Mass-to-Light ratio, Initial Mass Function and chemical evolution in disc galaxies
长安福特常用缩写词
长安福特常用缩写词(CP)Confirmation Prototype确认样车Final Status最终状态(J1)Job 1整车投产(PT)P/T Design Complete动力传动系统设计结束PT(P/T)Power Train动力传动系统(ST)Surface Transfer表面参数传递Change Cut-Off更改完成Launch Readiness投产准备就绪Launch Sign-Off投产验收Program Approval项目批准Proportions & Hardpoints比例与固定点Product Readiness产品准备就绪Pre Milestone 1SI前里程碑1Pre Milestone 2SI前里程碑2Strategic Confirmation策略确认Strategic Intent策略意向Strategic Planning策略计划(SP)Structural Prototype样车结构(TTO)Tool Try-Out工装设备试运行Global 8D Eight disciplinary ActionsG8D(福特公司解决问题的标准方法)14DMore Detailed than Global 8D (used to containand resolve stop-shipment/recall problems)更详细的细节(包括并解决停止运货/召回问题)1MIS One Month in Service投入使用1个月1PP First Production Proveout第一次试生产2PP Second Production Proveout第二次试生产3MIS Three Months in Service投入使用3个月4P Production Process Proveout Program生产程序验证项目AAA American Automobile Association美国汽车工业联合会ABS Affordable Business Structure可承受商业结构ABS Anti skid brake system防抱死制动系统AIAG Automotive Industry Action Group 机动车工业行动小组AIC Accelerated Implementation Centre快速实施中心AIM Automated Issues Matrix问题结构图AIMS Automated Issues Matrix System问题结构图系统AME Advanced Manufacturing Engineering先进制造工艺AMPPE Advanced Manufacturing Pre-Program Engineering 先进项目前制造工艺ANOVA Analysis of Variance多样性分析AP Attribute Prototype设计样车APEAL Automotive Performance Execution and Layout机动车性能实施与规划APQP Advanced Product Quality Planning先进产品质量计划ASQ American Society for Quality美国质量协会AV Appraiser Variation评估者的多样性AVT Advance Vehicle Technology先进车辆技术AWS Analytical Warranty System分析性的保修系统AXOD Automatic Transaxle Overdrive Transmission自动变速驱动桥超速档传动系B&ABody & Assembly Operations (New Term: VehicleOperations)车身与组装操作(新术语:车辆操作)BCG Business Consumer Group消费者工作组BIC Best in Class等级中的最佳BIS Body Shop Information System车身工作间信息系统BLI Business Leadership Initiative领导层初始意向BOM Bill OfMaterials零件清单BTB Bumper-to-Bumper保险杠到保险杠BTS Build-To-Schedule按日程建造BUR Business Unit Review业务小组讨论CAS Capacity Analysis Sheet能力分析表C/E Cause & Effect成因及影响CA Customer Attribute消费者特性CAD Computer Aided Design计算机辅助设计CAE Computer Aided Engineering计算机辅助工程CAP Corrective Action Plan纠正行动计划CBG Consumer Business Group消费者业务小组CB Continuous Build连续性生产CC Critical Characteristic评价特性CC Courtesy Copy抄送CC Carbon Copy副本CCC Customer Concern Classification客户问题分类CCC China compulsory certification中国强制认证CDS Component Design Specification零件设计参数CET Campaignable Events Team召回情况小组CETs Common External Tariff普通关税CETP Corporate Engineering Test Procedures公司工程测试程序CFR Constant Failure Rate连续故障率CHFCIM Computer Integrated Manufacturing计算机综合制造CIWG Continuous Improvement Work Group持续改进工作组CL Centerline中心线CMM Coordinate Measuring Machine协调测量设备CMMS Common Material Management System通用材料管理系统CMMS3Common Manufacturing Management System-3通用制造管理系统-3Code X Pre-build focusing on exterior components制造前关注的外部零件Code Y Pre-build focusing on interior components制造前关注的内部零件CP Cost plan(马自达用语)由ECN引起的价格变动估计CP Common Position通用位置CP Confirmation prototype确认样车(FORD 时间节点)C p Relates the allowable spread of thespecification limits to the measure of theactual variation of the process.将参数限制允许限度下的展开与程序实际多样性联系起来CPE Chief Program Engineer首席项目工程师C pk Measures the process variation with respect tothe allowable specification, and takes intoaccount the location of the process average测量程序的多样性并将其考虑到程序平均性的位置中CPU Cost Per Unit单位成本CQDC Corporate Quality Development Center公司质量开发中心CQIS Common Quality Indicator System一般质量指标系统CR Concern Responses问题回复CRT Component Review Team零件讨论组CSA Corporate Security Administrator公司安全管理员CSI Customer Service Index客户服务指数DCO Duty Cycle Output责任循环结果DCP Dynamic Control Planning动态控制计划DDL Direct Data Link直接数据连接Df Degrees of Freedom自由度DFA Design for Assembly总成设计DFM Design for Manufacturability制造能力设计DFMEA Design Failure Mode Effects Analysis故障模式影响分析设计DFR Decreasing Failure Rate故障下降率DMA Database Maintenance Administrator数据库维护管理人员DOE Design of Experiment试验设计DOM Dealer Operations Manager经销商业务经理DP Design Parameters参数设计DQR Durability Quality and Reliability耐久性质量与可靠性DTD Dock to Dock码头至码头DTD Design to Delivery设计到交付DCV Design Confirmation Vehicle设计确认车DV Design Verification设计验证DVM Design Verification Method设计验证方式DVP Design Verification Plan设计验证计划Design Verification Process and Production设计验证程序和产品验证DVP&PVValidationDVP&R Design Verification Plan & Report设计验证计划和结果DVPR Design Verification & Product Reliability设计验证和产品可靠性DVPV Design Verification and Process Verification设计验证和程序验证EAO European Automotive Operations欧洲机动车协会EASI Engineering And Supply Information工程和供应信息ECAR Electronic Connector Acceptability Rating电子连接接受比率EDI Electronic Data Interchange电子数据交换EESE Electrical and Electronic Systems Engineering电力及电子系统工程EMM Expanded Memory Manager扩展内存管理器EMS Environmental Management System环境管理系统EOL End of Line线的端点EQI Extraordinary Quality Initiative特别初始质量ES Engineering Specifications工程参数ESI Early Supplier Involvement早期供应商参与ESP Extended Service Plan延期服务计划ESTA Early Sourcing Target Agreement早期选点目标协议ESWP Early Sourcing Work Plan早期选点工作计划EV Equipment Variation设备变更F&T Facility & Tooling工装设备FACT Facilitation and Certification Training简易化及认证培训FASS Field Action/Stop Shipment区域行动/停止运货区域行动/停止运货(优先使用缩FA/SS Field Action/Stop Shipment (Preferred Acronym)写)FAO Ford Automotive Operations福特机动车协会FAP Ford Automotive Procedure福特机动车程序FAQ Frequently Asked Questions常见问答FCPA Ford Consumer Product Audit福特客户产品审核FCSD Ford Customer Service Division福特客户售后服务分枝机构FDVS Ford Design Verification System福特设计验证系统FER Fresh Eyes Review其它行业人员论证FER Final Engineering Review最终工程论证FEU Field Evaluation Unit区域评估组FIFO First in First Out先进先出FMEA Failure Mode Effects Analysis故障模式影响分析FMVSS Federal Motor Vehicle Safety Standards美国联邦机动车安全标准FPDS Ford Product Development System福特产品开发系统FPS Ford Production System福特生产系统FPSI Ford Production System Institute福特产品系统学院FPS IT Ford Production System Information Technology福特产品系统信息技术FOB Ford of Britain福特英国FQRs Frequent Quality Rejects经常性质量不合格品FR Functional Requirements功能要求FAO (福特机动车运作) 可靠性指FRG FAO Reliability Guide导FS Final Sign-off最终验收FSIC Ford System Integration Council福特系统综合委员会FSN Ford Supplier Network福特供应商网络FSS Full Service Suppliers全方位服务供应商FTDC Fairlane Training and Development Center培训和发展中心FTEP Ford Technical Educational Program福特技术培训项目FTT First Time Through首次通过FUNC-APPRV Functional Approvals功能批准FVEP Finished Vehicle Evaluation Program下线车辆评估项目GAP Global Architecture Process全球建筑设计程序GC Global Craftsmanship全球技术工艺GCARS Global Craftsmanship Attribute Rating System全球技术特性评分系统GCEQ Global Core Engineering Quality全球核心工程质量GEM Generic Electronic Module通用电子模块GIS1Global Information Standards全球信息标准Global Prototype Inventory Requisition andGPIRS全球样车库存及控制安排SchedulingGPP Global Parts Pricing全球零件定价GQRS Global Quality Research System全球质量调查系统GRC UN-ECE Group des Raporteurs de Ceintures欧盟 ECE 安全带规划小组GRC Government Regulations Coordinator政府法规协调员GR&R Gage Repeatability and Reproducibility量具重复性和再现性GRVW Gross Vehicle Weight车辆质量GSDB Global Supplier Database全球供应商数据库GSSM Global Sourcing Stakeholders Meeting全球选点股东大会GYR Green-Yellow-Red绿-黄-红HB Homologation Build法规车制造HI High-Impact重大影响HIC High-Impact Characteristics重大影响特性HR Human Resources人力资源HTFB Hard Tooled Functional Build成形机功能建造HVAC Heating Ventilating and Air Conditioning加热通风和空调ICA Interim Containment Action过渡性补救措施ICCD Intensified Customer Concern Database强化的客户问题数据库ICCD CRSIntensified Customer Concern Database ConcernResolution Specialist 强化的客户问题数据库解决问题专员IE Industrial Engineer产业工程师IFR Increasing Failure Rate 故障率增长ILVS In-Line Vehicle Sequencing车辆顺序IM Industrial Materials工业材料IP Instrument Panel仪表板IPD In Plant Date进厂日IQ Incoming Quality进货质量IQS2Initial Quality Study初始质量研究IR Internal Reject内部不合格品ISO International Organization for Standardization国际标准化组织ISPC In-Station Process Controls过程质量控制JIT Just in Time及时JPH Jobs Per Hour每小时工作量JSA Job Safety Analysis工作安全分析PSW (零件质量合格验收) 未做好KKK PSW not ready for inspection检测准备KLT Key Life Test关键使用寿命测试KO Kickoff起动LCL Lower Control Limit低控制限值LDEM Lean Design Evaluation Matrix设计评估表LOA Letter of Agreement协议书LP&T Launch Planning & Training投产计划和培训LR Launch Readiness投产准备就绪LRR Launch Readiness Review投产准备就绪论证LS Launch Sign-Off投产验收LSL Lower Specification Limit低参数限制LTDB Light Truck Data Base轻型卡车数据库MBJ1Months Before Job One Job1(投产)前1个月MBO Manufacturing Business Office制造办公室ME Manufacturing Engineering制造工程MIS Months in Service使用中的月份MMSA Material Management System Assessment物料管理系统评定MP Mass Production批量生产MP&L Materials, Planning and Logistics材料、计划与物流MPPS Manufacturing Process Planning System制造程序计划系统MOD Module模块MRB Material Review Board物料论证板MRD Material Required Date物料要求到厂日MS Material Specifications物料参数MS3(MSIII)Material Supply Version III物料供应(第三版)MTC Manage the Change管理变更MY Model Year年度车型NAAO North American Automotive Operations北美汽车工业协会NFM Noise Factor Management噪声管理NIST National Institute of Standards and Testing全国标准和测试协会NMPDC New Model Program Development Center新车型项目开发中心Nova C New Overall Vehicle Audit新车总评审NPPR New Program Product Review供应商技术支持NTEI New Tooled End Items新工具加工成品NVH Noise, Vibration, Harshness噪声、振动、操纵平顺性OCM Operating Committee Meeting工作委员会会议OEE Overall Equipment Efficiency总体设备效率OEM Original Equipment Manufacturer设备最初制造厂ONP Owner Notification Program车主告知程序OS Operator Safety操作者安全OTG Open to Go可进行P Diagrams Parameter Diagrams参数图表PA Program Approval项目批准PAG Premier Automotive Group首要机动车项目组PAL Project Attribute Leadership项目特性领导层PAT Program Activity Team, Program Attribute Team, 项目促进小组、项目特性小组和or Program Action Team项目行动小组PCA Permanent Corrective Action持续改进行动PCF Parts Coordination Fixture零件夹具验证PCI Product Change Information产品变更信息PD Product Development产品开发PDL Program Design Language项目设计语言PD Q1Product Development Q1产品开发Q1PDN2Phased Data NotificationPDSA Plan, Do, Study, Act计划、实践、研讨、实施PFMEA Process Failure Mode Effects Analysis程序故障模式影响分析PI Process Improvement程序改进PIPC Percentage of P pk Indices Process Capable P pk指数程序能力百分比Percentage of Inspection Point That SatisfyPIST满足公差要求的检查点百分比TolerancePM Program Manger项目经理PMA Project Management Analyst项目管理分析PMT Program Management Team or Program Module T eam 项目管理组或项目模式组PO Purchase Order采购订单POC Point of Contact联系点POT Process Ownership Team程序所有者小组P p Process Potential程序潜力PP Pilot ProductPP&T Product Planning & Technology产品计划和技术PPAP Production Part Approval Process生产零件批准程序P pk Process Capability程序能力PPC Product Planning Committee产品计划委员会PPL Program Parts List项目零件清单PPMParts per Million (applied to defectiveSupplier parts)零件的百万分比率(适用于供应商不合格零件)PPPM Program and Pre-Production Management程序和投产前管理PR Public Relations公共关系PR Product Requirement产品要求PR Product Readiness Milestone产品就绪时间节点PSO Production Standard Order制造标准订单PSS Private Switching Service私人转接服务PST Program Steering Team项目指导小组PSW Part Submission Warrant零件质量合格验收PTO Powertrain Operations传动系统操纵件PTR Platinum Resistance Thermometer铂金电阻温度计PV Production Validation产品验证PV Process Variables程序变更PV Part Variation零件变更PVBR Prototype Vehicle Build Requirements样车制造要求PVM Production Validation Method产品验证方法PVP Powertrain Validation Program 传动系统验证程序PVT Product Vehicle Team or Plant Vehicle Team产品车辆组或工厂车辆组QA Quality Assurance质量保证QC Quality Control质量控制QCT Quality Cost Timing质量成本时机选择QFD Quality Function Deployment质量功能配备QFTF Quality Focused Test Fleet质量节点测试行动组QLS Quality Leadership System质量领导体系QMS Quality Management System质量管理体系QOS Quality Operating System质量运作体系QOE Quality of Event质量事件QPM Quality Program Manager质量项目经理QPS Quality Process System质量程序系统QR Quality Reject质量不合格QS-9000Quality Systems – 9000质量体系-9000Quality System Assessment for ProductQSA-PD产品开发质量体系评估DevelopmentQTM Quality Team Member质量小组成员QVA Quality-Focused Value Analysis Workshop车间质量重点价值分析R Range范围RFQ Request For Quotation寻求报价R&M Reliability and Maintainability可靠性及可维护性RMS Resource Management System资源管理系统R&R Repeatability and Reproducibility重复性和再现性R&R Roles and Responsibilities职务与责任R&VT Research & Vehicle Technology研究与车辆技术R/1000Repairs per thousand修理千分率RAP Remote Anti-theft Personality module 防盗遥控器个性化模式Robust Engineering Design Process Enabler积极的工程设计程序计划REDPEPRProjectRIE Reliability Improvement Engineer可靠性改进工程师ROA Return on Assets资产回报率ROCOF Rate of Occurrence of Failure故障发生率RPN Risk Priority Number优先处理风险号码RRCL Reliability and Robustness Check List可靠性与强有力的核对表RRDM Reliability and Robustness Demonstration Matrix可靠性与强有力的演示图表RRR PSW rejected PSW (零件质量合格验收) 不合格RWUP RealWorld Usage Profile现实生活使用记录S Standard deviation标准偏差s2Variance多样性SC Significant Characteristics重要特性Significant Characteristics/CriticalSCs/CCs重要特性/评价特性CharacteristicsSCAC Supplier Craftsmanship Advisory Committee供应商技术顾问委员会SCTs Strategic Commodity Teams策略性商品组SDS System Design Specifications系统设计参数SDS Subsystem Design Specification子系统设计参数SEVA Systems Engineering Value Analysis系统工程价值分析Senko Drawing先行图SHARP Safety and Health Assessment Review Process安全和健康评估讨论程序SI System International des Unit国际单位制SIM Supplier Improvement Metrics供应商改进步骤SMART Synchronous Material and Replenishment Trigger同步物料与补给触发器SME Subject Matter Expert主题专家SMF Synchronous Material Flow同步物料流程SOW Statement of Work工作陈述SP Support PlanSP/AP Structural Prototype/Attribute Prototype结构原形/特性原形SP&PI Strategic Process & Product Improvement策略性程序和产品改进SPC Special Product Committee特殊产品委员会SPC Statistical Process Control统计程序控制SPROM Sample Promise Date承诺的样品到货日SREA Supplier Request for Engineering Approval供应商要求工程批准SRI Supplier Responsible Issues供应商责任SSI Sales Satisfaction Index销售满意度指标SSM Strategic Sourcing Meeting策略选点会议ST Surface Transfer表面转移STA Supplier Technical Assistance供应商技术支持STARS Supplier Tracking and Reporting System供应商跟踪及汇报系统SVC Small Vehicle Center小型车中心TA Target Agreement目标协议TB Training Build训练制造TAP Target Achievement Plan目标完成计划TCM Total Cost Management 总成本管理TED Things Engineers Do工程师任务TEG Tooling and Equipment Group工装及设备组TEM Total Equipment Management全部设备管理TGR Things Gone Right事态发展正确TGW Things Gone Wrong事态发展错误TIS Time in Service服务期限TOC Table of Contents目录TPM Total Productive Maintenance全部生产维护TPPS Torque Process Potential Study扭矩程序潜力研究TQC True Quality Characteristics真实质量特性TRIZ (Russian)Theory of Inventive Problem Solving创造性解决问题的理论(俄罗斯) TRMC Timing, Release and Material Control (also 时效性、发布和物料控制(同known as Tar-Mac)Tar-Mac)TS-16949Technical Specification – 16949技术规范-16949 TSP Technical Skills Program技术性技能项目TTO Tool Try Out工装试运行UCL Upper Control Limit上限控制USL Upper Specification Limit参数上限V/C Very or Completely Satisfied非常或完全满意VC Vehicle Center汽车中心VC BuyerVehicle Center Buyer (now Consumer BusinessGroup Buyer)车辆中心客户(现在为商务集团购买客户)VDI Vehicle Dependability Index车辆可靠性指标VDS Vehicle Design Specifications车辆设计参数VDS Vehicle Descriptor Section车辆描述组VER Vehicle Evaluation Ratings车辆评估等级VFG Vehicle Function Group车辆功能组VIN Vehicle Identification Number车辆识别代码VLD Vehicle Line Director车辆生产线总监VO Vehicle Office车辆办公室VO Vehicle Operations车辆运作VOGO Vehicle Operations General Office车辆运作综合办公室VP Vice President副总裁VPMC Vehicle Project Management Coordinator车辆项目管理协调员VPP Vehicle Program Plan车辆项目计划VQL Vehicle Quality Level车辆质量级别VQR Vehicle Quality Review车辆质量研讨VRT Vehicle Review Team车辆研讨小组VRT Variability Reduction Team减少差异小组VRT Vehicle Reduction Team车辆减产小组WAS Work Analysis Sheet工作分析表WCR Worldwide Customer Requirements全球客户需求WERS Worldwide Engineering Release System全球工程发布系统WIP Work In Progress进行中的工作WMI World Manufacturing Identifier世界制造商识别代码WPRC Warranty Parts Return Center维修部件回收中心Potential Significant and CriticalYS/YC潜在的重要和评价特性CharacteristicsRemark: Editor adds the content in shadow. 备注:阴影部分的内容为编者增加。
Autodesk Nastran 2023 参考手册说明书
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
抗缪勒氏管激素与性激素水平在卵巢储备功能评估中的价值
DOI:10.19368/ki.2096-1782.2024.05.009抗缪勒氏管激素与性激素水平在卵巢储备功能评估中的价值方闰,谈王蓉,匡宁,蒋华春宜兴市中医医院检验科,江苏宜兴214200[摘要]目的分析在卵巢储备功能中抗缪勒氏管激素(Anti-mullerian Hormone, AMH)与性激素水平的评估价值。
方法选取2022年3—8月宜兴市中医医院收治的100例妇科患者为研究对象,依据卵巢储备功能的不同将患者分成3组,甲组33例(卵巢储备功能正常),乙组33例(卵巢储备功能减退),丙组34例(卵巢储备功能早衰),检测所有患者AMH、卵泡刺激素(Follicle Stimulating Hormone, FSH)、黄体生成素(Luteinizing Hor⁃mone, LH)及雌二醇(Estradiol, E2)指标水平。
对比3组患者上述指标检测水平、AMH分别和FSH、LH、E2联合检测的预估值。
结果甲组AMH、E2高于乙组、丙组,FSH、LH低于乙组、丙组,差异有统计学意义(P均< 0.05)。
乙组AMH、E2高于丙组,FSH、LH低于丙组,差异有统计学意义(P均<0.05)。
对乙组和丙组患者进行检测,AMH的血浆浓度时间曲线下面积(Area Under the Curve, AUC)、灵敏度、特异度大于FSH、LH、E2;AMH+FSH、AMH+LH、AMH+E2的AUC、灵敏度、特异度分别大于FSH、LH、E2。
结论 AMH与性激素指标可以作为临床评估卵巢储备功能参考指标,联合检测后预估价值更高。
[关键词]抗缪勒氏管激素;性激素;卵巢储备功能;评估价值[中图分类号]R246 [文献标识码]A [文章编号]2096-1782(2024)03(a)-0009-04Value of Anti-mullerian Hormone and Sex Hormone Levels in the Assess⁃ment of Ovarian Reserve FunctionFANG Run, TAN Wangrong, KUANG Ning, JIANG HuachunDepartment of Laboratory, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu Province, 214200 China[Abstract] Objective To evaluate the value of anti-mullerian hormone (AMH) and sex hormone levels in ovarian re⁃serve function. Methods A total of 100 gynecological patients admitted to Yixing Hospital of Traditional Chinese Medicine from March to August 2022 were selected as the study objects. According to different ovarian reserve func⁃tions, the patients were divided into 3 groups: Group A (33 cases) (normal ovarian reserve function), group B (33 cases) (decreased ovarian reserve function), and group C (34 cases) (premature ovarian reserve function). The levels of AMH, follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) were detected in all patients. The detection levels of the above indicators and the estimated values of AMH combined with FSH, LH and E2 were compared among the 3 groups. Results AMH and E2 in group A were higher than those in groups B and C, and FSH and LH were lower than those in groups B and C, the differences were statistically significant (all P<0.05). AMH and E2 in group B were higher than those in group C, FSH and LH were lower than those in group C, and the differences were statistically significant (all P<0.05). The Area Under the Curve (AUC), sensitivity and specificity of AMH were higher than those of FSH, LH and E2. The AUC, sensitivity and specificity of AMH+FSH, AMH+LH and AMH+E2 [作者简介] 方闰(1990-),女,本科,主管检验师,研究方向为临床检验。
