抛物线中的一类直线过定点问题
抛物线过焦点的直线的结论
抛物线过焦点的直线的结论
抛物线过其焦点的直线有一些特殊的性质。
首先,我们知道焦点是抛物线的一个重要特征点,它位于抛物线的对称轴上,并且具有一定的几何意义。
当一条直线通过抛物线的焦点时,我们可以推导出以下结论:
1. 直线与抛物线相交于两个点,这两个点在直线上对称于焦点。
这是因为抛物线的对称性质保证了直线与抛物线的交点在直线上对称。
2. 这两个交点到焦点的距离相等。
这是由于直线与抛物线的交点在直线上对称于焦点,根据对称性质可以得出。
3. 直线与抛物线的切线重合于焦点。
这是因为切线是经过抛物线上一点且与抛物线相切的直线,而通过焦点的直线也必然通过抛物线上的点,并且与抛物线相交于该点。
这些结论可以用来解决一些几何问题。
例如,可以利用这些性质确定抛物线与直线的交点位置,或者利用切线重合于焦点的性质来证明某些几何问题。
总之,抛物线过焦点的直线具有一些特殊的性质,通过利用这些性质,我们可以得出一些有关抛物线与直线交点及切线的重要结论。
抛物线中的定值、定点问题资料讲解
抛物线中的定值、定点问题抛物线中的定值、定点问题 例1 过抛物线)0(22>=p px y 的焦点的一条直线和此抛物线交于),(11y x A ,),(22y x B 两点,求证:221p y y -=.【规范解答】证法一:因直线AB 过焦点)0,2(p F ,可设其方程为2p my x +=,代入px y 22= 得)2(22p my p y +=,即.0222=--p pmy y 该方程的两根就2p my x +=是两个交点B A ,的纵坐标21,y y ,由韦达定理:221p y y -=.证法二:因B A ,在抛物线上,故可设).,2(),,2(222121y py B y p y A 又)0,2(p F ,故),,22(121y p p y FA -=),,22(222y p p y FB -=因B F A ,,三点共线,所以 122221)22()22(y p p y y p p y ⋅-=⋅- 移项分解因式得:0))((21221=-+y y p y y ,其中,21y y ≠故221p y y -=.证法三:如图1,过点F B A ,,分别作准线的垂线,垂足为.,,111F B A 要证明221p y y -=,只要证明.211111F F F B F A =⋅ 21,1∠=∠∴=AA AF ;同理.43∠=∠而011180=∠+∠BF B AF A (A A 1∥B B 1),故01804321=∠+∠+∠+∠,所以.90310=∠+∠01190=∠FB A .由直角三角形的性质得:.211111F F F B F A =⋅【回顾】(1)从解题方法来看,对于直线与圆锥曲线相交的问题,一般有“设线”(证法一)和“设点”(证法二)两种选择,但也可考虑通过定义用“几何方法”来解答(证法三)(特别是与焦点有关的问题);(2)从解题细节来看,证法一选择设直线方程为2p my x +=而非)2(p x k y -=,为什么?首先,这样代入可消去x 直达目标221p y y -=,运算便捷;其次,本题中直线可能与y 轴平行而斜率不存在,但不可能与y 轴垂直,设2p my x +=省去了讨论的麻烦;证法二中用向量表达三点共线而没有使用斜率也有同样的考虑;(3)从知识内容来看,抛物线的方程和定义是解题的依据,韦达定理及三角形和向量的有关知识是解析几何的常用工具,而所证明的结论表明:对于抛物线而言,虽然过焦点的弦有无数条,但每一条焦点弦的两端到对称轴的距离之积总等于.2p “寓定于变”展示了几何图形的美妙和谐!借题发挥在证法一中若改变AB 直线的预设并在联立方程中消去y 后,观察21,x x 之积得:变式1 条件同例1,则4221p x x ==定值。
例说抛物线中的定点问题
例说抛物线中的定点问题浙江奉化奉港中学 罗永高 315500近几年,抛物线中的定点问题频繁出现在各类考试试题中,这类问题条件隐晦,变量较多,计算量大.因而许多同学感觉到困难.其解决问题的关键是合理使用参数,巧妙地消去参数,找出与参数无关的点.下面给出几个定点问题一般形式. 1 线段的中垂线问题已知抛物线)(22o p px y >=上两动点),,(),,(2211y x B y x A 且a a x x ,21=+为常数,求证:线段AB 的垂直平分线过定点.证明 设).,2(),,2(222121y py B y p y A 则 AB 中点.2),2,2(2121y y p k y y a M AB +=+ AB ∴的垂直平分线方程为 ).2(222121a x p y y y y y -+-=+-即 .02)2)((21=+--+py P a x y y ∴ ,02=--p a x 且0=y . ∴ AB 的垂直平分线过定点).0,2(p a + 2 切点弦所在直线问题直线n my x l +=:与抛物线)0(2:2>=p px y C 相离,动点P 在直线l 上运动,过P 作抛物线C 的两条切线,,PB PA 切点分别为B A ,两点,求证:直线AB 过定点.证明 设).,(),,(),,(002211y x P y x B y x A则切线PA 方程为);(11x x p y y +=切线PB 方程为 ).(22x x p y y += 把,(0x P )0y 代入得 ).(),(20021001x x p y y x x p y y +=+=∴直线AB 方程为 ).(00x x p yy += 把n my x +=00代入得 ,0)(0=---px pn mp y y.,mp y n x =-=∴∴直线AB 过定点).,(mp n -3 抛物线内接三角形一边直线问题点),(00y x M 是抛物线px y 22=上一个定点,过点M 作两弦,,MB MA (1) 若MA k m m k MB,.=为非零常数,求证直线AB 过定点; (2) 若n n k k MB MA ,=+为非零常数,求证直线AB 过定点;(3) 若MB MA ,倾斜角分别为βα,,当βα,变化时;且βα+为定值)0(πθθ<<,求证直线AB 过定点.证明 设).,2(),,2(),,2(020222121y py M y p y B y p y A 则 .2,2,2212010y y p k y y p k y y p k AB MB MA +=+=+= 直线AB 的方程为 ).2(2)(21211py x y y p y y -+=- 即 .02)(2121=--+px y y y y y)1( 1 ,2.22010m y y p y y p =++ .)(4.20210221y y y y mp y y -+-=∴ )2( 把)2(代入)1(得,024))((22021=--+++px m p y y y y y.020,22y y m p p y x -=-=∴ 即直线AB 过定点),22(020y mp p y --。
直线过定点问题
直线过定点问题解题技巧:证明动直线在一定的条件下过定点是解析几何中的一类重要题型,这类 问题解题一般有两种解法.法 1:设直线,求解参数,一般的解题步骤为:(1)设出直线的方程 y = kx + b 或 x = my + t ;(2)通过题干所给的已知条件,进行正确的运算,找到k 和b 、m 和t 的关系,或者解 出b ,t 的值;(3)根据(2)中得出的结果,找出直线过的定点法 2:求两点,猜定点,证向量共线.一般的解题步骤为:(1)通过题于条件,求出直线上的两个点 A , B 的坐标(含参);(2)取两个具体的参数值,求出对应的直线 AB ,并求出它们的交点 P ,该点即为直线过的定点;(3)证明 PA 与 PB 共线,得出直线 AB 过定点 P .注:上面的两个解法中,解法 2 的计算量通常要大一些,故一般首选解法 1.当解法 1 失效或处理起来较为复杂时再考虑解法 2.典型例题例 1、已知椭圆 C : 12222=+b y a x (a >b >0)的半焦距为c 离心率为21 ,左顶点 A 到直线x = ca 2的距离为6 ,点 P ,Q 是椭圆上的两个动点. (1)求椭圆C 的方程;(2)若直线 AP ⊥ AQ ,求证:直线 PQ 过定点 R ,并求出 R 点的坐标例 2、已知一动圆经过点 M (2,0),且在 y 轴上截得的弦长为4 ,设该动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;(2)过点 N (1,0) 任意作两条互相垂直的直线 l 1 ,l 2 ,分别交曲线C 于不同的两点A , B 和 D , E ,设线段 AB , DE 的中点分别为 P ,Q①求证:直线 PQ 过定点 R ,并求出定点 R 的坐标; ②求 |PQ |的最小值例 3、椭圆 C : 12222=+by a x (a >b >0)的上顶点为 B ,右焦点为 F ,点 B , F 都在直线3x + y - 3= 0 上.(1)求椭圆C 的标准方程;(2)M , N 为椭圆C 上的两点,且直线 BM , BN 的斜率之积为 41. 证明:直线MN 过定点,并求定点坐标.专题练习1、设椭圆E : 12222=+by a x (a >b >0)的右焦点到直线 x - y + 22 = 0的距离为3,且过点 (-1,-26) . (1)求 E 的方程;(2)设椭圆 E 的左顶点是 A ,直线l : x - my - t = 0 与椭圆 E 交于不同的两点M , N (均不与 A 重合),且以MN 为直径的圆过点 A .试判断直线l 是否过定点,若是,求出定点坐标;若否,说明理由.2、抛物线C : y 2= 2 px ( p > 0) 上一点 M (1, y 0 )( y 0 > 0)满足|MF | = 2 ,其中 F 为抛物线的焦点. (1)求抛物线C 的方程 (2)设直线MA 和MB 分别与抛物线C 交于不同于M 点的 A , B 两点,若MA ⊥ MB ,证明:直线 AB 过定点,并求此定点的坐标 .3、已知直线的方程为 y = x + 2 ,点 P 是抛物线 y 2= 4x 上距离直线l 最近的点,点 A 是抛物线上异于点 P 的点,直线 AP 与直线l 交于点Q ,过点Q 与 x 轴平行的直线与抛物线交于点 B . (1)求P 点的坐标; (2)证明:直线 A B 恒过定点 ,并求这个定点坐标。
压轴突破 定点问题
压轴突破 圆锥曲线中的热点问题定点问题突破点一 直线过定点【例1】 已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB→=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.(1)解 由题设得A (-a ,0),B (a ,0),G (0,1).则AG→=(a ,1),GB →=(a ,-1). 由AG →·GB→=8,得a 2-1=8, 解得a =3或a =-3(舍去).所以椭圆E 的方程为x 29+y 2=1.(2)证明 设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3.易知直线P A 的方程为y =t 9(x +3),所以y 1=t 9(x 1+3).易知直线PB 的方程为y =t 3(x -3),所以y 2=t 3(x 2-3).可得3y 1(x 2-3)=y 2(x 1+3).①由于x 229+y 22=1,故y 22=-(x 2+3)(x 2-3)9,② 由①②可得27y 1y 2=-(x 1+3)(x 2+3),结合x =my +n ,得(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.③将x =my +n 代入x 29+y 2=1,得(m 2+9)y 2+2mny +n 2-9=0.所以y 1+y 2=-2mn m 2+9,y 1y 2=n 2-9m 2+9. 代入③式得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0,解得n =-3(舍去)或n =32.故直线CD 的方程为x =my +32,即直线CD 过定点⎝ ⎛⎭⎪⎫32,0. 若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0. 综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0. 探究提高 1.动直线l 过定点问题.首先设动直线方程(斜率存在)为y =kx +t ,再由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.从特殊情况入手,求出定点,再证明定点与变量无关.【训练1】 (2021·株洲质检)在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (1,0),且与直线x =-1相切,设动圆的圆心Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 的两条直线l 1,l 2与曲线C 分别相交于A ,B 与C ,D 四点,且M ,N 分别为AB ,CD 的中点.设l 1与l 2的斜率依次为k 1,k 2,若k 1+k 2=-1,求证:直线MN 恒过定点.