3.1.2空间向量的数乘运算(共14张)
3.1空间向量及其运算
当堂自测
4.已知 A,B,C 三点不共线,O 为平面 ABC 外一点,若 1→ 2→ → → 确定的点 P 与 A,B,C 共面,则 由向量OP= OA+ OB+λOC 5 3 2 λ=________ . 15
向量概念的应用
例 1 (1)下列关于空间向量的说法中正确的是( D ) A.若向量 a,b 平行,则 a,b 所在直线平行 B.若|a|=|b|,则 a,b 的长度相等而方向相同或相反 → ,CD → 满足|AB → |>|CD → |,则AB → >CD → C.若向量AB → 与CD → 满足AB → +CD → =0,则AB → ∥CD → D.若两个非零向量AB
范老师下班回家,先从学校大门口骑自行车向北行驶 2 000 m, 再向西行驶 2 500 m, 最后乘电梯上升 30 m 到 10 楼的住处. 在 这个过程中, 范老师从学校大门口回到住处所发生的总位移就是 三个位移的合成(如图所示),它们是不在同一平面内的位移.如 何刻画这样的位移呢?
复习与预习
当堂自测
1.在平行六面体 ABCD -A1B1C1D1 中,M 为 AC 与 BD 的交 → → → 点.若A1B1=a,A1D1=b,A1A=c,则下列 → 向量中与B 1M相等的向量是 ( A ) 1 1 1 1 A.- a+ b+c B. a+ b+c 2 2 2 2 1 1 1 1 C. a- b+c D.- a- b+c 2 2 2 2
[解析] (2)若 2ke1-e2 与 e1+2(k+1)e2 共线, 则 2ke1-e2=λ[e1+2(k
2k=λ, 1 +1)e2],∴ ∴k=- . 2 -1=2λ(k+1),
[小结 ] 可以利用向量之间的关系判断空间任意三点共线, 这 与利 用平 面向量 基本 定理 判断平 面内 三点共 线是 相似 的.结合共线向量的有关知识可知,要证空间中 E, F, B 三点共线,只需证明下面结论中的一个成立即可: → → → → → → → → (1)EB=mEF;(2)AB=AE+λEF;(3)AB=nAE+(1-n)AF.
空间向量及其运算_图文
一、预习内容: ⑴怎样的向量叫做共线向量? ⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量? ⑹向量p与不共线向量a、b共面的 充要条件 是什么? ⑺空间一点P在平面MAB内的充要条件是什 么?
• (2)考虑一些未知的向量能否用基向量表示.
• (3)如何对已经表示出来的向量进行运算,才能 获得需要的结论.
2. 向量作为沟通“数”和“形”的桥梁,是利用数形 结合解题的一种重要载体.学习者要逐步掌握向量 运算的各种几何意义,才能较好的利用效率这一工 具来灵活解题.请注意以下的基本知识技能:
评注:⑴证明分两方面: 一是存在性;二是惟一性.
⑵若三向量 不共面, 则所有空间向量所组成的 集合是:
空间向量基本定理推论:
设O,A,B,C是不共面的四点,则对空间任 一点P,都存在唯一的三个有序实数x,y,z,使
二、例题分析: 例1、已知A,B,C三点不共线,对平面外任一 点,满足条件:
试判断:点P与A,B,C是否一定共面?
在空间中具有大小和方向的量叫作向量.
同向且等长的有向线段表示同一向量或相等 向量. ⑵向量的表示: 用有向线段表示
2、空间向量的运算: ⑴定义:
与平面向量运算一样,空间向量的加法、减 法与数乘向量运算如下(如图)
注:空间向量的加法、减法及数乘运算是 平面向量对应运算的推广
3、平行六面体:
平行四边形ABCD平移向量 a 到A’B’C’D’的 轨迹所形成的几何体,叫做平行六面体.记作 ABCD—A’B’C’D’. 它的六个面都是平行四边形,每个面的边叫 做平行六面体的棱 .
人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算
导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。
课件1:3.1.2 空间向量的数乘运算(共线与共面向量)
∴EH ∥FG且|EH |=43|FG |≠|FG |.
又 F 不在直线 EH 上, ∴四边形 EFGH 是梯形.
规律方法 判断向量 a,b 共线的方法有两种: (1)定义法 即证明 a,b 所在基线平行或重合. (2)利用“a=xb⇒a∥b”判断 a,b 是空间图形中的有向线段,利用空间向量的运算性质, 结合具体图形,化简得出 a=xb,从而得 a∥b,即 a 与 b 共 线.
存在有序实数组{x,y,z},使得 p= xa+yb+zc
.
其中,表达式 xa+yb+zc 叫做向量 a,b,c 的线性表
达式或线性组合, a,b,c 叫做空间的一个基底,记 作 {a,b,c} ,a,b,c 都叫做基向量.
