2013年高考新课标1数学文科试题及答案

合集下载

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i 1i +(-)=( ). A. −1−12i B .11+i 2- C .1+12i D .1−12i 【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13.4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A . y=±14x B .y =±13x C .12y x =± D .y =±x 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。

【解析】∵2e =,∴2c a =,即2254c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12b a =. ∵双曲线的渐近线方程为b y x a=±, ∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q【答案】B【考点】本题主要考查常用逻辑用语等基本知识。

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-。

3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13。

4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。

【解析】∵5e =5c a =,即2254c a =。

∵c 2=a 2+b 2,∴2214b a =.∴12b a =。

∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C 。

2013年高考文科数学全国卷1及答案

2013年高考文科数学全国卷1及答案

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.212i(1i)+=-( )A .11i 2--B .11i 2-+C .11i 2+D .11i 2-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .164.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =± 5.已知命题p :x ∀∈R ,23x x<;命题q :x ∃∈R ,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-8.O 为坐标原点,F 为抛物线C :242y x =的焦点,P 为C 上一点,若||42PF =,则POF △的面积为( )A .2B .22C .23D .49.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为( )10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5 11.某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+12.已知函数22,0()ln(1),0.x x x f x x x ⎧-+=⎨+⎩≤,>若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________.14.设x ,y 满足约束条件13,10,x x y ⎧⎨--⎩≤≤≤≤,则2z x y =-的最大值为________.15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.52.61.22.71.52.93.03.12.32.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.60.51.80.62.11.12.51.22.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药B 药0. 1. 2.3.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16A C =,求三棱柱111ABC A B C -的体积.20.(本小题满分12分)已知函数2()e ()4x f x ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+.(Ⅰ)求a ,b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.21.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .数学试卷 第7页(共18页)数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷当0a >时,y ax =与()y f x =恒有公共点,所以排除当0a ≤时,若0x >,则()f x ≥由2,2,y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .第Ⅱ卷0=b c ,a 1112⨯⨯=a b 1(0[)]t t =+-=b c a b b ,即1()t t +-a b b 1120t t +-=;∴2t =. 【答案】3【解析】画出可行域如图所示。

2013年高考文科数学全国新课标卷1答案

2013年高考文科数学全国新课标卷1答案
4
f′(x)=4ex(x+2)-2x-4=4(x+2)· e x .
令 f′(x)=0 得,x=-ln 2 或 x=-2. 从而当 x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0; 当 x∈(-2,-ln 2)时,f′(x)<0. 故 f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. -2 当 x=-2 时,函数 f(x)取得极大值,极大值为 f(-2)=4(1-e ). 21. 解: 由已知得圆 M 的圆心为 M(-1,0), 半径 r1=1; 圆 N 的圆心为 N(1,0), 半径 r2=3.设圆 P 的圆心为 P(x, y),半径为 R. (1)因为圆 P 与圆 M 外切并且与圆 N 内切, 所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4. 由椭圆的定义可知,曲线 C 是以 M,N 为左、右焦点,长半轴长为 2,短半轴长为 3 的椭圆(左顶点除外), 其方程为
所以所求体积为 16+8π .故选 A. 12. 答案:D 解析:可画出|f(x)|的图象如图所示. 当 a>0 时,y=ax 与 y=|f(x)|恒有公共点,所以排除 B,C; 当 a≤0 时,若 x>0,则|f(x)|≥ax 恒成立. 2 若 x≤0,则以 y=ax 与 y=|-x +2x|相切为界限, 由
叶集中在茎 0,1 上,由此可看出 A 药的疗效更好. 19. (1)证明:取 AB 的中点 O,连结 OC,OA1,A1B. 因为 CA=CB, 所以 OC⊥AB. 由于 AB=AA1,∠BAA1=60°, 故△AA1B 为等边三角形, 所以 OA1⊥AB. 因为 OC∩OA1=O,所以 AB⊥平面 OA1C. 又 A1C⊂ 平面 OA1C,故 AB⊥A1C. (2)解:由题设知△ABC 与△AA1B 都是边长为 2 的等边三角形, 所以 OC=OA1= 3 . 又 A1C= 6 ,则 A1C =OC + OA1 ,

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A. −1−12i B .11+i 2- C .1+12i D .1−12i 【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)C 的渐近线方程为( ).A . y =±14x B .y =±13x C .12y x =± D .y =±x【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。

【解析】∵e =c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±, ∴渐近线方程为12y x =±.故选C. 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x<3x;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。

