分析也是基本不等式证明方法的来源.利用分析法,从数量关系的角度,利用不等式的性质来推导基本不等式;从平面几何图形的角度,借助几何直观,通过数形结合来探究不等式的几何解释;从函数的角度,通过构造函数,利用函数性质来证明基本不等式;等等. 这些方法也是代数证明和推导的典型方法.此外,基本不等式是几何平均数不大于算术平均数的最基本和最简单的情形,可以推广至n个正数的几何平均值不大于算术平均值. 基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值. 同时,在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法. 因此,基本不等式的内容可以培养学生的逻辑推理、数学运算和数学建模素养.基于以上分析,确定本节课的教学重点:基本不等式的定义、几何解释和证明方法,用基本不等式解决简单的最值问题.本单元教学建议课时数:2课时.二、目标和目标解析1.目标:(1)理解基本不等式,发展逻辑推理素养.(2)结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.2.目标解析:达成上述目标的标志是:(1)知道基本不等式的内容,明确基本不等式就是“两个正数的算术平均数不小于它们的几何平均数”;会利用不等式的性质证明基本不等式,能说明基本不等式的几何意义.(2)能结合具体实例,明确基本不等式的使用条件和注意事项,即“一正、二定、三相等”;能用基本不等式模型识别和理解实际问题,能用基本不等式求最大值或最小值;在解决具体问题的过程中,体会基本不等式的作用,提升数学运算、数学建模等核心素养.三、教学问题诊断分析由于学生缺少代数式证明的经验,所以基本不等式的证明是本节课的一个难点.基本不等式的几何解释也是学生不容易想到的,需要数形结合地去理解,所以这也是本节课的一个难点.此外,在利用基本不等式研究最值问题时,学生容易出现忽视使用条件,不验证等号是否成立,甚至出现没有确认和或积为定值就求“最值”等问题,这也是学生思维不够严谨的表现,因此基本不等式的证明和利用基本不等式求最值也是本节课的难点.四、教学支持条件分析在进行基本不等式的几何解释的教学时,为了帮助学生直观地观察图形中几何元素之间的动态关系,并将其转化为代数表示,可以利用信息技术制作一个动态图形,以帮助学生直观理解.五、教学过程设计第一课时(一)课时教学内容本节课的主要教学内容有:基本不等式的定义;基本不等式的证明;基本不等式的几何解释;运用基本不等式求最值;基本不等式求最值的两种模型.(二)课时教学目标1.理解基本不等式,发展逻辑推理素养;2.了解基本不等式的几何解释;3.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.(三)教学重点与难点教学重点:基本不等式的定义及运用基本不等式解决简单的最值问题.教学难点为:基本不等式的证明和运用基本不等式求最值.(四)教学过程设计1.基本不等式的定义导入语:我们知道,乘法公式在代数式的运算中有重要作用.那么,是否也有一些不等式,它们在解决不等式问题时有着与乘法公式类似的作用呢?下面就来研究这个问题.问题1:提到两个数的乘法,在上一节我们利用完全平方差公式得出了一类重要不等式中含有ab乘法,是什么不等式?2.基本不等式的证明问题2:上节课我们看到,证明不等关系,还可以运用不等式性质,你能否利用不等式的性质推导出基本不等式呢?预设方案一:学生根据两个实数大小关系的基本事实,用作差比较证明.教师给予肯定,是否还有其它证法?预设方案二:由于没有已知条件,学生不知从何入手.追问2:上述证明中,每一步推理的依据是什么?师生活动:学生分别回答由⑤→④,由④→③,由③→②,由②→①的依据.追问3:上述证明叫做“分析法”.你能归纳一下用分析法证明命题的思路吗?