(1)解 由题意知,圆心Q 到点F (1,0)的距离与到直线x =-1的距离相等,故由抛物线定义知,圆心Q 的轨迹是以F (1,0)为焦点,以直线x =-1为准线的抛物线,设其方程为y 2=2px (p >0),则p 2=1,p =2,故曲线C 的方程为y 2=4x .(2)证明 由题意设l 1,l 2的方程分别为y =k 1(x -1)(k 1≠0),y =k 2(x -1)(k 2≠0).联立得方程组⎩⎨⎧y =k 1(x -1),y 2=4x ,消y 整理,得k 21x 2-(2k 21+4)x +k 21=0,其Δ=16k 21+16>0,所以x 1+x 2=2k 21+4k 21,则M ⎝ ⎛⎭⎪⎫k 21+2k 21,2k 1. 同理N ⎝ ⎛⎭⎪⎫k 22+2k 22,2k 2. 所以k MN =2k 1-2k 2k 21+2k 21-k 22+2k 22=k 1k 2k 1+k 2. 由k 1+k 2=-1,得k MN =-k 1k 2=-k 1(-1-k 1)=k 1(1+k 1),所以直线MN 的方程为y -2k 1=k 1(1+k 1)⎝⎛⎭⎪⎫x -k 21+2k 21, 整理,得y +2=k 1(1+k 1)(x -1),所以直线MN 恒过定点(1,-2).突破点二 曲线过定点【例2】 (2021·湖北联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b ≥1)的离心率为22,它的上焦点到直线bx +2ay -2=0的距离为23.(1)求椭圆C 的方程;(2)过点P ⎝ ⎛⎭⎪⎫13,0的直线l 交椭圆C 于A ,B 两点,试探究以线段AB 为直径的圆是否过定点.若过,求出定点坐标;若不过,请说明理由.解 (1)由题意得,e =c a =22.又a 2=b 2+c 2,所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1, 所以b 2=1,a 2=2,故椭圆C 的方程为y 22+x 2=1.(2)当AB ⊥x 轴时,以线段AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -132+y 2=169. 当AB ⊥y 轴时,以线段AB 为直径的圆的方程为x 2+y 2=1.可得两圆交点为Q (-1,0).由此可知,若以线段AB 为直径的圆过定点,则该定点为Q (-1,0).下证Q (-1,0)符合题意.设直线l 的斜率存在,且不为0,其方程设为y =k ⎝ ⎛⎭⎪⎫x -13,代入y 22+x 2=1, 并整理得(k 2+2)x 2-23k 2x +19k 2-2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 23(k 2+2),x 1x 2=k 2-189(k 2+2), 所以QA →·QB →=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+k 2⎝ ⎛⎭⎪⎫x 1-13⎝ ⎛⎭⎪⎫x 2-13 =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫1-13k 2(x 1+x 2)+1+19k 2 =(1+k 2)·k 2-189(k 2+2)+⎝⎛⎭⎪⎫1-13k 2·2k 23(k 2+2)+1+19k 2 =0.故QA→⊥QB →,即Q (-1,0)在以线段AB 为直径的圆上. 综上,以线段AB 为直径的圆恒过定点(-1,0).探究提高 1.定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k =0或k 不存在时.2.以曲线上的点为参数,设点P (x 1,y 1),利用点在曲线f (x ,y )=0上,即f (x 1,y 1)=0消参.【训练2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,左、右焦点分别为F 1,F 2,点A 为椭圆上一点,∠F 1AF 2=60°,且S △F 1AF 2= 3.(1)求椭圆C 的方程;(2)设动直线l :y =kx +m 与椭圆C 有且只有一个公共点P ,且与直线x =4相交于点Q .请问在x 轴上是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,请说明理由.解 (1)由e =12,得a 2=4c 2.又S △F 1AF 2=12|AF 1|·|AF 2|sin 60°=3,所以|AF 1|·|AF 2|=4.在△F 1AF 2中,利用余弦定理得4c 2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos 60°,所以4c 2=(|AF 1|+|AF 2|)2-3|AF 1||AF 2|=4a 2-12.则a 2-c 2=3,从而a 2=4,c 2=1,∴b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)设P (x 0,y 0),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(4k 2+3)x 2+8kmx +4m 2-12=0,Δ=(8km )2-4(4k 2+3)(4m 2-12)=0,所以4k 2+3-m 2=0,x 0=-4k m ,y 0=3m ,得P ⎝ ⎛⎭⎪⎫-4k m ,3m . 由⎩⎨⎧y =kx +m ,x =4,得Q (4,4k +m ). 设在x 轴上存在满足题意的点M ,坐标为(x 1,0),则MP →=⎝ ⎛⎭⎪⎫-4k m -x 1,3m ,MQ →=(4-x 1,4k +m ). 因为以PQ 为直径的圆恒过定点M ,所以MQ →·MP→=0. 则(4x 1-4)k m +x 21-4x 1+3=0对于任意的k ,m 都成立,所以⎩⎨⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0)符合题意.突破点三 圆锥曲线中定点探索性问题【例3】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P ⎝⎛⎭⎪⎫1,32满足|PF 1|+|PF 2|=2a ,且S △PF 1F 2=32.(1)求椭圆C 的标准方程;(2)过点M (4,0)的直线l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,且y 1y 2≠0,问在x 轴上是否存在定点N ,使得直线NA ,NB 与y 轴围成的三角形始终为底边在y 轴上的等腰三角形?若存在,求出定点N 的坐标;若不存在,请说明理由.解 (1)因为|PF 1|+|PF 2|=2a ,所以点P ⎝⎛⎭⎪⎫1,32在椭圆C 上. 将⎝⎛⎭⎪⎫1,32代入x 2a 2+y 2b 2=1,得1a 2+34b 2=1.① 设椭圆C 的焦距为2c ,则S △PF 1F 2=12·2c ·32=32,求得c = 3.从而a 2-b 2=3.②由①②可得a 2=4,b 2=1.所以椭圆C 的标准方程为x 24+y 2=1. (2)显然直线l 的斜率存在且不为0,设直线l 的方程为y =k (x -4).设A (x 1,y 1),B (x 2,y 2).假设存在点N (t ,0),因为直线NA ,NB 与y 轴围成的三角形始终为底边在y 轴上的等腰三角形,所以k NA +k NB =0,故k NA +k NB =y 1x 1-t +y 2x 2-t =k (x 1-4)x 1-t +k (x 2-4)x 2-t=k ·2x 1x 2-(t +4)(x 1+x 2)+8t (x 1-t )(x 2-t )=0, 则2x 1x 2-(t +4)(x 1+x 2)+8t =0.由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 2=1消去y 并整理,得(1+4k 2)x 2-32k 2x +64k 2-4=0.由Δ=(-32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112,则x 1+x 2=32k 21+4k 2,x 1x 2=64k 2-41+4k 2. 所以2×64k 2-41+4k 2-(t +4)×32k 21+4k 2+8t =0,解得t =1. 于是在x 轴上存在定点N (1,0),使得直线NA ,NB 与y 轴围成的三角形始终为底边在y 轴上的等腰三角形.探究提高 1.本题给出了求解圆锥曲线中定点的探索性问题的基本思路和方法:一肯定,二顺推.2.第一步肯定定点的存在,此时要做好两件工作:(1)设出定点的坐标,(2)明白定点满足什么条件.如本题,假设在x 轴上存在定点N (t ,0),由直线NA ,NB 与y 轴围成的三角形始终为底边在y 轴上的等腰三角形,得到k NA +k NB =0.第二步依据满足的条件进行代数推理,此时也要完成两件工作:(1)将点的坐标代入条件等式,(2)将直线方程与圆锥曲线方程联立,得到根与系数的关系,进而解出定点.【训练3】 设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33.(1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解 (1)在△ABC 中,由余弦定理,得AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.(*)又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,∴CA ·CB =43,代入(*)式得CA +CB =2 2.故椭圆长轴长为2a =22,焦距为2c =AB =2,b 2=a 2-c 2=1.∴椭圆M 的标准方程为x 22+y 2=1. (2)设直线方程为y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0,∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2. 假设x 轴上存在定点D (x 0,0),使得DE →·DF→为定值. ∵DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2)=x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1)=(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=(2x 20-4x 0+1)k 2+(x 20-2)1+2k 2, ∴要使DE →·DF →为定值,则DE →·DF→的值与k 无关, ∴2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0. 故存在定点D ⎝ ⎛⎭⎪⎫54,0,使DE →·DF →为定值-716.1.(2021·厦门模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,且a =2b .(1)求C 的方程;(2)若A ,B 为C 上的两个动点,过F 2且垂直x 轴的直线平分∠AF 2B ,求证:直线AB 过定点.(1)解 因为|F 1F 2|=4=2c ,所以c =2,所以a 2-b 2=4.又a =2b >0,所以a 2=8,b 2=4,故C 的方程为x 28+y 24=1.(2)证明 由题意知,直线AB 的斜率存在,F 2(2,0).设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 28+y 24=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-8=0, 则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=64k 2-8m 2+32>0,且x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2. 设直线F 2A ,F 2B 的倾斜角分别为α,β,则α=π-β,所以kF 2A +kF 2B =y 1x 1-2+y 2x 2-2=0, 所以y 1(x 2-2)+y 2(x 1-2)=0,即(kx 1+m )(x 2-2)+(kx 2+m )(x 1-2)=0,所以2kx 1x 2+(m -2k )(x 1+x 2)-4m =0,所以2k ·2m 2-81+2k 2+(2k -m )·4km 1+2k 2-4m =0. 化简,得m =-4k ,所以直线AB 的方程为y =kx -4k ,即y =k (x -4),故直线AB 过定点(4,0).2.已知抛物线C :x 2=-2py (p >0)经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)证明 由(1)知抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎨⎧y =kx -1,x 2=-4y得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4.