学习LSPCAD设计分频器必学的英语
LSP CAD 相关英文analog/digital ['ænəlɔɡ]/['didʒitəl]模拟/数字location [ləu'keiʃən] 位置,定位件2ch mode两种方式Lock 锁定,隐藏accessæk'ses接近Lock levelactually ['æktʃuəli]事实上Logical ch mapping逻辑绘图additional [ə'diʃənəl]附加的Lower较低additional info额外信息Lower partadjust [ə'dʒʌst]校准,调整lump [lʌmp]集中的advisable [əd'vaizəbl]明智的,适当的main form主要方式aggressive [ə'ɡresiv]好斗的,有闯劲的manufactory [,mænju'fæktəri] 制造厂algorithm ['ælɡəriðəm]运算法则mass [mæs]大量,众多alignment [ə'lainmənt] 校准match [mætʃ]使相配,匹配alternative [ɔ:l'tə:nətiv]可供选择的Matlabamong [ə'mʌŋ]在…之中Max Zamp [æmp]安培Measurement distance测试距离Apply [ə'plai] 应用mention ['menʃən]提到,提及appropriate [ə'prəuprieit适当的mere [miə] 仅仅的area ['εəriə] 面积Merge/Add [mə:dʒ] 合并使合并arrange [ə'reindʒ] 排列,整理Mic cal. Dataarrow ['ærəu] 箭头Min Zassisted[ə'sist] 受助推的misalignment[,misə'lainmənt使不一致associated[ə'səuʃieitid关联的MMEassume [ə'sju:m, 假定modified['mɑdɪfaɪd /'mɒ-]修改attached [ə'tætʃt] 附加的mount [maunt] 增加,爬上attenuate [ə'tenjueit, 减弱的mounted ['mauntid] 安装好的attenuator[ə'tenjueitə] 衰减器multiplier ['mʌltiplaiə] 倍增器author['ɔ:θə] 作者namely['neimli] 换句话说available [ə'veiləbl]可利用的,有效的narrow ['nærəu] 狭窄的,有限的axis ['æksis]轴neat [ni:t]齐整的,平滑的backside [,bæk'said]后方的,背部的No normalization [,nɔ:məlai'zeiʃən, -li'z] 非常态化Baffle step No snap无步级限制,可连续变换beloved [bi'lʌvid心爱的No-brainer无需动脑的事benefit ['benifit] 利益,好处Node difference不同节点block [blɔk] 大块木料Non-standard非标准的boldface[bəuld'feis] 黑体normalize ['nɔ:məlaiz] 使标准化boring无聊的Not mapped不映射box/cabinet['kæbinit] 箱体/及内部notch [nɔtʃ] 谷,凹口Browse[brauz] 浏览Null[nʌl] 零Buffer['bʌfə] 缓冲器observant [əb'zə:vənt]善于观察的bump [bʌmp] 撞击observation angle [,ɔbzə:'veiʃən] ['æŋɡl] 观察角度by pass设旁路Off axis,overlay分频点cal.Offset补偿,抵消Causal filter margin有计划的过滤多余部份omitted[əu'mitid省略cause [kɔ:z] 原因,引起optimizer['ɔptimaizə] n. 优化程序;最优控制器cell [sel]细胞,电池option['ɔpʃən] 选择权chapter ['tʃæptə] 章,分会order ['ɔ:də] 命令,顺序,整理charming ['tʃɑ:miŋ] 迷人的,可爱的original [ə'ridʒənəl] 原件circuit ['sə:kit]电路,回路overall ['əuvərɔ:l, ,əuvə'rɔ:l] 全部的Circular convolution ['sə:kjulə] [,kɔnvə'lu:ʃən] 循环Overlay覆盖图clone [kləun] 复制overview ['əuvəvju:]综述closest最靠近的parallel ['pærəlel] 平行,相同的,类似的coefficient [,kəui'fiʃənt] 共同作用的Parametric[,pærə'metrik]参数的column ['kɔləm] 列,专栏parenthesis [pə'renθisis]插入语,圆括号Combine for total[kəm'bain]组合全部阻抗particular [pə'tikjulə] 特别的impedanceCombine for total SPL组合全部频响passive['pæsiv] 被动的Combined[kəm'baind] 组合paste [peist] 张贴compensate ['kɔmpenseit] 补偿,抵消peak [pi:k]峰,顶点compensation [,kɔmpen'seiʃən]补偿perform [pə'fɔ:m] 执行,完成complex ['kɔmpleks] 复杂的pick [pik] 挑选component [kəm'pəunənt] 元件,组件plus [plʌs]正号,附加的,好处Component snap[kəm'pəunənt][snæp]声响组合points点compression [kəm'preʃən] 压缩Polar map['pəulə]示意图Compute用计算机计算Polar plot相位图concentrate ['kɔnsəntreit]集中精神地pops [pɔps] 突然伸出Cone excursion[ik'skə:ʃən] 圆锥形偏移port[pɔ:t端口configuration [kən,fiɡju'reiʃən]配置preliminary [pri'liminəri] 预加载的configure [kən'fiɡə]安装,配置present ['prezənt,介绍,呈现considered [kən'sidəd] 经过深思熟虑的Preset [pri:'set] 预先调整的consist [kən'sist] 组合pretty ['priti]漂亮的,优美的constraint [kən'streint] 约束,强制Print scale打印比例construct [kən'strʌkt]构想,设计project ['prɔdʒekt设计,工程contain [kən'tein] 包含properties['prɔpətis] 性能,道具,内容continuation [kən,tinju'eiʃən] 继续,续集Protection cap. [prəu'tekʃən] 保护电容convenient [kən'vi:njənt]方便的radiator ['reidieitə] 辐射体correct [kə'rekt] 调整radius ['reidiəs] 半径correctly[kə'rektli] 正确地ratio ['reiʃiəu比率,比例create [kri'eit] 造成,创造reach [ri:tʃ] 达到critical ['kritikəl]鉴定的reality [ri'æləti现实,真实current ['kʌrənt] 电流rearrangement[,ri:ə'reindʒ] 重新整理current project['kʌrənt] 目前项目rectangular ['rek'tæŋɡjulə]矩形的current project as…项目来源reduce [ri'dju:s, 减少curve [kə:v]曲线Ref. Offset参照补偿cyclic ['saiklik] 循环的Reference['refərəns] 参照Data range数据范围reflex ['ri:fleks] 反射Delay start 2s延迟2秒启动region ['ri:dʒən]部位description[di'skripʃən] 描述relatively ['relətivli] 相当地,相对地determine [di'tə:min]决定,使…下决心reliable [ri'laiəbl] 可靠的,可信赖的diffract [di'frækt] 使…分散,衍射remain [ri'mein] 剩余diffraction [di'frækʃən]衍射,绕射replace [ri'pleis] 取代,更换Digital filters['didʒitəl] [filtə] 过滤数值represent [,repri'zent]描绘,回忆dip [dip] 下降resonance ['rezənəns] 共振directly [di'rektli直接地rid [rid]使去掉Disp. Length显示长度roughly ['rʌfli]概略地Display range显示范围/幅度Sample rate取样频率disturb [dis'tə:b]妨碍Scale比例,刻度,数值范围dotted ['dɔtid] 布满点的Schema['ski:mə] 图解Driver output扬声器输出separately['sepəreitli个别地dropdown下拉列表选顶series ['siəri:z串联DSOUND serve [sə:v]服务,适合dull[dʌl] 阴暗的session as…E12步级的一种shape [ʃeip]形状,模型E24步级的一种Show callout显示图号element['elimənt] 元素,成分Show group borders['bɔ:dəz] 边缘显示群边缘emulator['emjuleitə] 仿真程序Show legends['ledʒənd] 显示图例Enable[i'neibl] 使能够Show node numbers[nəud]节点 显示节点数目Enable diff./near-boundary Show phase显示相位energy-time['enədʒi] 能量shunt [ʃʌnt]使分流ensure [in'ʃuə] 保证,确保signal ['siɡnəl]信号entirely [in'taiəli] 完全地,彻底地Simple简单equalize['i:kwəlaiz] 使相等,补偿simulate['simjuleit] 模拟Error ['erə] 误差slight[slait] 轻微的,少量的exception [ik'sepʃən] 例外,异议slightly[slaitili轻微地Exclude排除slope [sləup] 倾斜,斜率experiment[ik'speriment实验smoothing ['smu:ðiŋ] 使平滑化Export data绘出数据snap [snæp] 捕捉extent [ik'stent] 程度,范围snapshot ['snæpʃɔt] n快照vt. 给…拍快照extra ['ekstrə] 特别地,非常sound pressure level声压标准extreme [ik'stri:m] 极其,非常Soundcard cal.factor ['fæktə] 品质,因数SPL mag频率响应曲线fashion ['fæʃən] 样式SPL phase频响相位曲线Fast iteration [,itə'reiʃən] 快速重复square[skwεə] 直角/平方feature ['fi:tʃə] 容貌,特征step步figure ['fiɡə] 图形,数字stupid ['stju:pid麻木的,愚蠢的Filename文件名称summed总计的,概括的fit ['fit] 安装switch [switʃ]开关fixed [fikst] 确定的symbol ['simbəl] 符号,标志folder ['fəuldə] 文件夹Target ['tɑ:ɡit] 规定的指标Freq频率tedious ['ti:diəs沉闷的fs一秒对应频率总带宽template ['templit] 模板fubar [fju:bɑ:] 混乱不堪terminal ['tə:minəl] 终端gain [ɡein] 增益Test level测试水平gap [ɡæp]空白,缺口throat [θrəut]喉咙General['dʒenərəl] 综合;常规thus [ðʌs]因此generator ['dʒenəreitə] 发电机Time domain时域glance [ɡlɑ:ns,闪光,扫视Time domain response时域响应Graph [ɡrɑ:f, ɡræf] 曲线图To 0 degGroup delay群延迟To strongestguesswork推测的结果tolerance analysis['tɔlərəns] n.[ə'næləsis] 公差分析handpass[hændpɑ:s带通topmost ['tɔpməust]最高的,顶端的Headroom净空高度transfer function转换功能Hide phase隐藏相位transient ['trænziənt短暂的hit [hit] 碰撞,偶然发现trap [træp]使…受限制horizontal ['hɔri'zɔntəl] 水平的tray [trei] 文件盒IIR treat [tri:t]处理impact['impækt,撞击tweak稍作调整impedance[im'pi:dəns] 阻抗typical ['tipikəl] 典型的implement ['implimənt实施,执行Upper较高impressive [im'presiv]令人印象深刻的Upper partimpulse['impʌls] 脉冲、推动variation [,vεəri'eiʃən] 变化Include 包括various ['vεəriəs] 各种各样的incorporated [in'kɔ:pəreitid] 合并的,verified ['verifaid] 已查清的,已证实的Ind. Spkrs filtered verify ['verifai]核实,查证Ind. Spkrs unfiltered vertical ['və:tikəl]垂直的individual off axis显示个别偏离轴线via ['vaiə]通过raysindividual[,indi'vidjuəl个别的voltage ['vəultidʒ] 电压inductance [in'dʌktəns]感应系数,电感volume ['vɔlju:m]体积inevitable [in'evitəbl] 不可避免的wave波动,波形infinite ['infinət] 无限空间(无回响消音室)whining[hwainiŋ发牢骚intelligent [in'telidʒent]聪明的,智能的wild [waild] 野生的,疯狂地intend [in'tend] 准备wizard ['wizəd]巫术的intention [in'tenʃən] 目的,意图wont [wəunt习惯Invert[in'və:t, 'invə:t] 使…反转;使…反相Working range工作范围Iterate ['itəreit, -rət] 重复Xfer func分频点latency ['leitənsi] 潜在因素Level otherlikely ['laikli]很可能,很希望limited ['limitid] 有限的Live update实况修正located[ləu'keitid,处于,位于。
CMG数模软件的使用
NUMERICAL METHODS CONTROL:数值方法控制,这部分定义模拟 器数值方法参数:时间步数、非线性迭代解法、误差控制;(*等温、非等 温控制项) WELL AND RECURRENT DATA:井定义和生产动态数据,定义井名、 井位和完井层位,设臵相对应的生产动态数据。
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
CMG数模软件培训
庞占喜 2007.3.17
目 录
* * * * * * *
CMG软件简介 STARS模块主要关键字 STARS模块泡沫的模拟 STARS模块所需数据的准备及处理
STARS模块油藏热采模型的建立
油藏热采模型的运行及结果后处理
氮气及氮气泡沫压水锥数值模拟
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
二、STARS模块主要关键字
ROCK-FLUID PROPERTIES
插值序号及参数 *KRINTERP, *DTRAPW, *DTRAPN, *WCRV, *OCRV, *GCRV, *SCRV 水油相渗数据表 *SWT 气液相渗数据表 *SLT 流体定义参数所需资料: 相渗临界点 *SWR, *SORW, *SGR, *SORG, *SWRG, 粘度-温度关系曲线 *KRWRO, *KROCW, *KRGCW, *PCWEND, *PCGEND 相渗临界点随时间的变化数据 *KRTEMTAB 不同温度下的油水相渗曲线和气液相渗曲线 组分弥散系数 高压物性 *DISPI_WAT, *DISPJ_WAT, *DISPK_WAT, PVT数据 *DISPI_OIL, *DISPJ_OIL, *DISPK_OIL, 毛管压力曲线数据(压汞曲线) *DISPI_GAS, *DISPJ_GAS, *DISPK_GAS ,密度,临界压力 ,临界温度,压缩系数 吸附组分函数 组分摩尔质量 *ADSCOMP, *ADSLANG, *ADSTABLE 依赖于岩石性质的吸附数据 *ADSROCK, *ADMAXT, *ADRT, *PORFT, *RRFT, *ADSTYPE
FS-T6说明书 富斯遥控器
3.接收灵敏度:-105dBm; C . R F r e c e i v e r s e n s i t i v i t y : - 1 0 5 d B m ;
4 .调 制 方 式: G F S K;
D.Modulation: GFSK;
5 .系 统 模 式: A F H D S;
E.SysteODEL: FS-R6B
机种参数:
S P E C I F I C A T I O N S:
1 .通 道 个 数 :6个 通 道 ;
A.Channels: 6channels;
2.适合机种:飞机/直升机; B . M o d e l t y p e : c a r / b o a t ;
此款产品只适合15岁以上人员使用。
警告
FS-T6
Digital proportional radio control system
1. Introducion...............................................................2 2. Services....................................................................2 3. The special symbols..................................................3 4. Safty guides..............................................................3 5. Battery charging notes...............................................4 6. Tansmitter parameters...............................................5 7. Receiver parameters.................................................5 8. Receiver connectivity.................................................6 9. 2.4G Operation notes.................................................8 10. Definition of key functions.........................................9 11. Features...................................................................10 12. Packs the content...................................................41
SOR 估计 基于顺序偏移回归的长期数据估计说明书
Package‘SOR’October12,2022Type PackageTitle Estimation using Sequential Offsetted RegressionVersion0.23.1Date2018-04-25Depends MatrixImports methods,statsDescription Estimation for longitudinal data following outcome dependent sampling using the se-quential offsetted regression technique.Includes support for binary,count,and continu-ous data.Thefirst regression is a logistic regression,which uses a known ratio(the probabil-ity of being sampled given that the subject/observation was referred divided by the probabil-ity of being sampled given that the subject/observation was no referred)as an offset to esti-mate the probability of being referred given outcome and covariates.The second regres-sion uses this estimated probability to calculate the mean population response given covariates. License GPL-3NeedsCompilation noAuthor Lee McDaniel[aut,cre],Jonathan Schildcrout[aut]Maintainer Lee McDaniel<*****************>Repository CRANDate/Publication2018-04-2519:30:40UTCR topics documented:sor (2)Index612sor sor Sequentially Offsetted RegressionDescriptionFits model for data which was sampled based on a variable associated with the outcome.This function works for binary,count,and continuous responses.Usagesor(y.formula,w1.formula,w2.formula=~1,id,waves=NULL,family="binomial",y0=0,hfunc=identity,support=c(0,1),pi1.pi0.ratio=1,data=parent.frame(),init.beta=NULL,init.sig.2=1,weights=NULL,est.var=TRUE,CORSTR="independence")Argumentsy.formula Regression formula for responsew1.formula Formula for Z,not interacted with hfunc(Y).Of form Z~termsw2.formula Formula for Z,interacted with hfunc(Y).Of form~termsid a vector identifying the clusters.By default,data are assumed to be sorted such that observations in a cluster are in consecutive rows and higher numbered rowsin a cluster are assumed to be later.If NULL,then each observation is assignedits own cluster.waves an integer vector identifying components of a cluster.For example,this could bea time ordering.If integers are skipped within a cluster,then dummy rows withweight0are added in an attempt to preserve the correlation structure(except ifcorstr="exchangeable"or"independent").This can be skipped by settingnodummy=TRUE.family Character string representing reference distribution for the response.Can be one of"normal","poisson",or"binomial".y0Representative value of response.Ignored if family="binomial".hfunc Function h,used with Y.Set to identity if family="binomial".sor3 support Values on which to evaluate the integrals.The lowest value should be less than the minimum response and the highest should be higher than the maximum re-sponse.If response is binary,support should be c(0,1).If response is count data,support should be an integer vector,for instance0:50.If response is continuous,support should be a vector of points on which to integrate.pi1.pi0.ratio The referral ratiodata Data frame or environment with all the datainit.beta Initial values for parameters in y.formula.Convergence may depend heavily on the initial values used.If family="binomial",the default is recommended.init.sig.2Initial value for sigma^2.Only for family="normal".weights A vector of weights for each observation.If an observation has weight0,it is excluded from the calculations of any parameters.Observations with a NAanywhere(even in variables not included in the model)will be assigned a weightof0.This should normally be used to preserve the correlation structure.est.var Logical.Should the variance be estimated.Only for family="normal".CORSTR Correlation structureValueReturns a list with values from thefit.Author(s)Lee S.McDaniel,Jonathan S.SchildcroutReferencesThis package relies heavily on code from geeM:McDaniel,L.S.,Henderson,N.C.,&Rathouz,P.J.(2013).Fast pure R implementation of GEE: application of the matrix package.The R journal,5(1),181.Examplesgeneratedata<-function(beta,alpha,X,ntime,nsubj,betat,betat1){mean.vec<-exp(crossprod(t(X),beta))y<-matrix(0,nrow=nsubj,ncol=ntime)y[,1]<-rpois(nsubj,lambda=mean.vec)old.mean<-mean.vecnew.mean<-old.mean*exp(betat+betat1*X[,2])for(t in1:(ntime-1)){lambda.t<-new.mean-alpha*sqrt(old.mean*new.mean)theta.t<-alpha*sqrt(new.mean/old.mean)I<-rpois(nsubj,lambda=lambda.t)W<-rbinom(nsubj,y[,t],theta.t)y[,t+1]=W+Iold.mean<-new.mean4sor new.mean<-old.mean*exp(betat+betat1*X[,2])}longform<-c(t(y))time<-rep(1:ntime,times=nsubj)subject<-rep(c(1:nsubj),each=ntime)simdata<-data.frame(count=longform,time=time,subject=subject)return(simdata)}logit<-function(p)log(p)-log(1-p)expit<-function(x)exp(x)/(1+exp(x))set.seed(1)npop<-10000beta0<--1.4beta1<-0.4alpha<-0.9gam0<--3.15gam1<-6.3nsubj<-200ntime<-8betat<--0.1;betat1<-0.1thresh<-1x0<-rep(1,npop)x1<-rbinom(npop,1,0.5)Xmat<-cbind(x0,x1)timevec<-0:(ntime-1)testdat<-generatedata(c(beta0,beta1),alpha,Xmat,ntime,npop,betat=betat,betat1=betat1) Y<-matrix(testdat$count,nrow=npop,ncol=ntime,byrow=TRUE)lambdap<-expit(gam0+gam1*as.numeric(Y[,1]>=thresh))Z<-rbinom(npop,1,lambdap)casesamp<-rep(0,npop)casesamp[Z==1]<-rbinom(sum(Z),1,nsubj/(2*sum(Z)))controlsamp<-rep(0,npop)controlsamp[Z==0]<-rbinom(sum(1-Z),1,nsubj/(2*sum(1-Z)))case<-which(casesamp==1)control<-which(controlsamp==1)id<-sort(c(case,control))nsubj<-length(control)+length(case)Ysamp<-NULLlamsamp<-NULLzsamp<-NULLx1samp<-NULLidsamp<-NULLtime<-NULLobspersubj<-sample(3:ntime,size=nsubj,replace=TRUE)for(i in1:nsubj){sor5 Ysamp<-c(Ysamp,Y[id[i],1:obspersubj[i]])zsamp<-c(zsamp,rep(as.numeric(Z[id[i]]),obspersubj[i]))x1samp<-c(x1samp,rep(x1[id[i]],obspersubj[i]))time<-c(time,0:(obspersubj[i]-1))idsamp<-c(idsamp,rep(i,obspersubj[i]))}p1p0<-sum((1-Z))/sum(Z)timemax<-pmax(time-2,0)y0<-1betas<-c(beta0,beta1,betat,betat1)init<-runif(4,betas-0.1,betas+0.1)y.formula<-y~x1+time+x1:timew1<-z~x1+as.factor(time)+x1:time+x1:timemaxw2<-~x1+time+timemax+x1:time+x1:timemaxDAT.ods<-data.frame("x1"=x1samp,"time"=time,"timemax"=timemax,"z"=zsamp,"y"=Ysamp,"id"=idsamp) sor(y.formula,w1,w2,id,family="poisson",y0=1,support=0:25,pi1.pi0.ratio=p1p0,data=DAT.ods,init.beta=init,CORSTR="ar1")IndexSOR(sor),2sor,2SOR-package(sor),26。
科学仪器服务公司SIMION