师生活动:学生讨论后回答.教师总结:分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.追问4:你能说说分析法的证明格式是怎样的吗?师生活动:学生思考后回答.教师总结:由于分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步的推理都用“要证……只要证……”的格式,当推导到一个明显成立的条件之后,指出“显然×××成立”.追问5:基本不等式成立的条件是什么?如果a<0或b<0基本不等式是否成立?师生活动:学生通过证明发现,a,b均为非负数,如果a,b存在负数时,该不等式不成立.教师指出基本不等式的定义要求a,b均为正数.设计意图:根据不等式的性质,用分析法证明基本不等式,同时引导学生认识分析法的证明过程和证明格式,为学生高中阶段的推理和证明提供了更丰富的策略.追问4:通过本例的解答,你能说说满足什么条件的代数式能够利用基本不等式求最值吗?师生活动:学生讨论后回答.教师总结:代数式能转化为两个正数的和或积的形式,它们的和或者积是一个定值,不等式中的等号能取到,通俗的说,就是“一正、二定、三相等”.设计意图:引导学生根据所求代数式的形式,判断是否能利用基本不等式解决问题,同时强调代数式的最值必须是代数式能取到的值,为学生求解代数式的最值问题提供示范.同时,在本题之后,引导学生总结能应用基本不等式求最值的代数式满足的条件.例2 已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值 .师生活动:师生一起分析后,由学生思考并书写证明过程后展示,师生共同补充完善.追问:通过本题,你能说说用基本不等式能够解决什么样的问题吗?师生活动:学生思考后回答,教师总结:满足“两个正数的积为定值,当这两个数取什么值时,求它们的和的最小值”,或者“两个正数的和为定值,当这两个数取什么值时,求它们的积的最大值”的问题,能够用基本不等式解决.设计意图:在例1的基础上,再利用一道例题示范如何直接利用基本不等式解决问题,同时借此题的题干指出用基本不等式能够解决的两类问题,为用基本不等式解决实际问题创造了条件.(五)目标检测设计设计意图:考查学生对基本不等式的理解,及运用“分析法”证明问题的能力.第二课时(一)课时教学内容利用基本不等式解决实际问题中最值问题.(二)课时教学目标1.运用基本不等式解决生活中的最值问题,发展数学建模素养;2.理解基本不等式的数学模型,提高学生模型思想解决问题的能力.(三)教学重点与难点教学重点:运用基本不等式的模型思想解决生活中的最值问题.教学难点:应用基本不等式解决实际问题.(四)教学过程设计1.复习引入问题1:基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?师生活动:学生根据教师提出的问题梳理上节课的知识,教师对学生遇到的困难给予帮助.特别是强调利用基本不等式求最值的方法,即两个变量均为正数是前提,发现“定值”是关键,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.2.利用基本不等式解决生活问题导入语:运用数学知识解决生活中的最值问题,也就是最优化的问题,特别能体现数学应用价值.基本不等式是求最值的工具,特别是对求代数式的最值问题有重要的意义.问题2:(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?追问1:前面我们总结了能用基本不等式解决的两类最值问题,本例的两个问题分别属于哪类问题吗?师生活动:学生思考后回答:属于。
高中数学_基本不等式(第一课时)教学设计学情分析教材分析课后反思
《基本不等式》教学设计一、教学目标1.知识与技能:了解基本不等式的几何背景,探索基本不等式的证明过程,会用基本不等式解决简单最大(小)值问题。