直线OM 的方程为y =y 1x 1x . 令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2. 设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n ,DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2. 令DA →·DB→=0,即-4+(n +1)2=0, 得n =1或n =-3.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).3.(2021·河北省“五个一联盟”联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,一顶点坐标为A (0,-22).(1)求椭圆的标准方程;(2)已知M ,N 为椭圆上异于A 的两点,且AM→⊥AN →,判断直线MN 是否过定点?若过定点,求出此点坐标.解 (1)由顶点A (0,-22),知b =2 2.又e 2=c 2a 2=1-b 2a 2=12,则a 2=2b 2=16.故椭圆方程为x 216+y 28=1. (2)直线MN 斜率不存在时,不合题意.设直线MN 方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2).联立⎩⎨⎧y =kx +m ,x 2+2y 2=16,得(1+2k 2)x 2+4kmx +2m 2-16=0, Δ=(4km )2-4(1+2k 2)(2m 2-16)=128k 2+64-8m 2>0,x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-161+2k 2. 由AM→⊥AN →,得 AM →·AN →=(x 1,y 1+22)·(x 2,y 2+22) =x 1x 2+(kx 1+m +22)(kx 2+m +22)=(1+k 2)x 1x 2+k (m +22)(x 1+x 2)+(m +22)2 =3m 2+42m -81+2k 2=0, 解得m =-22或m =223.若直线MN 方程为y =kx -22,则直线过定点(0,-22),与A 重合,不合题意;若直线MN 方程为y =kx +223,则直线过定点⎝⎛⎭⎪⎫0,223. 综上,直线过定点⎝⎛⎭⎪⎫0,223.。
函数图像恒过定点问题
函数恒过定点问题1.方程“0X=0”的理解:若方程的解有无穷多个,则方程的系数均为02.若方程mx=n有无数个解,则m=_____,n=_____方法:解决函数恒过定点问题,最常用的方法是将函数看成方程,则这个方程有无穷个解。
方程的解有无穷多个,则方程的系数均为0,利用这一方法的思路是将原方程整理为以参数为主元的方程,然后利用系数为零求得。
一、直线过定点问题由“y-yˊ=k(x-xˊ)”求定点把含有参数的直线方程改写成“y-yˊ=k(x-xˊ)的形式,这样就证明了它所表示的所有直线必过定点(xˊ,yˊ)例1:已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证不论k取任何实数值时,直线l必过定点,并求出这个定点的坐标例2:若实数a.b满足2a-3b=1,求证:直线ax+by=5必过定点练习题1.直线l:kx﹣y+2k+1=0必过定点________2.直线y=mx+2m+14过定点________3.直线kx+3y+k﹣9=0过定点________4.设a+b=3,则直线ax+by=1恒过定点________5.当a+b+c=0时,直线ax+by+c=0必过定点________6.直线(m﹣1)x+y+2m+1=0过定点________7.直线(2a﹣1)x+2ay+3=0恒过的定点是________8.对于任意实数m.n,直线(m+n)x+12my﹣2n=0恒过定点的坐标是________9.若p,q满足条件3p﹣2q=1,直线px+3y+q=0必过定点________10.直线(m﹣1)x+(2m+3)y﹣(m﹣2)=0恒过定点________二、抛物线过定点问题将解析式中除自变量和因变量之外的参数(设为m)集中,形成(ax2+bx+c)m的形式,根据题意可得ax2+bx+c=0,解得定点的横坐标x0,带入解析式求得纵坐标y0,函数图象一定过定点(x0,y0)例1.已知抛物线不论m取何值,抛物线恒过某定点P,则P点的坐标为()A.(2,﹣5)B.(2,5)C.(﹣2,5)D.不能确定例2.兴趣小组研究二次函数化,这个二次函数的图象形状与位置均发生变化,两个定点,请你写出这两个定点的坐标:的图象发现,m的变但这个二次函数的图象总经过练习题1.抛物线y=kx2+(2k+1)x+2恒过定点,请直接写出定点坐标________2.抛物线y=x2+mx﹣2m通过一个定点,则这个定点的坐标是_________。
抛物线中的定点、定值、定直线问题
一、单选题1.已知抛物线()2:20C y px p =≥的焦点F 与椭圆22:143x y E +=的一个焦点重合,过坐标原点О作两条互相垂直的射线OM ,ON ,与C 分别交于,M N ,则直线MN 过定点( )A .()4,0B .()4,0-C .()1,0-D .()1,0 2.已知直线l 与抛物线26y x =交于不同的两点A ,B ,直线OA ,OB 的斜率分别为1k ,2k ,且12k k ⋅l 恒过定点( )A .(-B .(-C .(-D .( 3.已知曲线C :22y px =(0)p >,过它的焦点F 作直线交曲线C 于M ,N 两点,弦MN 的垂直平分线交x 轴于点P ,可证明PF MN 是一个定值m ,则m =( ) A.12 B .1C .2D 4.已知抛物线2:2C y x =,过定点(,0)M a 的直线与抛物线C 交于,A B 两点,若2211||||MA MB +常数,则常数a 的值是( ) A .1 B .2 C .3 D .45.抛物线x 2=-2y 与过点P (0,-1)的直线l 交于A ,B 两点,如果OA 与OB 的斜率之和为1,则直线l 的方程是( )A .Y =-x -1B .Y =x +1C .Y =x -1D .Y =-x +1 6.设点F 为抛物线216y x =的焦点,A ,B ,C 三点在抛物线上,且四边形ABCF 为平行四边形,若对角线5BF =(点B 在第一象限),则对角线AC 所在的直线方程为 A .82110x y --=B .480x y --=C .4230--=x yD .230x y --=7.已知动点A ,B 关于坐标原点O 对称,2AB =,M 过点A ,B 且与直线1y =相切.若存在定点P ,使得MA MP -为定值,则点P 的坐标为( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎫- ⎪⎝⎭C .()0,1D .()0,1-8.已知点,A B 在抛物线2y x =上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则直线AB 一定过点( )A .(2,0)B .1,02C .(0,2)D .10,2⎛⎫ ⎪⎝⎭ 二、多选题9.抛物线2:4C y x =的焦点为F ,动直线():0l y kx b kb =+≠与抛物线交于两点,A B 且OA OB ⊥,直线,AF BF 分别与抛物线交于,C D 两点,则下列说法正确的是( ) A .直线l 恒过定点()4,0B .14AB CD k k =C .1625AD BC k k =- D .若OH AB ⊥于点H ,则点H 的轨迹是圆 10.已知抛物线方程为24x y =,直线:220l x y --=,点00(,)P x y 为直线l 上一动点,过点P 作抛物线的两条切线,切点为A 、B ,则以下选项正确的是( )A .当00x =时,直线AB 方程为1y =B .直线AB 过定点()0,1C .AB 中点轨迹为抛物线D .PAB △11.已知抛物线24y x =,过焦点F 作一直线l 交抛物线于()11,A x y ,()22,B x y 两点,以下结论正确的有( )A .AB 没有最大值也没有最小值B .122AB x x =++C .124y y =-D .111FA FB+= E.若直线l 的倾斜角为θ,则22sin =AB θ12.已知点()2,2M -在拋物线()220x py p =>的准线上,F 是拋物线的焦点.过点M 的两条直线分别与抛物线相切于点A ,B ,直线MF 交直线AB 于点E ,则下列结论正确的是( )A .拋物线方程为24x y =B .直线AB 的方程为240x y -+=C .0AM BM ⋅=D .2ME AE BE =⋅三、填空题 13.经过抛物线2:4C x y =的焦点F 的直线交此抛物线于A ,B 两点,抛物线在A ,B 两点处的切线相交于点M ,则点M 必定在直线______上.(写出此直线的方程) 14.已知点P 为直线l :x =-2上任意一点,过点P 作抛物线y 2=2px (p >0)的两条切线,切点分别为A (x 1,y 1),B (x 2,y 2),若x 1x 2为定值,则该定值为____.15.过抛物线24y x =上一点P (4,4)作两条直线P A ,PB ,且它们的斜率之积为定值4,则直线AB 恒过定点____.16.已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则11||||AB DE +的值为_______. 四、解答题17.在平面直角坐标系中,已知动点(,)(0)M x y y ≥到定点()0,1F 的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点(4,4)N 作斜率为12,k k 的直线分别交曲线C 于不同于N 的A ,B 两点,且12111k k +=.证明:直线AB 恒过定点.18.设抛物线2:4C y x =的焦点为F ,过F 且斜率k ()0k >的直线l 与C 交于A ,D 两点,8AD =.(1)求k ;(2)若()02B x ,在C 上,过点B 作C 的弦BP ,BQ ,若BP BQ ⊥,证明:直线PQ 过定点,并求出定点的坐标.19.已知F 为抛物线2:2(0)C x py p =>的焦点,直线:21l y x =+与C 交于A ,B 两点且||||20AF BF +=.(1)求C 的方程.(2)若直线:2(1)m y x t t =+≠与C 交于M ,N 两点,且AM 与BN 相交于点T ,证明:点T 在定直线上.20.已知曲线E 上的点到()0,1F 的距离比它到x 轴的距离大1.(1)求曲线E 的方程;(2)过E 作斜率为k 的直线交曲线E 于A 、B 两点;①若3BF FA =,求直线l 的方程;②过A 、B 两点分别作曲线E 的切线1l 、2l ,求证:1l 、2l 的交点恒在一条定直线上.21.在平面直角坐标系Oxy 中,点F (1,0),D 为直线l :x =-1上的动点,过D 作l 的垂线,该垂线与线段DF 的垂直平分线交于点M ,记M 的轨迹为C .(1)求C 的方程;(2)若过点F 的直线与曲线C 交于P ,Q 两点,直线OP ,OQ 与直线x =1分别交于A ,B 两点,试判断以AB 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.22.已知抛物线()2:20C x py p =>的焦点为F .点()02,A y 在C 上,2AF = .(1)求p ;(2)过F 作两条互相垂直的直线12,l l ,1l 与C 交于,M N 两点,2l 与直线1y =-交于点P ,判断PMN PNM ∠+∠是否为定值?若是,求出其值;若不是,说明理由.。
抛物线的标准方程和性质-重难点题型精讲(教师版)
专题 3.11
抛物线的标准方程和性质-重难点题型精讲
1.抛物线的定义
(1)定义:平面内与一个定点 F 和一条定直线 l(l 不经过点 F)的距离相等的点的轨迹叫作抛物线.点 F 叫
作
抛(2)物Fra bibliotek线的
焦
集
点
,
合
直
线
l
语
叫
作
抛
言
物
线
的
准
线
表
设点 M(x,y)是抛物线上任意一点,点 M 到直线 l 的距离为 d,则抛物线就是点的集合 P={M||MF|=d}.
最值的求法,利用函数的单调性等,亦可用均值不等式求解.
【题型 1
动点的轨迹问题】
【方法点拨】
根据抛物线的定义,抛物线是平面内与一个定点 F,和一条定直线 l(l 不经过点 F)的距离相等的点的轨迹,
因此只要动点满足抛物线的定义,就可以选择利用定义法求出其轨迹方程.
高考复习材料
【例 1】(2024·上海市高三开学考试)在平面上,到点(1,0)的距离等于到直线 + 2 = 3的距离的动点
(
)
A.2 = 4
B.2 = −4
1
1
C.2 = 2
D.2 = −2
【解题思路】设出抛物线方程,利用待定系数法求解作答.
【解答过程】依题意,设抛物线方程为2 = , ≠ 0,于是得22 = ⋅ (−1),解得 = −4,
所以所求抛物线方程是2 = −4.
故选:B.