The Industry Standard in 3D Ion and Electron Optics Simulations Scientific Instrument Services, Inc.1027 Old York Rd, Ringoes, NJ 08551Phone: (908) 788-5550Scientific Instument Services, Inc™ SIMION ™Version 8.1SIMION 8.1S IMION 8.1 is a software package used primarily to calculate electric fields, when given a configuration of electrodes withvoltages, and calculate trajectories of charged particles in those fields, when given particle initial conditions, including optional RF, magnetic field, and collisional effects are supported. In this, SIMION provides extensive supporting functionality in defin-ing your system geometry and conditions, recording and visualizing results, and extending the simulation capabilities with user pro-gramming. It is an affordable but versatile platform, widely used for over 35 years to simulate lens, mass spec, and other types of particle optics systems.Typical usage of SIMION is illustrated below for a simple three-element Einzel lens. The geometry consisting of three ring elec-trodes with given voltages is defined (top), and the fields and particle trajectories are calculated and displayed.Electrostatic field solving:SIMION solves fields in 2D and 3D arrays of up to nearbillions of points, with optimizations for systems with symmetry and mirroring, accord-ing to the finite difference method with much optimized linear-time solving. Smallarrays solve in under a minute; very large arrays may take roughly an hour depending onconditions. A “workbench” strategy allows you to position, size, and orient instances(3D images) of different grid densities and symmetries to permit the simulation of muchlarger systems that don't easily fit into a single array. Some magnetic field solving capa-bilities are also available (see following page).Particle trajectory solving: Particle trajectories are calculated given the previouslycalculated or defined fields. The method is Runge-Kutta with relativistic corrections andvariable-length dynamically adjusting and controllable time steps. Particle mass, charge,and other parameters can be defined individually or according to some pattern or distrib-ution. User programming can modify the system during particle flight to inject noveleffects (such ion-gas scattering). Particle tracing is fast _millions of particles can behandled—and they display in real-time. Basic charge repulsion effects, including a pois-son solver can help estimate the onset of space-charge.Viewing of the system is highly interactive, allowing adjustment of parametersand viewing of the system even during particle flight (trajectory calculation). SIMIONsupports cutting away volumes to see trajectories inside, zooming, viewing potentialenergy surfaces, contour lines, and trajectories, and reflying particles as dots for movieeffects.S IMION is suitable for a wide variety of systems: from ion flight through simple electrostatic and magnetic lenses to particle guns to highly complex instruments, including time-of-flight, hemispherical analyzers, ion traps, quadrupoles, ICR cells, and other MS, ion source and detector optics.Time-dependent or RF (low frequency) voltages:Electrode voltages may be controlled in a general way during particle flight via simple user programs _ e.g. to step or oscillate electrode voltages in some manner. Quadrupole mass filter, multipole, and ion trap simulations (above) in the megahertz range are regularly performed. SIMION applies the quasistatic approximation with superposition, which gives fast calculations (assuming the absence of induced magnetic field or radiation effects as would occur in “high frequency” systems having the wavelength below the length of your system).Magnetic fields: SIMION will import magnetic fields, define them analytically or solve them in restricted cases (e.g. Biot-Savart wire currents - left), optionally superimposed on an electrostatic field (e.g.penning trap or ICR cell - right) for the pur-pose of particle flying.ApplicationsRF Quad Mass Filter RF Ion Trap RF Ion Trap (Potential Energy Display)Ion Confinement in Air SolenoidICR CellIon-neutral collisions: SIMION can handle the effects of particles colliding against a background gas, such as for the buffer gas of the ion trap (top), the back-ground gas in an RF ion-funnel (right), or in ion mobility. Multiple collision models are included: Stokes' law, hard-sphere, and a mobility model optimized for high pres-sure “atmospheric” conditions. The parti-cles will diffuse and randomly scatter away from their normal trajectories.RF Ion Funnel Atmospheric Pressure ExampleDefine Your SimulationComplex CAD Modelimported from STL file(left) to a SIMION arrayGeometry (GEM) defi-nition file exampleGeometry definition: A system geometry can be defined by whichever method is most convenient for you: an interactive 3D paint-like program(called “Modify”), CAD import from STL format (supported by most CAD packages), a solid geometry defined mathe-matically via a text file(“GEM files”), and programmatic manipulation of arrays from such languages as Lua, Perl, Python, and C++.Particle initial conditions can be defined in various ways. The“FLY2” format in SIMION allows quick definition of many types ofparticles random distributions and sequences. Particles may also beexhaustively enumerated (optionally imported from a text file).Analysis and Programming SIMION has a number of capabilities for collecting data.•Package contents: a 450-page printed manual, installation CD with software license key number (for receiving softwareupdates), and quick start notes. The installation CD installs the software, examples, and additional documentation.•Documentation:SIMION comes with a 450-page printed manual. Additional documentation and course notes are available electronically, in the examples, or on the web site. See the web site for the user group, software updates, latest SIMION tips, articles, and links to some of the hundreds of scholarly papers that use SIMION.•Updates:Free updates to 8.1.x versions of 8.1 are provided as free downloads from .•Support:Free basic support via email, phone, and forum •Supported systems: Formally tested on Windows 10/8.1/8/Vista/XP, as well as Wine/Linux (and Crossover/Mac). Latest system compatibility information is on .In the example above, trajectories are calcu-lated while phase space data is interactively plotted in Excel via the Lua COM interfaceSIMION can optimize voltages and geometry with simplex optimizer and batch mode capabilities. At left is a SIMION generated surface plot of beam size as a func-tion of two lens voltages. At right is one of the many user programming examples (scattering at surface).Programming in Lua Surface Plot in ExcelScattering Effects at Surface User programming allows the simulation to be extended in many novel ways. During ion flight, you may control electrode voltages (example at right), define or modify fields, scatter or deflect ions (e.g.ion-gas collision models), tune (optimize) lens voltages, compute results, export data to programs like Excel via COM or command-line interfaces, and do many other things. The Lua scripting language is directly embedded in SIMION, and Lua may also call C/C++ or COM routines. Programming may also be used to operate SIMION in batch mode , such as for geometry optimization or to read/manipu-late potential array files.Contents Data recording:The simulation parameters you are interested in (e.g. ion position, velocity, KE, and voltage) can be recorded at various stages in particle flight (e.g. when hitting an electrode and crossing a plane). Data can be recording to the screen or to delim-ited text file for subsequent analysis of fields and trajectories (right). Analysis can be done via SIMION user programming, in a program or language of your choice like Excel, and MATLAB ®.Features in SIMION 8.1 (and 8.2EA/beta)Poisson solver (Refine), fully Dielectric materials (Refine)Supplemental Documentation Integration with Lua/C, Excel, gnuplot, Origin,Large 64-bit array sizes up to 20billion points / 190 GB Improved curved surface handling (“surface enhancement”) gives order of magnitude field accuracy improvement Multicore Refines (8.1)Oblong, non-square grid cells.More AccurateMore Versatile CompatibilityNested refining techniquesSome permeability and mag-High quality 3D (OpenGL)graphics on View screen More examples and documentation New GUI dialog library New programming API’s:。
串联亲和层析 protocol
UNIT19.20 Strep/FLAG Tandem Affinity Purification(SF-TAP)to Study Protein InteractionsChristian Johannes Gloeckner,1Karsten Boldt,1,2and Marius Ueffing1,21Helmholtz Zentrum M¨u nchen,Neuherberg,Germany2Technical University of Munich,Munich,GermanyABSTRACTIn recent years,several methods have been developed to analyze protein-protein interac-tions under native conditions.One of them,tandem affinity purification(TAP),combinestwo affinity-purification steps to allow isolation of high-purity protein complexes.Thisunit presents a methodological workflow based on an SF-TAP tag comprising a doubletStrep-tag II and a FLAG moiety optimized for rapid as well as efficient tandem affinitypurification of native proteins and protein complexes in higher eukaryotic cells.Depend-ing on the stringency of purification conditions,SF-TAP allows both the isolation ofa single tagged-fusion protein of interest and purification of protein complexes undernative conditions.Curr.Protoc.Protein Sci.57:19.20.1-19.20.19.C 2009by John Wiley&Sons,Inc.Keywords:SF-TAP r tandem affinity purification r protein complexesINTRODUCTIONThe analysis of protein-protein interactions under native conditions has been a challengeever since immunoprecipitation(IP)became a common methodology.Low yields andnonspecific binding of proteins have been associated with IP.On the other hand,IPfacilitates targeted analysis of protein interactions with respect to a predefined proteinof interest,given that a suitable antibody is available that features monospecificity andselectivity for this protein.Tandem affinity purification(TAP;UNIT19.19)can significantly reduce the backgroundcaused by nonspecific binding of proteins,as it combines two affinity purifications basedon two different affinity matrices(Rigaut et al.,1999).TAP has been widely used topurify protein complexes from different species(Collins and Choudhary,2008).The TAPtechnique was originally developed to analyze the yeast protein interactome(Gavin et al.,2002).Although the original TAP tag,consisting of a Protein A-tag,a TEV(tobacco etchvirus)protease cleavage site,and a calmodulin binding peptide(CBP)tag,has alreadybeen successfully used in mammalian cells(Bouwmeester et al.,2004),several featuresof thisfirst-generation tag remain suboptimal,such as its high molecular mass(21kDa),the dependency on proteolytic cleavage,and CBP,which may interfere with calciumsignaling within eukaryotic cells.This unit presents an alternative TAP protocol for theisolation of protein complexes from higher eukaryotic cells.The Strep/FLAG tandemaffinity purification(SF-TAP)tag(Gloeckner et al.,2007)combines a tandem Strep-tagII(Skerra and Schmidt,2000;Junttila et al.,2005)and a FLAG tag,resulting in a small4.6-kDa tag.Both moieties have a medium affinity and avidity to their immobilizedbinding partners.Therefore,the tagged fusion proteins and their binding partners canbe recovered under native conditions without the need for time-consuming proteolyticcleavage.In thefirst step,desthiobiotin is used for elution of the SF-TAP fusion proteinfrom the Strep-Tactin matrix.In the second step,the FLAG octapeptide is used for elutionof the SF-TAP fusion protein from the anti-FLAG M2affinity matrix.An overview of the Current Protocols in Protein Science19.20.1-19.20.19,August2009Published online August2009in Wiley Interscience().DOI:10.1002/0471140864.ps1920s57Copyright C 2009John Wiley&Sons,Inc.Identification of Protein Interactions19.20.1 Supplement57Strep/FLAGTandem AffinityPurification (SF-TAP)19.20.2Supplement 57Current Protocols in Protein Science A B 1. purification 2. purification binding to Strep-Tactin binding to FLAG matrix elution with desthiobiotin elution with FLAG peptide Key:SF-TAP desthiobiotin FLAG peptide Figure 19.20.1The S trep/FLAG ta n dem affin ity p u rificatio n .(A )N-a n d C-termi n al S F-T AP ta gs (POI,protei n of i n tere s t).(B )Overview of both p u rificatio n s tep s .(1)P u rificatio n by the ta n dem S trep-ta g II moiety:bi n di ng to S trep-T acti n matrix followed by el u tio n with de s thiobioti n .(2)P u rificatio n by the FLAG-ta g moiety:bi n di ng to a n ti-FLAG M2affin ity matrix followed by el u -tio n with FLAG peptide.Abbreviatio ns :s p.,s pecific i n teractor s (s how n a s g ray circle s );n .s p.,n o ns pecific protei ns (co n tami n a n t s ;s how n a s white circle s ).SF-TAP technique and the tag sequence is shown in Figure 19.20.1.The SF-TAP protocol represents an efficient,fast and straightforward purification of protein complexes from mammalian cells within 2hr.This unit describes the full workflow,starting with the cell culture work needed for recombinant expression of the SF-TAP fusion proteins,followed by the SF-TAP protocol (see Basic Protocol 1)and ending with mass spectrometric analysis of the samples (see Basic Protocol 4).Special focus is given to the crucial step of sample preparation for mass spectrometry.For the identification of associated proteins following SF-TAP,the volume of the SF-TAP eluates is reduced by ultrafiltration using centrifugal units with a low molecular weight cut-off or by chloroform/methanol precipitation (see Support Protocol 2).The samples are then directly subjected to proteolytic digestion (see Basic Protocol 2)for analysis on a nano liquid chromatography (LC)–coupled electron sprayIdentification of Protein Interactions 19.20.3Current Protocols in Protein Science Supplement 57Figure 19.20.2Flow chart of a S F-T AP approach i n cl u di ng M S ide n tificatio n of cop u rified pro-tei ns .Thi s figu re co nn ect s all protocol s pre s e n ted i n thi s un it.tandem mass spectrometer.For complex samples,which contain many proteins,an alternative procedure for SDS-PAGE pre-fractionation is provided,including a method for sensitive MS-compatible Coomassie protein staining (see Support Protocol 3)followed by in-gel proteolytic digestion (see Basic Protocol 3).By reducing sample complexity,pre-fractionation helps to increase the number of protein identifications on state-of-the-art LC-coupled tandem mass spectrometers.Representative MS-analysis protocols are provided for an Orbitrap mass spectrometer (Thermo Fisher Scientific),a fast and sensitive system allowing high identification rates from SF-TAP purifications even with low amounts of protein in the sample (see Basic Protocol 4).Finally,a strategy for meta analysis of mass spectrometric data sets using the Scaffold software is provided (see Support Protocol 4).It can generally be used for the analysis of large MS/MS data sets.Figure 19.20.2provides a flowchart of the entire analytical process.Strep/FLAGTandem AffinityPurification (SF-TAP)19.20.4Supplement 57Current Protocols in Protein ScienceBASICPROTOCOL 1STREP/FLAG TANDEM AFFINITY PURIFICATION (SF-TAP)OF PROTEIN COMPLEXES FROM HEK293CELLS A flowchart of the SF-TAP procedure is shown in Figure 19.20.3.Materials HEK293cells (ATCC no.CRL-1573)Complete DMEM containing 10%FBS (APPENDIX 3C )SF-TAP vectors with appropriate insert,and empty control plasmid (see Critical Parameters)Negative control (see annotation to step 3,below)Transfection reagent of choice (see UNIT 5.10)Phosphate-buffered saline (PBS;APPENDIX 2E ),prewarmed Lysis buffer (see recipe)Strep-Tactin Superflow resin (IBA GmbH,cat.no.2-1206-10)Tris-buffered saline (TBS;see recipe)Wash buffer (see recipe)Desthiobiotin elution buffer:dilute 10×buffer E (IBA GmbH,cat.no.2-1000-025)1:10in H 2O (final concentration,2mM desthiobiotin)Anti–FLAG M2agarose (Sigma-Aldrich)FLAG elution buffer (see recipe)14-cm tissue culture plates Cell scraper Millex GP 0.22-μm syringe-driven filter units (Millipore)End-over-end rotator Microspin columns (GE Healthcare,cat.no.27-3565-01)End-over-end rotator Microcon YM-3centrifugal filter devices (Millipore)Additional reagents and equipment for transfection of mammalian cells (UNIT 5.10)Transfect HEK293cells 1.Seed HEK293cells on 14-cm plates at ∼1–2×107cells per dish in complete DMEM medium containing 10%FBS.The amount of cells used for SF-TAP purification can be varied depending on the ex-pression levels of the bait ually,four 14-cm dishes,corresponding to a final amount of ∼4×108HEK293cells,is a good starting point.Strong overexpression of the bait protein usually increases copurification of heat-shock proteins such as HSP70.For in-depth analysis,it is therefore recommended to generate cell lines stably expressing the bait protein.See Support Protocol 1for a stable transfection method.2.Grow cells overnight.3.Transfect cells with the SF-TAP plasmids using a transfection reagent of choice (according to manufacturer’s protocols).HEK293cells can be easily transfected with lipophilic transfection reagents.The trans-fection efficiency is usually >80%.For a typical SF-TAP experiment,1to 4μg plasmid per 14-cm dish is used.Depending on the cell type other transfection reagents may be favorable (also see UNIT 5.10).Although SF-TAP purifications typically exhibit low background caused by nonspecific binding of proteins to the affinity matrix,a suitable negative control should be used in every experiment.Cells transfected with the empty expression vectors may be used in the same amount as for the SF-TAP-tagged bait protein.However,the tag is quite small and expressed at low levels if not fused to a protein.Thus,the untransfected cell line is an acceptable,simple,and inexpensive alternative for a negative control.Identification of Protein Interactions 19.20.5Current Protocols in Protein Science Supplement 571-4 × 108 HEK293 cell s(1-4 co n fl u e n t 14-cm plate s )expre ss i ng S F-TAP f us io n protei nly s i s(15 mi n 4C)vol u mered u ctio nce n trif ug atio n (10 mi n 10,000 × g )a n aly s i sretai n su per n ata n t fi n alel u atei n c u batio n with50 μl/plate S trep-Tacti n matrix (1 hr)el u tio n with200 μl FLAGel u tio n b u ffer(10 mi n )wa s h 3 time s with 500 μl wa s h b u ffer (s pi n 5 s ec, 100 × g )wa s h 3 time s with500 μl wa s h b u ffer(s pi n 5 s ec, 100 × g )el u tio n with 500 μl de s thiobioti n el u tio n b u ffer (10 mi n )i n c u batio n with25 μl/platea n ti-FLAG M2a g aro s e(1 hr)Figure 19.20.3Flow chart for the S F-T AP proced u re.4.Let cells grow for 48hr.If necessary,cells can be starved in DMEM without FBS for 12hr prior to harvesting.Starving might be desirable if cell signaling is to be analyzed,especially prior to differ-ential treatment with growth factors,to eliminate effects of serum growth factors.Lyse cells5.Remove medium from the plates.6.Optional:Rinse cells in warm PBS.Strep/FLAGTandem AffinityPurification (SF-TAP)19.20.6Supplement 57Current Protocols in Protein Science7.Scrape off cells in 1ml lysis buffer per 14-cm plate on ice using a cell scraper,and combine lysates from each experimental condition in a 1.5-ml microcentrifuge tube.8.Lyse cells by incubating 15min on ice with mixing by hand from time to time.9.Pellet cell debris,including nuclei,by centrifuging 10min at 10,000×g ,4◦C.10.Clear lysate supernatant by filtration through a 0.22-μm syringe filter.Perform SF-TAP 11.Wash Strep-Tactin Superflow resin twice,each time with 4resin volumes TBS and once with 4resin volumes lysis buffer.12.Incubate lysates with 50μl per 14-cm plate of settled Strep-Tactin Superflow resin for 1hr at 4◦C (use an end-over-end rotator to keep the resin evenly distributed).Note that a maximum of 200μl