2013年高考全国卷1文科数学真题与答案

2013年高考全国卷1文科数学真题与答案

2013 年高考文科数学真题及答案全国卷I第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.,B ={ x | x = n 2,n ∈A },则 A ∩ B =(1.(2013 课标全国Ⅰ,文 1) 已知集合A ={1,2,3,4} ) .A . {1,4}B . {2,3}C . {9,16}D . {1,2} 2. (2013 课标全国Ⅰ,文2) 1 2i = () .1 i 21 1i1+ 1i1+ 1i1 1iA . 2B . 2C . 2D . 23. (2013 课标全国Ⅰ,文 3) 从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对值为 2 的概率是 ( ) .1111A .2B .3C .4D .64. (2013 课标全国Ⅰ,文 4) 已知双曲线: x2y 2=1 (a 0 b 0) 5,则a b C 的渐近线方程为( ) .2A . y = 1 xB. y = 1 xC . y =1 x. y =±x432D5. (2013 课标全国Ⅰ,文 5) 已知命题p : ?xxq :? x ∈R , x 3=1- x 2,则x ∈R, 2<3;命题下列命题中为真命题的是 ( ) .A . p ∧ qB . p ∧ qC . p ∧ qD . p ∧ q6. (2013 课标全国Ⅰ,文6) 设首项为 1,公比为2的等比数列 { a n } 的前n 项和为n,则() .3SA . Sn = 2an - 1B .Sn = 3an - 2C. Sn = 4- 3anD. Sn = 3-2an7. (2013 课标全国Ⅰ,文 7) 执行下面的程序框图,如果输入的t ∈[-1,3],则输出的 s 属于( ) .A . [ - 3,4]B .[ -5,2]C . [ - 4,3]D.[ -2,5]8. (2013 课标全国Ⅰ,文 8) O 为坐标原点,F 为抛物线C :y 2=4 2x 的焦点,P 为 C 上一点,若| PF |=42 ,则△POF 的面积为() .A .2B .22C . 2 3D . 49.(2013 课标全国Ⅰ,文 9) 函数 f ( x )=(1-cos x )sin x 在[- π,π]的图像大致为() .10.(2013 课标全国Ⅰ,文 10) 已知锐角△的内角,,的对边分别为,, 23cos2+cos 2 A =0,a = 7,c = 6,则b = (ABCA B Ca b c,A) .A.10B.9C.8D.511. (2013 课标全国Ⅰ,文11) 某几何体的三视图如图所示,则该几何体的体积为() .A. 16+ 8πB. 8+ 8πC. 16+ 16πD. 8+ 16π12.(2013 课标全国Ⅰ,文 12) 已知函数f ( x) =x22x, x0, 若ln( x1),x0.| f ( x)| ≥ax,则a的取值范围是 () .A. ( -∞, 0]B.( -∞, 1]C. [ - 2,1]D.[ -2,0]第Ⅱ卷二、填空题:本大题共 4 小题,每小题 5 分.a,b 的夹角为60°,c=t a+ (1 -t ) b. 若13. (2013 课标全国Ⅰ,文13) 已知两个单位向量b·c=0,则 t =______.14. (2013 课标全国Ⅰ,文1 x3,14) 设x,y满足约束条件则 z=2x- y 的最大值1 x y0,为______ .15. (2013 课标全国Ⅰ,文 15) 已知H是球O的直径AB上一点,AH∶HB= 1∶ 2,AB⊥平面α,H为垂足,α截球 O所得截面的面积为π,则球 O的表面积为______.16. (2013 课标全国Ⅰ,文 16) 设当x=θ时,函数f ( x) = sin x- 2cos x取得最大值,则 cosθ= ______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013 课标全国Ⅰ,文 17)( 本小题满分 12 分 ) 已知等差数列 { a n} 的前n项和S n满足S3=0, S5=-5.(1)求 { a n} 的通项公式;(2) 求数列1的前 n 项和.a2 n 1a2 n 118. (2013课标全国Ⅰ,文18)(本小题满分12 分 ) 为了比较两种治疗失眠症的药( 分别称为A 药, B 药) 的疗效,随机地选取20 位患者服用A药,20位患者服用 B 药,这40 位患者在服用一段时间后,记录他们日平均增加的睡眠时间( 单位: h) .试验的观测结果如下:服用 A 药的 20 位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用 B 药的 20 位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19. (2013 课标全国Ⅰ,文 19)( 本小题满分 12 分 ) 如图,三棱柱ABC - A 1B 1C 1中, CA = CB ,AB = AA 1,∠ BAA 1=60°.(1) 证明: AB ⊥ A 1C ;(2) 若 AB =CB =2, A 1C =6,求三棱柱 ABC - A 1B 1C 1的体积.20.(2013 课标全国Ⅰ,文 20)( 本小题满分 12 分 ) 已知函数f ( x ) = e x ( ax +b )- x 2-4x ,曲线 y =f ( x )在点(0, f (0))处的切线方程为 y =4x +4.(1) 求 a , b 的值;(2) 讨论 f ( x )的单调性,并求 f ( x )的极大值.21.(2013 课标全国Ⅰ,文 21)( 本小题满分12 分 ) 已知圆M :( x + 1) 2+y 2= 1,圆N :( x - 1) 2+ y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆心 P 的轨迹为曲线 C . (1) 求C 的方程;(2) l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求| AB |.请考生在第 (22) 、(23) 、(24) 三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22. (2013 课标全国Ⅰ,文 22)( 本小题满分 10 分) 选修 4— 1:几何证明选讲如图,直线 AB 为圆的切线,切点为 B ,点 C 在圆上,∠ ABC 的角平分线 BE 交圆于点 E , DB 垂直 BE 交圆于点 D .23. (2013 课标全国Ⅰ,文23)( 本小题满分 10 分 ) 选修 4— 4:坐标系与参数方程已知曲线x 4 5cos t, x 轴的正半轴为极轴建立C 1的参数方程为5 ( t 为参数 ) ,以坐标原点为极点,y5sin t极坐标系,曲线C 2的极坐标方程为ρ =2sin θ .