【变式 4-1】(2024·全国·高三专题练习)焦点在直线3−4−12 = 0上的抛物线的标准方程为(
4,则抛物线的标准方程为(
高考数学讲义抛物线之切线与定点问题
2014年二轮复习抛物线之切线与定点问题内容明细内容要求层次了解理解 掌握 圆锥曲线椭圆的定义与标准方程 √ 椭圆的简单几何意义 √ 抛物线的定义及其标准方程√ 抛物线的简单几何意义 √ 双曲线的定义及标准方程 √ 双曲线的简单几何性质 √ 直线与圆锥曲线的位置关系√北京三年高考两年模拟统计中点弦 垂直角度弦长面积范围定点定值 共线比例其它 高考试题 4 1 1 模拟试题 7 8 11 14 4 4 共计78151455抛物线之切线与定点2014年高考怎么考自检自查必考点抛物线22y px =分为上下两支,可以分别看成函数求导 对于22y px =求导得2'2yy p =,则'p y y=抛物线22y px =在11(,)A x y 的切线的斜率为1AT p k y = 故切线AT 为111()py y x x y -=- 化简得到11()py x x y =+ 同理切线BT 为22()py x x y =+抛物线切线性质总结(老师带领学生证明)性质1:过抛物线一弦AB 的中点平行于对称轴的直线与抛物 线交于点P ,若过P 的切线为PT ,则PT //AB性质2:过抛物线上一点P 的切线交其对称轴于点T ,则PF TF =性质3:过抛物线焦点弦的两端点作抛物线的切线,两切线交点在准线上TPQBAOyxFOyxA自检自查必考点TF BAOyx性质4:过抛物线的准线上任一点所作的两条切线必须相互垂直性质5:过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 性质6:切线交点与弦中点连线平行于对称轴性质7:过抛物线准线上的一点引抛物线的两条切线,则准线上这点与焦点连线与准线的夹角被切线平分 性质8:过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径性质9:从抛物线的焦点向它的任意切线作垂线,则其垂足必在抛物线顶点的切线上性质10:过抛物线的焦点作直线与抛物线的任意切线垂直,则此直线与准线的交点和切线的连线必平行于此抛物线的对称轴性质11:抛物线的三切线围成的三角形的垂心必在准线上【例1】 证明:过抛物线上一点00M x y (,)的切线方程是:00y y p x x =+()【例2】 设抛物线2y =2px 的焦点弦AB 在其准线上的射影是11A B ,证明:以11A B 为直径的圆必过一定点22y px =例题精讲【例3】 在平面直角坐标系xoy 中,直线l 与抛物线24y x =相交于不同的,A B 两点.⑴如果直线l 过抛物线的焦点,求OA OB ⋅u u u r u u u r的值;⑵如果4OA OB ⋅=-u u u r u u u r证明直线l 必过一定点,并求出该定点.【例4】 如图,过抛物线()220y px p =>上一定点()()000,0,P x y y >作两条直线分别交抛物线于()()1122.,,.A x y B x y(I)求该抛物线上纵坐标为2p的点到其焦点F 的距离; (II)当PA 与PB 的斜率存在且倾斜角互补时,求12y y y +的值,并证明直线AB 的斜率是非零常数.yPO xAB【例5】 如图,抛物线关于x 轴对称,它的顶点在坐标原点,点()()()11221,2,,,,P A x y B x y 均在抛物线上. (I )写出该抛物线的方程及其准线方程;(II )当PA PB 与的斜率存在且倾斜角互补时,求12y y +的值及直线AB 的斜率.x【例6】 如图,在平面直角坐标系xoy 中,过y 轴正方向上一点(0,c)C 任作一直线,与抛物线2y x =相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于,P Q(Ⅰ)若2OA OB ⋅=u u u r u u u r,求c 的值;(Ⅱ)若P 为线段AB 的中点,求证:QA 为此抛物线的切线; (Ⅲ)试问(Ⅱ)的逆命题是否成立?说明理由。
高中数学抛物线题型归类
高中数学抛物线题型归类高中数学抛物线题型归类一、基础知识1、抛物线的定义:平面上,到一个定点(F)和一条定直线(l)的距离相等的点的集合。
2、抛物线的标准方程:右开口抛物线的标准方程为 y^2 = 2px,左开口抛物线的标准方程为 y^2 = -2px,上下开口抛物线的标准方程为 y^2 = 2p(x + k) 和 y^2 = 2p(x - k)。
3、抛物线的性质:抛物线是平滑的曲线,它关于轴、轴和原点对称,它的焦点在直线上,它的准线与直线的交点在对称轴上。
二、常见题型1、抛物线的定义题例1. 已知抛物线的方程为y^2 = 4x,F是抛物线的焦点,准线与对称轴的交点为M,过M作直线l交抛物线于A、B 两点,求证:AF、MF、BF成等比数列。
解:设A、B的横坐标分别为x1、x2,根据抛物线的定义,得|AF| = x1 + 1,|MF| = -1,|BF| = x2 + 1,因为x1 + x2 = 4,所以(x1 + 1)^2 = (x2 + 1)(4 - x2),即x1^2 + 2x1 - 3x2 - 4 = 0,由此得到(x1 + 3)(x1 - 4) = -3(x2 + 1),即x1x2 = -12,所以|AF||BF| = |MF|^2,即AF、MF、BF成等比数列。
2、抛物线的标准方程题例2. 已知抛物线的焦点在y轴上,且经过点A(0, 6)和B(6,0),求此抛物线的标准方程。
解:设此抛物线的标准方程为 x^2 = 2py(p > 0),因为抛物线经过点A(0, 6),所以6 = 2p,解得p = 3,因此此抛物线的标准方程为 x^2 = 6y。
3、抛物线的几何性质题例3. 已知抛物线y^2 = ax(a > 0)上有两个不同的点A和B,它们的横坐标分别为x1、x2,且满足条件x1^2 + x2^2 = a^2 + 6a - 8。
求证:直线AB的斜率为-4a。
解:因为A和B是抛物线上的两个不同的点,所以可以设它们的坐标分别为(x1, y1)和(x2, y2)。
高中数学抛物线经典考点及例题讲解
抛物线考纲解读 1.利用抛物线的定义及简单性质求抛物线的标准方程;2.根据抛物线标准方程求其几何性质;3.利用抛物线几何性质研究与直线有关的综合问题.[基础梳理]1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内.(2)与一个定点F 和一条定直线l 距离相等. (3)l 不经过点F .2.抛物线的标准方程与几何性质O (0,0)[三基自测]1.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516 C.78 D .0 答案:B2.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则其方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x答案:D3.抛物线y 2=8x 上到其焦点F 距离为5的点P 有( ) A .0个 B .1个 C .2个 D .4个 答案:C4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________.答案:y 2=-8x 或x 2=-y5.(2017·高考全国卷Ⅱ改编)过y 2=8x 的焦点F 垂直于x 轴的直线交抛物线于M 、N 两点,求|MN |.答案:8考点一 抛物线的定义及应用|方法突破[例1] (1)(2018·河北三市联考)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53 B.75 C.97D .2(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .25-1B .25-2 C.17-1D.17-2(3)与y 轴相切并与圆C :x 2+y 2-6x =0也相切的圆的圆心的轨迹方程为________. [解析] (1)设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E (图略).∵|P A |=12|AB |,∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+23y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.(2)由题意得圆x 2+(y -4)2=1的圆心A (0,4),半径r =1,抛物线的焦点F (1,0).由抛物线的几何性质可得:点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是|AF |-r =1+16-1=17-1.选C.(3)当动圆在y 轴右侧时,如图,动圆圆心P 到(3,0)的距离等于P 到定直线x =-3的距离(3+r ),所以P 点的轨迹是以(3,0)为焦点的抛物线. 其方程为y 2=12x (x >0).当动圆在y 轴左侧时,其圆心在x 轴的负半轴上,其方程为y =0(x <0). [答案] (1)A (2)C (3)y 2=12x (x >0)或y =0(x <0) [方法提升][母题变式]1.将本例(1)改为过抛物线y 2=4x 的焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点到y 轴的距离等于( )A .1B .2 C .3D .4解析:AB 的中点到抛物线准线的距离为|AB |2=5,所以AB 的中点到y 轴的距离为5-1=4.答案:D2.将本例(2)改为已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,求|MA |+|MF |的最小值.解析:抛物线x 2=4y 的焦点为F (0,1),准线为y =-1,由抛物线的定义得|MF |等于M 到准线的距离d ,所以|MA |+|MF |的最小值等于圆心C 到准线的距离减去圆的半径,即5+1-1=5.考点二 抛物线标准方程及性质|方法突破[例2] (1)(2018·沈阳模拟)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)(2)(2018·保定模拟)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点A (0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x(3)经过抛物线C 的焦点F 作直线l 与抛物线C 交于A 、B 两点,如果A 、B 在抛物线C 的准线上的射影分别为A 1、B 1,那么∠A 1FB 1等于( )A.π6B.π4C.π2D.2π3[解析] (1)抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).(2)由已知得抛物线的焦点F ⎝⎛⎭⎫p 2,0,设点M (x 0,y 0),则AF →=⎝⎛⎭⎫p 2,-2,AM →=⎝⎛⎭⎫y 202p ,y 0-2.由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝⎛⎭⎫8p ,4.由|MF |=5,得⎝⎛⎭⎫8p -p 22+16=5. 又p >0,解得p =2或p =8.(3)由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AF A 1=∠AA 1F .又∠OFB 1=∠BB 1F ,∠OF A 1=∠AA 1F ,故∠BFB 1=∠OFB 1,∠AF A 1=∠OF A 1,所以∠OF A 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.[答案](1)B(2)C(3)C[方法提升]求抛物线方程的方法[跟踪训练]1.(2018·宜宾诊断)顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是()A.y2=-xB.x2=-8yC.y2=-8x或x2=-yD.y2=-x或x2=-8y解析:若焦点在x轴上,设抛物线方程为y2=ax,将点P(-4,-2)的坐标代入,得a =-1,所以抛物线的标准方程为y2=-x;若焦点在y轴上,设方程为x2=by,将点P(-4,-2)的坐标代入,得b =-8,所以抛物线的标准方程为x 2=-8y .故所求抛物线的标准方程是y 2=-x 或x 2=-8y .答案:D2.(2018·重庆渝中区模拟)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,双曲线C 的渐近线与抛物线y 2=2px (p >0)交于A ,B 两点,△OAB (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=43x解析:∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴双曲线C 为等轴双曲线,即a =b ,∴双曲线的渐近线方程为y =±x .又∵双曲线C 的渐近线与抛物线y 2=2px 交于A ,B 两点,如图所示,设点A (x ,y ),∴|OM |=x ,|AM |=y .又 ∵△OAB 的面积为xy =4,∴x =2,y =2.又∵点A 在抛物线上,∴22=2p ·2.解得p =1,∴抛物线的方程为y 2=2x .故选C.答案:C3.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( )A.72B.52 C .3D .2 解析:∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C. 答案:C考点三 直线与抛物线综合问题|方法突破[例3] (2016·高考浙江卷) 如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值.(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.[解析] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0, 故y 1y 2=-4,所以B ⎝⎛⎭⎫1t 2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2 t . 设M (m,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). [方法提升][跟踪训练]如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F ,设点A 是直线l 与抛物线C 在第一象限的交点.