settled resin per spin column should not be exceeded.If more than four 14-cm plates (∼4×108HEK293cells)are used,reduce the volume per plate or use additional spin columns in step 13.13.Centrifuge for 30sec at 7000×g ,4◦C,remove the supernatant until 500μl remains,and transfer resin to a microspin column.Snap off bottom closure of the spin column prior to use.The maximum volume of the spin columns is 650μl.Alternatively,centrifugations for wash and elution steps can be performed at room temperature if no cooled centrifuge is available.14.Remove remaining supernatant by centrifugation in the spin column for 5sec at 100×g ,then wash resin three times,each time with 500μl wash buffer (centrifuge 5sec at 100×g each time to remove the supernatant)at 4◦C.Replug spin columns with inverted bottom closure prior to adding the elution buffer in step 15.IMPORTANT NOTE:Do not allow the resin to run dry.Depending on the bait protein,this markedly reduces the yield.15.Add 500μl desthiobiotin elution buffer and gently mix the resin by hand for 10min on ice.16.Remove the plug of the spin column,transfer the column to a new collection tube,and collect the eluate by centrifuging 10sec at 2000×g ,4◦C.If spin columns were closed by the top screw cap during incubation with elution buffer,the cap needs to be removed prior to centrifugation,to allow the pressure to balance out.17.Wash anti–FLAG M2agarose resin three times,each time with 4resin volumes TBS.Suspend resin in TBS and transfer it to microspin columns,then remove the buffer by centrifuging 5sec at 100×g .25μl settled resin per 14-cm plate will be needed.18.Transfer eluate from step 16corresponding to each 14-cm plate to a microspin column containing 25μl settled anti-FLAG M2agarose prepared as in step 17.19.Plug columns,close columns with top screw caps,and incubate for 1hr at 4◦C (on an end-over-end rotator).20.Wash once with 500μl wash buffer,and then twice,each time with 500μl TBS (centrifuge 5sec at 100×g each time to remove the supernatant)at 4◦C.21.For elution,incubate with 4bead volumes (at least 200μl)FLAG elution buffer for 10min,keeping the columns plugged and gently mixing the resin several times.22.After incubation,remove the plugs and top screws of the spin columns,transfer to new collection tubes,and collect the eluate(s)by centrifugation (10sec at 2000×g ).Identification of Protein Interactions 19.20.7Current Protocols in Protein Science Supplement 5723.Depending on downstream method to be used,either precipitate protein (see SupportProtocol 2)or concentrate the eluate by Microcon YM-3centrifugal filter units according to manufacturer’s protocols.SUPPORT PROTOCOL 1GENERATION OF HEK293CLONES STABLY EXPRESSINGSF-TAP-TAGGED PROTEINSIn Basic Protocol 1,SF-TAP-tagged proteins are transiently expressed.However,strong overexpression of the bait protein usually increases copurification of heat-shock proteins such as HSP70.For in-depth analysis,it is therefore recommended to generate cell lines stably expressing the bait protein.This protocol presents a quick method for generating stable HEK293lines.MaterialsHEK293cells (ATCC no.CRL-1573)Complete DMEM containing 10%FBS (APPENDIX 3C )SF-TAP vectors with appropriate insert,and empty control plasmid (see Critical Parameters)Transfection reagent of choice (see UNIT 5.10)Phosphate-buffered saline (PBS;APPENDIX 2E )Complete DMEM medium (APPENDIX 3C )G418(PAA Laboratories, )Freezing solution:90%fetal bovine serum (FBS;Invitrogen)/10%dimethylsulfoxide (DMSO;AR grade)Lysis buffer (see recipe)Blocking reagent:5%(w/v)nonfat dry milk in TBS (see recipe for TBS)containing 0.1%(v/v)Tween 20Anti-FLAG M2antibody (Sigma-Aldrich)10-cm tissue culture dishes12-well and 6-welll tissue culture platesCentrifuge2-ml cryovials (Nunc)Additional reagents and equipment for transfection of mammalian cells (UNIT 5.10),trypsinization and counting of cells (UNIT 5.10),and immunoblotting (UNIT 10.10)Grow and transfect cells1.Grow cells in complete DMEM containing 10%FBS.2.Transfect cells with expression plasmid using a transfection reagent of choice ac-cording to the manufacturer’s protocols.3.Change medium after 6hr.Select cells4.After 48hr,trypsinize and count cells (APPENDIX 3C )and seed them at low density (1×106cells per 10-cm dish)to allow formation of single colonies upon selection.5.Add G418(500to 1000μg/ml)for selection of the SF-TAP expression vectors,which are based on pcDNA3.0and contain a neomycin-resistance gene.6.Grow the cells under G-418selection for 2to 4weeks,changing the medium every second day.7.Collect single colonies with a 200-μl pipet into 12-well plates.8.Keep colonies under G418selection until the cell density is sufficient for expanding them to 6-well dishes (two wells per clone).Strep/FLAGTandem AffinityPurification (SF-TAP)19.20.8Supplement 57Current Protocols in Protein ScienceCryopreserve cells 9.Grow cells to >90%confluency and trypsinize (APPENDIX 3C )one well of each clone for generation of cryostocks.10.Generate cryostocks:a.Wash cells from one well once by adding 3ml PBS,centrifuging 5min at 800×g ,room temperature,and resuspending the pellet in 500μl freezing buffer.b.Transfer resuspended cells to 2-ml cryovials.c.Freeze cells slowly:keep cells for 1hr at −20◦C,then overnight at −80◦C,followed by storage in a liquid nitrogen tank.For cultivation and expansion of confirmed clones,thaw the cryostock at 37◦C,wash cells once with medium,and plate cells onto 10-cm culture dishes.Test for expression of bait protein 11.Lyse one well of each clone in 300μl lysis buffer and test for expression of the bait protein by immunoblotting (UNIT 10.10).SF-TAP proteins can be detected using the anti-FLAG M2antibody (Sigma-Aldrich)at a dilution of 1:1000to 1:5000in blocking reagent.SUPPORTPROTOCOL 2CHLOROFORM/METHANOL PRECIPITATION OF PROTEINS The chloroform/methanol precipitation method described by Wessel and Fl¨u gge (1984)precipitates proteins with high efficiency and yields samples containing low levels of salt contamination.Materials SF-TAP eluate (from Basic Protocol 1)Methanol (AR grade)Chloroform (AR grade)2-ml polypropylene sample tubes 1.Transfer 200μl SF-TAP eluate to a 2-ml sample tube.All steps are performed at ambient temperature.2.Add 0.8ml of methanol,vortex,and centrifuge for 20sec at 9000×g ,room temperature.3.Add 0.2ml chloroform,vortex,and centrifuge for 20sec at 9000×g ,room temperature.4.Add 0.6ml of deionized water,vortex for 5sec,and centrifuge for 1min at 9000×g ,room temperature.5.Carefully remove and discard the upper layer (aqueous phase).The protein precipitate (visible as white flocks)is in the interphase.6.Add 0.6ml of methanol,vortex,and centrifuge for 2min at 16,000×g ,room temperature.7.Carefully remove the supernatant and air dry the pellet.The pellet can be stored for several months at –80◦C.Identification of Protein Interactions 19.20.9Current Protocols in Protein Science Supplement 57BASIC PROTOCOL 2IN-SOLUTION DIGEST OF PROTEINS FOR MASS SPECTROMETRIC ANALYSISThe in-solution digest described here is a quick and efficient method to digest the SF-TAP eluate after protein precipitation (Support Protocol 2).The use of an MS-compatible surfactant helps to solubilize the precipitated proteins.In order to allow the identification of cysteine-containing peptides,random oxidation is prevented,rather than reverted,by applying a DTT/iodoacetamide treatment prior to digestion,leading to a defined-mass adduct.The digested protein sample can then be directly subjected to analysis on an LC-coupled tandem mass spectrometer.MaterialsPrecipitated protein (see Support Protocol 2)50mM ammonium bicarbonate (freshly prepared)RapiGest SF (Waters):prepare 2%(10×)stock solution in deionized water 100mM DTT (prepare from 500mM stock solution;store stock up to 6months at −20◦C)300mM iodoacetamide (prepare fresh)50×(0.5μg/μl)trypsin stock solution (Promega;store at −20◦C)Concentrated (37%)HCl60◦C incubatorPolypropylene inserts (Supelco,cat.no.24722)1to 200μl gel-loader pipet tips (Sorenson Bioscience,/contact.cfm )1.Dissolve the protein pellet in 30μl of 50mM ammonium bicarbonate by extensive vortexing.2.Add 3μl of 10×(2%)RapiGest stock solution (final concentration,0.2%).RapiGest (sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxyl]-1-propanesulfo-nate)is an acid-labile surfactant that helps to solubilize and denature proteins to make them accessible to proteolytic digestion (Yu et al.,2003).3.Add 1μl of 100mM DTT and vortex.4.Incubate 10min at 60◦C.5.Cool the samples to room temperature.6.Add 1μl of 300mM iodoacetamide and vortex.7.Incubate for 30min at room temperature.Samples should be protected from light,since iodoacetamide is light-sensitive.8.Add 2μl trypsin stock solution and vortex.9.Incubate at 37◦C overnight.10.Add 2μl of concentrated (37%)HCl to hydrolyze the RapiGest.For hydrolysis of the RapiGest reagent,the pH must be <2.11.Transfer samples to polypropylene inserts (remove spring).12.Incubate for 30min at room temperature.13.Place inserts in 1.5-ml microcentrifuge tubes and microcentrifuge 10min at 13,000×g ,room temperature.One hydrolysis product of the RapiGest reagent is water-immiscible and can be removed by centrifugation.After centrifugation,it is visible as faint film (oleic phase)on top of theStrep/FLAGTandem Affinity Purification (SF-TAP)19.20.10Supplement 57Current Protocols in Protein Science aqueous sample phase.The other hydrolysis product is an ionic water-soluble component which does not interfere with reversed phase LC or MS analysis.A white pellet might appear.14.Carefully recover the solution between the upper oleic phase and the pellet using gel-loader tips.The sample can now be directly subjected to C18HPLC separation prior to MS/MS-analysis (LC-MS/MS;Basic Protocol 4).Pre-fractionation (Basic Protocol 3)is optional.BASIC PROTOCOL 3PRE-FRACTIONATION VIA SDS-PAGE AND IN-GEL DIGESTION PRIOR TO LC-MS/MS ANALYSIS Pre-fractionation prior to MS analysis increases the number of peptides which can be an-alyzed,and therefore the peptide coverage of identified proteins.This benefit is achieved by overcoming the undersampling problem mainly caused by the limited capacity of the trapping columns used in nano–LC chromatography,or that occurs with high complexity.For these samples,SDS-PAGE pre-fractionation can be used to reduce the complexity.For less complex samples or samples with low protein content,the in-solution digest (Basic Protocol 2)is preferred.Materials Protein sample (e.g.,from Basic Protocol 1or Support Protocol 2)10%NuPAGE gels (Invitrogen)MOPS running buffer (Invitrogen)40%and 100%acetonitrile (AR grade;prepare fresh)5mM DTT (prepare from 500mM stock;store stock up to 6months at −20◦C)25mM iodoacetamide (prepare fresh)Digestion solution:dilute 50×trypsin stock solution (0.5μg/μl,Promega)1:50in 50mM ammonium bicarbonate (freshly prepared)1%and 0.5%(v/v)trifluoroacetic acid (TFA;prepare fresh from 10%v/v stock)50%(v/v)acetonitrile/0.5%(v/v)TFA (prepare fresh)99.5%(v/v)acetonitrile/0.5%(v/v)TFA (prepare fresh)2%(v/v)acetonitrile/0.5%(v/v)TFA Concentration units (e.g.,Microcon from Millipore)Scalpel Polypropylene 96-well microtiter plate:polystyrene material should be avoided since,depending on the product,polymers can be extracted from plastics which produce strong background signals in mass spectrometry 60◦C incubator or heating block Polypropylene 0.5-ml reaction tubes Microtiter plate shaker (e.g.,V ortex mixer equipped with microtiter-plate adaptor)HPLC sample tubes Additional reagents and equipment for SDS-PAGE (UNIT 10.1)and colloidal Coomassie blue staining of gels (Support Protocol 3)Prepare samples 1.Concentrate samples using concentration units (e.g.,Microcon).2.Supplement samples with Laemmli loading buffer (SDS-PAGE loading buffer;UNIT 10.1).A detailed description of the SDS gel electrophoresis and standard buffers can be found in UNIT 10.1or in the protocols supplied with the NuPAGE system.Identification of ProteinInteractions19.20.11Perform electrophoresis and stain gels3.Separate samples on 10%NuPAGE gels according to the manufacturer’s protocols,using MOPS running buffer.4.Stop electrophoresis after the gel front has travelled 1to 2cm.5.Stain gels with colloidal Coomassie blue (see Support Protocol 3).Avoid strong staining of the bands since it increases the time necessary for destaining.6.Excise desired gel pieces with a clean scalpel (three to ten slices,depending on the complexity of the sample).Destain and process gel slices7.Transfer gel pieces into individual wells of a 96-well plate.8.Wash by adding 100μl water to each well and incubating for 30min.9.For destaining:a.Wash twice,each time by incubating the gel slices for 10min in 100μl/well of 40%acetonitrile.b.Wash for 5min in 100μl/well of 100%acetonitrile (if gels are still blue,repeat de-staining).10.Add 100μl of 5mM DTT,then incubate 15min at 60◦C in an incubator or heatingblock.11.Remove DTT solution and cool the plate to room temperature.12.Add 100μl per well of freshly prepared 25mM iodoacetamide,then incubate 30minin the dark.13.Wash twice,each time for 10min with 100μl/well of 40%acetonitrile.14.Wash 5min with 100μl/well of 100%acetonitrile.15.Discard supernatant and air dry (or SpeedVac)the gel pieces to complete dryness.Digest and extract gel slices16.Add 20to 30μl per well of freshly prepared digestion solution (depending on the sizeof the gel plugs).Wrap plates in Parafilm to reduce evaporation during the overnight incubation (or use a humidified incubator in step 17).17.Digest overnight at 37◦C.18.For extraction of the peptides from the gel piece,add 10μl 1%TFA,then shake15min on a V ortex mixer with a microtiter plate adapter.The peptides are extracted in three steps with increasing acetonitrile concentrations (steps 18to 23).19.Transfer liquid (extract 1)to a 0.5-ml polypropylene tube.20.Add 50μl 50%acetonitrile/0.5%TFA to the gel piece and shake 15min on a V ortexmixer with a microtiter plate adapter.21.Remove the liquid (extract 2)and pool extracts 1and 2.22.Add 50μl 99.5%acetonitrile/0.5%TFA to the gel piece,then shake 15min on aV ortex mixer with a microtiter plate adapter.23.Remove the liquid (extract 3)and pool extract 3with 1and 2.Strep/FLAG Tandem AffinityPurification(SF-TAP)19.20.1224.Dry samples to complete dryness in a SpeedVac evaporator.25.Redissolve samples in50μl of2%acetonitrile/0.5%TFA by shaking(e.g.,on aV ortex mixer)for10to15min,then transfer the sample into HPLC sample tubes for LC-MS/MS analysis.SUPPORT PROTOCOL3QUICK MS-COMPATIBLE COLLOIDAL COOMASSIE STAIN OF PROTEINS AFTER SDS-PAGE SEPARATIONThe colloidal Coomassie stain(Kang et al.,2002)represents a fast and sensitive MS-compatible protein staining method.In contrast to the classical staining protocol,no intense and time-consuming destaining is needed to visualize protein bands.Therefore, this method is ideal for a quick staining of the protein bands and provides good orientation on how the gel can be fractionated without splitting predominant bands(see Basic Protocol3).MaterialsElectrophoresed SDS gel containing protein samples of interest(e.g.,from Basic Protocol3)Colloidal Coomassie staining solution(see recipe)Destaining solution:10%(v/v)ethanol/2%(v/v)orthophosphoric acidGel staining trays of appropriate size1.Wash gels twice,each time for10min in deionized water in a staining tray.The SDS must be removed before staining to reduce background signals.2.Incubate gels for10min in colloidal Coomassie staining solution.The incubation steps are kept short for the staining of gels used for pre-fractionation.The staining can be prolonged up to overnight.The maximum staining will be reached after ∼3hr incubation in the staining solution.3.Incubate gels for10min in destaining solution.4.Wash gels twice,each time for10min in deionized water.BASIC PROTOCOL4LC-MS/MS ANALYSIS OF DIGESTED SF-TAP SAMPLESThe following protocol describes MS analysis of digested protein samples on an LC-coupled ESI tandem mass spectrometer.The representative MS-analysis protocol is provided for an Orbitrap mass spectrometer(Thermo Fisher Scientific).The Orbitrap system combines fast data acquisition with high mass accuracy and is therefore ideal for the analysis of SF-TAP samples.Background information on mass spectrometric analysis can be found in UNIT16.11.MaterialsDigested protein sample,either from in-solution digest(Basic Protocol2)or in-gel digest(Basic Protocol3)Nano HPLC loading buffer:0.1%formic acid in HPLC-grade waterNano HPLC buffer A:2%acetonitrile/0.1%formic acid in HPLC-grade waterNano HPLC buffer B:80%acetonitrile/0.1%formic acid in HPLC-grade water HPLC vials(Dionex)Nano HPLC system(UltiMate3000,Dionex)equipped with a trap column (100μm i.d.×2cm,packed with Acclaim PepMap100C18resin,5μm,100◦A;Dionex)and an analytical column(75μm i.d.×15cm,packed with AcclaimPepMap100C18resin,3μm,100◦A;Dionex)Mass spectrometer:Oritrap XL with a nanospray ion source(ThermoFisher Scientific;also see UNIT16.11)。
Ordinarydifferentialequation