(1) 把 C 1的参数方程化为极坐标方程;(2) 求 C 1与 C 2交点的极坐标(ρ ≥0,0≤ θ<2π).24. (2013 课标全国Ⅰ,文 24)( 本小题满分 10 分 ) 选修 4— 5:不等式选讲已知函数 f ( x )=|2 x - 1| + |2 x +a | ,g ( x ) =x + 3.(1) 当 a =-2时,求不等式 f ( x )< g ( x )的解集; (2) 设 a >-1,且当 x ∈a , 1时,f (x )≤g (x ),求a 的取值范围.222013 年普通高等学校夏季招生全国统一考试数学文史类(全国卷 I 新课标)第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案: A2,∈ } = {1,4,9,16}解析:∵={| x = n ,Bxn A∴A ∩ B ={1,4}.2.答案: B解析:12i1 2i12i i 2 i= 1+ 1i . 1 i 2 2i22 23.答案: B解析:由题意知总事件数为 6,且分别为 (1,2) , (1,3) , (1,4) , (2,3) , (2,4) , (3,4) ,满足条件的事件数是 2,所以所求的概率为1 . 4. 3答案: C解析:∵ e5 ,∴ c 5 ,即 c 2 5 .2 a2a 2 4 222b 2 1b 1 .∵c = a + b ,∴ a2. ∴24a∵双曲线的渐近线方程为ybx ,a∴渐近线方程为 y1x .故选C.5.2答案: B解析:由 20= 30知,p 为假命题.令 h ( x )= x 3-1+ x 2,∵h (0)=-1<0, h (1) = 1>0,∴x 3-1+ x 2=0在(0,1) 内有解.∴? x ∈ R ,x 3= 1-x 2,即命题q 为真命题.由此可知只有 p ∧ q 为真命题.故选B.6.答案: Da 1 1 q na 1 a n q 1 2a n31 q1 q1 237.答案: A解析:当- 1≤t < 1 时,s = 3t ,则s ∈ [ - 3,3) .当 1≤t ≤3时,s = 4t -t 2. ∵该函数的对称轴为 t =2,∴该函数在 [1,2] 上单调递增,在 [2,3] 上单调递减.∴ s max =4, s min =3.综上知 s ∈[-3,4] .故选 A.8. 答案: C解析:利用 | PF | =x P24 2 P,可得 x =3 2.∴y =2 6.∴ S △= 1 OF |·|y |=2 3.|PPOF2P故选 C.9.答案: C解析:由 f ( x )=(1-cos x )sinx 知其为奇函数.可排除B .当x ∈0,π时,f ( x ) > 0,2排除 A.当 x ∈(0,π)时, f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令 fxx 2 π. ′( )=0,得23π故极值点为x,可排除 D ,故选 C.310.答案: D解析:由 23cos 2A + cos 2 A =0,得cos 2A =1.25∵A ∈0,π,∴cosA =1.25∵cos A =362 b 249,∴ b =5或b13 (舍) . 故选 D.6b511. 答案: A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱= 12π ×2×4= 8π,2 V 长方体=4×2×2=16.所以所求体积为 16+ 8π . 故选 A.12. 答案: D解析:可画出 | f ( x )| 的图象如图所示.当> 0时, y = ax 与 y = | f ( )| 恒有公共点,所以排除 B , C ;ax当 a ≤0时,若 x >0,则| f ( x )| ≥ ax 恒成立.若 x ≤0,则以 y = ax 与 y =|- x 2+2x |相切为界限,由y ax, 得 x 2- ( +2) x = 0.y x 2 2x, a∵Δ= ( a +2) 2= 0,∴a =- 2.∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分. 第 13 题~第 21 题为必考题,每个试题考生都必须做答. 第22 题~第 24 题为选考题,考生根据要求做答.二、填空题:本大题共 4 小题,每小题5 分.13.答案: 2解析:∵ b · c =0,| a |=| b |=1,〈 a , b 〉=60°,∴ a · b =1 111 .22∴ b · c =[ t a +(1- t ) b ]· b =0, 即 t a · b +(1- t ) b 2=0.∴ 1t +1-t =0. 2 ∴ t =2.14.答案: 3解析:画出可行域如图所示.画出直线 2x -y = 0,并平移,当直线经过点A (3,3) 时,z 取最大值,且最大值为 z =2×3-3=3. 15.答案:9π 2解析:如图,设球 O 的半径为 R ,则 AH =2R,3OH =R.32又∵π · EH =π ,∴ EH =1.∵在 Rt △OEH 中,R 2=R2,∴R 2=9.+1238∴S 球=4π R 2=9π.2 16.答案:2 55解析:∵ f ( x )=sin x -2cos x =5sin(x -φ),其中 sin φ=25, cos φ = 5 .55π 当 x - φ=2k π+( k ∈ Z) 时,f ( x ) 取最大值.2即θ - φ= 2k π+π( k ∈ Z) ,θ=2k π+π+φ ( k ∈Z) .22∴cos θ =cosπ=-sin φ =2 5.25三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.n( n 1)dnn23a 1 3d0,由已知可得5a 10d 5,解得 a 1=1, d =-1.a =2- n .故{ a } 的通项公式为nn(2) 由 (1) 知1=11 1 1,a2n 1a2 n 13 2n 1 2n22n 3 2n 1从而数列1的前 n 项和为a2n 1a2n 111 1 1 1 1 1 21 1 132n 32n 1=n.1 2n18.解: (1) 设 A 药观测数据的平均数为 x ,B 药观测数据的平均数为y .