以点F 为圆心,|F A |为半径的圆与x 轴负半轴的交点为点B ,与抛物线C 在第四象限的交点为点C .(1)若点O 到直线l 的距离为32,求直线l 的方程; (2)试判断直线AB 与抛物线C 的位置关系,并给出证明. 解析:(1)由题易知,抛物线C 的焦点为F (1,0), 当直线l 的斜率不存在时,即x =1,不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以|-k |1+k 2=32,解得k =± 3. 即直线l 的方程为y =±3(x -1). (2)直线AB 与抛物线C 相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得,x =2x 0y y 0-x 0,把上式代入y 2=4x 得y 0y 2-8x 0y +4x 0y 0=0,Δ=64x 20-16x 0y 20=64x 20-64x 20=0,所以直线AB 与抛物线C 相切.1.[考点一](1)(2016·高考全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B.答案:B2.[考点一、二](2016·高考全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2解析:由题意得点P 的坐标为(1,2).把点P 的坐标代入y =kx (k >0)得k =1×2=2,故选D.答案:D3.[考点二、三](2017·高考全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k 2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝⎛⎭⎫1k 2+k 2≥8+8=16,当且仅当1k 2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16,故选A.答案:A4.[考点二、三](2017·高考全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.解析:如图,过M 、N 分别作抛物线准线的垂线,垂足分别为M 1、N 1,设抛物线的准线与x 轴的交点为F 1,则|NN 1|=|OF 1|=2,|FF 1|=4.因为M 为FN 的中点,所以|MM 1|=3,由抛物线的定义知|FM |=|MM 1|=3,从而|FN |=2|FM |=6.答案:65.[考点二、三](2017·高考全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率:(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解析:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1. 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7. 所以直线AB 的方程为y =x +7.。
抛物线中常考的几类问题
抛物线中常考的几类问题A 、B 是抛物线y 2=2px (p>0)上的两点,且OA ⊥OB ,(1)求A 、B 两点的横坐标之积和纵坐标之积;(2)求证:直线AB 过定点;(3)求弦AB 中点P 的轨迹方程;(4)求△AOB 面积的最小值;(5)(2000年春季高考试题改变)O 在AB 上的射影M 轨迹方程。
解答:设A (x 1,y 1),B (x 2,y 2),中点P (x 0,y 0)(1)22OB 11OA x y k ,x y k ==∵ OA ⊥OB∴ k OA k OB =-1∴ x 1x 2+y 1y 2=0∵ y 12=2px 1,y 22=2px 2∴ 0y y p 2y p 2y 212221=+⋅ ∵ y 1≠0,y 2≠0∴ y 1y 2=-4p 2∴ x 1x 2=4p 2(2)∵ y 12=2px 1,y 22=2px 2∴ (y 1-y 2)(y 1+y 2)=2p(x 1-x 2)∴ 212121y y p 2x x y y +=-- ∴ 21AB y y p 2k += ∴ 直线AB :)x x (y y p 2y y 1211-+=- ∴ 211121y y px 2y y y px 2y +-++= ∴ 212112121y y y y px 2y y y px 2y ++-++= ∵ 221121p 4y y ,px 2y -==∴ 21221y y p 4y y px 2y +-++= ∴ )p 2x (y y p 2y 21-+=∴ AB 过定点(2p ,0),设M (2p ,0)(3)设OA ∶y=kx ,代入y 2=2px 得:x=0,x=2k p 2 ∴ A (k p 2,kp 22) 同理,以k1-代k 得B (2pk 2,-2pk ) ∴ ⎪⎪⎩⎪⎪⎨⎧-=+=)k k 1(P y )k 1k (p x 0220 ∵ 2)k k k 1(k 1k 222+-=+∴ 2)py (p x 200+= 即y 02=px 0-2p 2∴ 中点M 轨迹方程y 2=px-2p 2(4)|)y ||y (|p |)y ||y (||OM |21S S S 2121BOM AOM AOB +=+=+=∆∆∆ ≥221p 4|y y |p 2=当且仅当|y 1|=|y 2|=2p 时,等号成立评注:充分利用(1)的结论。
高中数学抛物线中的定值、定点问题
抛物线中的定值、定点问题例1 过抛物线)0(22>=p px y 的焦点的一条直线和此抛物线交于),(11y x A ,),(22y x B 两点,求证:221p y y -=.【规范解答】证法一:因直线AB 过焦点)0,2(p F ,可设其方程为2p my x +=,代入px y 22= 得)2(22p my p y +=,即.0222=--p pmy y 该方程的两根就2p my x +=是两个交点B A ,的纵坐标21,y y ,由韦达定理:221p y y -=.证法二:因B A ,在抛物线上,故可设).,2(),,2(222121y py B y p y A 又)0,2(p F ,故),,22(121y p p y FA -=),,22(222y p p y FB -=因B F A ,,三点共线,所以 122221)22()22(y p p y y p p y ⋅-=⋅- 移项分解因式得:0))((21221=-+y y p y y ,其中,21y y ≠故221p y y -=.证法三:如图1,过点F B A ,,分别作准线的垂线,垂足为.,,111F B A 要证明221p y y -=,只要证明.211111F F F B F A =⋅ 21,1∠=∠∴=AA AF Θ;同理.43∠=∠而011180=∠+∠BF B AF A (A A 1∥B B 1),故01804321=∠+∠+∠+∠,所以.90310=∠+∠01190=∠FB A . 由直角三角形的性质得:.211111F F F B F A =⋅【回顾】(1)从解题方法来看,对于直线与圆锥曲线相交的问题,一般有“设线”(证法一)和“设点”(证法二)两种选择,但也可考虑通过定义用“几何方法”来解答(证法三)(特别是与焦点有关的问题);(2)从解题细节来看,证法一选择设直线方程为2p my x +=而非)2(p x k y -=,为什么?首先,这样代入可消去x 直达目标221p y y -=,运算便捷;其次,本题中直线可能与y 轴平行而斜率不存在,但不可能与y 轴垂直,设2p my x +=省去了讨论的麻烦;证法二中用向量表达三点共线而没有使用斜率也有同样的考虑;(3)从知识内容来看,抛物线的方程和定义是解题的依据,韦达定理及三角形和向量的有关知识是解析几何的常用工具,而所证明的结论表明:对于抛物线而言,虽然过焦点的弦有无数条,但每一条焦点弦的两端到对称轴的距离之积总等于.2p “寓定于变”展示了几何图形的美妙和谐!借题发挥在证法一中若改变AB 直线的预设并在联立方程中消去y 后,观察21,x x 之积得: 变式1 条件同例1,则4221p x x ==定值。
专题12 抛物线及其性质(知识梳理+专题过关)(解析版)
专题12抛物线及其性质【考点预测】知识点一、抛物线的定义平面内与一个定点F 和一条定直线()l F l ∉的距离相等的点的轨迹叫做抛物线,定点F 叫抛物线的焦点,定直线l 叫做抛物线的准线.注:若在定义中有F l ∈,则动点的轨迹为l 的垂线,垂足为点F .知识点二、抛物线的方程、图形及性质抛物线的标准方程有4种形式:22y px =,22y px =-,22x py =,22(0)x py p =->,其中一次项与对称轴一致,一次项系数的符号决定开口方向图形标准方程22(0)y px p =>22(0)y px p =->22(0)x py p =>22(0)x py p =->顶点(00)O ,范围0x ≥,y R ∈0x ≤,y R∈0y ≥,x R ∈0y ≤,x R∈对称轴x 轴y 轴焦点(0)2pF ,(0)2p F -,(0)2p F ,(0)2pF -,离心率1e =准线方程2p x =-2p x =2p y =-2p y =焦半径11()A x y ,12pAF x =+12p AF x =-+12p AF y =+12p AF y =-+【方法技巧与总结】1、点00(,)P x y 与抛物线22(0)y px p =>的关系(1)P 在抛物线内(含焦点)2002y px ⇔<.(2)P 在抛物线上2002y px ⇔=.(3)P 在抛物线外2002y px ⇔>.2、焦半径抛物线上的点00(,)P x y 与焦点F 的距离称为焦半径,若22(0)y px p =>,则焦半径02pPF x =+,max2p PF =.3、(0)p p >的几何意义p 为焦点F 到准线l 的距离,即焦准距,p 越大,抛物线开口越大.4、焦点弦若AB 为抛物线22(0)y px p =>的焦点弦,11(,)A x y ,22(,)B x y ,则有以下结论:(1)2124p x x =.(2)212y y p =-.(3)焦点弦长公式1:12AB x x p =++,12x x p +≥=,当12x x =时,焦点弦取最小值2p ,即所有焦点弦中通径最短,其长度为2p .焦点弦长公式2:22sin pAB α=(α为直线AB 与对称轴的夹角).(4)AOB ∆的面积公式:22sin AOB p S α∆=(α为直线AB 与对称轴的夹角).5、抛物线的弦若AB 为抛物线22(p 0)y px =>的任意一条弦,1122(,),(,)A x y B x y ,弦的中点为000(,)(0)M x y y ≠,则(1)弦长公式:1212(0)AB AB x y k k =-=-=≠(2)0AB p k y =(3)直线AB 的方程为000()py y x x y -=-(4)线段AB 的垂直平分线方程为000()y y y x x p-=--6、求抛物线标准方程的焦点和准线的快速方法(4A法)(1)2(0)y Ax A =≠焦点为(,0)4A ,准线为4Ax =-(2)2(0)x Ay A =≠焦点为(0,)4A ,准线为4Ay =-如24y x =,即24y x =,焦点为1(0,)16,准线方程为116y =-7、参数方程22(0)y px p =>的参数方程为222x pt y pt ⎧=⎨=⎩(参数t R ∈)8、切线方程和切点弦方程抛物线22(0)y px p =>的切线方程为00()y y p x x =+,00(,)x y 为切点切点弦方程为00()y y p x x =+,点00(,)x y 在抛物线外与中点弦平行的直线为00()y y p x x =+,此直线与抛物线相离,点00(,)x y (含焦点)是弦AB 的中点,中点弦AB 的斜率与这条直线的斜率相等,用点差法也可以得到同样的结果.9、抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2p A p ,,()2p B p -,,可得||2AB p =,故抛物线的通径长为2p .10、弦的中点坐标与弦所在直线的斜率的关系:0py k=11、焦点弦的常考性质已知11()A x y ,、22()B x y ,是过抛物线22(0)y px p =>焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN l ⊥,N 为垂足.(1)以AB 为直径的圆必与准线l 相切,以AF (或BF )为直径的圆与y 轴相切;(2)FN AB ⊥,FC FD⊥(3)2124p x x =;212y y p =-(4)设BD l ⊥,D 为垂足,则A 、O 、D 三点在一条直线上【专题过关】【考点目录】考点一:抛物线的定义与方程考点二:抛物线的轨迹方程考点三:与抛物线有关的距离和最值问题考点四:抛物线中三角形,四边形的面积问题考点五:焦半径问题考点六:抛物线的性质【典型考题】考点一:抛物线的定义与方程1.(2022·江苏·高二)已知抛物线的顶点在原点,对称轴为y 轴,其上一点(),4A m -到焦点F 的距离为6.求抛物线的方程及点A 的坐标.【解析】由题意,设抛物线方程为()220x py p =->,则其准线方程为2p y =,∴462p+=,得p =4,故抛物线方程为28x y =-;又∵点(),4A m -在抛物线上,∴232m =,∴m =±即点A 的坐标为()4-或()4--.2.(多选题)(2022·全国·高二单元测试)下列方程的图形为抛物线的是()A .10x +=B .2y -=C D .2230x x y --+=【答案】ACD【解析】对于A ,方程10x +=化为1x +=(,)x y 到定点(0,0)的距离与到定直线1x =-的距离相等,且定点(0,0)不在定直线1x =-上,原方程表示的图形是抛物线,A 是;对于B ,方程2y -=(,)x y 到定点(1,2)-的距离与到定直线2y =的距离相等,而定点(1,2)-在定直线2y =上,原方程表示的图形不是抛物线,B 不是;对于C (,)x y 到定点(2,3)的距离与到定直线3410x y +-=的距离相等,且定点(2,3)不在定直线3410x y +-=上,原方程表示的图形是抛物线,C 是;对于D ,方程2230x x y --+=化为223y x x =-+,方程表示的图形是抛物线,D 是.故选:ACD3.(多选题)(2022·广东清远·高二期末)已知0mn ≠,则方程221mx ny +=与2ny mx =在同一坐标系内对应的图形可能是()A .B .C .D .【答案】BC【解析】将对应方程化为标准方程得22111x ym n+=,2m y x n=,所以抛物线2my x n=的焦点在x 轴上,故排除D 选项,对于A 选项,由图可知0mn>,0m <,0n >,矛盾,故A 错误;对于B 选项,由图可知0mn<,0m <,0n >,满足,故B 正确;对于C 选项,由图可知,0mn>,0m >,0n >,满足,故C 正确;故选:BC.4.