互动探究
题型一:共线向量的判定 例 1 如图 3-1-11 所示,已知四边形 ABCD 是空间四边形,E,H 分别是边 AB,AD 的中点,F, G 分别是边 CB,CD 上的点,且C→F=23C→B,C→G=23C→D. 求证:四边形 EFGH 是梯形.
图 3-1-11
【思路探究】 (1)E→H与F→G共线吗?怎样证明? (2)|E→H|与|F→G|相等吗? 【自主解答】 ∵E,H 分别是 AB、AD 的中点, ∴A→E=21A→B,A→H=12A→D, 则E→H=A→H-A→E=12A→D-12A→B=12B→D =21(C→D-C→B)=12(32C→G-32C→F) =43(C→G-C→F)=34F→G,
(2)由(1)知向量M→A,M→B,M→C共面,三个向量的基线又 过同一点 M,
∴M、A、B、C 四点共面, ∴M 在面 ABC 内.
规律方法 1.空间一点 P 位于平面 MAB 内的充分必要条件是存在有序 实数对(x,y),使 MP xMA yMB.满足这个关系式的点 P 都 在平面 MAB 内;反之,平面 MAB 内的任一点 P 都满足这个 关系式.这个充要条件常用于证明四点共面.
【优化方案】2012高中数学 第3章3.1.2空间向量的数乘运算课件 新人教A版选修2-1
的中心, 的中点,求下列各式中, , 的中心,Q 是 CD 的中点,求下列各式中,x,y 的值. 的值. → → → → (1)OQ=PQ+xPC+yPA; → → → → (2)PA=xPO+yPQ+PD.
思路点拨】 【 思路点拨 】 解答本题需准确画图, 解答本题需准确画图 , 先利用三 角形法则或平行四边形法则表示出指定向量, 角形法则或平行四边形法则表示出指定向量 , 再 根据对应向量的系数相等,求出 、 的值即可 的值即可. 根据对应向量的系数相等,求出x、y的值即可.
(4)用上述结论证明 或判断 三点 A、B、C 共线时,只需证 用上述结论证明(或判断 用上述结论证明 或判断)三点 、 、 共线时, → → → → 即可.也可用“ 明存在实数 λ,使AB=λBC或AB=µAC即可.也可用“对 , → → → 空间任意一点 O,有OB=tOA+(1-t)OC”来证明三点共 , - 线. 2.对向量共面的充要条件的理解 . (1)空间一点 P 位于平面 MAB 内的充分必要条件是存在有 空间一点 → → → 序实数对(x, 使 y), 序实数对 , , MP=xMA+yMB.满足这个关系式的点 满足这个关系式的点 P 都在平面 MAB 内; 反之, 反之, 平面 MAB 内的任一点 P 都满 足这个关系式.这个充要条件常用以证明四点共面. 足这个关系式.这个充要条件常用以证明四点共面.
→ → → ∴EF=A1F-A1E 4 2 2 2 2 = a- b- c= (a- b-c). - - = - - . 5 15 5 5 3 2 2 → → → → 又EB=EA1+A1A+AB=- b-c+a=a- b-c, - + = - - , 3 3 → 2→ 所以 , , 三点共线. ∴EF= EB.所以 E,F,B 三点共线. 5
高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0
§3.1.1-3.1.2空间向量及其加减运算、数乘运算
第一章空间向量与立体几何§3.1.1-3.1.2空间向量及其加减运算、数乘运算班级:_____姓名:__________ 编号:_____学习目标1、掌握空间向量单位向量、相反向量的定义2、用空间向量的运算意义及运算律解决问题3、掌握空间向量的数乘运算4、理解共线向量、共面向量的定理及推论5、用数乘运算把未知向量用已知向量表示自主预习(预习课本自主掌握以下概念和原理)1、空间向量的有关概念(1)定义:在空间,把具有_____和_____的量叫做空间向量;(2)长度:向量的___叫做向量的长度或__(3)表示法:①几何表示法:空间向量用_____表示②字母表示法:用字母表示,若向量a的起点是A,终点是B,则向量a也可以记作_____,其模记为_____或_____。
4、空间向量的数乘运算:实数λ与空间向量的乘积____,成为向量的数乘运算。
5、向量a与向量λa的关系(1)分配律:λ(a+b)=________(2)结合律:()______aλμ=7、共线向量与直线的方向向量(1)共向向量的概念:表示空间向量的有向线段所在的直线______共线向量也叫______(2)两向量共线(平行)的充要条件:对于空间任意两个向量,(0)a b b≠,则a b的充要条件是存在实数λ,使______(3)直线的方向向量:如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OA OP ta=+①,其中a叫做直线l的______8、共面向量(1)共面向量的定义:平行于______的向量(2)三个向量共面的充要条件:如果两个向量,a b______,那么向量p与向量,a b共面的充要条件是存在唯一的有序实数对(,),x y使____p=【突破·核心知识】【知识梳理】【题型归纳】【随堂∙自我测评】1、对于空间非零向量AC BC AB ,,下列各式一定不成立的是( )A 、AB →+BC →=AC → B 、AB →-AC →=BC →C 、AB →+BC →=CA →D 、AB →-AC →=CB →2、设有四边形ABCD 中,o 为空间任意一点,且OCDO AO →→→→+=+OB ,则四边形ABCD 是A 、平行四边形B 、空间四边形C 、等腰梯形D 、矩形 3、→→→≠=ba,且ba →→、不共线时ba →→+与ba →→-的关系是( )A 、共面B 、不共面C 、共线D 、无法确定4、已知两个非零向量21,e e不共线,如21A B e e =+ ,2128AC e e =+ ,2133AD e e =- 求证:,,,A B C D 共面.5已知324,(1)82a m n p b x m n yp =--=+++,0a ≠ ,若//a b,求实数,x y 的值6.