由观测结果可得x =1 + 1.2 + 1.2 + 1.5 + 1.5 + 1.8 + 2.2 + 2.3 + 2.3 + 2.4 +2.5 + 2.6 + 2.7 + 2.7 +(0.6202.8 + 2.9 +3.0 + 3.1 + 3.2 +3.5)= 2.3 ,y =1(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+ 202.1 + 2.4 +2.5 + 2.6 + 2.7 +3.2) = 1.6.由以上计算结果可得x > y ,因此可看出A 药的疗效更好. (2) 由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有7的叶集中在茎 2,3 上,而 B 药疗效的试7的叶集中在茎10验结果有 0,1 上,由此可看出A 药的疗效更好.19.10(1) 证明:取 AB 的中点 O ,连结 OC , OA 1,A 1B .因为 CA = CB , 所以 OC ⊥ AB .由于 AB = AA 1,∠ BAA 1=60°,故△ AA 1B 为等边三角形,所以 OA 1⊥ AB .因为 OC ∩ OA 1= O ,所以 AB ⊥平面 OA 1C . 又 A 1C ?平面 OA 1C ,故 AB ⊥ A 1C .(2) 解:由题设知△ ABC 与△ AA 1B 都是边长为2的等边三角形,所以 OC = OA 1=3.11 22 2又 AC =6,则AC = OC +OA 1 ,1故 OA ⊥ OC .因为 OC ∩ AB = O ,所以 OA 1⊥平面 ABC , OA 1为三棱柱 ABC - A 1B 1C 1的高.又△ ABC 的面积 S △ABC =3,故三棱柱 ABC -A 1B 1C 1的体积 V = S △ABC ×OA 1=3. 20. 解: (1) f ′(x ) = e x ( ax +a +b ) -2x - 4. 由已知得 f (0)=4,f ′(0) = 4.故 b =4, a + b =8.从而=4, b = 4.a(2) 由 (1)知, f ( x )=4e x ( x +1)-x 2-4x ,xx +2)-2x -4=4( x +2)·ex1 .f ′(x )=4e (2令 f ′(x )=0 得, x =-ln 2或 x =-2. 从而当 x ∈(-∞,-2)∪(-ln 2 ,+∞ ) 时,f ′(x ) > 0; 当 x ∈(-2,-ln 2) 时, f ′(x ) < 0. 故 f ( x )在(-∞,-2),(-ln 2 ,+∞ ) 上单调递增,在 ( - 2,- ln 2) 上单调递减.当 x =-2时,函数 f ( x )取得极大值,极大值为 f (-2)=4(1-e -2). 21.解:由已知得圆 M 的圆心为 M (-1,0),半径 r 1=1;圆 N 的圆心为 N (1,0) ,半径 r 2=3.设圆P 的圆心为 P ( x , y ),半径为 R .(1) 因为圆 P 与圆 M 外切并且与圆 N 内切,所以 | PM | +| PN | = ( R +r 1) + ( r 2-R ) =r 1+r 2=4.由椭圆的定义可知,曲线 C 是以 M ,N 为左、右焦点,长半轴长为2,短半轴长为3 的椭圆( 左顶点除外 ) ,其方程为x 2y 2 =1 (x ≠-2).43(2) 对于曲线C 上任意一点P ( x ,y ) ,由于 | PM | -| PN | = 2R -2≤2,所以 ≤2,当且仅当圆 P 的圆心为 (2,0) 时,=2.RR所以当圆 P 的半径最长时,其方程为 ( x -2) 2+y 2= 4.若 l 的倾斜角为 90°,则l与 y 轴重合,可得| AB |=2 3.若 l 的倾斜角不为 90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则| QP |R ,|QM |r 1可求得 Q (-4,0) ,所以可设 l : y = k ( x +4).由 l 与圆 M 相切得|3k | = 1,解得k = 2 .1 4k 2当 k =2时,将 y2 x 2 代入 x2y 2 =1 ,并整理得 7x 2+8x - 8=0,解得x 1,2=444 34 6 2 ,7所以 | AB | =1 k2| x 2- x 1|=18.7当 k =2 时,由图形的对称性可知 |AB |= 18 .4 3或|AB |=18.7 综上, |AB |=27请考生在第 (22) 、(23) 、(24) 三题中任选一题做答. 注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1) 证明:连结 DE ,交 BC 于点 G . 由弦切角定理得,∠ABE =∠ BCE . 而∠ ABE =∠ CBE ,故∠ CBE =∠ BCE , BE = CE . 又因为 DB ⊥ BE ,所以 DE 为直径,∠ DCE =90°, 由勾股定理可得DB = DC .(2) 解:由 (1) 知,∠CDE =∠BDE ,DB =DC ,故 DG 是 BC 的中垂线, 所以 BG =3.2设 DE 的中点为 O ,连结 BO ,则∠ BOG =60°.从而∠ ABE =∠ BCE =∠ CBE =30°, 所以 CF ⊥ BF ,故 Rt △BCF 外接圆的半径等于 3 . 23.2解: (1) 将 x4 5cos t,消去参数 t ,化为普通方程( x -4)2+( y -5)2=25,y 5 5sin t即 C 1: x 2+ y 2-8x -10y +16=0.将x cos ,代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.ysin所以 C 1的极坐标方程为ρ 2-8ρ cos θ - 10ρsin θ+16= 0. (2) C 2的普通方程为 x 2+ y 2-2y =0.由x 2 y 2 8x10 y 16 0,x 2y 22 y 0解得 x 1, x0,y1或2.y所以1与2交点的极坐标分别为π ,π .4224.解: (1) 当a =- 2 时,不等式f ( x )< g ( x )化为|2 x -1|+|2 x -2|- x -3<0. 设函数 y =|2 x -1|+|2 x -2|-x -3,5x, x1,2, 12则 y =xx 1,23x6, x 1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时, y <0.所以原不等式的解集是{ x |0 <x < 2} . (2) 当x ∈a , 1 时, f ( x )=1+ a .2 2不等式 f ( x )≤ g ( x )化为1+ a ≤ x +3. 所以 x ≥ a -2对 x ∈a , 1 都成立.2 2 故a≥ a -2,即 a ≤4.23从而 a 的取值范围是1,4.3。