2.过程与方法:进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。
3.情感态度与价值观:培养学生观察问题、分析问题和解决问题的能力,培养学生形成数形结合的思想意识。
二、教学重难点1.教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,基本不等式在实际问题中的应用。
2.教学难点:用基本不等式求最大值和最小值。
三、教材分析最新版教材之所以把“基本不等式”前置是经过了学习的重要性与可能性两方面的综合考量。
相比旧教材,“基本不等式”的教材地位与教学要求都发生的变化,由于“基本不等式”本身内涵非常丰富,其学习过程不可能一蹴而就,“反复认知,螺旋上升”才是课堂教学的有效策略。
四、学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。
方法上,能够运用数形结合和化归的思想提炼基本不等式,阐述基本不等式的几何意义。
能力上,运用作差法,综合法能从数量关系上进行逻辑推理验证基本不等式。
五、教学方法1、借助“折纸游戏”,从特殊到一般的猜想,发现基本不等式(数学抽象、直观想象)。
2、探索基本不等式的证明过程,会用作差比较法、综合法,分析法,证明基本不等式(逻辑推理、数学运算、直观想象)。
3、从不同角度理解基本不等式(直观想象)。
4、感知与基本不等式相近一些不等式的证明(逻辑推理、数学运算)。
学生:消去了教师:得到定值学生:2教师:当且仅当学生:x x 1=时等号成立 教师:这时我们得到的是学生:最小值2教师:好的,我们类比这道例题完成三个变式,这里请三位同学上来板书变式1:已知0>x ,求x x 12+的最小值. 变式2:已知0<x ,求x x 1+的最大值. 变式3:已知1>x ,求11-+x x 的最小值. 教师:我们看变式3,如果4>x 时,最值还是这个答案吗 学生:不是教师:原因是什么学生:当且仅当的相等教师:所以我们运用基本不等式求最值的条件可以总结为 学生:一正、二定、三相等教师:观察我们例1和变式,我们发现在利用基本不等式后两正数之积为定值,这时我们能求出两正数之和的最小值,那么我们是否可以得到结论:能力,灵活运用已学知识,体会证明的答题过程《基本不等式》学情分析本节课针对的是高一年级学生,知识上,刚系统学完了不等式性质,一元二次不等式,在初中阶段,也了解了数学家赵爽“弦图”推出勾股定理,圆的垂径定理,算数平均数、几何平均数。
“基本不等式”教学设计
赵爽弦图中面积的直观比较及抽象概括,提炼出不等 型来解决问题及理解基本不等式的各种几何背景,学
式 a2 + b2 逸 2ab (a,b沂R). 在此基础上,通过演绎替 生还有一些困难,一时很难接受. 根据重要不等式获
换、证明探究、数形结合及实际应用等四种不同的角 得基本不等式的过程使得变量范围是从全体实数变化
收稿日期:2015—02—17 作者简介:袁红 (1980— ),女,中学一级教师,主要从事数学课堂教学研究.
圆园15 年第 4 期
43
特别报道
TEBIEBAODAO
教学过程设计
中的相等关系或不等关系可以获得实数间的一些重要渗透数形结合思想.
图 1 是在北京召开的第 24 届国
析法的基本思想,教材上以填空题的形式用分析法证
明了基本不等式,但分析法证明的格式以及为什么要
这样证明,是学生思维的盲点. 一是学生不会发现其
中隐含的道理;二是学生照此模仿往往会出错. 对此,
笔者设计了自主证明和交流展示等学生活动. 这样安
排,既能使不同认知基础的学生暴露出不同的问题,
又能让学生在相互交流中发扬合作精神.
所以(a + b)2 逸 4ab,a < 0,b < 0. 所以 a + b 逸 2姨ab .