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC=++,试判断:点P与,,A B C 是否一定共面?【课后∙知能提升】1.在平行六面体ABCD -A 1B 1C 1D 1中,下列各式:①(111A D A A - )-AB; ② (1BC BB + )-11D C ;③ (1A D A B - )+1DD ; ④ (111B D A A -)-1DD,其中运算结果为向量11B D的是( ) A 、①② B 、③④ C 、②④ D 、①③2.在空间四边形ABCD 中,设AB a =,AD b =,M 点是BD 的中点,则下列对应关系正确的是( )A .1()2MA a b =+B .1()2MC a b =+C .1()2MD b a =- D .1()2MB b a =-3.空间四边形ABCD 中,AB a =,,,BC b AD c == 则CD =( )A .a b c +-B .c a b --C .a b c --D .b a c -+4.在长方体ABCD —A ′B ′C ′D ′中,向量AB '、AD ' 、BD是( )A .有相同起点的向量B .等长的向C .共面向量D .不共面向量5、向量,,a b c两两夹角都是60 ,||1,||2,||3a b c === ,则||a b c ++= 。
3.1.1与3.1.2空间向量及其加减与数乘运算
练习1
用AB 、AD 、AA 、 BD 、 DB1 1来表示A 1C 1
D1 C1
A1
B1
D
A
C B
空间向量的数乘
a( 0) a( 0)
数乘分配律: 数乘结合律:
(a b) a+b
( a) ( )a
类比平面向量的加法运算,你能推出空间加法 的运算律吗?
加法交换律
ab ba
加法结合律 (a b) c a (b c)
加法结合律:
O
(a b) c a (b c)
O
a
A
a
C
b
A
+
c c
C
b
B
c
b
B
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
复习回顾:平面向量
既有大小又有方向的量。 1、定义:
几何表示法:用有向线段表示 字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B A D C
2、平面向量的加法、减法与数乘运算
b
b
a
向量加法的三角形法则
练习2
在空间四边形ABCD中,点M、G分别是BC、CD 边的中点,化简 A (1) AB BC CD
D G M C
1 (2) AB ( BC BD) 2 1 (3) AG ( AB AC) 2
B
例2. 已知空间四边形ABCD中,G为△BCD的重心,E、F、H分 别为边CD、AD和BC的中点。化简下列各表达式,并标出化简 结果的向量。
空间向量的数乘运算
O C
D BA OC OD OE c p OB
作 AB // b, BD // a, BC // c
xa yb zc
然后证唯一性
注:空间任意三个不共面向量都可以构成空
间的一个基底.如: a , b, c
即,P、A、B、C四点共面。
∴ OP OA y(OB OA) z(OC OA) ∴ AP y AB z AC
B、 C 共面. ∴点 P 与 A 、
17
试证明:对于不共线的三点 A 、 B、 C 和平面 ABC 外的 一点 O ,空间一点 P 满足关系式 OP xOA yOB zOC ,则 点 P 在平面 ABC 内的充要条件是 x y z 1 . 证明:⑴充分性 ∵ OP xOA yOB zOC (1 z)OA 可变形为 OP y yOB zOC , ∴ OP OA y(OB OA) z(OC OA) ∴ AP yAB z AC
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
6
空间向量的加减法
C a
+
b
B
b
O
A
a
OB OA AB CA OA OC
A
D
F
B
E
C
10
共面向量:平行于同一平面的向量,叫做共面向量.
a
O
A
选修2-1空间向量的数乘运算2
量,叫做共面向量.
O
a
A
a
注意:空间任意两个 向量是共面的,但空 间任意三个向量就不 一定共面的了。
2. 共面向量定理 : 如果两个向量 a 、 b 不共线 , 则向 量 p 与向量 a 、 b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
一、 数乘空间向量的运算法则
与平面向量一样 , 实数 与空间向量 a 的乘积
a 仍然是一个向量. ⑴当 0 时, a 与向量 a 的方向相同; ⑵当 0 时, a 与向量 a 的方向相反; ⑶当 0 时, a 是零向量.