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。

【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A.−1−12i B .11+i 2-C .1+12i D .1−12i 【答案】B【考点】本题主要考查复数的基本运算。

【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。

【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y=±14x B .y =±13x C .12y x =± D .y =±x【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。

22a 24a ∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。

2013年高考全国卷1文科数学真题及答案

2013年高考全国卷1文科数学真题及答案

2013年高考文科数学真题及答案全国卷I第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A .11i 2-- B .11+i 2-C .11+i 2 D .11i2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .164.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x<3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an 7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=,则△POF 的面积为( ).A .2 B...49.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f (x )=e x(ax+b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值围.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2. 答案:B 解析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4. 答案:C解析:∵e =c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5. 答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2, ∵h (0)=-1<0,h (1)=1>0, ∴x 3-1+x 2=0在(0,1)有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B. 6. 答案:D解析:11211321113nnn n a a a q a q S q q --(-)===---=3-2a n ,故选D. 7. 答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4].故选A. 8. 答案:C解析:利用|PF |=P x =x P=∴y P=±∴S △POF =12|OF |·|y P |=故选C.9.答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A.当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1. 令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10. 答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫ ⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).故选D.11. 答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A. 12. 答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限, 由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0,即t a ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2.14.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3. 15.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R , OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.答案:解析:∵f (x )=sin x -2cos x x -φ),其中sin φ=5,cos φ=5.当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=5-.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭=12n n-. 18.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好. 19.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形, 所以OC =OA 1又A 1C,则A 1C 2=OC 2+21OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABCABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. 20.解:(1)f ′(x )=e x(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x ⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 21.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k =4±.当k =4时,将4y x =+22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=,所以|AB ||x 2-x 1|=187.当k =4-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线,所以BG =2. 设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt△BCF 23. 解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. (2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即a ≤43.从而a 的取值围是41,3⎛⎤- ⎥⎝⎦.。

2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2013年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.212i 1i +(-)= A .1-1-i 2 B .1-1+i 2 C .11+i 2 D .11-i 23.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为 A .y=14x ± B .y=13x ± C .y=12x ± D .y=±x 5.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是A .p ∧qB .﹁p ∧qC .p ∧﹁qD .﹁ p ∧﹁q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的S 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为A .2B .C .D .49.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为10.已知锐角ΔABC 的内角A,B,C 的对边分别为a,b,c , 23cos 2A +cos2A =0, a =7,c =6,则b =A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为A .16+8πB .8+8πC .16+16πD .8+16π12.已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax , 则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b . 若b ·c =0,则t =____.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211{}n n a a -+的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求ΔBCF外接圆的半径.23 .(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1[,)22a-时,f(x)≤g(x),求a的取值范围.2013年高考全国1卷文科数学参考答案12.解:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2- 3.解:依题所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,满足条件的事件数是2种,所以所求的概率为13. 4.解:依题2254c a =. ∵c 2=a 2+b 2,∴2214b a =,∴12b a =. ∴渐近线方程为12y x =± 5.解:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0, ∴h (x )=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.6.解:121(1)/133n n n a a q S a q -==--=3-2a n 7.解:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4]8.解:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=9.解:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π(0,)2时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,可得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.解:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π(0,)2,∴cos A =15. ∵cos A =236491265b b +-=⨯,解得b =5或135b =-(舍).故选D. 11.解:该几何体为一个半圆柱的上面后方放一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16. 所以体积为16+8π. 故选A 12.解:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B,C;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立;若x ≤0,则以y =ax 与y =x 2-2x 相切为界限,联立y =ax 与y =x 2-2消去y 得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.二、填空题:13.2 1 4.3 15.9π216.5- 13.解:依题a ·b =111122⨯⨯=,b ·c = t a ·b +(1-t )b 2 =0,∴12t +1-t =0. ∴t =2. 14.解:作出可行域如图所示.画出初始直线l 0:2x -y =0,l 0平移到l ,当直线l 经过点A (3,3)时z 取最大值,z =2×3-3=3.15.解:如图,π·EH 2=π,∴EH =1,设球O 的半径为R ,则AH =23R , OH =3R . 在RtΔOEH 中,R 2=22()+13R , ∴R 2=98. ∴S 球=4πR 2=9π2. 16. 解:∵f (x )=sin x -2cos x x +φ),其中tan φ=-2,φ是第四象限角.当x +φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ=2k π+π2-φ(k ∈Z ), ∴cos θ=πcos()2ϕ-=sin φ=5-. 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 则11330,5105,a d a d +=⎧⎨+=⎩ …2分 解得a 1=1,d =-1. …4分 故{a n }的通项公式为a n =2-n . …6分(2)由(1)知21211n n a a -+=1111()321222321n n n n =-(-)(-)--, …8分 从而新数列的前n 项和为111111[(11)(1)()][1]23232122112n n T n n n n =--+-++-=--=---- …12分 18.解: (1)设A 药数据的平均数为x B 药观测数据的平均数为y . x =(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3 +2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9 +3.0+3.1+3.2+3.5)/20=2.3,…3分 y =+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)/20=1.6. …6分由以上计算结果可得x >y ,因此可看出A 药的疗效更好.(2)绘制茎叶图如图: … 9分 从茎叶图可以看出,A 药疗效数据有710的叶集中在茎“2.”,“3.”上,而B 药疗效数据有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.… 12分19. (1)证:取AB 的中点O ,连结OC ,OA 1,A 1B .由于AB =AA 1,∠BAA 1=60°,故ΔAA 1B 为等边三角形,所以OA 1⊥AB . 又CA =CB ,所以OC ⊥AB . …3分因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,所以AB ⊥A 1C . …6分(2)解:依题ΔABC 与ΔAA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C,则A 1C 2=OC 2+OA 12,故OA 1⊥OC ,又OA 1⊥AB ,OC ∩AB =O ,所以OA 1⊥平面ABC , …9分OA 1为三棱柱ABC -A 1B 1C 1的高. 又ΔABC 的面积S △ABC故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. …12分20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 依题f (0)=4,f ′(0)=4. …3分故b =4,a +b =8. 从而a =4,b =4. …6分(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=2(x +2)·(2e x -1).令f ′(x )=0得,x =-ln 2或x =-2. …8 分所以在(-∞,-2)与(-ln2,+∞)上,f ′(x )>0;f (x )单调递增.在(-2,-ln 2) 上,f ′(x )<0. f (x )单调递减. …10 分当x =-2时,函数f (x )取得极大值,极大值为f (-2)=-4e -2+4. …12 分21.解:(1)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .依题, |PM |=R +1. |PN |=3-R . 所以|PM |+|PN |=4. …3 分由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),且a =2,c =1,∴b∴C 的方程为22=143x y +(x ≠-2). …6 分 (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. …7 分若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= …8 分若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,可设l 与x 轴的交点为Q (m ,0),由1||222||1QP R m QM r m-===--即,解得m =-4. 所以Q (-4,0),故可设l :y =k (x +4).由l 与圆M=1,解得k=4±.当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0, 解得x=47-±,所以|AB|x 2-x 1|=187. …10分 当k=4-时,由图形的对称性可知|AB |=187. 综上,|AB|=|AB |=187. …12 分 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,所以BE =CE . 又因为DB ⊥BE ,所以DE 为直径,所以∠DCE =90°,由勾股定理可得DB =DC . …5分(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO , 则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故RtΔBCF. …10分 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 将x=ρcos θ, y=ρsin θ代入整理得C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. …5分(2)C 2的普通方程为x 2+y 2-2y =0. 联立C 1的方程x 2+y 2 -8x -10y +16=0,解得交点为(1,1)与(0,2),其极坐标分别为π)(2,)42π与. …10分 24.解:(1)当a =-2时,不等式f (x )>g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. …5分(2)当a >-1,且x ∈1[,)22a -时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1[,)22a -都成立.故2a -≥a -2,即a ≤43. 从而a 的取值范围是4(1,]3-. …10分。