生 2:因为 a > 0,b > 0,在于式中用 姨 a 代替 a,
姨 b 代替 b,即得淤式. 生 3:在于式中用 a 代替 a2,b 代替 b2,即得淤式. 【设计意图】 激发学生的思维,使其从多角度发现
由学生说明,若两正方形的面积分别为 a,b,则
其边长分别为 姨 a , 姨 b ,由此得 a + b 逸 2 姨ab
《基本不等式》教学设计
《基本不等式》教学设计一、教材解读《基本不等式》在人教A 版高中数学必修第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。
本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。
同时本节课的内容也是之后基本不等式应用的必要基础。
是理论数学与应用数学结合的良好典范。
下面我们来分析一下本节教材。
(一)内容结构(1) 通过课题揭示重点。
从课题可以很清楚的知道我们将要学习的内容以及重点,所有内容都是围绕这个基本不等式展开。
(2) 实践出真知。
以一个实际问题来探究其中所蕴涵的相等或不等关系,充分体现了新课标所要求的培养学生创新精神及数学应用的意识。
通过探究,学生很容易得到结论:一般地,对于任意实数a ,b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。
(3) 代换与证明。
通过代换思想,得到基本不等式0,0)2a b a b +≥>>,接着用分析法及数形结合法来证明基本不等式,体现了一题多解及证明不等式的基本方法。
这部分内容简单,学生基本可独立完成,对于培养学生的自学能力有积极作用。
(4) 课本提示概念。
在正文旁边有一个框图,说明了算术平均数与几何平均数的概念,由此可以总结出一条定理:一列正数的算术平均数不小于它的几何平均数。
这部分虽非重点,但对于拓展对基本不等式的认识是非常重要的,在教学中有必要提示一下。
(5) 实例揭示应用价值。
通过两个实例,体现了基本不等式在求最值时的价值,更进一步体现了“当且仅当时,等号成立”这一条件的重要性。
学生可以从中体会到“积定和最小”及“和定积最大”这两条基本的解题思路。
这两个例题使数学与生活不再那么遥远。
对于培养学生的数学应用意识功不可没。
(6) 习题进一步巩固所学。
共有四道习题,第一道强调了“当且仅当a b =时,等号成立”这一重要条件,是基本不等式的直接应用,难度较小;后面三道是基本不等式在实际生活中的应用,强调了数学与生活有着密切联系这一基本数学观。
全国优质课——基本不等式教学设计
全国优质课——基本不等式教学设计(总7页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March《3.4基本不等式》教学设计一、教学内容解析:1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点;2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材;3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处;4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点.二、学情分析:1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助;2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少;3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。
三、教学目标:1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性.四、教学重点与难点:1、教学重点:基本不等式的推导及其简单应用2、教学难点:分析法证明基本不等式思路的获得和应用基本不等式求最值.五、教学策略分析:1、由情景1和情景2引入课题,可明确本堂的主要内容,使学生学习目标明确,进而激发学生的学习兴趣;2、精心设置“问题串”,由简到难,由感性到理性,一步步引导学生自主探究,小组讨论推导基本不等式,让学生感受知识发生发展深化的过程,也体现学生为主体,老师为主导的教学理念;3、为突破分析法证明基本不等式思路的获得这一教学难点,采用先学生小组讨论,再师生共同完成的策略;4、为突破应用基本不等式求最值这一难点,先由例题归纳应用基本不等式求最值的要点,然后趁热打铁设置两个练习,由简到难,由浅入深,采用学生板演,抢答和小组讨论等方式,及时发现问题,及时纠错,让“一正二定三相等”深入人心;5、对于转化为函数进而用函数的图像和性质求最值的问题,教师只作适当提示,不作为重点;6、课堂小结重视知识间的联系和研究问题的方法,并强调了数学思想方法和数学核心素养在数学学习中的作用。