例如:
a
3a
3a
4
显然,空间向量的数乘运算满足分配律 及结合律
1 (4) AB AD+ CC1=AM . 2
6
二、共线向量及其定理
定义:表示空间向量的有向线段所在直线互相平行或 重合,则称这些向量叫共线向量.(或平行向量)
思考 ⑴ : 对空间任意两个向量 a 与 b , 如果 a b , 那 么 a 与 b 有什么关系?反过来呢?
类似于平面,对于空间任意两个向量 a , b ( b 0 ),
△BCD 的重心,试用 a 、 b 、 c 表示下列向量:
⑴ DM
1 ( a b) c 2
B M
⑵ AG
A
1 ( a b c) 3
D
G C
11
A a B
9
b
C
p
P
思考 2(课本 P88 思考) B、 C, 已知空间任意一点 O 和不共线的三点 A 、 满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A 、 B、 C 是否共面?
高二数学 3.1.2空间向量的数乘运算
3.1.2空间向量的数乘运算空间中有向量a,b,c(均为非零向量).问题1:向量a与b共线的条件是什么?提示:存在唯一实数λ,使a=λb.问题2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定.问题3:空间两非零向量a,b共面,能否推出a=λb(λ∈R)?提示:不能.1.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向相同λa的模是a的模的|λ|倍λ=0λa=0,其方向是任意的λ<0方向相反(3)空间向量的数乘运算律设λ,μ是实数,则有①分配律:λ(a+b)=λa+λb.②结合律:λ(μa)=(λμ)a.2.共线向量共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一个平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb.若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.推论如果l为经过点A平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OPu u u r=OAu u r+ta,①其中a叫做直线l的方向向量,如图所示. 若在l上取ABu u u r=a,则①式可化为OPu u u r=OAu u r+tABu u u r.如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MPu u u r=x MAu u u r+y MBu u u r,或对空间任意一点O来说,有OPu u u r=OMu u u r+x MAu u u r+y MBu u u r.1.λa是一个向量.当λ=0或a=0时,λa=0.2.平面向量的数乘运算的运算律推广到空间向量的数乘运算,结论仍然成立.3.共线向量的充要条件及其推论是证明共线(平行)问题的重要依据,条件b≠0不可遗漏.4.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.5.共面向量的充要条件给出了空间平面的向量表示式,说明空间中任意一个平面都可以由一点及两个不共线的平面向量表示出来.另外,还可以用OPu u u r=x OAu u r+y OBu u u r+z OCu u u r,且x+y+z=1判断P,A,B,C四点共面.空间向量的线性运算[例1]如图所示,在平行六面体ABCD-A1B1C1D1中,AMu u u r=12MCu u u r,1A Nu u u r=2NDu u u r.设ABu u u r =a,ADu u u r=b,1AAu u u r=c,试用a,b,c表示MNu u u r.[思路点拨]先利用三角形法则进行向量的加减运算,将MNu u u r表示成其他向量,然后进一步用a,b,c表示MNu u u r.[精解详析]如图所示,连接AN,则MNu u u r=ANu u u r-AMu u u r=1AA u u u r +1A N u u u r -13AC u u ur=1AA u u u r +231A D u u u r -13(AB u u u r +BC u u ur )=1AA u u u r +23(AD u u u r -1AA u u u r )-13(AB u u u r +AD u u u r)=c +23(b -c )-13(a +b )=-13a +13b +13c .[一点通] 用已知向量表示未知向量,体现了向量的数乘运算.解题时要结合具体图形,利用三角形法则、平行四边形法则,将目标向量逐渐转化为已知向量.本题也可以先将MNu u u r 表示为MN u u u r =MA u u u r +1AA u u ur +1A N u u u r .1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11A B u u u u r =a ,11A D u u u u r=b ,1A A u u u r =c ,则下列向量中与1B M u u u u r相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:1B M u u u u r =1B B u u u r +BM u u u r =1B B u u u r +12(AD u u u r -AB u u u r )=1B B u u u r +12AD u u u r -12AB u u u r =-12a +12b +c .答案:A2.已知P 是正方形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值:(1) OQ u u u r =PQ u u u r +x PC u u u r +y PA u u r;(2) PA u u r =x PO u u u r +y PQ u u u r +PD u u u r.解:(1)∵OQ u u u r =PQ u u u r -PO u u ur =PQ u u u r -12(PA u u r +PC u u ur )=PQ u u u r -12PA u u r -12PC u u ur ,∴x =y =-12.