(2022·江西吉安·高二期末(理))已知抛物线C :()220y px p =>的焦点为F ,准线l 上有两点A ,B ,若FAB 为等腰直角三角形且面积为8,则抛物线C 的标准方程是()A .2y =B .28y x =C .2y =或28y x =D .24y x=【答案】C【解析】由题意得,当2AFB π∠=时,1282AFB S p p =⨯⨯=△,解得p =;当2FAB π∠=或2FBA π∠=时,2182AFB S p ==△,解得4p =,所以抛物线的方程是2y =或28y x =.故选:C.5.(2022·全国·高二课时练习)下列条件中,一定能得到抛物线的标准方程为28y x =的是______(填序号)(写出一个正确答案即可).①焦点在x 轴上;②焦点在y 轴上;③抛物线上横坐标为1的点到焦点的距离为3;④焦点到准线的距离为4;⑤由原点向过焦点的某直线作垂线,垂足坐标为()1,1-.【答案】①③(答案不唯一)【解析】若要得到抛物线的方程为28y x =,则焦点一定在x 轴上,故①必选,②不选.若选①③,由抛物线的定义可知132p+=,得4p =,则抛物线的方程为28y x =.若选①⑤,设焦点,02p F ⎛⎫⎪⎝⎭()0p >,()1,1A -,112AF k p =-,1OA k =-,由1AF OA k k ⋅=-,得1112p =-,解得4p =,故抛物线的方程为28y x =.由④可知4p =,故还可选择①④.故答案可为①③或①⑤或①④.故答案为:①③(答案不唯一)6.(2022·全国·高二课时练习)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为5m ,跨径为12m ,则桥形对应的抛物线的焦点到准线的距离为______m .【答案】185【解析】以抛物线的最高点O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的解析式为22x py =-,0p >,因为抛物线过点()6,5-,所以3610p =,可得185p =,所以抛物线的焦点到准线的距离为18m 5.故答案为:1857.(2022·全国·高二课时练习)设抛物线C 的顶点在坐标原点,焦点F 在坐标轴上,点P 在抛物线C 上,52PF =,若以线段PF 为直径的圆过坐标轴上距离原点为1的点,试写出一个满足题意的抛物线C 的方程为______.【答案】22x y =(答案不唯一)【解析】由题意,若抛物线的焦点F 在y 轴正半轴上,则可设抛物线方程为22x py =(0p >),()00,P x y ,0,2p F ⎛⎫ ⎪⎝⎭,由焦半径公式可知0522p y +=,圆的半径为54,得052p y -=,并且线段PF 中点的纵坐标是05224py +=,所以以线段PF 为直径的圆与x 轴相切,切点坐标为()1,0-或()1,0,所以02x =±,即点P 的坐标为52,2p -⎛⎫± ⎝⎭,代入抛物线方程22x py =(0p >)得5422p p -=⋅,解得1p =或4p =,即当点F 在y 轴正半轴上时,抛物线方程是22x y =或28x y =.同理,当点F 在y 轴负半轴时,抛物线方程为22x x =-或28x y =-,当点F 在x 轴正半轴时,抛物线方程为22y x =或28y x =,当点F 在x 轴负半轴时,抛物线方程为22y x =-或28y x =-.故答案为:22x y =(答案不唯一).8.(2022·山西·怀仁市第一中学校高二期中(理))设抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,FA 为半径的圆交l 于B ,D 两点.若90ABD ∠=︒,且ABF的面积为C 的方程为()A .22y x =B .24y x =C .28y x =D .216y =【答案】B【解析】∵以F 为圆心,FA 为半径的圆交l 于B ,D 两点,90ABD ∠=︒,结合抛物线的定义可得:AB AF BF==ABF ∴是等边三角形,30FBD ∴∠=︒.ABF2=4BF ∴=.又点F 到准线的距离为sin 302BF p ︒==,则该抛物线的方程为24y x =.故选:B .9.(2022·全国·高二课时练习)如图,过抛物线()220y px p =>的焦点F 的直线交抛物线于点,A B ,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线的方程为()A .29y x =B .26y x =C .23y x =D .212y x=【答案】C【解析】作AD l ⊥,BE l ⊥,垂足分别为,D E ,设l 与x 轴交于点G ,由抛物线定义知:BE BF =,3AD AF ==,设BF a =,则BE a =,2BC a =,1sin 22a BCE a ∴∠==,则6BCE π∠=,26AC AD ∴==,又33AC AF BF BC a =++=+,1a \=,1BE ∴=,23BE BC FGCF==,32FG ∴=,即32p =,∴抛物线方程为:23y x =.故选:C.10.(2022·全国·高二课时练习)已知抛物线y 2=2px (p >0)经过点M (x 0,),若点M 到准线l 的距离为3,则该抛物线的方程为()A .y 2=4xB .y 2=2x 或y 2=4xC .y 2=8xD .y 2=4x 或y 2=8x【答案】D【解析】∵抛物线y 2=2px (p >0)经过点M (x 0,),∴202px =,可得04x p=.又点M 到准线l 的距离为3,∴432pp +=,解得p =2或p =4.则该抛物线的方程为y 2=4x 或y 2=8x .故选:D.11.(2022·全国·高二课时练习)苏州市“东方之门”是由两栋超高层建筑组成的双塔连体建筑(如图1所示),“门”的内侧曲线呈抛物线形.图2是“东方之门”的示意图,已知30m CD =,60m AB =,点D 到直线AB 的距离为150m ,则此抛物线顶端O 到AB 的距离为()A .180mB .200mC .220mD .240m【答案】B【解析】以O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的方程为()220x py p =->,由题意设()15,D h ,0h <,()30,150B h -,则()22152302150php h ⎧=-⎪⎨=--⎪⎩,解得502.25h p =-⎧⎨=⎩,所以此抛物线顶端O 到AB 的距离为()50150200m +=.故选:B .考点二:抛物线的轨迹方程12.(2022·全国·高二课时练习)点()1,0A ,点B 是x 轴上的动点,线段PB 的中点E 在y 轴上,且AE 垂直PB ,则点P 的轨迹方程为______.【答案】24y x =()0x ≠【解析】设(),P x y ,(),0B m ,则,22x m y E +⎛⎫⎪⎝⎭.由点E 在y 轴上,得02x m +=,则m x =-,即0,2y E ⎛⎫⎪⎝⎭.又AE PB ⊥,若0x ≠,则21012AE PB yy k k x⋅=⨯=--,即24y x =.若0x =,则0m =,此时点P ,B 重合,直线PB 不存在.所以点P 的轨迹方程是24y x =()0x ≠.故答案为:24y x =()0x ≠.13.(2022·全国·高二课时练习)若动点(,)M x y 满足()()225123412x y x y -+-=-+,则点M 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线【答案】D【解析】由题意,动点(,)M x y 满足()()225123412x y x y -+-=-+,()()223412125x y x y -+-+-=,即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.14.(2022·江西·赣州市赣县第三中学高二开学考试(理))已知动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,则点M 的轨迹方程为()A .22y x=B .24y x=C .22y x=-D .24y x=-【答案】B【解析】因为动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,所以点M 到点(1,0)A 的距离等于它到直线1x =-的距离,即M 的轨迹为以点(1,0)A 为焦点,直线1x =-为准线的抛物线,所以12p=,解得2p =,轨迹方程为24y x =.故选:B .15.(2022·全国·高二课时练习)若动圆M 经过双曲线2213y x -=的左焦点且与直线x =2相切,则圆心M 的坐标满足的方程是______.【答案】28y x=-【解析】双曲线2213y x -=的左焦点为F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知圆心的轨迹是焦点为F ,准线为x =2的抛物线,其方程为28y x =-.故答案为:28y x =-.16.(2022·全国·高二课时练习)若点(),P x y 满足方程3412x y =++,则点P 的轨迹是______.【答案】抛物线【解析】由|3412|x y =++|3412|5x y ++=,等式左边表示点(),x y 和点()1,2的距离,等式的右边表示点(),x y 到直线34120x y ++=的距离.整个等式表示的意义是点(),x y 到点()1,2的距离和到直线34120x y ++=的距离相等,其轨迹为抛物线.故答案为:抛物线17.(2022·全国·高二课时练习)与点()0,3F -和直线30y -=的距离相等的点的轨迹方程是______.【答案】212x y=-【解析】由抛物线的定义可得平面内与点()0,3F -和直线30y -=的距离相等的点的轨迹为抛物线,且()0,3F -为焦点,直线3y =为准线,设抛物线的方程为22(0)x py p =->,可知32p=,解得6p =,所以该抛物线方程是212x y =-,故答案为:212x y=-18.(2022·河北唐山·高二期中(理))已知动点(,)P x y 满足341x y =+-,则点P 的轨迹为()A .直线B .抛物线C .双曲线D .椭圆【答案】B【解析】把341x y =+-3415x y +-,3415x y +-可看做(,)x y 与(1,2)的距离等于(,)x y 到直线3410x y +-=的距离,由于点(1,2)不在直线3410x y +-=上,满足抛物线的定义,则点P 的轨迹为抛物线,故选:B19.(2022·全国·高二课时练习)平面上动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,求动点M 满足的方程.【解析】因为动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,所以动点M 到定点()3,0F 的距离与M 到直线l :30x +=的距离相等,所以M 的轨迹是以()3,0F 为焦点,直线l :3x =-为准线的抛物线,此时6p =,故所求的点M 满足的方程是212y x =.20.(2022·全国·高二课时练习)已知点M 与点(4,0)F 的距离比它到直线:60l x +=的距离小2,求点M 的轨迹方程.【解析】由题意知动点M 到(4,0)的距离比它到直线:6l x =-的距离小2,即动点M 到(4,0)的距离与它到直线4x =-的距离相等,由抛物线定义可知动点M 的轨迹为以(4,0)为焦点的抛物线,则点M 的轨迹方程为216y x =.21.(2022·全国·高二课时练习)已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【解析】由题意知:点P 到圆心A (-2,0)的距离和到定直线x =2的距离相等,所以点P 的轨迹为抛物线,且焦点为A ,准线为x =2,故点P 的轨迹方程为y 2=-8x .22.(2022·全国·高二课时练习)已知点()1,0A ,直线:1l x =-,两个动圆均过A 且与l 相切,若圆心分别为1C 、2C ,则1C 的轨迹方程为___________;若动点M 满足22122C M C C C A =+,则M 的轨迹方程为___________.【答案】24y x =221y x =-【解析】由抛物线的定义得动圆的圆心轨迹是以()1,0A 为焦点,直线l :1x =-为准线的抛物线,所以1C 的轨迹方程为24y x =,设()1,C a b ,()2,C m n ,(),M x y ,因为动点M 满足22122C M C C C A =+,所以()()()2,,1,x m y n a m b n m n --=--+--,即21x a =+,2y b =,所以21a x =-,2b y =,因为24b a =,所以()()22421y x =-,所以221y x =-,即M 的轨迹方程为221y x =-.故答案为:24y x =;221y x =-.考点三:与抛物线有关的距离和最值问题23.(2022·全国·高二课时练习)已知点()2,0P ,点Q 在曲线2:2C y x =上.(1)若点Q 在第一象限内,且2PQ =,求点Q 的坐标;(2)求PQ 的最小值.【解析】(1)设()(),0,0Q x y x y >>,则22y x =,由已知条件得2PQ ==,将22y x =代入上式,并变形得,220,x x -=解得x=0(舍去)或x =2.当x =2时,2y =±,只有x =2,y =2满足条件,所以()2,2Q ;(2)PQ ,其中22y x =,所以()()()22222224130PQ x x x x x x =-+=-+=-+≥,所以当x =1时,min PQ =24.(2022·全国·高二课时练习)若M 是抛物线22y x =上一动点,点103,3P ⎛⎫⎪⎝⎭,设d 是点M 到准线的距离,要使d MP +最小,求点M 的坐标.【解析】由题意,可知抛物线的焦点1(,0)2F ,由抛物线的定义有||||d MP MF MP PF +=+≥,所以d MP +最小值为||PF ,此时点M 为直线PF 与抛物线的交点,而直线PF 的方程求得为:4233y x =-,所以有242332y x y x ⎧=-⎪⎨⎪=⎩,解得4143x y =⎧⎪⎨=⎪⎩或1413x y ⎧=⎪⎪⎨⎪=-⎪⎩(舍),所以14(4,)3M 25.(2022·全国·高二课时练习)已知抛物线22y x =的焦点是F ,点P 是抛物线上的动点,若()3,2A ,则PA PF +的最小值为______,此时点P 的坐标为______.【答案】72【解析】易知点A 在抛物线内部,设抛物线的准线为l ,则l 的方程为12x =-,过点P 作PQ l ⊥于点Q ,则PA PF PA PQ +=+,当PA l ⊥,即A ,P ,Q 三点共线时,PA PF +最小,最小值为17322+=,此时点P 的纵坐标为2,代入22y x =,得2x =,所以此时点P 的坐标为()2,2.