《基本不等式》教案
(根本不等式)教案
一、教学目标
(知识与技能)
掌握根本不等式的形式以及推导过程,会用根本不等式解决简单问题。
(过程与方法)
经历根本不等式的推导与证明过程,提升逻辑推理能力。
(感情、态度与价值观)
在猜测论证的过程中,体会数学的严谨性。
二、教学重难点
(教学重点)
根本不等式。
(教学难点)
根本不等式的推导以及证明过程。
三、教学过程
(一)引入新课
PPT出示的是北京召开的第24届国际数学家大会的会标,会标是依据我国古代数学家赵爽的弦图设计的。
提问:你能在这个图中找到不等关系么引出课题。
(二)探究新知
1.根本不等式的推导。
学生活动:利用赵爽弦图推导出根本不等式。
(2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大最大面积是多少
(四)小结作业
提问:今天有什么收获
引导学生回忆:根本不等式以及推导证明过程。
课后作业:课后练习1。
基本不等式课程设计
基本不等式课程设计一、课程目标知识目标:1. 学生能理解并掌握基本不等式的概念,包括算术平均数-几何平均数不等式、均值不等式等。
2. 学生能够运用基本不等式解决实际问题,解释生活中的不等关系。
3. 学生掌握不等式的证明方法,能合理解释不等式成立的数学原理。
技能目标:1. 学生能够准确地运用符号语言表达不等式,并能在数轴上表示出来。
2. 学生通过具体案例,培养观察、分析、解决问题的能力,提高逻辑推理和数学证明技巧。
3. 学生能够运用基本不等式进行简单的数学建模,解决实际问题。
情感态度价值观目标:1. 学生培养对数学的兴趣,特别是对不等式的学习产生积极情感。
2. 学生在学习过程中,发展合作精神,学会分享解题思路和成果。
3. 学生通过不等式的学习,认识到数学的严谨性和应用的广泛性,增强解决实际问题的自信心。
课程性质分析:本课程属于高中数学范畴,以理论学习和实际应用相结合,着重培养学生的逻辑思维能力和解决实际问题的能力。
学生特点分析:高中生具有较强的逻辑推理能力和抽象思维能力,能够理解并应用不等式解决复杂问题。
教学要求:教学应结合学生特点,通过案例导入、理论讲解、互动讨论和实际应用,帮助学生达成课程目标,确保学生在理解不等式的基础上,能够灵活运用并解决实际问题。
二、教学内容1. 引言:通过生活中的实例引入不等式的概念,让学生感知不等式在现实中的应用。
- 教材章节:第一章 不等式与不等式组2. 算术平均数-几何平均数不等式(AM-GM不等式):- 定义、性质、证明和应用- 教材章节:1.2 算术平均数与几何平均数3. 均值不等式:- 包括算术平均数、几何平均数、调和平均数等- 教材章节:1.3 均值不等式及其应用4. 不等式的证明方法:- 比较法、分析法、综合法、反证法等- 教材章节:1.4 不等式的证明5. 不等式的应用:- 解决实际问题的数学建模- 教材章节:1.5 不等式的实际应用6. 综合练习与拓展:- 设计不同难度的习题,巩固所学知识- 拓展不等式在其他学科领域的应用教学内容安排与进度:第1课时:引言与不等式的概念第2课时:算术平均数-几何平均数不等式第3课时:均值不等式第4课时:不等式的证明方法第5课时:不等式的应用第6课时:综合练习与拓展教学内容确保科学性和系统性,结合教材章节,逐步引导学生掌握不等式的相关知识。
高中数学教案《基本不等式》
教学计划:《基本不等式》一、教学目标1.知识与技能:学生能够理解并掌握算术平均数与几何平均数之间的关系,理解并掌握基本不等式(如均值不等式、平方和不等式等)的概念、性质及证明方法,能够熟练运用基本不等式解决简单问题。
2.过程与方法:通过观察、比较、归纳等数学活动,引导学生发现基本不等式的规律,培养学生的探究能力和逻辑推理能力;通过例题讲解和练习,提高学生应用基本不等式解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学审美意识和严谨的科学态度,让学生认识到数学在解决实际问题中的重要作用。
二、教学重点和难点●教学重点:基本不等式的概念、性质及证明方法;算术平均数与几何平均数之间的关系。
●教学难点:理解基本不等式的本质,掌握其证明过程,并能灵活运用基本不等式解决实际问题。