Ordinary differential equationIn mathematics, an ordinary differential equation (or ODE ) is a relation that contains functions of only one independent variable, and one or more of their derivatives with respect to that variable.A simple example is Newton's second law of motion, which leads to the differential equationfor the motion of a particle of constant mass m . In general, the force F depends upon the position x(t) of the particle at time t , and thus the unknown function x(t) appears on both sides of the differential equation, as is indicated in the notation F (x (t )).Ordinary differential equations are distinguished from partial differential equations, which involve partial derivatives of functions of several variables.Ordinary differential equations arise in many different contexts including geometry, mechanics, astronomy and population modelling. Many famous mathematicians have studied differential equations and contributed to the field,including Newton, Leibniz, the Bernoulli family, Riccati, Clairaut, d'Alembert and Euler.Much study has been devoted to the solution of ordinary differential equations. In the case where the equation is linear, it can be solved by analytical methods. Unfortunately, most of the interesting differential equations are non-linear and, with a few exceptions, cannot be solved exactly. Approximate solutions are arrived at using computer approximations (see numerical ordinary differential equations).The trajectory of a projectile launched from a cannon follows a curve determined by an ordinary differential equation that is derived fromNewton's second law.Existence and uniqueness of solutionsThere are several theorems that establish existence anduniqueness of solutions to initial value problemsinvolving ODEs both locally and globally. SeePicard –Lindelöf theorem for a brief discussion of thisissue.DefinitionsOrdinary differential equationLet ybe an unknown function in x with the n th derivative of y , and let Fbe a given functionthen an equation of the formis called an ordinary differential equation (ODE) of order n . If y is an unknown vector valued function,it is called a system of ordinary differential equations of dimension m (in this case, F : ℝmn +1→ ℝm ).More generally, an implicit ordinary differential equation of order nhas the formwhere F : ℝn+2→ ℝ depends on y(n). To distinguish the above case from this one, an equation of the formis called an explicit differential equation.A differential equation not depending on x is called autonomous.A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y together with a constant term, all possibly depending on x:(x) and r(x) continuous functions in x. The function r(x) is called the source term; if r(x)=0 then the linear with aidifferential equation is called homogeneous, otherwise it is called non-homogeneous or inhomogeneous. SolutionsGiven a differential equationa function u: I⊂ R→ R is called the solution or integral curve for F, if u is n-times differentiable on I, andGiven two solutions u: J⊂ R→ R and v: I⊂ R→ R, u is called an extension of v if I⊂ J andA solution which has no extension is called a global solution.A general solution of an n-th order equation is a solution containing n arbitrary variables, corresponding to n constants of integration. A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. A singular solution is a solution that can't be derived from the general solution.Reduction to a first order systemAny differential equation of order n can be written as a system of n first-order differential equations. Given an explicit ordinary differential equation of order n (and dimension 1),define a new family of unknown functionsfor i from 1 to n.The original differential equation can be rewritten as the system of differential equations with order 1 and dimension n given bywhich can be written concisely in vector notation aswithandLinear ordinary differential equationsA well understood particular class of differential equations is linear differential equations. We can always reduce an explicit linear differential equation of any order to a system of differential equation of order 1which we can write concisely using matrix and vector notation aswithHomogeneous equationsThe set of solutions for a system of homogeneous linear differential equations of order 1 and dimension nforms an n-dimensional vector space. Given a basis for this vector space , which is called a fundamental system, every solution can be written asThe n × n matrixis called fundamental matrix. In general there is no method to explicitly construct a fundamental system, but if one solution is known d'Alembert reduction can be used to reduce the dimension of the differential equation by one.Nonhomogeneous equationsThe set of solutions for a system of inhomogeneous linear differential equations of order 1 and dimension ncan be constructed by finding the fundamental system to the corresponding homogeneous equation and one particular solution to the inhomogeneous equation. Every solution to nonhomogeneous equation can then be written asA particular solution to the nonhomogeneous equation can be found by the method of undetermined coefficients or the method of variation of parameters.Concerning second order linear ordinary differential equations, it is well known thatSo, if is a solution of: , then such that:So, if is a solution of: ; then a particular solution of , isgiven by:. [1]Fundamental systems for homogeneous equations with constant coefficientsIf a system of homogeneous linear differential equations has constant coefficientsthen we can explicitly construct a fundamental system. The fundamental system can be written as a matrix differential equationwith solution as a matrix exponentialwhich is a fundamental matrix for the original differential equation. To explicitly calculate this expression we first transform A into Jordan normal formand then evaluate the Jordan blocksof J separately asTheories of ODEsSingular solutionsThe theory of singular solutions of ordinary and partial differential equations was a subject of research from the time of Leibniz, but only since the middle of the nineteenth century did it receive special attention. A valuable but little-known work on the subject is that of Houtain (1854). Darboux (starting in 1873) was a leader in the theory, and in the geometric interpretation of these solutions he opened a field which was worked by various writers, notably Casorati and Cayley. To the latter is due (1872) the theory of singular solutions of differential equations of the first order as accepted circa 1900.Reduction to quadraturesThe primitive attempt in dealing with differential equations had in view a reduction to quadratures. As it had been the hope of eighteenth-century algebraists to find a method for solving the general equation of the th degree, so it was the hope of analysts to find a general method for integrating any differential equation. Gauss (1799) showed, however, that the differential equation meets its limitations very soon unless complex numbers are introduced. Hence analysts began to substitute the study of functions, thus opening a new and fertile field. Cauchy was the first to appreciate the importance of this view. Thereafter the real question was to be, not whether a solution is possible by means of known functions or their integrals, but whether a given differential equation suffices for the definition of a function of the independent variable or variables, and if so, what are the characteristic properties of this function.Fuchsian theoryTwo memoirs by Fuchs (Crelle, 1866, 1868), inspired a novel approach, subsequently elaborated by Thomé and Frobenius. Collet was a prominent contributor beginning in 1869, although his method for integrating a non-linear system was communicated to Bertrand in 1868. Clebsch (1873) attacked the theory along lines parallel to those followed in his theory of Abelian integrals. As the latter can be classified according to the properties of the fundamental curve which remains unchanged under a rational transformation, so Clebsch proposed to classify the transcendent functions defined by the differential equations according to the invariant properties of the corresponding surfaces f = 0 under rational one-to-one transformations.Lie's theoryFrom 1870 Sophus Lie's work put the theory of differential equations on a more satisfactory foundation. He showed that the integration theories of the older mathematicians can, by the introduction of what are now called Lie groups, be referred to a common source; and that ordinary differential equations which admit the same infinitesimal transformations present comparable difficulties of integration. He also emphasized the subject of transformations of contact.A general approach to solve DE's uses the symmetry property of differential equations, the continuous infinitesimal transformations of solutions to solutions (Lie theory). Continuous group theory, Lie algebras and differential geometry are used to understand the structure of linear and nonlinear (partial) differential equations for generating integrable equations, to find its Lax pairs, recursion operators, Bäcklund transform and finally finding exact analytic solutions to the DE.Symmetry methods have been recognized to study differential equations arising in mathematics, physics, engineering, and many other disciplines.Sturm–Liouville theorySturm–Liouville theory is a theory of eigenvalues and eigenfunctions of linear operators defined in terms of second-order homogeneous linear equations, and is useful in the analysis of certain partial differential equations.Software for ODE solving•FuncDesigner (free license: BSD, uses Automatic differentiation, also can be used online via Sage-server [2])•VisSim [3] - a visual language for differential equation solving•Mathematical Assistant on Web [4] online solving first order (linear and with separated variables) and second order linear differential equations (with constant coefficients), including intermediate steps in the solution.•DotNumerics: Ordinary Differential Equations for C# and [5] Initial-value problem for nonstiff and stiff ordinary differential equations (explicit Runge-Kutta, implicit Runge-Kutta, Gear’s BDF and Adams-Moulton).•Online experiments with JSXGraph [6]References[1]Polyanin, Andrei D.; Valentin F. Zaitsev (2003). Handbook of Exact Solutions for Ordinary Differential Equations, 2nd. Ed.. Chapman &Hall/CRC. ISBN 1-5848-8297-2.[2]/welcome[3][4]http://user.mendelu.cz/marik/maw/index.php?lang=en&form=ode[5]/NumericalLibraries/DifferentialEquations/[6]http://jsxgraph.uni-bayreuth.de/wiki/index.php/Differential_equationsBibliography• A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition)", Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2• A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux, Handbook of First Order Partial Differential Equations, Taylor & Francis, London, 2002. ISBN 0-415-27267-X• D. Zwillinger, Handbook of Differential Equations (3rd edition), Academic Press, Boston, 1997.•Hartman, Philip, Ordinary Differential Equations, 2nd Ed., Society for Industrial & Applied Math, 2002. ISBN 0-89871-510-5.•W. Johnson, A Treatise on Ordinary and Partial Differential Equations (/cgi/b/bib/ bibperm?q1=abv5010.0001.001), John Wiley and Sons, 1913, in University of Michigan Historical Math Collection (/u/umhistmath/)• E.L. Ince, Ordinary Differential Equations, Dover Publications, 1958, ISBN 0486603490•Witold Hurewicz, Lectures on Ordinary Differential Equations, Dover Publications, ISBN 0-486-49510-8•Ibragimov, Nail H (1993), CRC Handbook of Lie Group Analysis of Differential Equations Vol. 1-3, Providence: CRC-Press, ISBN 0849344883.External links•Differential Equations (/Science/Math/Differential_Equations//) at the Open Directory Project (includes a list of software for solving differential equations).•EqWorld: The World of Mathematical Equations (http://eqworld.ipmnet.ru/index.htm), containing a list of ordinary differential equations with their solutions.•Online Notes / Differential Equations (/classes/de/de.aspx) by Paul Dawkins, Lamar University.•Differential Equations (/diffeq/diffeq.html), S.O.S. Mathematics.• A primer on analytical solution of differential equations (/mws/gen/ 08ode/mws_gen_ode_bck_primer.pdf) from the Holistic Numerical Methods Institute, University of South Florida.•Ordinary Differential Equations and Dynamical Systems (http://www.mat.univie.ac.at/~gerald/ftp/book-ode/ ) lecture notes by Gerald Teschl.•Notes on Diffy Qs: Differential Equations for Engineers (/diffyqs/) An introductory textbook on differential equations by Jiri Lebl of UIUC.Article Sources and Contributors7Article Sources and ContributorsOrdinary differential equation Source: /w/index.php?oldid=433160713 Contributors: 48v, A. di M., Absurdburger, AdamSmithee, After Midnight, Ahadley,Ahoerstemeier,AlfyAlf,Alll,AndreiPolyanin,Anetode,Ap,Arthena,ArthurRubin,BL,BMF81,********************,Bemoeial,BenFrantzDale,Benjamin.friedrich,BereanHunter,Bernhard Bauer, Beve, Bloodshedder, Bo Jacoby, Bogdangiusca, Bryan Derksen, Charles Matthews, Chilti, Chris in denmark, ChrisUK, Christian List, Cloudmichael, Cmdrjameson, Cmprince, Conversion script, Cpuwhiz11, Cutler, Delaszk, Dicklyon, DiegoPG, Dmitrey, Dmr2, DominiqueNC, Dominus, Donludwig, Doradus, Dysprosia, Ed Poor, Ekotkie, Emperorbma, Enochlau, Fintor, Fruge, Fzix info, Gauge, Gene s, Gerbrant, Giftlite, Gombang, HappyCamper, Heuwitt, Hongsichuan, Ht686rg90, Icairns, Isilanes, Iulianu, Jack in the box, Jak86, Jao, JeLuF, Jitse Niesen, Jni, JoanneB, John C PI, Jokes Free4Me, JonMcLoone, Josevellezcaldas, Juansempere, Kawautar, Kdmckale, Krakhan, Kwantus, L-H, LachlanA, Lethe, Linas, Lingwitt, Liquider, Lupo, MarkGallagher,MathMartin, Matusz, Melikamp, Michael Hardy, Mikez, Moskvax, MrOllie, Msh210, Mtness, Niteowlneils, Oleg Alexandrov, Patrick, Paul August, Paul Matthews, PaulTanenbaum, Pdenapo, PenguiN42, Phil Bastian, PizzaMargherita, Pm215, Poor Yorick, Pt, Rasterfahrer, Raven in Orbit, Recentchanges, RedWolf, Rich Farmbrough, Rl, RobHar, Rogper, Romanm, Rpm, Ruakh, Salix alba, Sbyrnes321, Sekky, Shandris, Shirt58, SilverSurfer314, Ssd, Starlight37, Stevertigo, Stw, Susvolans, Sverdrup, Tarquin, Tbsmith, Technopilgrim, Telso, Template namespace initialisation script, The Anome, Tobias Hoevekamp, TomyDuby, TotientDragooned, Tristanreid, Twin Bird, Tyagi, Ulner, Vadimvadim, Waltpohl, Wclxlus, Whommighter, Wideofthemark, WriterHound, Xrchz, Yhkhoo, 今古庸龍, 176 anonymous editsImage Sources, Licenses and ContributorsImage:Parabolic trajectory.svg Source: /w/index.php?title=File:Parabolic_trajectory.svg License: Public Domain Contributors: Oleg AlexandrovLicenseCreative Commons Attribution-Share Alike 3.0 Unported/licenses/by-sa/3.0/。
Masslynx数据处理
Masslynx数据处理SOP1、首先有原始数据和Sample list(拔完UPLC-Q-TOF就拷下来的)2、先打开Masslynx-File-Project wizard- 新建一个project 命名,选择project的保存位置,project建成后,自动生成以下文件夹:其中最后一项为配置设置-总文件3、将原始数据导入(复制、粘贴)至Project下的Data文件夹,将Sample list放入Sample DB文件夹中4、因为Sample list比较混乱,含有空白及QC样本并且血样和尿液数据混合在一起,所以要整理Sample list。
5、Open-Sample list-选中原始Sample list-删除空白(必须删除空白),删除QC,分别将尿液中的血液数据剔除,将血液中的尿液数据剔除。
6、得到的尿液数据Sample list另存为LN-Urine-N,保存于Sample DB得到的血液数据Sample list另存为LN-Blood-N,保存于Sample DB7、建立血清正确的Sample list后就可以处理数据了Masslynx-Edit method-property valueFunction 1Initial Retention Time 0.50Final Retention Time 16.0Low Mass 100High Mass 1000Mass Tolerance(Da) 0.05Ose relative retention time NoApex Track Peak ParamatersApply smoothory NoCoulition Parameters: Noise eff… 0.0Deiso… No!处理尿样时:其他参数与blood保持一致,仅以下改变:Final Retention Time 12High Mass 15008、将设置好参数的method 另存为“blood(或其它)”存放在“METHOD”文件9、Masslynx-Process Samples-选择“project”-选中已经建立的“Sample list”-选中所需处理的样品编号“Method”编号对应于Sample list中的编号Processing options 选中☑Detect Peaks☑Collect Markers☑PCA点击OK,即开始处理数据数据处理过程包括:数据处理、色谱峰自动识别、峰对齐及归一化等这一系列过程都是自动完成的10、自动完成后可以得到Trend ViewLoadings ViewScores ViewChromatogram View四种形式的视图11、将Markerlynx Date set 保存为Markerlynx blood12、另存导出markers,对象名称为csv,将csv格式的文件导入SIMCA-P进行PCA、PLS-DA分析。
诺基亚智能手机使用指南说明书
C
Capacities Chart .................... 344, 346 Carbon Monoxide Hazard .............. 52 Carrying Cargo .............................. 202 Cassette Player
Charging System Indicator .... 58, 328 Checklist, Before Driving............. 206 Child Safety ...................................... 20 Child Seats........................................ 25
Before Driving ............................... 191 Belts, Seat ..................................... 8, 41 Beverage Holder............................ 101 Body Repair .................................... 310
Maintenance............................... 279 Usage .................................. 111, 117 Air Outlets (Vents)................ 110, 115 Air Pressure, Tires ........................ 282 Alcohol in Gasoline........................ 350 Aluminum Wheels, Cleaning........ 305 Antifreeze ....................................... 253 Anti-lock Brakes (ABS) Indicator................................ 59, 219 Operation .................................... 218 Anti-theft, Audio System............... 179 Anti-theft Steering Column Lock .. 76
翻译参考译文
第一周翻译材料传统上说,中国人在60岁以前对生日并不太注意。
六十大寿被认为是人生中极为重要的一次,因此经常要举行盛大的庆祝。
在此之后每隔10年就要举行一场生日庆祝,也就是70岁、80岁等,直到去世为止。
大体上说,人的年龄越大,庆祝的场合就越隆重。
生日经常是由成年子女来为他们的父母庆祝,以表现出对父母的尊敬并就父母为他们所做的一切表达自己的谢意。
(162字)☆参考译文:Traditionally, Chinese people do not pay a lot of attention to birthdays until they are 60 years old. The 60th birthday is regarded as a very important point of life and therefore there is often a big celebration. After that, a birthday celebration is held every ten years, that is the 70th, the 80th, etc, until the person’s death. Generally, the older the person is, the greater the celebration occasion is. It is often the grownup sons and daughters who celebrate their elderly parents’ birthdays to sho w their respect for them and express their thanks for all that they have done for their children.翻译参考译文Week2丝绸是中国古老文化的象征,为促进世界人类文明的发展做出了不可磨灭的贡献。
自-长安福特常用缩写词
零件讨论组
CSA
CorporateSecurity Administrator
公司安全管理员
CSI
CustomerService Index
客户服务指数
DCO
DutyCycle Output
责任循环结果
DCP
DynamicControl Planning