(2)∵PA u u r +PA u u r =2PO u u u r ,∴PA u u r=2PO u u u r -PC u u u r .又∵PC u u u r +PD u u u r =2PQ u u u r ,∴PC u u u r =2PQ u u u r -PD u u u r .从而有PA u u r =2PO u u u r -(2PQ u u u r -PD u u u r )=2PO u u u r -2PQ u u u r +PD u u u r.∴x =2,y =-2.向量共线问题[例2] M ,N 分别是AC ,BF 的中点,判断CE u u u r 与MN u u u r是否共线.[思路点拨] 分析题意→CE u u u r =CB u u r +BE u u u r→根据M ,N 的位置表示出MN u u u r →根据CE u u u r 与MN u u u r的关系作出判断[精解详析] ∵M ,N 分别是AC ,BF 的中点, 四边形ABCD ,ABEF 都是平行四边形,∴MN u u u r =MC u u u r +CB u u r +BN u u u r=12AC u u ur +CB u u r +12BF u u u r =12(BC u u ur -BA u u r )+CB u u r +12(BA u u r +BE u u u r ) =12BC u u ur +CB u u r +12BE u u u r =12(CB u ur +BE u u u r ) =12CE u u u r . ∴CE u u u r ∥MN u u u r ,即CE u u u r 与MN u u u r共线.[一点通] 判定向量共线就是充分利用已知条件找到实数x ,使a =xb 成立,同时要充分利用空间向量运算法则,结合具体的图形,化简得出a =xb ,从而得出a ∥b ,即a 与b 共线.3.已知空间向量a ,b ,且AB u u u r=a +2b ,BC u u u r =-5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:BD u u u r =BC u u ur +CD u u u r =(-5a +6b )+(7a -2b )=2a +4b =2AB u u u r,∴A ,B ,D 三点共线.答案:A4.已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF u u u r =23CB u u r ,CG u u u r =23CD u u u r.求证:四边形EFGH 是梯形.证明:∵E ,H 分别是AB ,AD 的中点,∴AE u u u r =12AB u u u r ,AH u u u r =12AD u u u r,EH u u u r =AH u u u r -AE u u u r =12AD u u u r -12AB u u u r =12(AD u u u r -AB u u u r) =12BD u u ur =12(CD u u u r -CB u u r )=12(32CG u u u r -32CF u u u r ) =34(CG u u ur -CF u u u r )=34FG u u u r , ∴EH u u u r ∥FG u u u r 且|EH u u u r |=34|FG u u ur |≠|FG u u u r |.又点F 不在EH u u u r上,∴四边形EFGH 是梯形.向量共面问题[例3]试证:EF u u u r 与BC u u u r ,AD u u u r共面.[思路点拨] 分析题意→利用向量的运算法则表示EF u u u r→利用中点关系寻求EF u u u r ,BC u u u r ,AD u u u r的关系→应用向量共面的充要条件→得出结论[精解详析] 空间四边形ABCD 中,E ,F 分别是AB ,CD 上的点,则EF u u u r =EA u u r +AD u u u r +DF u u u r ,EF u u u r =EB u u r +BC u u ur +CF u u u r .①又E ,F 分别是AB ,CD 的中点,故有EA u u r =-EB u u r,DF u u u r=-CF u u u r .②将②代入①中,两式相加得2 EF u u u r =AD u u u r +BC u u ur .所以EF u u u r =12 AD u u u r +12BC u u u r ,即EF u u u r 与BC u u u r ,AD u u u r共面.[一点通] 利用向量法证明向量共面问题,关键是熟练进行向量的表示,恰当应用向量共面的充要条件.解答本题实质上是证明存在实数x ,y 使向量EF u u u r =x AD u u u r+y BC u u u r 成立,也就是用空间向量的加、减法则及运算律,结合图形,用AD u u u r ,BC u u u r 表示EF u u u r.5.在下列条件中,使M 与A ,B ,C 一定共面的是( )A .OM u u u r =3OA u u r -2OB u u u r -OC u u u rB .OM u u u r +OA u u r +OB u u u r +OC u u u r =0C .MA u u u r +MB u u u r +MC u u ur =0D .OM u u u r =14OB u u u r -OA u u r +12OC u u u r解析:∵MA u u u r +MB u u u r +MC u u ur =0,∴MA u u u r =-MB u u u r -MC u u ur ,∴M 与A ,B ,C 必共面. 答案:C6.已知e 1,e 2为两个不共线的非零向量,且AB u u u r =e 1+e 2,AC u u u r =2e 1+8e 2,AD u u u r=3e 1-3e 2 ,求证:A ,B ,C ,D 四点共面.证明:设存在实数λ,μ,使得AB u u u r =λAC u u u r +μAD u u u r,即e 1+e 2=λ(2e 1+8e 2)+μ(3e 1-3e 2) =(2λ+3μ)e 1+(8λ-3μ)e 2.