三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过生活中常见的分配问题(如分苹果、分蛋糕等),引导学生思考如何公平分配,从而引出算术平均数与几何平均数的概念,为学习基本不等式做好铺垫。
●提出问题:设问“算术平均数总是大于或等于几何平均数吗?”引发学生思考,激发学生探索的兴趣。
●明确目标:介绍本节课的学习目标,即掌握基本不等式的概念、性质及证明方法,并能运用其解决实际问题。
2. 讲授新知(约15分钟)●概念讲解:详细讲解算术平均数与几何平均数的定义,通过具体例子说明两者的区别与联系。
●不等式呈现:给出基本不等式的数学表达式,结合实例解释其含义,让学生初步感受不等式的性质。
●证明过程:通过代数方法或几何直观证明基本不等式,注重证明过程的逻辑性和条理性,让学生理解不等式的来源和依据。
3. 深入探究(约10分钟)●性质探讨:引导学生探讨基本不等式的性质,如对称性、传递性等,加深对不等式的理解。
●案例分析:选取典型例题,分析如何运用基本不等式解决问题,强调解题思路和步骤。
●学生讨论:组织学生进行小组讨论,分享自己对基本不等式的理解和应用心得,促进思维的碰撞和融合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基本不等式》教学设计一.教学内容分析《基本不等式》是高中教材人教A 版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一.就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想.本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习选修2-3中推理与证明和选修4-5中不等式选讲时再次得到加强.基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分.本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式222(,)a b ab a b R +≥∈.在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式.其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力.这就使得不等式的证明成为本节课的核心内容.因此,我认为本节课的教学重点为:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程.二.教学目标设置《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题.根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:(1)通过观察图形,抽象出基本不等式,培养学生的抽象概括能力和逻辑推理能力;(2)让学生经历基本不等式的证明过程,理解基本不等式的几何背景,体会数形结合的数学思想.(3)通过运用基本不等式解决简单的最大(小)值问题,加深学生对基本不等式的理解,认识数学的对称性与完整性.三.学生学情分析学生在此之前已经具备了平面几何的基本知识,掌握了不等式的基本性质和比较法证明不等式.同时,高二学生具备了良好的图形分析能力、抽象概况能力以及一定层次上的交流沟通能力.这些都为学习本节内容奠定了基础.在学习本节课前尽管学生已经学习了函数的最值问题以及不等式的性质和解法,但对于用不等式模型来解决问题及基本不等式的各种几何背景学生还是有一些困难,一时很难接受;从重要不等式到基本不等式的简洁结构使得变量范围是从全体实数变化为正实数,很不好理解;对于变量存在和或者积为定值也需仔细观察,在整体的变化过程中取最值是整体与局部的数学思想容易忽视.另外,教材中提出探究基本不等式的几何解释需要学生具备良好的逻辑推理能力,而且图形中线段间的关系也比较隐蔽,不易被发现.因此,我以为本节课的教学难点为:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值.四.教学策略分析本节课采用探究式课堂教学模式,即在教学过程中,在教师的引导下,以学生的自主探究与合作交流为前提,以问题为导向设计教学情境,以“基本不等式的发现与证明”为基本研究内容,为学生提供自由表达、质疑、探究、讨论问题的机会,让学生在知识的形成、发展过程中展开思维,逐步提高学生发现问题、探索问题、解决问题的能力.