动态控制计划
DFR
DecreasingFailureRate
故障下降率
DMA
DatabaseMaintenanceAdministrator
数据库维护管理人员
DOE
Design ofExperiment
试验设计
DOM
DealerOperations Manager
经销商业务经理
DP
DesignParameters
TERM
中文译名
(CP)
ConfirmationPrototype
确认样车
<FS>
FinalStatus
最终状态
(J1)
Job1
整车投产
(PT)
P/TDesign Complete
动力传动系统设计结束
PT(P/T)
PowerTrain
动力传动系统
(ST)
SurfaceTransfer
表面参数传递
<CC>
样车结构
(TTO)
ToolTry-Out
工装设备试运行
Global8D
EightdisciplinaryActions
G8D
(福特公司解决问题的标准方法)
14D
MoreDetailed thanGlobal8D (usedtocontainand resolvestop-shipment/recall problems)
ansys菜单翻译
Abbr --> 缩写Abbreviation --> 缩写词About --> 关于absolut --> 绝对Active --> 当前add --> 增加add/edit/delete --> 增加/编辑/删除Additional Out --> 附加输出adius --> 心Adjacent --> 相邻Adv --> 高级Advection --> 对流Algorithm --> 算法align --> 定位Align WP with --> 工作区排列按ALPX --> 热膨胀系数Also 副词再Ambient Condit'n --> 环境条件amplitude --> 振幅Analysis --> 分析Angle --> 角度Angles --> 角度Angular --> 角度Animate --> 动画Animation --> 动画Anno --> 注释Anno/Graph --> 注释/图Annotation --> 注释文字Annulus --> 环面ANSYS Multiphysics Utility Menu --> ANSYS 综合物理场有限元分析菜单Any --> 任意apply --> 应用Arbitrary --> 任意arccosine --> 反余弦Archive --> 合并Arcs --> 圆弧线arcsine --> 反正弦area --> 面Area Fillet --> 面圆角Area Mesh --> 已划分的面Areas --> 面Array --> 数组arrow --> 箭头Assembly --> 部件At Coincid Nd --> 在两节点间Attch 动词接触Attr --> 特征Attrib --> 属性Attributes --> 属性Auto --> 自动Automatic Fit --> 自适应Axes --> 坐标轴Axis --> 坐标轴Axi-Symmetric --> 轴对称back up --> 恢复Background --> 背景Banded --> 条状Based --> 基础BC --> 边界Beam --> 梁behavior --> 特性Bellows --> [密封]波纹管Bias --> 偏置Biot Savart --> 毕奥-萨瓦河Bitmap --> BMP图片Block --> 块Body --> 体Booleans --> 布尔操作box --> 框Branch --> 分支brick orient --> 划分块(方向)Builder --> 生成器Built-up --> 合成Buoyancy Terms --> 浮力项By Circumscr Rad --> 外切正多边形By End KPs --> 始点、终点By End Points --> 直径圆By End Pts --> 底圆直径By Inscribed Rad --> 内接?正多边形By Picking --> 鼠标选取By Side Length --> 通过边长确定多边形By Vertices --> 通过顶点确定多边形calc --> 运算Calcs --> 计算Capacitor --> 电容Capped/Q-Slice --> 切面透明度设置Capping --> 盖Capture --> 打印Cartesian --> 笛卡儿坐标系Case --> 情况CE Node Selected --> 约束节点选择cent 中心Center --> 中心centr 中心ceqn --> 约束CFD --> 计算流体力学(CFD)Change 动词更换Check --> 检查Checking --> 检查Checks --> 检查Circle --> 圆Circuit --> 电路circumscr --> 外接圆Clr Size --> 清除尺寸CMS --> 组件模式综合Cnst --> 常数Cntl --> 控制Cntrls --> 控制Coincident --> 重合Collapse --> 折叠收起Color --> 颜色Colors --> 颜色Common --> 普通Comp --> 组件complex variable --> 复数变量Component --> 组件Components --> 组件Compress --> 精减Concats --> 未划分Concentrate --> 集中concrete --> 混凝土Cond --> 导体Conditions --> 条件cone --> 圆锥Configuration --> 配置Connectivity --> 连通性Connt --> 连通区域consistent --> 固定Const --> 常数Constant Amplitude --> 恒幅Constants --> 常数Constr --> 约束Constraint --> 约束Constraints --> 约束constreqn --> 约束方程Contact --> 接触Contour --> 等值线Contour Plot --> 等值云图Contours --> 等值线contraction --> 收缩因子Control --> 控制Controls --> 控制CONVERGENCE INDICATOR --> 收敛精度CONVERGENCE VALUE --> 收敛值Convert ALPx -->热膨胀系数转换Coor --> 坐标系Coord --> 坐标Coord Sys --> 坐标系coordinate --> 坐标Coordinates --> 坐标Coords --> 坐标corner --> 对角Corners --> 对角cornr --> 对角correl field --> 相关性区域correlation --> 相关性count --> 总数Couple --> 耦合Coupled --> 耦合Coupling --> 耦合CP Node Selected --> 耦合节点选择Create 动词新建creep --> 蠕变criteria --> 准则cross product --> 向量积cross-sectional --> 截面CS --> 坐标系csys --> 坐标系ctr --> 中点ctrl --> 控制ctrls --> 控制Cupl --> 耦合Curr --> 电流curvature --> 圆弧Curvature Ctr --> 曲率中心Curve --> 曲线custom --> 定制Cyc --> 循环Cyclic Expansion -->循环扩展设置Cyclic Model --> 周向模型Cyclic Sector --> 扇型周向阵列cylinder --> 圆柱Cylindrical --> 柱坐标系Damper --> 阻尼[减震]器damping --> 阻尼系数Data --> 数据Data Tables --> 数据表格Database --> 数据库DB --> DB definitns --> 特征定义Deformed --> 已变形Degen --> 退化Degeneracy --> 退化Del --> 删除Del Concats --> 删除连接Delete --> 删除dependent --> 相关derivative --> 导数Design Opt --> 优化设计Device --> 设备differentiate --> 微分Digitize --> 数字化dimensions --> 尺寸Diode --> 二极管Directory --> 目录discipline --> 练习Displacement --> 变形Display --> 显示distances --> 距离Divide --> 划分Divs --> 位置DOF --> 自由度dofs --> 自由度dot product --> 点积Dupl --> 复制edge --> 边缘Edit --> 编辑Elbow --> 弯管[肘管]ElecMech --> 电磁ElecStruc --> 静电-结构electr --> 电磁Electric --> 电气类electromag --> 电磁electromagnetic --> 电磁Electromechanic --> 电-机械elem --> 单元Elem Birth/Death --> 单元生/死Element --> 单元Elements --> 单元Elems --> 单元Elm --> 单元EMT CDISP --> 电磁陷阱CDISP Enable 形容词允许ENDS --> 端energy --> 能量ENKE --> 湍动能量Entities --> 实体Entity --> 实体EPPL COMP --> 塑性应变分量EPTO COMP --> 总应变eq --> 方程Eqn --> 方程Eqns --> 方程equation --> 方程式Erase --> 删除Est. --> 估算Everything --> 所有EX --> 弹性模量EX exclude --> 排除Execute --> 执行Execution --> 执行Expansion --> 扩展Expend All --> 展开全部Exponential --> 幂数[指数]exponentiate --> 幂指数Export --> 模型输出Ext Opts --> 拉伸设置Extend Line --> 延伸线extra --> 附加extreme --> 极值Extrude --> 拉伸EY --> 弹性模量EY EZ --> 弹性模量EZ face --> 面Facets --> 表面粗糙fact --> 因子factor --> 系数factr --> 因子failure --> 破坏Fast Sol'n --> 快速求解Fatigue --> 疲劳FD --> 失效挠度field --> 区域Fill --> 填充Fill between KPs -->关键点间填入Fill between Nds --> 节点间填充fillet --> 倒角Fit --> 适当视图Flange --> 法兰Flip --> 翻转Floating Point --> 浮点FLOTRAN --> 流体FLOTRAN Set Up -->流体运行设置Flow --> 流量Fluid --> 流体Flux --> 通量Fnc_/EXI --> 退出Fnc_/GRAPHICS --> 图形界面Focus Point --> 焦点force --> 力Format --> 格式Fourier --> 傅立叶级数Free --> 自由Freq --> 频率From Full --> 完全Full Circle --> 完整圆Func --> 函数function --> 函数Functions --> 函数Gap --> 间隙Gen --> 一般General --> 通用General Options --> 通用设置General Postproc-->通用后处理器Generator --> 生成器Genl --> 普通Geom --> 单元Geometry --> 几何形状Get --> 获取Global --> 全局Globals --> 全局Glue --> 粘合gradient --> 梯度Graph --> 图Graphics --> 图形Graphs --> 图Gravity --> 引力(重力)Grid --> 网格GUI --> 图形用户界面GXY --> 剪切模量GXY GXZ --> 剪切模量GXZ GYZ --> 剪切模量GYZ hard --> 硬Hard Points --> 硬点Hard PT --> 硬点hardening --> 强化hex --> 六面体Hexagon --> 六边形Hexagonal --> 六棱柱hidden --> 隐藏higher-order --> 高阶Hill --> 希尔h-method --> 网格细分法hollow --> 空心Hollow Cylinder --> 空心圆柱体Hollow Sphere --> 空心球体hp-method --> 混合并行法I-J --> I-J imaginary --> 虚部Immediate --> 即时Import --> 模型输入Improve --> 改进independent --> 非相关Individual --> 单个Indp Curr Src --> 感应电流源Indp Vltg Src --> 感应电压源Inductor --> 电感Inertia --> 惯性Inertia Relief Summ --> 惯量概要Inf Acoustic --> 无穷声学单元init --> 初始化Init Condit'n --> 初始条件Initial --> 初始inquire --> 查询inscribed --> 内切圆Installation --> 安装int --> 强度integral --> 积分integrat --> 积分integrate --> 积分interactive --> 交互式Interface --> 接触面intermed --> 中间interpolate --> 插入Intersect --> 相交invert --> 切换is done --> 完成Isometric --> 等轴侧视图Isosurfaces --> 常值表面isotropic --> 各向同性Item --> 项目Items --> 项目Iteration --> 叠代Jobname --> 文件名Joint --> 连接Joints --> 连接KABS --> KABS Keypoint -->关键点Keypoints --> 关键点kinematic --> 随动KP --> 关键点KP between KPs -->关键点间设置kps --> 关键点Labeling --> 标志Layer --> 层Layered --> 分层Layers --> 层Layout --> 布局Lay-up --> 层布置Ld --> 载荷Legal Notices --> 法律声明Legend --> 图例Lib --> 库文件Library --> 材料库文件Licensing --> 许可Light Source --> 光源设置line --> 线Line Fillet --> 圆角Line Mesh --> 已划分的线Line w/Ratio --> 线上/比例Linear --> 线性Linearized --> 线形化Lines --> 线List --> 列出List Results --> 列表结果Ln' s --> 段Load --> 加载Load Step --> 载荷步Loads --> 载荷Loc --> 坐标值Local --> 局部Locate --> 定位Location --> 位置Locations --> 位置Locs --> 位置Log File --> 命令流记录文件lower-order --> 低阶LSDYNA --> LSDYNA(动力分析)LS-DYNA --> 显示动力分析Macro --> 宏命令Magnification --> 放大倍数management --> 管理Manager --> 管理器manual --> 手动ManualSize --> 手动尺寸Map --> 图Mapped --> 映射Mass --> 导体Mass Type --> 聚合量类型Master --> 主mat --> 材料Mat Num --> 材料编号Material --> 材料Materials --> 材料matl --> 材料Matls --> 材料maximum --> 最大Mechanical --> 机械类member --> 构件memory --> 内存MenuCtrls --> 菜单控制Merge --> 合并mesh --> 网格Mesher --> 网格Meshing --> 网格划分MeshTool --> 网格工具Message --> 消息Metafile --> 图元文件Meth --> 方法MIR --> 修正惯性松弛Miter --> 斜接[管]Mod --> 更改Mode --> 模式Model --> 模型Modeling --> 建模Models --> 模型Modify --> 修改Modle --> 模型Module --> 模块moment --> 力矩More --> 更多multi --> 多multi-field --> 多物理场耦合Multilegend --> 多图multilinear --> 多线性Multiple Species --> 多倍样式multiplied --> 乘Multi-Plot --> 多窗口绘图Multi-Plots --> 多图表Multi-Window --> 多窗口Mutual Ind --> 互感Name --> 名称Named --> 已指定natural log --> 自然对数nd --> 节点nds --> 节点NL Generalized -->非线形普通梁截面No Expansion --> 不扩展Nodal --> 节点Node --> 节点Nonlin --> 非线性Nonlinear --> 非线性Non-uniform --> 不均匀norm --> 法向Normal --> 法向Normals --> 没Num --> 编号NUMB --> NUMB Number -->编号Numbered --> 编号Numbering --> 编号Numbers --> 编号NUXY --> 泊松比Oblique --> 等角轴侧视图Octagon --> 八边形Octagonal --> 八棱柱offset --> 偏移Offset WP by Increments --> 指针增量偏移Offset WP to --> 指针偏移到Operate --> 操作Operations --> 运算OPT --> 优化Options --> 设置Optn --> 设置opts --> 设置Ord --> 指令Order --> 顺序Orders --> 指令Orient Normals --> 确定最外层法向Origin --> 原点Orthotropic --> 正交各向异性Other --> 其他Out Derived --> 输出派生outp --> 输出Output --> 输出Over Results --> 整个过程结果Over Time --> 规定时间内全过程Overlaid --> 覆盖Overlap --> 重叠Pair --> 偶Pairwise --> 新生成的Pan --> 移动pan-zoom-rotate --> 移动-缩放-旋转par --> 参数名parall --> 平行Parameters --> 参数Parms --> 参数Part IDs --> 部分ID号Partial --> 部分Partial Cylinder --> 部分圆柱体Particle Flow --> 粒子流迹Partition --> 分割Parts --> 局部Path --> 路径PDS --> 概率设计系统Pentagon --> 五边形Pentagonal --> 五棱柱Percent Error --> 误差率Periodic/Cyclic Symmetry--> 周期/循环阵列Perspective --> 透视phase --> 相位pick --> 选取Picked --> 已选取Piecewise --> 分段Piezoelectric --> 压电元件Pipe --> 管Pipe Run --> 管操作Pipe Tee --> T型管Piping --> 管Plane --> 平面Plane Strn --> 平面应变plasticity --> 塑性plot --> 绘图plotctrls --> 绘图控制Plots --> 绘图P-method --> 高次单元法Pointer --> 指针poisson --> 泊松Polygon --> 多边形POST1 --> 通用后处理器POST26 --> 时间历程后处理器postpro --> 后处理器postproc --> 后处理器potential --> 势POWRGRPH --> 激活窗体preferences --> 参数选项Pre-integrated --> 前集成处理PREP7 --> 前处理器preprocessor --> 前处理器PRES --> 压力Pre-tens Elements --> 删除单元后合并节点pretension --> 主张Pretensn --> 自划分prism --> 棱柱Pro --> Pro Prob --> 概率profiles --> 档案资料Prop --> 属性Properties --> 属性Props --> 属性PRXY --> 泊松比PRXY PRXZ --> 泊松比PRXZ PRYZ --> 泊松比PRYZ PT --> 点Pts --> 点Pulse --> 脉冲Q-Slice --> 切面Quad --> 积分Quadratic --> 二次qualities --> 质量query --> 查询QUIT --> 退出R --> 圆rad --> 半径radiation --> 辐射矩阵radius --> 半径Raise --> 升起random --> 随机range of variable --> 变量范围rate --> 率Rate of Change for Model Mainpulation --> 模型缩放变化率设定Reaction --> 反作用Read --> 读取Read Input from --> 读取命令流文件Real Constante --> 实常数RealConst --> 实常数Rectangle --> 矩形Redirect --> 重定向Reducer --> 接头ref --> 判定Refine --> 细化Reflect --> 阵列reflection --> 镜像Region --> 区域Regions --> 区域Relax/Stab/Cap --> 松弛/稳定/容量Relaxation --> 松弛release --> 版本Remesh --> 重划网格remove --> 删除rename --> 重命名Reorder --> 重置Replay Animation --> 重新播放动画Replot --> 重新绘图Report --> 报告Report --> 报告Res/Quad --> 结果/积分Reselect --> 分解Reset --> 取消Residual --> 余量Resistor --> 电阻response --> 响应Restart --> 重启动Restart/Clear --> 重启动/清除Restart/Iteration --> 重启动/迭代Restart/Load step --> 重启动/载荷步Restart/Set --> 重启动/设置Restart/Time --> 重启动/时间片Restore --> 恢复Result --> 结果Results --> 结果RESUM --> 恢复RESUM_DB --> 恢复_DB resume --> 恢复Reverse --> 相反Reverse Video --> 反色图像Rigid --> 刚性ROM --> 存储器Rotary --> 扭转Rotate --> 旋转Rotating --> 旋转rotational --> 旋转RUNSTAR --> 估计分析模块SAT --> SAT SAVE --> 保存SAVE_DB --> 保存_DBScalar --> 变量scale --> 比例scale factor --> 比例因子Scale Icon --> 图符尺度Scaling --> 比例Screen --> 屏幕se --> 超级单元secn --> 截面号sect --> 截面Sect Mesh --> 自定义网格Section --> 截面Sections --> 截面Sector --> 部分Segment --> 分段Segment Memory --> 分段保存segmented --> 分段Segments --> 分段Sel --> 选择sele --> 选择Select --> 选择Selected --> 已选择Selection --> 选择septagon --> 七边形septagonal --> 七边形的Set --> 设置Set Grid --> 设置栅格Set Up --> 设置Sets --> 设置Settings --> 设置Shaded --> 阴影Shape --> 形状Shell --> 壳Show --> 显示sided --> 边sine --> 正弦Singularity --> 奇异点sint --> 应力强度Sinusoidal --> 正弦Size --> 尺寸skinning --> 2线Slide Film --> 滑动薄膜Smart --> 精确SmartSize --> 智能尺寸Solid --> 实体Solid Circle --> 定圆心圆Solid Cylinder --> 定圆心圆柱体Solid Sphere --> 定圆心球体Solu --> 求解SOLUTION --> 求解器Solver --> 求解Sort --> 排序source --> 源Specification --> 约定Specifications --> 明细单Specified --> 指定Specified --> 指定Specified Loc --> 指定局部坐标spectrm --> 响应谱Spectrum --> 频谱Sphere --> 球体Spherical --> 球坐标系spline --> 样条Splines --> 样条曲线SpotWeld --> 点焊[缝、接点] Spring --> 弹簧Spring Support --> 弹性支撑Spring-Gap Supp -->弹性间隙支撑Src Waveform --> 屏幕波形Standed --> 标准Start --> 开始Start New --> 新建Start Num --> 初始编号Start Number --> 初始编号state --> 状态stats --> 状态Status --> 状态step --> 步store --> 存贮stress --> 应力Stresses --> 应力strn --> 应变Strnd Coil --> 线圈struct --> 结构structural --> 结构Style --> 样式submodeling --> 子模型Subtract --> 减去Summary --> 概要superelem --> 超单元superelement --> 超单元Superelements --> 超单元surf --> 表面Surface --> 面Surfaces --> 表面Sweep --> 扫描switch --> 转换Symbols --> 符号Symmetry Expansion --> 模型对称性扩展-镜像复制扫描Sys --> 系统Table --> 表tan --> 相切tangent --> 相切Taper --> 锥形Target --> 目标tech --> 技术TEMP --> 温度Temp Variatio --> 临时变量Temps --> 温度Tet --> 四面体Tets --> 测试Textured --> 纹理Texturing --> 材质thermal --> 热Thickness --> 壳厚度thickness func --> 函数定义变化的厚度Through --> 通过thru --> 通过Time Integration --> 时间积分Time Stepping --> 时间步设定Time-harmonic --> 时间-谐波timehist --> 时间历程TimeHist Postproc --> 时间历程后处理器Title --> 标题Toggle --> 扭转Tolerance --> 误差Toolbar --> 工具栏Topics --> 主题topological --> 拓扑torus --> 环行圆柱Trace --> 痕迹Trans --> 传递Transducer --> 传感器Transducers --> 传感器Transfer --> 移动Transient --> 暂态Translucency --> 半透视设置Traveling Wave --> 传导波Triangle --> 三角形Triangular --> 三棱柱ttribs --> 属性Turbulence --> 湍流Tutorials --> 指南Type --> 类型Types --> 类型Uniform --> 均布Units --> 单位Unload --> 卸载unpick --> 排除Unselect --> 不选择Update --> 更新user --> 用户User Numbered --> 自定义编号User Specified Expansion --> 自定义扩展模式utility --> 应用分析value --> 值Valve --> 阀Variables --> 变量Vector --> 矢量vectors --> 矢量Vector-Scalar --> 矢量-变量VFRC --> 体积含量View --> 视图Viewing --> 视图visco --> 粘Vltg --> 电压VOF --> 流体Volm --> 体Volms --> 体Volu --> 体volume --> 体Volumes --> 立体Volumes Brick Orient --> 沿Z向立方体Volus --> 体VS --> 电压源VX --> 速度X方向VY --> 速度Y方向VZ --> 速度Z方向w/Same --> w/相同节点Warning/Error --> 警告/错误warp --> 翘曲Wavefront --> 波前win --> 窗口Window --> 窗口Wire --> 导线wish --> 希望with --> 通过Working --> 工作Working Plane --> 工作平面WorkPlane --> 工作平面WP --> 工作平面WP Status --> 工作区指针状态Write DB log file --> 写入日志WrkPlane --> 工作面Zener --> 齐纳Zoom --> 缩放。
2020 Hangzhou Hikvision Digital Technology Co., Lt
and other Hikvision's trademarks and logos are the proper�es of Hikvision in various jurisdic�ons. Other trademarks and logos men�oned are the proper�es of their respec�ve owners.DisclaimerTO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THIS MANUAL AND THE PRODUCT DESCRIBED, WITH ITS HARDWARE, SOFTWARE AND FIRMWARE, ARE PROVIDED “AS IS” AND “WITH ALL FAULTS AND ERRORS”. HIKVISION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY HIKVISION BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES, INCLUDING, AMONG OTHERS, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, OR LOSS OF DATA, CORRUPTION OF SYSTEMS, OR LOSS OF DOCUMENTATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR LOSS.YOU ACKNOWLEDGE THAT THE NATURE OF INTERNET PROVIDES FOR INHERENT SECURITY RISKS, AND HIKVISION SHALL NOT TAKE ANY RESPONSIBILITIES FOR ABNORMAL OPERATION, PRIVACY LEAKAGE OR OTHER DAMAGES RESULTING FROM CYBER-ATTACK, HACKER ATTACK, VIRUS INSPECTION, OR OTHER INTERNET SECURITY RISKS; HOWEVER, HIKVISION WILL PROVIDE TIMELY TECHNICAL SUPPORT IF REQUIRED.YOU AGREE TO USE THIS PRODUCT IN COMPLIANCE WITH ALL APPLICABLE LAWS, AND YOU ARE SOLELY RESPONSIBLE FOR ENSURING THAT YOUR USE CONFORMS TO THE APPLICABLE LAW. ESPECIALLY PRODUCT IN A MANNER THAT DOES NOT INFRINGE ON THE RIGHTS OF THIRD PARTIES, INCLUDING WITHOUT LIMITATION, RIGHTS OF PUBLICITY SHALL NOT USE THIS PRODUCT FOR ANY PROHIBITED END-USES, INCLUDING THE DEVELOPMENT OR PRODUCTION OF WEAPONS OF MASS DESTRUCTION, THE DEVELOPMENT OR PRODUCTION OF CHEMICAL OR BIOLOGICAL WEAPONS, ANY ACTIVITIES IN THE CONTEXT RELATED TO ANY NUCLEAR EXPLOSIVE OR UNSAFE NUCLEAR FUEL-CYCLE, OR IN SUPPORT OF HUMAN RIGHTS ABUSES.IN THE EVENT OF ANY CONFLICTS BETWEEN THIS MANUAL AND THE APPLICABLE LAW, THE LATER PREVAILS.1Appearance2EnrollmentNote: The enrollment progress will be completed in 3 to 10 seconds normally, and the maximum enrollment dura�on is 3 minutes. 