2013年高考文科数学全国卷1(含详细答案)

2013年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.212i (1i)+=-( )A .11i 2--B .11i 2-+C .11i 2+D .11i 2-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .164.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =± 5.已知命题p :x ∀∈R ,23x x<;命题q :x ∃∈R ,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-8.O 为坐标原点,F 为抛物线C :242y x =的焦点,P 为C 上一点,若||42PF =,则POF △的面积为( )A .2B .22C .23D .49.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为( )10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5 11.某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+12.已知函数22,0()ln(1),0.x x x f x x x ⎧-+=⎨+⎩≤,>若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________.14.设x ,y 满足约束条件13,10,x x y ⎧⎨--⎩≤≤≤≤,则2z x y =-的最大值为________.15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页)数学试卷 第5页(共33页) 数学试卷 第6页(共33页)18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.52.61.22.71.52.93.03.12.32.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.60.51.80.62.11.12.51.22.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药B 药0. 1. 2.3.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16A C =,求三棱柱111ABC A B C -的体积.20.(本小题满分12分)已知函数2()e ()4x f x ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+.(Ⅰ)求a ,b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.21.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin ,x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷3/ 114当0a >时,y ax =与()y f x =恒有公共点,所以排除()5 / 11由2,2,y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .第Ⅱ卷0=b c ,a 1112⨯⨯=a b 1(0[)]t t =+-=b c a b b ,即1()t +-a b b 1120t t +-=;∴2t =. 【答案】3【解析】画出可行域如图所示。

2013年高考全国卷1文科数学真题与答案

2013年高考全国卷1文科数学真题与答案

2013年高考文科数学真题及答案全国卷I第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A .11i 2-- B .11+i 2- C .11+i 2 D .11i2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .164.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( ).A .2B .22C .23D .49.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.(2013课标全国Ⅰ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π12.(2013课标全国Ⅰ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,文13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.(2013课标全国Ⅰ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.(2013课标全国Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.(2013课标全国Ⅰ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18.(2013课标全国Ⅰ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(2013课标全国Ⅰ,文19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.20.(2013课标全国Ⅰ,文20)(本小题满分12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .23.(2013课标全国Ⅰ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.答案:B 解析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3. 答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4. 答案:C解析:∵52e =,∴52c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5. 答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2, ∵h (0)=-1<0,h (1)=1>0, ∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B. 6. 答案:D解析:11211321113n nn n a a a q a q S q q --(-)===---=3-2a n,故选D. 7. 答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3). 当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4].故选A.答案:C解析:利用|PF |=242P x +=,可得x P =32. ∴y P =26±.∴S △POF =12|OF |·|y P |=23. 故选C.9.答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A.当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1. 令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10. 答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫ ⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).故选D. 11. 答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A. 12. 答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ; 当a ≤0时,若x >0,则|f (x )|≥ax 恒成立. 若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限,由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0, 即t a ·b +(1-t )b 2=0. ∴12t +1-t =0. ∴t =2. 14.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3. 15.答案:9π2解析:如图,设球O 的半径为R , 则AH =23R , OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.答案:255-解析:∵f (x )=sin x -2cos x =5sin(x -φ),其中sin φ=255,cos φ=55.当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=255-.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1. 故{a n }的通项公式为a n =2-n . (2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭L =12n n-. 18.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6.由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好. 19.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形, 所以OC =OA 1=3.又A 1C =6,则A 1C 2=OC 2+21OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. 20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x ⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).21.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=23.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M 相切得2|3|1k k +=1,解得k =24±. 当k =24时,将224y x =+代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=4627-±, 所以|AB |=21k +|x 2-x 1|=187.当k =24-时,由图形的对称性可知|AB |=187.综上,|AB |=23或|AB |=187.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE , 故∠CBE =∠BCE ,BE =CE . 又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC.(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG =32. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt△BCF 外接圆的半径等于32. 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π2,4⎛⎫ ⎪⎝⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3, 则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013年全国统一高考数学试卷(文科)(新课标一)(答案解析版)