五、教学过程设计1.创设情境【课前预习】赵爽利用弦图证明勾股定理的过程.(请学生在学案上课前完成:4S S S =+大正方形直角三角形小正方形()2222142c ab a b a b ∴=⨯+-=+.) 【引言】右图是在北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像个风车,代表了中国人民的友好好客.【思考1】赵爽利用弦图最先完成了勾股定理的证明,你还记得这个证明过程吗? (请学生表述推导过程,教师课件展示.)【过渡】在弦图中,由面积间的相等关系,得到了勾股定理这一经典等式.然而,相对关系与不等关系是相对存在的.在弦图中存在着怎样的不等关系呢?【思考2】观察变化的弦图,你能在图中找出面积间的不等关系吗?(教师利用几何画板改变弦图中两直角边的长度,展示运动变化的弦图,请学生观察并归纳: 生1:4S S ≥大正方形直角三角形,得ab b a 222≥+;生2:0S ≥小正方形,得()02≥-b a .) 【设计意图】介绍国际数学家大会以及赵爽的相关背景,体现数学的文化价值,渗透爱国主义教育.课前完成利用弦图证明勾股定理的过程,一方面展现了赵爽证明的构图巧妙、精致,是数与形的完美统一,让学生对弦图的认识清晰、完整;另一方面为提出弦图中面积间的不等关系做铺垫,体会相对关系与不等关系的辩证统一.同时,通过运动变化将直观的面积关系转化为隐含的数值关系.【归纳】对于两直角边a b 、,有222a b ab +≥.【思考3】上式中何时等号成立?(请学生说明:当a b =时, 222a b ab +=;当a b ≠,222a b ab +>.教师归纳:当且仅当a b =时,等号成立.)【探究1】上式对正实数是成立的,那么对任意实数a b 、,上式都成立吗?请证明自己的结论.(请学生自主探究完成证明,学生比较自然的想到用“比较法”证明.教师利用投影仪展示学生的完整证明过程.强调a b =和a b ≠两种情况,说明“当且仅当”的含义.)【归纳】由图形中面积间的不等关系,我们发现了两实数间的这一事实:对任意实数a b 、,有222a b ab +≥,当且仅当a b =时,等号成立.【设计意图】思考2请学生讨论等号成立的条件,了解“当且仅当”的含义,由于此时学生还没有学习简易逻辑的相关知识,无需从“充分必要条件”的角度加以说明.探究1给学生提供思维发展的空间,让学生从对知识的直观感知上升到理性证明,既体现了数学知识发生发展的过程及其严谨性,又巩固了证明不等式的基本方法,为后续证明基本不等式做铺垫.在此过程中给学生提供了一种研究思路:由图形中的不等关系可以获得相应实数间的一些不等式,渗透数形结合思想.2.基本不等式0,0)2a b a b +≥>> 【过渡】实际上,在不同的图形中上述不等式有不同的体现,我们再看这样一个情境.【探究2】如图,取正方形对角线上任意一点,分别作正方形两邻边的垂线,切分出两个正方形和两个矩形,设切分出的两正方形边长分别为a b 、,问:切分出的两正方形面积和与两矩形面积和的大小关系?(请学生自主探究完成,并说明:生1:22S S a b +=+12,32S S ab +=4,由不等式 222a b ab +≥3S S S S +≥+124得: ,当且仅当a b =时,等号 成立.生2:由正方形的对称性,将切分出的两矩形及较小的正方形分别向较大的正方形翻折,并没有将较大的正方形完全覆盖,故:3S S S S +≥+124 )【引申】若设切分出的两正方形的面积分别为a b 、, 根据上述不等关系,又可以得到怎样的不等式呢?(请学生说明:若两正方形的面积分别为a b 、,则其边长分别为b a 、,得:)0,0a b a b +≥>>当且仅当a b =时,等号成立.)【归纳】由图形中面积间的不等关系,我们又可以得到不等式)0,0a b a b +≥>>,当且仅当a b =时,等号成立.【设计意图】从学生比较熟悉的图形背景中再一次认识不等式222a b ab +≥,既可以根据已知的不等式探究图形中面积间的不等关系,又可以运用“割补法”在图形中体现不等式222a b ab +≥.进而提出引申问题,自然地由不等式222a b ab +≥过渡到)0,0a b a b +≥>>,为基本不等式的产生构造几何背景,并在图形中揭示不等式222a b ab +≥与不等式)0,0a b a b +≥>>的内在联系.【思考4】回顾不等式()0,02>>≥+b a ab b a (①)的生成过程中,你发现它与不等式ab b a 222≥+(②)有怎样的联系呢?