1Enroll the Peripheral Locally1. Log in to the APP Store, download and install Hik-Pro .2. Power on the security control panel.3. Log in the APP and tap the icon "+" . Scan the QR code or input the control panel serial No. to add the control panel.1. In the APP , tap the "Enrollment Mode" bu�on on the control panel page to make the control panel enter the enrollment status.2. Loosen the screw and remove rear panel.3. Power on the peripheral, and it will be automa�cally enrolled to the control panel.This product and - if applicable - the supplied accessories too areEN 50131-1:2006+A2:2017EN 50131-2-2:2017EN 50131-5-3:2017EN 50131-2-7-1:2012+A2:2016Security Grade(SG) 2Environmental Class(EC) II MicrophoneIndicatorBracket Tamper Port Joys�ck Tamper Switch Power Switch1. Do not ingest ba�ery, Chemical Burn Hazard2. Keep new and used ba�eries away from the children.3. If the ba�ery compartment does not close securetyly, stop using the product and keep it away from children.4. If you think ba�eries might have been swallowed or placed inside any part of the body, seek immediate medical a�en�on.WarningCau�on1. Risk of fire or explosion if the ba�ery is replaced by an incorrect type.2. Improper replacement of the ba�ery with an incorrect type may defeat a safeguard (for example, in the case of some lithium ba�ery types).3. Do not dispose of the ba�ery into fire or a hot oven, or mechanically crush or cut the ba�ery, which may result in an explosion.4. Do not leave the ba�ery in an extremely high temperature surrounding environment, which may result in an explosion or the leakage of flammable liquid or gas.5. Do not subject the ba�ery to extremely low air pressure, which may result in an explosion or the leakage of flammable liquid or gas.6. Dispose of used ba�eries according to the instruc�onsBa�ery + - Mark :+ iden�fies the posi�ve terminal(s) of equipment which is used with, or generates direct current. - iden�fies the nega�ve terminal(s) of equipment which is used with, or generates direct current.1. Check Signal StrengthEnter the signal checking mode by opera�ng on the control panel. Trigger the detector.Solid Red for 3 s - Weak Signal 2. Check the installa�on environmentNote: Hold the tamper bu�on, and make the device power off and then power on for re-enrollment.3Installa�on2Enroll the Peripheral with QR and serial No.1. In the APP , tap the icon "+"and scan the QR code or serial No. on the peripheral.2. Loosen the screw and remove rear panel.3. Power on the peripheral, and it will be automa�cally enrolled to the control panel.Signal Strength TestNote: The addi�onal force shall be equal to three �mes the weight of the equipment but not less than 50N. The equipment and its associated moun�ng means shall remain secure during the installa�on. A�er the installa�on, the equipment, including any associated moun�ng plate, shall not be damaged.with Screwsa. Knock out the screw holes on the rear panel.3. Adjust the pick-up direc�ona. knock out the sheet on the pick-up hole at the required side.b. Toggle the joys�ck to adjust the pick-up direc�on.Note: Please mount the detector with supplied screws or those in the same specifica�on as the supplied one.b. Secure the rear panel on the wall with four screws.with the Sponge TapePaste the device on the wall with sponge tape.Bracket InstallationCeiling Bracket Fi�ng (Non EN compliant)Wall Bracket Fi�ngNote: Installing with the Sponge Tape is non EN compliant.4TestDetector zones and planesThe zones and plans of the detector are shown below.PIR TestThe detector will enter the PIR walk test mode (3 minutes) a�er being enrolled.Trigger the detector within the detec�on range.If the blue LED flashes 2 s, the installa�on posi�on for PIR detec�on is properly. If the LED indicator is s�ll off, adjust the posi�on of the detector.BG (Break Glass) Test85.9°(a) Detec�on Range 52 zones 4 planes10m12m1m2m 4m6m8m5Forma�ngHold the tamper switch for 8 s and power the device on at the same �me. The red LED flashes 3 �mes when the forma�ng opera�on is completed.6Set up with AppZone TypeStay Arm BypassChime Silent Alarm Slide to green to enable the chime.Slide to green to make the zone keep silent while alarm is triggered.Select the zone type of the detector such as the instant zone, the 24-hour zone, etc.Link the detector to the zone.On the device list page, tap the AX PRO and then log in to the device (if required) to enter the Area page. Tap Device, and tap the zone.Slide to green to bypass the zone fromstay arming.Func�on Descrip�onDouble Knock Slide to green to make the zone alarm with double knock.Cross Zone If the alarm triggered in both of the linked zones within the set �me, two alarm messages will be reported.Sounder Delay Time Set the delay �me. The sounder will be triggeredimmediately or a�er the set �me.Link Camera Link with a camera for intruder verifica�on. Link PIRCAM Link a PIRCAM for the zone.PIR Detec�on Slide to green to enable PIR detac�on.Set the PIR sensi�vity as High, Auto or Pet.7Opera�on Cau�on and Device Maintenance- All the electronic opera�on should be strictly compliance with the electrical safety regula�ons, fire preven�on regula�ons and other related regula�ons in your local region.- Do not drop the device or subject it to physical shock, and do not expose it to high electromagne�sm radia�on. Avoid the equipment installa�on on vibra�ons surface or places subject to shock (ignorance can cause equipment damage).- Please make sure that the power has been disconnected before you wire, install or dismantle the device.- If smoke, odors or noise rise from the device, turn off the power at once and unplug the power cable, and then please contact the service center.- Do not drop the device or subject it to physical shock, and do not expose it to high electromagne�sm radia�on. Avoid the equipment installa�on on vibra�ons surface or places subject to shock (ignorance can cause equipment damage).- Do not place the device in extremely hot (refer to the specifica�on of the device for the detailed opera�on temperature), cold, dusty or damp loca�ons, and do not expose it to high electromagne�c radia�on.- The device for indoor use shall be kept from rain and moisture.Exposing the equipment to direct sun light, low ven�la�on or heat source such as heater or radiator is forbidden (ignorance can cause fire danger).- Do not aim the device at the sun or extra bright places. A blooming or smear may occur otherwise (which is not a malfunc�on however), and affec�ng the endurance of sensor at the same �me.- Improper use or replacement of the ba�ery may result in hazard of explosion. Replace with the same orequivalent type only. Dispose of used ba�eries according to the instruc�ons provided by the ba�ery manufactur-er.- Do not expose the device to the corrosive gas. Otherwise the equipment damage may occur. - Do not expose the device to the explosive situa�on.Swinger limit ac�va�ons Set the limit �mes of swinger ac�vi�on.LEDTurn On/Off the LED.Polling Rate Set the interval of heartbeat.Glass Break Detec�onSlide to green to detect the natural frequency vibra�on when the glass is broken. Set the detec�on distance.Func�onDescrip�onSignal Strength Test Enter the test mode, and view the LED indica�on.Detec�on Zone Test Enter the test mode, and start walk test.BypassSlide to green to bypass the zone.Find Me Tap Find Me to make peripherals find the zone.7Specifica�onM odel DS-PDPG12P-EG2-WB/WEDetec �on PerformanceDetec �on Method P assive I n f rared,Acous �c S ensorDetec �on R ange 12m Detec �on Angle 85.9° Detec �on Zones 52 Detectable Sp eed 0.3 to 2m/s P et Imm unity 30K g PIR S ensi �vityAuto,High,P et W hite Light F ilter6500lu xG lass Ty p e F loat,P late,Ta mp ered,W ired,La m inated Leaded,Double G lazing G lass B reak R ange 8mG lass Thickness 2.4mm to 6.4mm G lass B reak S ensi �vity2m ,4m ,6m ,8m Digital Te mp erature Co mp ensa �on S u pp ortG lass S ize0.3m x 0.3m to 3m x 3m Cree p Zone P rotec �on S u pp ort FeatureDigital P rocessing S u pp ort S ealed Op�csS u pp ort Ta mp er P rotec �on F ront,R ear E nviron m ent Te mp erature I ndicator S u pp ortS ignal S trength I ndicatorS u pp ortInterfaceP ower S witch P ower Up E nrollingL E D I ndicatorG reen (PIR),R ed (BG),B lue (alar m)TransmissionTrans m ission Technology Tri -X W irelessTrans m ission Method Two -W ay RF W irelessTrans m ission F re q uency433MHz /868MHzTrans m ission S ecurityA ES -128 E ncry p�onTrans m ission R ange (F ree Sp ace ) 1Km(433MHz )/1.6 Km(868MHz )F re q uency Ho pp ing S u pp ortE nrolling Method P ower u p ,R e m ote I D,QR Code Electrical Characteris �csP ower S u pp lyB a �ery P owered B a �ery Ty p eC R 123A × 2 Ty p ical V oltage3V S tandard B a �ery Li f e4 Y ears。
SP3072EEN中文资料
■ Three applications-optimized speed grades
■ SP3070-72E: 250kbps slew-limited
■ SP3073-75E: 500kbps slew-limited
5 GND
8 Pin Half Duplex: SP3072E, 250kbps slew limited SP3075E, 500kbps slew limited SP3078E, 16Mbps
Date: 03/28/05
SP3070E - SP3078E Family, ±15kV ESD-Protected, Failsafe RS-485/RS422 Transceivers
Operating Temperature Ranges SP307_EMN.................................................................-40ºC to +125ºC SP307_EEN ...............................................................-40ºC to +85ºC
High receiver input impedance allows a large number of transceivers to share a common data bus while maintaining signal margin and without excessive loading or use of expensive repeaters. The high impedance driver output is maintained over the entire common-mode voltage range from -7 to +12V. Receivers will failsafe to logic 1 output when inputs are open, shorted or terminated. Drivers include built-in short-circuit protection and a thermal-overload shutdown to protect against excessive power dissipation from bus contention or cable faults. All RS485 inputs are ESD protected up to ±15kV (Air-Gap and Human Body Model) and up to ±8kV Contact discharge (IEC 1000-4-2).
STABILIZING THE CHARGE-TO-MASS RATIO OF TONER COM
专利名称:STABILIZING THE CHARGE-TO-MASS RATIO OF TONER COMPONENTS发明人:SCHEIN, Lawrence, B.,HSU, Hung-Hsu,MU, Taomo申请号:IE2001000125申请日:20010928公开号:WO02/042850P1公开日:20020530专利内容由知识产权出版社提供摘要:An apparatus for efficiently transferring at least two subtractive color toner images simultaneously onto a substrate. The apparatus includes a photoreceptor, transfer charger, mechanism for placing the substrate between the photoreceptor and transfer charger, a plurality of print stations and a stabilizing charger unit. Each of the print stations include a charger unit, an exposure unit, and a developer unit for applying a respective color toner to the latent image formed by the exposure unit in conjunction with the charger unit upon the photoreceptor. Upon application to photoreceptor, each toner has an initial charge-to-mass ration, which is subsequently increased to a saturated charge-to-mass ratio when the toner passes under the charger unit of a subsequent print station. Thus, the stabilizing charges unit substantially conforms the charge-to-mass ratio of the toner deposited by the last print station to the charge-to-mass ratio of the toner developed previously. This results in more homogeneous transfer characteristics for all toners. A similar method is also disclosed.申请人:MCCARTHY, Denis, Alexis地址:US,IE国籍:US,IE代理机构:MACLACHLAN & DONALDSON 更多信息请下载全文后查看。
LINselect版本1.1.5:高级线性估计器选择工具说明书
Package‘LINselect’December7,2023Encoding UTF-8Title Selection of Linear EstimatorsVersion1.1.5Date2023-12-06Author Yannick Baraud,Christophe Giraud,Sylvie HuetMaintainer Benjamin Auder<*****************************************>DescriptionEstimate the mean of a Gaussian vector,by choosing among a large collection of estimators,following the method developed by Y.Baraud,C.Giraud and S.Huet(2014)<doi:10.1214/13-AIHP539>.In particular it solves the problem of variable selection by choosing the best predictor among pre-dictors emanating from different methods as lasso,elastic-net,adaptive lasso,pls,randomForest.Moreover,it can be applied for choosing the tun-ing parameter in a Gauss-lasso procedure.Imports mvtnorm,elasticnet,MASS,randomForest,pls,gtools,statsDepends R(>=3.5.0)License GPL(>=3)NeedsCompilation noRepository CRANDate/Publication2023-12-0705:40:02UTCR topics documented:penalty (2)simulData (3)tuneLasso (4)V ARselect (6)Index1012penalty penalty penaltyDescriptionCalculate the penalty function for estimators selection.Usagepenalty(Delta,n,p,K)ArgumentsDelta vector with Dmax+1components:weights in the penalty function.n integer:number of observatons.p integer:number of variables.K scalar:constant in the penalty function.ValueA vector with the same length as Delta:for each d=0,...,Dmax,let N=n-d,D=d+1andpen(d)=x K N/(N-1)where x satisfiesφ(x)=exp(-Delta(d)),when Delta(d)<50,whereφ(x)=pf(q=x/(D+2),df1=D+2,df2=N-1,lower.tail=F)-(x/D)pf(q=(N+1)x/D(N-1),df1=D,df2=N+1,lower.ta ψ(x)=Delta(d),when Delta(d)≥50,whereψ(x)=lbeta(1+D/2,(N-1)/2)-log(2(2x+(N-1)D)/((N-1)(N+2)x))-(N-1)/2log((N-1)/(N-1+x))-(D/2)log(xNoteThe values of the penalty function greater than1e+08are set to1e+08.If for some Delta(d)the equationφ(x)=exp(-Delta(d)/(d+1))has no solution,then the exe-cution is stopped.Author(s)Yannick Baraud,Christophe Giraud,Sylvie HuetsimulData3 simulData simulDataDescriptionFunction to simulate data Y=Xβ+σN(0,1)UsagesimulData(p=100,n=100,beta=NULL,C=NULL,r=0.95,rSN=10)Argumentsp integer:number of variates.Should be>15if beta=NULLn integer:number of observationsbeta vector with p components.See details.C matrix p x p.Covariance matrix of X.See details.r scalar for calculating the covariance of X when C=NULL.rSN scalar:ratio signal/noiseDetailsWhen beta is NULL,then p should be greater than15and beta=c(rep(2.5,5),rep(1.5,5),rep(0.5,5),rep(0,p-15)) When C is NULL,then C is block diagonal withC[a,b]=r**abs(a-b)for1≤a,b≤15C[a,b]=r**abs(a-b)for16≤a,b≤pThe lines of X are n i.i.d.gaussian variables with mean0and covariance matrix C.The variance sigma**2equals the squared euclidean norm of Xβdivided by rSN*n.ValueA list with components:Y vector n:Y=Xβ+σN(0,1)X matrix n x p:values of the covariates.See details.C matrix p x p.See detailssigma scalar.See details.beta vector with p components.See details.NoteLibrary mvtnorm is loaded.Author(s)Yannick Baraud,Christophe Giraud,Sylvie HuettuneLasso tuneLassoDescriptiontune the lasso parameter in the regression model:Y=Xβ+σN(0,1)using the lasso or the gauss-lasso methodUsagetuneLasso(Y,X,normalize=TRUE,method=c("lasso","Glasso"),dmax=NULL,Vfold=TRUE,V=10,LINselect=TRUE,a=0.5,K=1.1,verbose=TRUE,max.steps=NULL)ArgumentsY vector with n components:response variable.X matrix with n rows and p columns:covariates.normalize logical:corresponds to the input normalize of the functions enet and cv.enet.If TRUE the variates X are normalized.method vector of characters whose components are subset of(“lasso”,“Glasso”)dmax integer:maximum number of variables in the lasso estimator.dmax≤D where D=min(3*p/4,n-5)if p≥nD=min(p,n-5)if p<n.Default:dmax=D.Vfold logical:if TRUE the tuning is done by Vfold-CVV integer.Gives the value of V in the Vfold-CV procedureLINselect logical:if TRUE the tuning is done by LINselecta scalar:value of the parameterαin the LINselect criteriaK scalar:value of the parameter K in the LINselect criteriaverbose logical:if TRUE a trace of the current process is displayed in real time.max.steps integer:maximum number of steps in the lasso procedure.Corresponds to the input max.steps of the function enet.Default:max.steps=2*min(p,n)ValueA list with one or two components according to method.lasso if method contains"lasso"is a list with one or two components according to Vfold and LINselect.•Ls if LINselect=TRUE.A list with components–support:vector of integers.Estimated support of the parameter vectorβ.–coef:vector whosefirst component is the estimated intercept.The other components are the estimated non zero coefficients.–fitted:vector with length n.Fitted value of the response.–crit:vector containing the values of the criteria for each value of lambda.–lambda:vector containing the values of the tuning parameter of the lasso algorithm.•CV if Vfold=TRUE.A list with components–support:vector of integers.Estimated support of the parameter vectorβ.–coef:vector whosefirst component is the estimated intercept.The other components are the estimated non zero coefficients.–fitted:vector with length n.Fitted value of the response.–crit:vector containing the values of the criteria for each value of lambda.–crit.err:vector containing the estimated standard-error of the criteria.–lambda:vector containing the values of the tuning parameter of the lasso algorithm.Glasso if method contains"Glasso".The same as lasso.Notelibrary elasticnet is loaded.Author(s)Yannick Baraud,Christophe Giraud,Sylvie HuetReferencesSee Baraud et al.2010http://hal.archives-ouvertes.fr/hal-00502156/fr/Giraud et al.,2013,https:///DPubS?service=UI&version=1.0&verb=Display& handle=euclid.ss/1356098553Examples#source("charge.R")library("LINselect")#simulate data with##Not run:ex<-simulData(p=100,n=100,r=0.8,rSN=5)##Not run:ex1.tuneLasso<-tuneLasso(ex$Y,ex$X)##Not run:data(diabetes)##Not run:attach(diabetes)##Not run:ex.diab<-tuneLasso(y,x2)##Not run:detach(diabetes)VARselect VARselectDescriptionEstimation in the regression model:Y=Xβ+σN(0,1)Variable selection by choosing the best predictor among predictors emanatingfrom different methods as lasso,elastic-net,adaptive lasso,pls,randomForest.UsageVARselect(Y,X,dmax=NULL,normalize=TRUE,method=c("lasso", "ridge","pls","en","ALridge","ALpls","rF","exhaustive"),pen.crit=NULL,lasso.dmax=NULL,ridge.dmax=NULL,pls.dmax=NULL,en.dmax=NULL,ALridge.dmax=NULL,ALpls.dmax=NULL,rF.dmax=NULL,exhaustive.maxdim=5e+05,exhaustive.dmax=NULL,mbda=c(0.01,0.1,0.5,1,2,5),mbda=c(0.01,0.1,0.5,1,2,5),rF.lmtry=2,pls.ncomp=5,mbda=c(0.01,0.1,0.5,1,2,5),ALpls.ncomp=5,max.steps=NULL,K=1.1,verbose=TRUE,long.output=FALSE)ArgumentsY vector with n components:response variable.X matrix with n rows and p columns:covariates.dmax integer:maximum number of variables in the lasso estimator.dmax≤D where D=min(3*p/4,n-5)if p≥nD=min(p,n-5)if p<n.Default:dmax=D.normalize logical:if TRUE the columns of X are scaledmethod vector of characters whose components are subset of“lasso”,“ridge”,“pls”,“en”,“ALridge”,“ALpls”,“rF”,“exhaustive”.pen.crit vector with dmax+1components:for d=0,...,dmax,penalty[d+1]gives the value of the penalty for the dimension d.Default:penalty=NULL.In thatcase,the penalty will be calculated by the function penalty.lasso.dmax integer lower than dmax,default=dmax.ridge.dmax integer lower than dmax,default=dmax.pls.dmax integer lower than dmax,default=dmax.en.dmax integer lower than dmax,default=dmax.ALridge.dmax integer lower than dmax,default=dmax.ALpls.dmax integer lower than dmax,default=dmax.rF.dmax integer lower than dmax,default=dmax.exhaustive.maxdiminteger:maximum number of subsets of covariates considered in the exhaustivemethod.See details.exhaustive.dmaxinteger lower than dmax,default=dmaxmbda vector:tuning parameter of the ridge.It is the input parameter lambda of function enetmbda vector:tuning parameter of the ridge.It is the input parameter lambda of func-tion lm.ridgerF.lmtry vector:tuning paramer mtry of function randomForest,mtry=p/rF.lmtry.pls.ncomp integer:tuning parameter of the pls.It is the input parameter ncomp of the function plsr.See details.mbda similar to mbda in the adaptive lasso procedure.ALpls.ncomp similar to pls.ncomp in the adaptive lasso procedure.See details.max.steps integer.Maximum number of steps in the lasso procedure.Corresponds to the input max.steps of the function enet.Default:max.steps=2*min(p,n)K scalar:value of the parameter K in the LINselect criteria.verbose logical:if TRUE a trace of the current process is displayed in real time.long.output logical:if FALSE only the component summary will be returned.See Value.DetailsWhen method is pls or ALpls,the LINselect procedure is carried out considering the number of components in the pls method as the tuning parameter.This tuning parameter varies from1to pls.ncomp.When method is exhaustive,the maximum number of variate d is calculated as follows.Let q be the largest integer such that choose(p,q)<exhaustive.maxdim.Then d=min(q, exhaustive.dmax,dmax).ValueA list with at least length(method)components.For each procedure in method a list with components•support:vector of integers.Estimated support of the parametersβfor the considered proce-dure.