2013年全国统一高考数学试卷(文科)(新课标一)(答案解析版)

2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=( )A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i【考点】A5:复数的运算.【专题】11:计算题.【分析】利用分式的分母平方,复数分母实数化,运算求得结果.【解答】解:====﹣1+i.故选:B.【点评】本题考查复数代数形式的混合运算,复数的乘方运算,考查计算能力.3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】5I:概率与统计.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42种结果,满足条件的事件是取出的数之差的绝对值等于2的有两种,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从4个不同的数中随机的抽2个,共有C42=6种结果,满足条件的事件是取出的数之差的绝对值等于2,有2种结果,分别是(1,3),(2,4),∴要求的概率是=.故选:B.【点评】本题考查等可能事件的概率,是一个基础题,本题解题的关键是事件数是一个组合数,若都按照排列数来理解也可以做出正确的结果.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是( )A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【考点】2E:复合命题及其真假.【专题】21:阅读型;5L:简易逻辑.【分析】举反例说明命题p为假命题,则¬p为真命题.引入辅助函数f(x)=x3+x2﹣1,由函数零点的存在性定理得到该函数有零点,从而得到命题q为真命题,由复合命题的真假得到答案.【解答】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选:B.【点评】本题考查了复合命题的真假,考查了指数函数的性质及函数零点的判断方法,解答的关键是熟记复合命题的真值表,是基础题.6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则( )A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由题意可得数列的通项公式,进而可得其求和公式,化简可得要求的关系式.【解答】解:由题意可得a n=1×=,∴S n==3﹣=3﹣2=3﹣2a n,故选:D.【点评】本题考查等比数列的求和公式和通项公式,涉及指数的运算,属中档题.7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于( )A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )A.2B.2C.2D.4【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】根据抛物线方程,算出焦点F坐标为().设P(m,n),由抛物线的定义结合|PF|=4,算出m=3,从而得到n=,得到△POF的边OF上的高等于2,最后根据三角形面积公式即可算出△POF的面积.【解答】解:∵抛物线C的方程为y2=4x∴2p=4,可得=,得焦点F()设P(m,n)根据抛物线的定义,得|PF|=m+=4,即m+=4,解得m=3∵点P在抛物线C上,得n2=4×3=24∴n==∵|OF|=∴△POF的面积为S=|OF|×|n|==2故选:C.【点评】本题给出抛物线C:y2=4x上与焦点F的距离为4的点P,求△POF 的面积.着重考查了三角形的面积公式、抛物线的标准方程和简单几何性质等知识,属于基础题.9.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】51:函数的性质及应用.【分析】由函数的奇偶性可排除B,再由x∈(0,π)时,f(x)>0,可排除A,求导数可得f′(0)=0,可排除D,进而可得答案.【解答】解:由题意可知:f(﹣x)=(1﹣cosx)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cosx>0,sinx>0,故f(x)>0,可排除A,又f′(x)=(1﹣cosx)′sinx+(1﹣cosx)(sinx)′=sin2x+cosx﹣cos2x=cosx﹣cos2x,故可得f′(0)=0,可排除D,故选:C.【点评】本题考查三角函数的图象,涉及函数的奇偶性和某点的导数值,属基础题.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A.10B.9C.8D.5【考点】HR:余弦定理.【专题】58:解三角形.【分析】利用二倍角的余弦函数公式化简已知的等式,求出cosA的值,再由a 与c的值,利用余弦定理即可求出b的值.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选:D.【点评】此题考查了余弦定理,二倍角的余弦函数公式,熟练掌握余弦定理是解本题的关键.11.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题. 二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t= 2 .【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为 3 .【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:不等式组表示的平面区域如图所示,由得A(3,3),z=2x﹣y可转换成y=2x﹣z,z最大时,y值最小,即:当直线z=2x﹣y过点A(3,3)时,在y轴上截距最小,此时z取得最大值3.故答案为:3.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H 为垂足,α截球O所得截面的面积为π,则球O的表面积为 .【考点】LG:球的体积和表面积.【专题】16:压轴题;5F:空间位置关系与距离.【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d=R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2=∴球的表面积S=4πR2=.故答案为:.【点评】若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d216.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ= ﹣ .【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【考点】84:等差数列的通项公式;8E:数列的求和.【专题】54:等差数列与等比数列.【分析】(Ⅰ)设出等差数列{a n}的首项和公差,直接由S3=0,S5=﹣5列方程组求出,然后代入等差数列的通项公式整理;(Ⅱ)把(Ⅰ)中求出的通项公式,代入数列{}的通项中进行列项整理,则利用裂项相消可求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的首项为a1,公差为d,则.由已知可得,即,解得a1=1,d=﹣1,故{a n}的通项公式为a n=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;(Ⅱ)由(Ⅰ)知.从而数列{}的前n项和S n==.【点评】本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【考点】BA:茎叶图;BB:众数、中位数、平均数.【专题】5I:概率与统计.【分析】(Ⅰ)利用平均数的计算公式即可得出,据此即可判断出结论;(Ⅱ)利用已知数据和茎叶图的结构即可完成.【解答】解:(Ⅰ)设A药观测数据的平均数据的平均数为,设B药观测数据的平均数据的平均数为,则=×(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.×(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.由以上计算结果可知:.由此可看出A药的效果更好.(Ⅱ)根据两组数据得到下面茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在2,3上.而B药疗效的试验结果由的叶集中在0,1上.由此可看出A药的疗效更好.【点评】熟练掌握平均数的计算公式和茎叶图的结果及其功能是解题的关键. 19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由题目给出的边的关系,可想到去AB中点O,连结OC,OA1,可通过证明AB⊥平面OA1C得要证的结论;(Ⅱ)在三角形OCA1中,由勾股定理得到OA1⊥OC,再根据OA1⊥AB,得到OA1为三棱柱ABC﹣A1B1C1的高,利用已知给出的边的长度,直接利用棱柱体积公式求体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA 1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A 1B1C1的体积.【点评】题主要考查了直线与平面垂直的性质,考查了棱柱的体积,考查空间想象能力、运算能力和推理论证能力,属于中档题.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)求导函数,利用导数的几何意义及曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4,建立方程,即可求得a,b的值;(Ⅱ)利用导数的正负,可得f(x)的单调性,从而可求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).【点评】本题考查导数的几何意义,考查函数的单调性与极值,考查学生的计算能力,确定函数的解析式是关键.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M 外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.请考生在第22、23、24三题中任选一题作答。