(请学生说明: 生1:()222222244,0,0a b aba b ab ab a b ab a b a b +≥∴++≥∴+≥>>∴+≥生2:因为0,0a b >>ab 即得①式.生3:在②式中用a 代替2a ,b 代替2b 即得①式.)【设计意图】激发学生的思维,使其从多角度发现不等式222a b ab +≥与不等式)0,0a b a b +≥>>的内在联系,认识到它们是对同一个事实的两种不同描述,其本质是一致的.同时也能促进学生形成对学习进行反思的意识与习惯.【说明】通常我们把上式写作0,0)2a b a b +≥>>,称为基本不等式,本节课我们就来研究基本不等式.(引入课题并板书)【思考5】你能否证明基本不等式?(请学生思考完成.生1:(比较法)210222a b a b +-=≥+∴≥ 当且仅当a b =时,等号成立;生2:(综合法)(20a b a b -≥∴+≥当且仅当a b =时,等号成立;生3:(分析法)()()()()220a b a b a b a b +≥∴+≥∴+-≥∴≥∴+≥要证只要证只要证只要证上式显然成立。
当且仅当a=b 时,等号成立.请学生展示不同的证明方法,并叙述证明方程.生3的做法是普遍错误,教师可引导学生纠错,进而加入关键词“要证…,只要证…”即可,对分析法不做过多说明.)【设计意图】对于不等式的证明,学生已具备了“分析法”的基本思想,教材上以填空的形式证明了基本不等式,但“分析法”证明的格式以及为什么要这样证明,是学生思维的盲点,一是学生不会发现其中隐含的道理,二是学生照此模仿往往会出错.因此此处的证明由学生独立完成,相互交流,并展示不同的证明方法,这样既能使不同认知基本的学生暴露出不同的问题,并加以解决,又能教会学生欣赏同伴身上的闪光点,发扬合作精神.【过渡】实际上,在许多图形中都蕴含着基本不等式.【探究3】如图,取线段AB a b =+,其中,AC a BC b ==,以AB 为直径做圆O ,过点C 做垂直于AB 的弦DE ,连接AD 、BD.①.图中你能找到长度为2a b + ②.移动点C 在线段AB 上的位置(几何画板),你有什么结论呢?(请学生合作探究完成,并展示说明:生1:直角三角形中,斜边大于直角边;生2:在直角三角形中,斜边上的中线不小于斜边的高.生3:在圆中,半径不小于半弦.)【设计意图】通过对图形的探究多角度说明基本不等式的几何意义,由于学生对问题的.为了帮助学生,我将探究分解为两个小问题,从运动变化的角度帮助学生观察、归纳.一方面,帮助学生建立数学结合的基本思想;另一方面,培养学生从运动变化的角度思考问题、解决问题的能力,多角度认识基本不等式的几何解释.【过渡】基本不等式的代数意义是什么呢?【说明】我们通常把2a b +数.基本不等式也可以叙述为:两个正数的算术平均数不小于它们的几何平均数.3.应用举例【过渡】怎样运用基本不等式解决生活中的不等问题呢?【例】 学校用篱笆围一个面积为36平方米的矩形花圃,问:如何设计花圃的长和宽,所用篱笆最短,最短篱笆是多少?(请学生尝试完成,并表述解题过程,教师板书.强调能取得最小值的原因及等号成立的条件.教师适度归纳:根据基本不等式发现,两个正数积为定值时,和存在最小值.)【思考6】由数学的对称性,你认为利用基本不等式,我们还可以解决怎样的问题? (请学生从数学对称性的角度反思,上例中能取得最小值的原因,观察基本不等式的结构,尝试归纳出:当正数x 、y 的和为定值,当且仅当x=y 时,积有最大值.)【引申】现在学校仓库有一段长为36米的篱笆,要围成一个矩形花圃,问:如何设计花圃的长和宽,花圃的面积最大,最大面积是多少?【设计意图】本题是基本不等式在实际问题中的简单应用,一方面,让学生知道可以利用基本不等式求解最大(小)值的问题;另一方面,强化学生对基本不等式的理解,特别是等号成立的条件,同时培养学生形成严谨的思维习惯,具备反思的意识,也为后续提出“一正,二定,三相等”做铺垫.5.课堂小结【思考7】(1)本节课我们学习的主要内容是什么?(2)在应用基本不等式时,需要注意哪几点?(3)在本节课的学习中,运用了哪些数学思想方法?(请学生发言,并相互补充,教师点评即可.教师可适当总结本节课所应用的数学思想与方法.)【设计意图】通过对所学内容进行小结,从数与形两个方面提炼研究基本不等式的过程,使学生对本节内容有一个更全面的认识.6.作业布置:(1)课本100页习题A组第1,2题;(2)课后作业:请同学们课后在网上查找基本不等式的其它几何解释,整理并相互交流.【设计意图】安排一组教材上的习题,使学生继续加深对基本不等式的理解和应用.课后作业为拓展学生思维,进一步体会数形结合思想.。