∵e 1,e 2为两个不共线的非零向量,∴有⎩⎪⎨⎪⎧2λ+3μ=1,8λ-3μ=1,解得⎩⎨⎧λ=15,μ=15,即AB u u u r =15AC u u u r +15AD u u u r.从而点B 位于平面ACD 中,即A ,B ,C ,D 四点共面.1.共线向量定理包含两个命题,特别是对于两个向量a ,b ,若存在实数λ,使a =λb (b ≠0)⇒a ∥b ,可以作为以后证明线线平行的依据.2.共面向量的充要条件是判断三个向量是否共面的依据.其推论是判定空间四点共面的依据(若对空间任一点O ,有OP u u u r =αOA u u r +βOB u u u r +γOC u u u r(α+β+γ=1)成立,则P ,A ,B ,C 共面).3.在讨论向量共线或共面时,必须注意零向量与任意向量都共线.要注意:向量的共线与共面不具有传递性.1.下列命题中正确的个数是( )①若a 与b 共线,b 与c 共线,则a 与c 共线.②向量a ,b ,c 共面,即它们所在的直线共面.③若a ∥b ,则存在唯一的实数λ,使a =λb . A .0 B .1 C .2D .3①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 解析:①当b =0时,a 与c 不一定共线,故①错误;②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误; ③当b 为零向量,a 不为零向量时,λ不存在. 答案:A2.在四面体O -ABC 中,OA u u r =a ,OB u u u r =b ,OC u u u r=c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r=( )A.12a -14b +14c B .a -12b +12cC.12a +14b +14cD.14a +12b +14c 解析:OE u u u r =OA u u r +AE u u u r =OA u u r +12AD u u u r=OA u u r +12×12(AB uu u r +AC uuu r )=OA u u r +14(OB u u u r -OA u u r +OC u u u r -OA u u r )=12OA u ur +14OB u u u r +14OC u u u r =12a +14b +14c . 答案:C3.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ,μ≠0),则( ) A .a ∥e 1 B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析:若a ∥e 1,则存在实数t 使得a =te 1, ∴te 1=λe 1+μe 2,∴(t -λ)e 1=μe 2,则e 1与e 2共线,不符合题意. 同理,a 与e 2也不平行.由向量共面的充要条件知C 正确. 答案:C4.A ,B ,C 不共线,对空间任意一点O ,若OP u u u r =34OA u u r +18OB u u u r +18OC u u u r,则P ,A ,B ,C四点( )A .不共面B .共面C .不一定共面D .无法判断是否共面解析:OP u u u r =34OA u u r +18OB u u u r +18OC u u u r=34OA u ur +18(OA u u r +AB u u u r )+18(OA u u r +AC u u u r ) =OA u u r +18AB u u u r +18AC u u u r ,∴OP u u u r -OA u u r =18AB u u u r +18AC u u ur ,∴AP u u u r =18AB u u u r +18AC u u ur .由共面的充要条件知P ,A ,B ,C 四点共面. 答案:B5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB u u u r +12BC u u u r -32BE u u u r -AD u u u r化简的结果为________.解析:延长DE 交边BC 于点F ,则有AB u u u r +12BC u u u r =AF u u u r ,32DE u u u r+AD u u u r =AD u u u r +DF u u u r =AF u u u r ,故AB u u u r +12BC u u u r -32 DE u u u r -AD u u u r=0.答案:06.设e 1,e 2是平面内不共线的向量,已知AB u u u r=2e 1+ke 2,CB ―→=e 1+3e 2,CD u u u r=2e 1-e 2,若A ,B ,D 三点共线,则k =________.解析:AD u u u r =AB u u u r +BC u u u r +CD u u u r =AB u u u r -CB u u r +CD u u ur =3e 1+(k -4)e 2.由A ,B ,D 三点共线可知,存在λ使AB u u u r =λAD u u u r,即2e 1+ke 2=3λe 1+λ(k -4)e 2.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2=3λ,k =λ(k -4),可得k =-8. 答案:-87.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:A ,E ,C 1,F 四点共面.证明:∵ABCD -A 1B 1C 1D 1是平行六面体,∴1AA u u u r =1BB u u u r =1CC u u u r =1DD u u u u r , ∴BE u u u r =13 1AA u u u r ,DF u u u r =231AA u u ur ,∴1AC u u u r =AB u u u r +AD u u u r +1AA u u u r =AB u u u r +AD u u u r +131AA u u ur +231AA u u u r=(AB u u u r +131AA u u u r )+(AD u u u r +231AA u u u r)=AB u u u r +BE u u u r +AD u u u r +DF u u u r =AE u u u r +AF u u u r .