•crit:scalar equals to the LINselect criteria calculated in the estimated support.•fitted:vector with length n.Fitted value of the response calculated when the support ofβequals support.•coef:vector whosefirst component is the estimated intercept.The other components are the estimated non zero coefficients when the support ofβequalssupport.If length(method)>1,the additional component summary is a list with three components:•support:vector of integers.Estimated support of the parametersβcorresponding to theminimum of the criteria among all procedures.•crit:scalar.Minimum value of the criteria among all procedures.•method:vector of s of the procedures for which the minimum is reached If pen.crit=NULL,the component pen.crit gives the values of the penalty calculated by the func-tion penalty.If long.output is TRUE the component named chatty is a list with length(method) components.For each procedure in method,a list with components•support where support[[l]]is a vector of integers containing an estimator of the supportof the parametersβ.•crit:vector where crit[l]contains the value of the LINselect criteria calculated in support[[l]]. NoteWhen method is lasso,library elasticnet is loaded.When method is en,library elasticnet is loaded.When method is ridge,library MASS is loaded.When method is rF,library randomForest is loaded.When method is pls,library pls is loaded.When method is ALridge,libraries MASS and elasticnet are loaded.When method is ALpls,libraries pls and elasticnet are loaded.When method is exhaustive,library gtools is loaded.Author(s)Yannick Baraud,Christophe Giraud,Sylvie HuetReferencesSee Baraud et al.2010http://hal.archives-ouvertes.fr/hal-00502156/fr/Giraud et al.,2013,https:///DPubS?service=UI&version=1.0&verb=Display& handle=euclid.ss/1356098553Examples#source("charge.R")library("LINselect")#simulate data with#beta=c(rep(2.5,5),rep(1.5,5),rep(0.5,5),rep(0,p-15))ex<-simulData(p=100,n=100,r=0.8,rSN=5)##Not run:ex1.VARselect<-VARselect(ex$Y,ex$X,exhaustive.dmax=2) ##Not run:data(diabetes)##Not run:attach(diabetes)##Not run:ex.diab<-VARselect(y,x2,exhaustive.dmax=5)##Not run:detach(diabetes)Indexcv.enet,4enet,4,7lm.ridge,7penalty,2plsr,7randomForest,7simulData,3tuneLasso,4VARselect,610。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0402427v 1 18 F eb 2004The 5th Workshop on Galactic Chemodynamics -Swinburne University (9-11July 2003)To be published in the Publications of the Astronomical Society of Australia in 2004B.K.Gibson and D.Kawata,eds.Mass–to–Light ratio,Initial Mass Function and chemical evolution in disc galaxiesL.Portinari 1,J.Sommer–Larsen 1,R.Tantalo 21Theoretical Astrophysics Center,Juliane Maries Vej 30,DK-2100Copenhagen Ø,Denmark2Dipartimento di Astronomia,Universit`a di Padova,Vicolo dell’Osservatorio 2,I-35122Padova,Italye–mail:lportina,jslarsen@tac.dk;tantalo@pd.astro.itAbstractCosmological simulations of disc galaxy formation,when compared to the observed Tully–Fisher relation,suggest a low Mass–to–Light (M/L)ratio for the stellar component in spirals.We show that a number of“bottom–light”Initial Mass Functions (IMFs)suggested independently in literature,do imply M/L ratios aslow as required,at least for late type spirals (Sbc/Sc).However the typical M/L ratio,and correspondinglythe zero–point of the Tully–Fisher relation,is expected to vary considerably with Hubble type.Bottom–light IMFs tend to have a metal production in excess of what is tipically estimated for spiralgalaxies.Suitable tuning of the IMF slope and mass limits,post–supernova fallback of metals onto blackholes or metal outflows must then be invoked,to reproduce the observed chemical properties of disc galaxies.Keywords:Galaxies:spirals,chemical and photometric evolution;stars:Initial Mass FuntionFigure 1:Straight lines:observed Tully–Fisher rela-tion for Sbc–Sc disc galaxies (Dale et al.1999;h=0.7adopted here),for different assumptions about the stellar M/L I ratio.Triangles:simulated galaxies by Sommer–Larsen et al.(2003).Also shown is the loca-tion of the Milky Way and NGC 2841.1Introduction Recent N–body+SPH cosmological simulations of the for-mation of disc galaxies reproduce the observed Tully-Fisher (TF)relation (Dale et al.1999),provided the mass–to–light (M/L)ratio of the stellar component is rather low,M/L I =0.7–1in the I–band (Sommer-Larsen &Dolgov 2001;Sommer-Larsen et al.2003;Fig.1).The location of the simulated galaxies in the (M ∗,V c )plane of Fig.1is quiteindependent of the adopted Initial Mass Function (IMF)or feedback efficiency:the baryonic mass that cools outto form a galactic disc and its resulting circular velocitycorrelate so that data points tend to move along the TFrelation,hardly affecting the zero–point (Navarro &Stein-metz 2000ab).However,the IMF is crucial for the M/L ra-tio,to translate the stellar masses M ∗to luminosities andcompare the simulated TF relation to the empirical one.Although the zero–point of the simulated TF may changewith the concentration of the dark matter halos,and hencewith the normalization of the power spectrum σ8(Navarro&Steinmetz 2000ab;Eke et al.2001),many other argu-ments support a low stellar M/L ratio in spiral galaxies:The stellar mass of the Milky Way is M ∗∼5×1010M ⊙;to lie on the observed TF relation as other spirals,its M/L Imust be <∼1(Sommer-Larsen &Dolgov 2001;Fig.1).Alow M/L I <0.8is also derived for the massive Sb galaxyNGC 2841,when compared to the observed TF relation(Portinari et al.2004a,hereinafter PST;Fig.1).Based on bar instability arguments,Efstathiou et al.(1982)suggest an upper limit of M/L B ≤1.5h for discs,i.e.M/L B <∼1for h =0.7.(h indicates the Hubble constantH 0in units of 100km sec −1Mpc −1).The stellar M/L ratio is related to the issue as to whetherdiscs are maximal or sub–maximal,i.e.as to whether theydominate or not the dynamics and rotation curves in theinner galactic regions.Even in the case of maximal stellardiscs,lower M/L ratios for the stellar component are re-quired,than those predicted by the Salpeter IMF (Bell &de Jong 2001).And it is still much debated whether discsare maximal or sub–maximal;for his favoured sub–maximaldisc model,Bottema (2002)finds M/L I ∼0.82.Finally,two recent dynamical studies of individual spi-ral galaxies yield M/L ∼1in the B,V and I band for the Scgalaxy NGC 4414(Vallejo et al.2002)and M/L I =1.1forthe disc of the Sab spiral 2237+0305,Huchra’s lens (Trott&Webster 2002).In this paper we discuss if M/L ratios so low are com-patible with our understanding of stellar populations andchemical evolution in disc galaxies.We also address the ef-fects of different star formation histories on the TF relationfor different Hubble types.2Star Formation History and Initial Mass Function The M/L ratio of the stellar component of a galaxy (includ-ing both living stars and remnants)depends on the stellar2L.Portinari et al.Figure2:Mean b–parameter as a function of Hubbletype.Data from Sommer–Larsen et al.(2003).Initial Mass Function(IMF)and on the star formation his-tory(SFH)of the system.The SFH of a disc galaxy is related to its Hubble type:Kennicutt et al.(1994)demonstrated that the sequence ofspiral types is in fact a sequence of different SFHs in thediscs,as traced by the birthrate parameterb=SF Rτwithdifferent decaying rates.SSP metallicities around solar canbe considered typical for spiral galaxies.The resulting M/Lratio of the global stellar population(including remnants)as a function of the b–parameter is displayed in Fig.4,forthe different IMFs.The range0.8≤b≤1is representativeof Sbc–Sc spirals.The red shaded area indicates the rangein M/L=0.7–1suggested in§1.Fig.4shows that bottom–light IMFs can in fact yieldM/L I<1for late–type spirals,though one probably needsslightly“lighter”IMFs than the local Kroupa one.4Offsets of the TF relation with Hubble typeFrom Fig.4,the stellar M/L ratio is expected to vary withHubble type due to the differences in SFH parameterized byb.This effect implies systematic offsets with Hubble type ofthe luminosity zero–point of the TF relation(Rubin et al.1985;Giovanelli et al.1997;Kannappan et al.2002).Fig.5shows the M/L ratio as a function of b,normal-ized to the value corresponding to b=1.The scale on theright axis indicates the corresponding shift in magnitude.With respect to Sbc/Sc spirals,we predict a systematic off-set of0.3–0.4mag for Sb’s(b∼0.35)and of0.6–0.8mag forSa/Sab’s(b∼0.1),as a result of the different characteristicSFHs.These offsets are only slightly reduced when bulgesare added to discs in the computation of the total M/Lratios of galaxies(PST).The offsets we predict are largerthan the empirical ones found by Giovanelli et al.(1997):0.1mag for Sb spirals and0.32mag for earlier types.How-ever,the extent of the observed offsets in the TF relationis still a matter of debate:for instance,the larger offsetsfound by Kannappan et al.(2002)in the R–band,0.76magfor Sa’s,are in good agreement with our predictions.The characteristic SFH of a galaxy is traced by itscolours,so that the offsets in M/L ratio due to differentSFHs can be corrected for,by applying suitable M/L vs.colour relations(Bell&de Jong2001;PST).M/L ratio,IMF and chemical evolution in disc galaxies3 Figure4:I–band M/L ratio at varying b–parameter of the SFH,for different IMFs.The red shaded area marks the range M/L I=0.7–1favoured by observations for Sbc–Sc discs(corresponding to b=0.8–1).Figure5:Relative M/L ratio normalized to the valuecorresponding to b=1models.5Bottom–light IMFs and chemical evolutionBesides simple models with exponentially declining SFHs,we also computed more realistic,multi-zone chemo-photometricmodels of galactic discs,including infall,inside–out forma-tion and radially varying star formation efficiency.Chem-ical evolution is followed with the code by Portinari et al.(1998),Portinari&Chiosi(1999)and the models are cali-brated to reproduce the typical metallicity and metallicitygradient of Sbc/Sc discs(PST).Six sets of models have beencomputed for the six IMFs in§2.The corresponding pho-tometric properties are calculated by convolving the SFHand metal enrichment history of each annulus of the disc,with a grid of SSPs of metallicities between5×10−4Z⊙and5Z⊙(PST).For each IMF,the chemo–photometric models confirmthe M/L ratios predicted,as a function of b,by the simplemodels in Fig.4;see the example for the Kennicutt IMFmodels in Fig.6,top panel.The results of§3are thusconfirmed:the“bottom–light”IMFs considered here im-ply M/L I<1for Sbc/Sc spirals,as required in§1.Thisconclusion remains valid also when the contribution of thebulge to the global M/L ratio is included(PST).Chemo–photometric models allow also an insight onthe implications of“bottom–light”IMFs for chemical evo-lution.Some of the IMFs considered(Kennicutt,Larsonand Chabrier)are too efficient in metal production to re-produce the observed properties of spirals.In particular,the resulting gas fraction is much larger than the observedM gas/L B∼0.5M⊙/L⊙(solid dots in Fig.6,bottom panel).For a given IMF and corresponding metal production,thefinal gas metallicity predicted by chemical models increasesat decreasing gas fraction(Tinsley1980,Pagel1997).Ourmodels,calibrated to reproduce the observed metallicities,tend to predict too high gas fractions.Conversely,if theywere calibrated to reproduce the observed gas fractions,they would result in too high metallicities.This excessive metal production is readily understoodsince the enrichment efficiency of a stellar population,orits“net yield”,is inversely proportional to the mass frac-tion that remains forever locked in low–mass stars and rem-nants(Tinsley1980;Pagel1997);and for“bottom–light”IMFs the locked–up fraction is small.This effect can becompensated by a steep slope at the high-mass end,whichreduces the number of massive stars and the related metalproduction:the Kroupa or modified–Larson IMFs,for in-stance,with a steep Scalo slope do not overproduce metals(see PST for details).A steep slope for the integratedfieldstars IMF is expected,in fact,if stars form in star clus-ters offinite size even from an intrinsically shallower IMF(Kroupa&Weidner2003).For those bottom–light IMFs that do imply an excess inmetal production,one way to reconcile models with obser-vations is to tune the upper mass limit of the IMF,againreducing the number of massive stars and related metal4L.Portinari etal.Figure 6:Top panel :M/L ratio for chemo–photometric models with the Kennicutt IMF (solid dots);they con-firm the prediction from the simple exponential mod-els (black line)and are within the observed range of M/L I =0.7–1(red shaded area).Bottom panel :Pre-dicted gas fractions compared to the observed range,marked by the red dashed lines.Green triangles:mod-els with IMF mass limits tuned between 0.05–0.1M ⊙and 30–35M ⊙,rather than the standard mass range [0.1–100]M ⊙,to reproduce the observed gas fraction.production —or equivalently assume that above a certain progenitor mass,the metals produced by a supernova fall back onto a black hole after the explosion.The observed gas fractions can then be matched without altering the stellar M/L ratio significantly (green triangles in Fig.6).Alternatively,we need to invoke substantial outflows of metals from disc galaxies into the intergalactic medium,to reconcile the high enrichment efficiency with the observed low gas fractions.This behaviour is reminiscent of that of elliptical galaxies,responsible for the enrichment of the hot gas in clusters.With “standard”IMFs suited to model the chemical evolution of the Solar Neighbourhood (e.g.the Kroupa IMF)it is impossible to account for the observed metal enrich-ment in clusters (Portinari et al.2004b).Possibly,some of the “bottom–light”IMFs advocated here to reproduce low disc M/L ratios,suggest a scenario where the IMF and the enrichment efficiency may be the same in spiral and cluster galaxies,and in both cases much of the metals are dispersed into the intergalactic medium.However,sub-stantial outflows would challenge our understanding of disc galaxy formation:in galactic discs,star formation proceeds at a smooth,non burst–like pace and the observed “foun-tains”and “chimneys”do not have enough energy to escape the galactic potential;winds are far less plausible than in spheroids.Moreover,strong ongoing stellar feedback and outflows could significantly hamper the dynamical forma-tion of galactic discs from the cool–out of halo gas.The alternative to major winds from disc galaxies is that the metal production in spirals is much lower thanin galaxy clusters,because of a different IMF (Portinariet al.2004b).The IMF may change out of Jeans–massvariations with redshift (Moretti et al.2003and referencestherein);or be a universal function within star clusters,but lead statistically to more high–mass stars in massiveellipticals,where in regimes of intense star formation largerstar clusters can be formed (Kroupa &Weidner 2003).AcknowledgmentsLP is grateful to the organizers and to Swinburne Universityfor generous hospitality during the GCD-V conference.ReferencesBell E.F.&de Jong R.S.,2001,ApJ 550,212Bottema R.,2002,A&A 388,809Chabrier G.,2001,ApJ 554,1274Chabrier G.,2002,ApJ 567,304Dale D.A.,Giovanelli R.,Haynes M.P.,Campusano L.E.&Hardy E.,1999,AJ 118,1489Efstathiou G.,Lake G.&Negroponte J.,1982,MNRAS199,1069Eke V.R.,Navarro J.F.&Steinmetz M.,2001,ApJ 554,114Giovanelli R.,Haynes M.P.,Herter T.&Vogt N.P.,1997,AJ 113,53Girardi L.,Bressan A.,Bertelli G.,Chiosi C.,Groenewegen M.A.T.,Marigo P.,Salasnich B.&Weiss A.,2002,A&A391,195Kannappan S.J.,Fabricant D.G.&Franx M.,2002,AJ 123,2358Kennicutt R.C.,Tamblyn P.&Congdon C.W.,1994,ApJ 435,22(KTC94)Kroupa P.,1998,in Brown Dwarfs and Extrasolar Planets,eds.R.Rebolo,E.L.Martin and M.R.Zapatero Osorio,ASP Conf.Series vol.134,p.483Kroupa P.&Weidner C.,2003,ApJ 598,1076Larson R.B.,1998,MNRAS 301,569Moretti A.,Portinari L.&Chiosi C.,2003,A&A 408,431Navarro J.F.&Steinmetz M.,2000a,ApJ 528,607Navarro J.F.&Steinmetz M.,2000b,ApJ 538,477Pagel B.E.J.,1997,Nucleosynthesis and Chemical Evolu-tion of Galaxies,Cambridge University Press Portinari L.&Chiosi C.,1999,A&A 350,827Portinari L.,Chiosi C.&Bressan A.,1998,A&A 334,505Portinari L.,Sommer–Larsen J.&Tantalo R.,2004a,MNRAS 347,691(PST)Portinari L.,Moretti A.,Chiosi C.&Sommer–Larsen J.,2004b,ApJ in press (astro-ph/0312360)Rubin V.C.,Burstein D.,Ford W.K.&Thonnard N.,1985,ApJ 289,81Salpeter E.E.,1955,ApJ 121,161Scalo J.M.,1986,Fund.Cosmic Phys.11,1Sommer–Larsen J.&Dolgov A.,2001,ApJ 551,608Sommer–Larsen J.,G¨o tz M.&Portinari L.,2003,ApJ 596,47Tinsley B.M.,1980,Fund.Cosmic Phys.5,287Trott C.M.&Webster R.L.,2002,MNRAS 334,621Vallejo O.,Braine J.&Baudry A.,2002,A&A 387,429。