2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q 6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n 7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10B.9C.8D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前
2013年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷
一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只
有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x |x =n 2
,n ∈A},则A∩B= ( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2} (2)
1+2i
(1-i)
2=
( ) (A )-1-1
2i
(B )-1+1
2
i
(C )1+1
2
i
(D )1-1
2
i
(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )
(A )12
(B )
13
(C )14
(D )16
(4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5
2
,则C 的渐近线方程为


(A )y =±14x (B )y =±1
3
x
(C )y =±1
2
x
(D )y =±x
(5)已知命题p :∀x ∈R,2x
><3x
;命题q :∃x ∈R ,x 3
=1-x 2
,则下列命题中为真命题的是:


(A ) p∧q
(B )¬p∧q
(C )p∧¬q
(D )¬p∧¬q
(6)设首项为1,公比为2
3
的等比数列{a n }的前n 项和为S n ,则 (

(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-3a n (D )S n =3-2a n
(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5]
(8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )
(A )2 (B )2 2 (C )2 3 (D )4 (9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )
A B C D
(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,
b ,
c ,23cos²A+cos2A=0,a=7,c=6,则b=( )
(A )10 (B )9 (C )8 (D )5
(11)某几何函数的三视图如图所示,则该几何的体积为 (A )18+8π (B )8+8π (C )16+16π (D )8+16π
(12)已知函数f (x )=⎩
⎪⎨
⎪⎧
-x 2
+2x x ≤0
ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )
(A )(-∞,0] (B )(-∞,1] (C)[-2,1] (D)[-2,0]
第Ⅱ卷
本卷包括必考题和选考题两个部分。

第(13)题-第(21)题为必考题,每个考生都必须作
答。

第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题5分。

(13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ²c =0,则t =_____.
(14)设x ,y 满足约束条件⎩⎪⎨
⎪⎧
1≤x ≤3
-1≤x -y ≤0
,则z =2x -y 的最大值为______.
(15)已知H 是球O 的直径AB 上一点,AH:HB=1:2,AB⊥平面α,H 为垂足,α截球O 所得截面
的面积为π,则球O 的表面积为_______.
(16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.
三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)
已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (Ⅰ)求{a n }的通项公式; (Ⅱ)求数列{
1
a 2n -1a 2n +1
}的前n 项和
18(本小题满分共12分)
为了比较两种治疗失眠症的药(分别成为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h )实验的观测结果如下:
服用A 药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
侧视图
俯视图
2.5 2.6 1.2 2.7 1.5 2.9
3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6
2.1 1.1 2.5 1.2 2.7 0.5 (Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?
(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药B药
0.
1.
2.
3.
19.(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
1
(21)(本小题满分12分)
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P 的轨迹为曲线 C.
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
请考生在第(22)、(23)、(24)三题中任选一题作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。

(22)(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。

(Ⅰ)证明:DB=DC ;
(Ⅱ)设圆的半径为1,BC=3,延长CE 交AB 于点F ,求△BCF 外接圆的半径。

(23)(本小题10分)选修4—4:坐标系与参数方程
已知曲线C 1的参数方程为⎩
⎪⎨
⎪⎧
x =4+5cost y =5+5sint (t 为参数),以坐标原点为极点,x 轴的正半轴
为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ。

(Ⅰ)把C 1的参数方程化为极坐标方程;
(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π) (24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a |,g(x )=x +3. (Ⅰ)当a =2时,求不等式f (x )<g(x )的解集;
(Ⅱ)设a >-1,且当x ∈[-a 2,1
2
)时,f (x )≤g(x ),求a 的取值范围.。

相关文档
最新文档