由向量共面的充要条件知A ,E ,C 1,F 四点共面.8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且1A E u u u r =21ED u u u r,F 在对角线A 1C上,且1A F u u u r =23FC u u ur .求证:E ,F ,B 三点共线.证明:设AB u u u r =a ,AD u u u r=b ,1AA u u u r =c .∵1A E u u u r =21AA u u u r ,1A F u u u r =23FC u u ur ,∴1A E u u u r =2311A D u u u u r ,1A F u u u r =251AC u u u r ,∴1A E u u u r =23AD u u u r =23b ,1A F u u u r =25(AC u u u r -1AA u u u r )=25(AB u u u r +AD u u u r -1AA u u ur )=25a +25b -25c . ∴EF u u u r =1A F u u u r -1A E u u u r =25a -415b -25c=25(a -23b -c ). 又EB u u r =1EA u u u r +1A A u u u r +AB u u u r =-23b -c +a =a -23b -c ,∴EF u u u r =25EB u u r.所以E ,F ,B 三点共线.。
2021秋高中数学人教A版选修2-1学案3.1.1空间向量及其加减运算 3.1.2空间向量的数乘运算
第三章空间向量与立体几何向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用,如鸟巢体育场的钢结构、北斗卫星定位系统示意图等.本章是在必修2中学习了立体几何初步以及必修4中学习了平面向量的基础上,学习空间向量及其运算,把平面向量推广到空间向量,并利用空间向量的运算解决有关的立体几何问题.由于空间向量具有代数形式与几何形式的“双重身份”,使之成为中学数学知识的一个交汇点.学习目标1.空间向量及其运算(1)了解空间向量的概念、空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述线线、线面、面面的垂直、平行关系.(3)能用向量方法证明有关线面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用.本章重点空间向量的基本概念和基本运算;以空间向量为工具判断或证明立体几何中的线面位置关系;求空间角和空间的距离.本章难点用空间向量表示点、直线、平面的位置;用空间向量的运算表示空间直线与平面间的平行、垂直关系以及夹角的大小等;用空间向量解决立体几何问题.3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算自主预习·探新知情景引入1987年11月台湾开放台胞来大陆探亲,开始时要从香港绕道,比如从台北到上海的路径是:台北→香港→上海.2008年7月开始两岸直航后,从台北到上海的路径是:台北→上海.如果把台北→香港的位移记为向量a,香港→上海的位移记为向量b,台北→上海的位移记为向量c,那么a+b与c有怎样的关系呢?新知导学1.空间向量(1)定义:在空间,具有__大小__和__方向__的量叫做空间向量.(2)长度或模:向量的__大小__.(3)表示方法:①几何表示法:空间向量用__有向线段__表示;②字母表示法:用字母a,b,c,…表示;若向量的起点是A,终点是B,也可记作:____,其模记为__|a|__或__||__.2.几类常见的空间向量名称方向模记法零向量__任意____0____0__单位向量任意__1__相反向量__相反__相等a的相反向量:__-a__ 的相反向量:____相等向量相同__相等__a=b(1)加法:=__+__=a+b.(2)减法:=__-__=a-b.(3)加法运算律:①交换律:a+b=__b+a__;②结合律:(a+b)+c=__a+(b+c)__.4.空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个__向量__,称为向量的数乘运算.(2)向量a与λa的关系:λ的范围方向关系模的关系λ>0方向__相同__λa的模是a的模的__|λ|__倍λ=0λa=__0__其方向是任意的λ<0方向__相反__①分配律:λ(a+b)=__λa+λb__;②结合律:λ(μa)=__(λμ)a__5.平行(共线)向量与共面向量平行(共线)向量共面向量定义位置关系表示空间向量的有向线段所在的直线的位置关系:__互相平行或重合__ 平行于同一个__平面__的向量特征方向__相同或相反__特例零向量与__任意向量__共线充要条件对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使__a=λb__向量p与不共线向量a,b共面的充要条件是存在__唯一__的有序实数对(x,y)使__p=x a+y b__推论对空间任意一点O,点P在直线l上的充要条件是存在实数t满足等式__=+t a__,向量a为直线l的__方向向量__或在直线l上取向量=a,则=__+t__点P位于平面ABC内的充要条件是存在有序实数对(x,y),使=__x+y__或对空间任意一点O,有=__+x+y__预习自测1.下列命题中,假命题的是(D)A.向量与的长度相等B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.在同一条直线上的单位向量都相等[解析]在同一条直线上的单位向量方向可能相同,也可能相反.2.下列命题中正确的是(C)A.若a与b共线,b与c共线,则a与c共线B.向量a、b、c共面即它们所在的直线共面C.零向量没有确定的方向D.若a∥b,则存在唯一的实数λ,使a=λb[解析]由零向量定义知选C.