故答案为:72;()2,2.26.(2022·全国·高二课时练习)设P 是抛物线24y x =上的一个动点,点F 是焦点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值;(2)若()3,2B ,求PB PF +的最小值.【解析】(1)抛物线24y x =的焦点为()1,0F ,准线是1x =-.由抛物线的定义,知点P 到直线1x =-的距离等于点P 到焦点F 的距离,所以问题转化为求抛物线上一点P 到点()1,1A -的距离与其到点()1,0F 的距离之和的最小值,如图,当A ,P ,F 共线时上述距离之和最小,连接AF 交抛物线于点P ,此时所求的最小值为||AF =(2)由题意()3,2B ,可知2243<⨯,故点B 在抛物线内部(焦点所在一侧),如图,作BQ 垂直准线于点Q ,交抛物线于点1P ,连接1PF ,此时11PQ PF =,当点P 与点1P 重合时,PB PF +的值最小,此时3(1)4PB PF BQ +==--=,即PB PF +的最小值为4.27.(多选题)(2022·全国·高二单元测试)已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-=上一动点,则下列说法正确的有()A .PF 的最小值为1B .QFC .PF PQ +的最小值为4D .PF PQ +1+【答案】AC【解析】抛物线焦点为()1,0F ,准线为1x =-,作出图象,对选项A :由抛物线的性质可知:PF 的最小值为1OF =,选项A 正确;对选项B :注意到F 是定点,由圆的性质可知:QF 的最小值为1CF r -=,选项B 错误;对选项CD :过点P 作抛物线准线的垂线,垂足为M ,由抛物线定义可知PF PM =,故PF PQ PM PQ +=+,PM PQ +的最小值为点Q 到准线1x =-的距离,故最小值为4,从而选项C 正确,选项D 错误.故选:AC.28.(2022·河南·襄城县实验高级中学高二阶段练习(文))已知P 为抛物线()2:20C y px p =>上的动点,C 的准线l 与x 轴的交点为A ,当点P 的横坐标为1时,2PF =,则PF PA的取值范围是()A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .22⎡⎢⎣⎦【答案】B【解析】因为抛物线C 的方程为()22 0y px p =>,所以其准线方程为2p x =-.因为当点P 的横坐标为1时,2PF =,所以122p+=,所以 2p =,故拋物线C 的方程为24y x =.设直线PA 的倾斜角为θ,PP l '⊥垂足为P ',()1,0A -,由抛物线的性质可得PP PF '=,所以cos PF PP PAPAθ'==,所以当直线PA 与抛物线C 相切时,cos θ最小.设直线PA 的方程为1x my =-,联立方程组214x my y x=-⎧⎨=⎩,得2440y my -+=,由216160m ∆=-=,得1m =±,2tan 1,cos 2θθ==,所以cos 12θ≤≤,故PF PA ⎤∈⎥⎣⎦.故选:B29.(2022·四川·阆中中学高二阶段练习(理))已知抛物线21:8C y x =的焦点为F ,P 为C 上的动点,直线PF 与C 的另一交点为Q ,P 关于点(4,12)N 的对称点为M .当PQ QM +的值最小时,直线PQ 的方程为________.【答案】20x y -+=【解析】设A 为PQ 的中点,连接NA ,设抛物线C 的准线为l ,作QD l ⊥,AG l ⊥,PE l ⊥,垂足分别为D ,G ,E .则2MQ NA =,2PQ PF QF PE QD AG =+=+=,()2PQ QM AG NA ∴+=+,又点N 到直线l 的距离为13,13AG NA ∴+≥,当G ,N ,A 三点共线且A 在G ,N 之间时,13AN AG NG +==,此时,点A 的横坐标为4A x =.PQ ∵过点()0,2F ,故设PQ 方程为2y kx =+,代入218y x =,得28160x kx --=()11,P x y ,()22,Q x y ,则128x x k +=.当G ,N ,A 三点共线时,12288A x x x k +===,解得1k =,直线AM 的方程为2y x =+,此时()4,6A 点A 在G ,N 之间,13AN AG NG +==成立.所以当PQ QM +的值最小时,直线PQ 的方程为20x y -+=故答案为:20x y -+=30.(2022·天津一中高二期中)已知抛物线C :22y px =的准线为1x =-,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为___________.【答案】【解析】由题意知,2p =,∴抛物线C :24y x =.设()()000,0M x y x ≥,由题意知2004y x =,则()()()2222200000334188x y x x MN x =-+=-+=-+≥,当01x =时,2MN 取得最小值8,∴MN 的最小值为.故答案为:31.(2022·河南·濮阳一高高二期中(文))抛物线y 2=4x 的焦点为F ,点A (2,1),M 为抛物线上一点,且M 不在直线AF 上,则△MAF 周长的最小值为____.【答案】3【解析】如图所示,过M 作MN 垂直于抛物线的准线l ,垂足为N .易知F (1,0),因为△MAF 的周长为|AF |+|MF |+|AM |,|AF ||MF |+|AM |=|AM |+|MN |,所以当A 、M 、N 三点共线时,△MAF 的周长最小,最小值为2+13=.故答案为:332.(2022·上海市长征中学高二期中)抛物线2y x =,其上一点P 到A (3,-1)与到焦点距离之和为最小,则P 点坐标为________【答案】(1,1)-【解析】因为点(3,1)A -在抛物线内部,如图所示,设抛物线的准线为l ,过抛物线上一点P ,作PQ l ⊥于Q ,过A 作AB l ⊥于B .||||||||||PA PF PA PQ AB +=+≥,故当且仅当,,P A B 共线时,||||PA PF +的值最小.此时点P 坐标为0(,1)P x -,代入2y x =,得01x =.故点P 的坐标为(1,1)-.故答案为:(1,1)-33.(2022·河南·高二期中(文))如图所示,已知P 为抛物线()2:20C y px p =>上的一个动点,点()1,1Q ,F 为抛物线C 的焦点,若PF PQ +的最小值为3,则抛物线C 的标准方程为______.【答案】28y x=【解析】过点P 、Q 分别作准线的垂线,垂直分别为M 、N ,由抛物线定义可知PF PQ PM PQ NQ +=+≥,当P ,M ,Q 三点共线时等号成立所以132pNQ =+=,解得4p =所以抛物线C 的标准方程为28y x =.故答案为:28y x=34.(2022·上海·华东师范大学附属东昌中学高二期中)已知点()6,0A ,点P 在抛物线216y x=上运动,点B 在曲线()2241x y -+=上运动,则2PAPB的最小值是___________.【答案】6【解析】抛物线216y x =的焦点为(4,0)F ,设P 点坐标(,)x y ,则||4PF x =+22222||(6)(6)16436PA x y x x x x =-+=-+=++,由题意当||||15PB PF x =+=+时,225436P P x B x Ax +=++,令5x t +=,则5x t =-,222(5)4(5)36466141PAt t t PB t t t tt -++=+=+--=-,由基本不等式知41t t+≥t =时等号成立故2PA PB的最小值为6.故答案为:635.(多选题)(2022·福建泉州·高二期中)在平面直角坐标系xOy 中,(3,2)M -,F 为抛物线2:2(0)C x py p =->的焦点,点P 在C 上,PA x ⊥轴于A ,则()A .当2p =时,||||PF PM +的最小值为3B .当4p =时,||||PF PM +的最小值为4C .当4p =时,||||PA PM -的最大值为1D .当PF x ∥轴时,cos OPF ∠为定值【答案】BCD【解析】对于A :2p =时抛物线2:4C x y =-,焦点()0,1F -,点(3,2)M -在抛物线外,所以||||PF PM FM +≥当且仅当M 、P 、F 三点共线且P 在MF 之间时取等号(如下图所示),故A 错误;对于B 、C :当4p =时抛物线2:8C x y =-,焦点()0,2F -,准线方程为2y =,点(3,2)M -在抛物线内,设PA 与准线交于点N ,则||||PF PN =,所以()||||||||224PF PM PN PM MN +=+≥=--=,当且仅当M 、P 、N 三点共线且P 在MN 之间时取等号(如下图所示),故B 正确;||||||2||||||2||21PA PM PN PM PF PM FM -=--=--≤-=,当且仅当M 、P 、F 三点共线且F 在MP 之间时取等号(如下图所示),故C 正确;对于D :抛物线2:2C x py =-,焦点0,2p F ⎛⎫- ⎪⎝⎭,准线方程为2p y =,当//PF x ,此时2P p y =-,则222p x p ⎛⎫=-⨯- ⎪⎝⎭,解得p x p =±,即,2p P p ⎛⎫-- ⎪⎝⎭或,2p P p ⎛⎫- ⎪⎝⎭,如图取,2p P p ⎛⎫-- ⎪⎝⎭,则PF p =,()2252p OP p ⎛⎫=-+- ⎪⎝⎭,所以25cos 552PFp OPF OPp ∠==D 正确;故选:BCD36.(2022·江西赣州·高二期中(理))已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为()A .4B .6C .8D .10【答案】C【解析】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C37.(2022·新疆维吾尔自治区喀什第二中学高二期中(理))已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为()A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【解析】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把2y =-代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.38.(2022·黑龙江·哈师大附中高二期中(文))若点P 为抛物线2:2C y x =上的动点,F 为抛物线C 的焦点,则PF 的最小值为()A .1B .12C .14D .18【答案】D【解析】由22y x =,得212x y =,∴122p =,则128p =,所以焦点10,8F ⎛⎫⎪⎝⎭,由抛物线上所有点中,顶点到焦点的距离最小,得PF 的最小值为18.故选:D .39.(2022·黑龙江·大兴安岭实验中学高二期中)已知抛物线28y x =,定点A (4,2),F 为焦点,P 为抛物线上的动点,则PF PA +的最小值为()A .5B .6C .7D .8【答案】B【解析】如图,作,PQ AN 与准线2x =-垂直,垂足分别为,Q N ,则PQ PF =,6PF PA PQ PA AN +=+≥=,当且仅当,,Q P A 三点共线即P 到M 重合时等号成立.故选:B .40.(2022·四川省资阳中学高二开学考试(理))已知点P 是抛物线2:8C y x =上的动点,过点P 作圆()22:21M x y -+=的切线,切点为Q ,则PQ 的最小值为()A .1B 2C 3D .32【答案】C【解析】设点P 的坐标为(),m n ,有28n m =,由圆M 的圆心坐标为()2,0,是抛物线C 的焦点坐标,有22PM m =+≥,由圆的几何性质可得PQ QM ⊥,又由22221213PM P P M Q QM=-=-≥-=PQ 3故选:C.41.(2022·全国·高二期中)已知抛物线的方程为24y x =,焦点为F ,点A 的坐标为()3,4,若点P 在此抛物线上移动,记P 到其准线的距离为d ,则d PA +的最小值为______,此时P 的坐标为______.【答案】5355+⎝【解析】过点P 作抛物线准线的垂线,垂足为H ,连接PF ,作图如下:根据抛物线的定义,d PH PF ==,数形结合可知,当且仅当,,A P F 三点共线,且P 在,A F 之间时取得最小值;即d PA +的最小值为AF ,又()()3,4,1,0A F ,故()2231425AF =-+=此时直线AF 的方程为:()21y x =-,联立抛物线方程24y x =,可得:2310x x -+=,解得35x -=35x +=15y =即此时点P 的坐标为355+⎝.故答案为:253552⎛ ⎝.考点四:抛物线中三角形,四边形的面积问题42.(2022·河南洛阳·高二期末(理))已知点()1,0A ,点B 为直线1x =-上的动点,过B 作直线1x =-的垂线1l ,线段AB 的中垂线与1l 交于点P .(1)求点P 的轨迹C 的方程;(2)若过点()2,0E 的直线l 与曲线C 交于M ,N 两点,求MOE △与NAE 面积之和的最小值.(O 为坐标原点)【解析】(1)如图所示,由已知得点P 为线段AB 中垂线上一点,即PA PB =,即动点P 到点()1,0A 的距离与点P 到直线1x =-的距离相等,所以点P 的轨迹为抛物线,其焦点为()1,0A ,准线为直线1x =-,所以点P 的轨迹方程为24y x =,(2)如图所示:设2x ty =+,点()11,M x y ,()11N x y ,,联立直线与抛物线方程242y x x ty ⎧=⎨=+⎩,得2480y ty --=,()()2244816320t t ∆=--⨯-=+>,124y y t +=,128y y ⋅=-,1112MOE S OE y y =×=V ,21122NAE N S AE y y =×=V ,所以1212112422MOE ANE S S y y y y +=+³=V V ,当且仅当1212y y =,即12y =,24y =-时取等号,此时1224y y t +=-=,即12t =-,所以当直线直线1:22l x y =-+,时MOE ANE S S +V V 取得最小值为4.43.(2022·陕西西安·高二期末(文))已知抛物线C :()220y px p =>上的点()()4,0A m m >到其准线的距离为5.(1)求抛物线C 的方程;(2)已知O 为原点,点B 在抛物线C 上,若AOB 的面积为6,求点B 的坐标.【解析】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)将()4,A m 代入24y x =,得4m =.所以()4,4A ,直线OA 的方程为y x =,即0x y -=.设()2,2B t t ,则点B 到直线OA 的距离222t t d -=,又42OA =由题意得22142622t t -⨯=,解得1t =-或3t =.∴点B 的坐标是()1,2-或()9,6.44.(2022·新疆石河子一中高二阶段练习(理))已知抛物线()2:20C y px p =>的焦点为F ,点M 为C 上一点,点N 为x 轴上一点,若FMN 是边长为2的正三角形,则抛物线的方程为___________.【答案】22y x =或26y x=【解析】抛物线()2:20C y px p =>的焦点为,02p F ⎛⎫ ⎪⎝⎭,由抛物线的对称性,不妨设点M 为第一象限的点,因为点M 为C 上一点,点N 为x 轴上一点,FMN 是边长为2的正三角形,所以当N 在,02p F ⎛⎫ ⎪⎝⎭的右边时,点M 的坐标为2p M ⎛+ ⎝,所以2212p p ⎛⎫=+ ⎪⎝⎭,化简得2230p p +-=,解得1p =或3p =-(舍去),所以抛物线的方程为22y x =,当N 在,02p F ⎛⎫ ⎪⎝⎭的左边时,点M 的坐标为2p M ⎛- ⎝,所以2212p p ⎛⎫=- ⎪⎝⎭,化简得2230p p --=,解得1p =-或3p =,所以抛物线的方程为26y x =,综上,所求的抛物线方程为22y x =或26y x =故答案为:22y x =或26y x=45.(2022·全国·高二单元测试)抛物线()220y px p =>的焦点为F ,过抛物线上一点P 作x轴的平行线交y 轴于M 点,抛物线的准线交x 轴于点N ,四边形PMNF 为平行四边形,则点P 到x 轴的距离为___________.(用含P 的代数式表示)【解析】由題意可知,,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,,02p N ⎛⎫- ⎪⎝⎭,不妨设(P x ,四边形PMNF 为平行四边形,||||,PM NF ∴=∴,x p =∴点P 到x .46.(2022·陕西咸阳·高二期末(理))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率54e =,且双曲线C 的两条渐近线与抛物线22(0)y px p =>的准线围成的三角形的面积为3,则p 的值为()A .1B .2C .22D .4【答案】D【解析】根据题意,2514c b e a a ⎛⎫==+= ⎪⎝⎭,可得2916b a ⎛⎫= ⎪⎝⎭,所以双曲线的渐近线方程为34y x =±,抛物线的准线方程为2p x =-,设准线与抛物线的交点分别为M ,N ,则,23,4p x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,可解得3,28p p M ⎛⎫- ⎪⎝⎭,同理3,28p p N ⎛⎫-- ⎪⎝⎭,所以2133322416OMNp p Sp =⨯-⨯==,解得4p =.故选:D .47.(2022·四川师范大学附属中学高二阶段练习(理))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于点A 、B ,O 为坐标原点,若双曲线的离心率为2,三角形AOB 3p =()A .1B .32C .2D .3【答案】C【解析】由双曲线的离心率为2知,3ba=3y x =,又抛物线的准线方程为2p x =-,则设渐近线与准线的交点为3(,22p A --,3(,)22p B -,三角形AOB 的面积为133(322p p p⨯⨯=(0p >)解得2p =,故选:C48.(2022·湖北咸宁·高二期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为()A .8B .6C .4D .2【答案】C【解析】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C49.(2022·黑龙江·哈师大附中高二开学考试)已知点()0,1F ,点()(),0A x y y ≥为曲线C 上的动点,过A 作x 轴的垂线,垂足为B ,满足1AF AB +=.(1)曲线C 的方程(2)若,G H 为曲线C 上异于原点的两点,且满足0FG FH ⋅=,延长,GF HF 分别交曲线C 于点,M N ,求四边形GHMN 面积的最小值.【解析】(1)1AF AB +=,∴点A 到直线1y =-的距离等于其到点()0,1F 的距离,∴点A 轨迹是以F 为焦点的抛物线,∴曲线C 方程为:24x y =.(2)由题意知:直线,GM HN 斜率都存在,不妨设直线:1GM y kx =+,()11,G x y ,()22,M x y ,由214y kx x y =+⎧⎨=⎩得:2440x kx --=,则121244x x k x x +=⎧⎨=-⎩,()241GM k ∴==+;设直线1:1HN y x k =-+,同理可得:2141HN k ⎛⎫=+ ⎪⎝⎭,∴四边形GHMN 面积()2222111811822S GM HN k k k k ⎛⎫⎛⎫=⋅=++=++ ⎪ ⎪⎝⎭⎝⎭,又2212k k +≥(当且仅当221k k =,即1k =±时取等号),()82232S ∴≥⨯+=,即四边形GHMN 面积的最小值为32.50.(2022·黑龙江·大庆实验中学高二期中(理))设点30,2F ⎛⎫⎪⎝⎭,动圆P 经过点F 且和直线32y =-相切,记动圆的圆心P 的轨迹为曲线w .(1)求曲线w 的方程;(2)过点F 作互相垂直的直线1l 、2l ,分别交曲线w 于A 、C 和B 、D 两个点,求四边形ABCD 面积的最小值.【解析】(1)由抛物线的定义知点P 的轨迹为以F 为焦点的抛物线,322p =,即3p =,∴2:6w x y =.(2)设3:2AC y kx =+,由223,069026y kx k x kx x y⎧=+≠⎪⇒--=⎨⎪=⎩.设()11,A x y ,()22,C x y ,236360k ∆=+>121269x x kx x +=⎧⎨=-⎩()261AC k ==+,∵1l 与2l 互相垂直,∴以1k -换k 得2161BD k ⎛⎫=+ ⎪⎝⎭,()22111616122ABCD S AC BD k k ⎛⎫==⨯+⨯+ ⎪⎝⎭()221182182272k k ⎛⎫=++⨯+= ⎪⎝⎭≥,当1k =±时取等号,∴四边形ABCD 面积的最小值为72.51.(2022·全国·高二期中)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE的面积.【解析】(1)证明:设1(,2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=.设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.。
解析几何—直线过定点问题
解析几何之图像过定点问题是我们高考20题常考类型之一。
主要方向是弄懂:如何确定直线所过的定点;同时掌握几种常考类型。
此类题目题干中定有条件需要转化,结合联立利用韦达定理,得到关于所设直线中涉及的斜率(k )、截距(b/m )的式子。
然后可用含k 的式子表示b (m ),只需留有一个变量即可。
以下是常见情况:例题精析①例1(2017·全国高考真题(理))已知椭圆C :(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直2222=1x y a b3232线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1) .(2)证明见解析.【解析】(1)由于,两点关于y 轴对称,故由题设知C 经过,两点.又由知,C 不经过点P 1,所以点P 2在C 上. 因此,解得. 故C 的方程为.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知,且,可得A ,B的坐标分别为(t ,),(t ,).则,得,不符合题设. 从而可设l :().将代入得由题设可知.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=.而2214x y +=3P 4P 3P 4P 222211134a b a b +>+222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩2214x y +=0t ≠2t<22-1222122k k t t+=-=-2t =y kx m =+1m ≠y kx m =+2214xy +=()222418440kx kmx m +++-=()22=16410k m ∆-+>2841km k -+224441m k -+12121211y y k k x x --+=+121211kx m kx m x x +-+-=+.由题设,故.即.解得. 当且仅当时,,欲使l :,即, 所以l 过定点(2,)例题精析②例2. 已知抛物线2:4C y x =,点M (m , 0)在x 轴的正半轴上,过M 点的直线l 与抛物线 C 相交于A ,B 两点,O 为坐标原点.(1) 若m =1,且直线l 的斜率为1,求以AB 为直径的圆的方程; (2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?()()12121221kx x m x x x x +-+=121k k +=-()()()12122110k x x m x x ++-+=()()22244821104141m kmk m k k --+⋅+-⋅=++12m k +=-1m >-0∆>12m y x m +=-+()1122m y x ++=--1-【解析】:(I )由题意得M (1,0),直线l 的方程为y =x ﹣1与抛物线方程联立,利用韦达定理,可得圆心坐标与圆的半径,从而可得圆的方程;(II )若存在这样的点M ,使得2211AMBM+为定值,直线l :x =ky +m与抛物线方程联立,计算|AM |,|BM |,利用2211AMBM+恒为定值,可求点M 的坐标.答案:(1)()()223216x y -+-=. (2)存在定点M (2, 0).解析:(1)当m =1时,M (1,0),此时,点M 为抛物线C 的焦点,直线l 的方程为y =x -1,设()()1122,,A x y B x y ,,联立24{ 1y x y x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=.(2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值,于是m =2,此时221114AMBM+=. ∴存在定点M (2, 0),满足题意.例题精析③例3. 已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F , 2F , B为椭圆的上顶点, 12BF F ∆, A 为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.【解析】:(Ⅰ)由已知()122{{12c 4BF F b b c S ∆==⇒=== ∴2224a b c =+=.∴椭圆的标准方程为22143x y +=.(Ⅱ)设()11M x y ,, ()22N x y ,,联立22{ 1.43y kx m x y =++=,得()()222348430k x mkx m +++-=,()()22222264163430340m k k m k m ∆=-+->+->,即()1222122834{ 43·.34mkx x km x x k +=-+-=+,又()()()()22221212121223434m k y y kx m kx m k x x mk x x m k -=++=+++=+,因为椭圆的右顶点为()20A ,, ∴1MA NA k k =-,即1212·122y yx x =---,∴()121212240y y x x x x +-++=, ∴()()22222234431640343434m k mmkk k k --+++=+++,∴2271640m mk k ++=.解得: 12m k =-, 227k m =-,且均满足22340k m +->,当12m k =-时, l 的方程为()2y k x =-,直线过定点()20,,与已知矛盾; 当227k m =-时, l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,。
初中知识 抛物线上一点到直线距离最大
初中知识:抛物线上一点到直线距离最大一、概述在初中数学学习中,抛物线和直线是常见的图形,在实际问题中,我们经常需要求解抛物线上某一点到直线的距离。
在这篇文章中,我们将探讨如何求解抛物线上一点到直线距离的最大值,这个问题涉及到数学分析知识中的极值问题。
通过本文的学习,读者将了解到如何运用基本的数学知识解决复杂的实际问题。
二、基本概念1. 抛物线:抛物线是二次函数图像的一种特殊情况。
其一般方程为y=ax^2 +bx+c,其中a、b、c为常数且a≠0。
抛物线开口方向由系数a的正负来决定,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
2. 直线:直线是一种线性函数图像,其方程一般为y=kx+b,其中k 和b为常数。
3. 距离公式:点P(x,y)到直线Ax+By+C=0的距离可以利用公式d = |Ax+By+C| / √(A^2+B^2)来计算。
三、问题提出假设有一条抛物线y=ax^2+bx+c和一条直线y=kx+d,现在需要求解抛物线上一点到直线的距离的最大值。
四、问题分析为了求解这个问题,我们可以依次进行以下步骤:1. 我们需要确定抛物线上一点的坐标。
假设抛物线上一点的坐标为(x,ax^2+bx+c)。
2. 我们利用距离公式计算点(x,ax^2+bx+c)到直线y=kx+d的距离。
3. 我们需要对距离进行求导,找到距离函数的极值点。
4. 我们判断极值点是距离函数的最大值还是最小值,从而求得抛物线上一点到直线距离的最大值。
五、问题求解1. 确定抛物线上一点的坐标假设抛物线的方程为y=ax^2+bx+c,直线的方程为y=kx+d。
设抛物线上一点的坐标为(x,ax^2+bx+c)。
2. 计算点到直线的距离利用距离公式d = |Ax+By+C| / √(A^2+B^2),其中A、B、C分别为直线的系数,可以计算出抛物线上一点到直线的距离。
3. 对距离进行求导我们得到点到直线的距离函数为f(x) = |ax^2+bx+c-kx-d| /√(a^2+k^2)。