而A中b=0,则a与c不一定共线;D中要求b≠0;B中a,b,c所在的直线可能异面.3.化简下列各式:(1)++;(2)-+;(3)++-.结果为零向量的个数是(D)A.0个B.1个C.2个D.3个[解析]对于(1),++=+=0;对于(2),-+=+=0;对于(3),++-=(+)+(-)=+=0.4.(内蒙古赤峰市宁城县2019-2020学年高二期末)在平行六面体ABCD-A1B1C1D1中,点M为AC与BD的交点,=a,=b,=c则下列向量中与相等的是(A) A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c[解析]因为利用向量的运算法则:三角形法则、平行四边形法则表示出=+=c+(-)=c-a+b,选A.5.已知A、B、C三点不共线,O是平面ABC外任一点,若由=++λ确定的一点P 与A、B、C三点共面,则λ=____.[解析]由P与A、B、C三点共面,∴++λ=1,解得λ=.互动探究·攻重难互动探究解疑命题方向❶空间向量的有关概念典例1(1)给出下列命题:①单位向量没有确定的方向;②空间向量是不能平行移动的;③有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大;④如果两个向量不相同,那么它们的长度也不相等.其中正确的是(C)A.①②B.②③C.①③D.①③④(2)如图,在以长、宽、高分别为AB=4,AD=2,AA1=1的长方体ABCD-A1B1C1D1中的八个顶点的两点为起点和终点的向量中,单位向量共有__8__个,模为的所有向量为__,,,,,,,__.[思路分析](1)依据空间向量的基本概念逐一进行分析;(2)单位向量的模为1,根据长方体的左右两侧的对角线长均为写出相应向量.[规范解答](1)①正确,单位向量的方向是任意的.②错误,空间向量可以平行移动.③正确,向量的模可以比较大小,有向线段长度越长,其所表示的向量的模就越大.④错误,如果两个向量不相同,它们的长度可以相等.(2)由于长方体的高为1,所以长方体的4条高所对应的向量,,,,,,,共8个单位向量.而其余向量模均不为1,故单位向量共8个.长方体的左、右两侧面的对角线长均为,故模为的向量有,,,,,,,.『规律总结』处理向量概念问题需注意两点①向量:判断与向量有关的命题时,要抓住向量的大小与方向,两者缺一不可.②单位向量:方向虽然不一定相同,但长度一定为1.┃┃跟踪练习1__■如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中.(1)试写出与相等的所有向量;(2)试写出的相反向量;(3)若AB=AD=2,AA1=1,求向量的模.[解析](1)与向量相等的所有向量(除它自身之外)有,及共3个.(2)向量的相反向量为,,,.(3)||=|++|∴||2=2+2+2=9∴||=3.命题方向❷空间向量的加减运算典例2如图,已知长方体ABCD—A′B′C′D′,化简下列向量表达式,并在图中标出化简结果的向量.(1)-;(2)++.[思路分析](1)分析题意,将等价转化为,转化为-,平行四边形法则得出结论.(2)应用平行四边形法则先求+,再应用三角形法则求+.[规范解答](1)-=-=+=.(2)++=(+)+=+=.向量、如图所示.『规律总结』化简向量表达式主要是利用平行四边形法则或三角形法则进行化简,在化简过程中遇到减法时可灵活应用相反向量转化成加法,也可按减法法则进行运算,加减法之间可相互转化.┃┃跟踪练习2__■(山东潍坊2018-2019学年高二期末)已知四棱锥P-ABCD的底面ABCD是平行四边形,设=a,=b,=c,则=(B)A.a+b+c B.a-b+cC.a+b-c D.-a+b+c[解析]如图所示,四棱锥P-ABCD的底面ABCD是平行四边形,=a,=b,=c,则=+=+=+(-)=-+=a-b+c.故选B.命题方向❸空间向量的数乘运算典例3已知四边形ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O.Q是CD的中点,求下列各式中x、y的值:(1)=+x+y;(2)=x+y+.[思路分析]由题目可以获取以下主要信息:①四边形ABCD是正方形,O为中心,PO⊥平面ABCD,Q为CD中点;②用已知向量表示指定向量.解答本题需先画图,利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量的系数相等,求出x、y即可.[规范解答]如图,(1)∵=-=-(+)=--,∴x=y=-.(2)∵+=2,∴=2-.又∵+=2,∴=2-.从而有=2-(2-)=2-2+.∴x=2,y=-2.『规律总结』 1.用已知向量表示未知向量是一项重要的基本功,直接关系到本章学习的成败,应认真体会,并通过训练掌握向量线性运算法则和运算律.2.空间向量的数乘运算定义,运算律与平面向量一致.┃┃跟踪练习3__■如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M、N、P分别是AA1、BC、C1D1的中点,试用a、b、c表示以下各向量:(1);(2);(3)+.[解析](1)∵P是C1D1的中点,∴=++=a++=a+c+=a+c+b.(2)∵N是BC的中点,∴=++=-a+b+=-a+b+=-a+b+c.(3)∵M是AA1的中点,∴=+=+=-a+(a+c+b)=a+b+c.又=+=+=+=c+a,∴+=(a+b+c)+(a+c)=a+b+c.命题方向❹共线向量典例4如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断与是否共线?[思路分析]要判断与是否共线,由共线向量定理就是判定是否存在实数λ,使=λ.若存在,则与共线,否则与不共线.[规范解答]M、N分别是AC、BF的中点,而四边形ABCD、ABEF都是平行四边形,∴=++=++.又∵=+++=-+--,∴++=-+--.∴=+2+=2(++).∴=2,∴∥,即与共线.『规律总结』 1.判断向量共线的策略(1)熟记共线向量充要条件:①a∥b,b≠0,则存在唯一实数λ使a=λb;②若存在唯一实数λ,使a=λb,b≠0,则a∥b.(2)判断向量共线的关键是找到实数λ.2.证明空间三点共线的三种思路对于空间三点P、A、B可通过证明下列结论来证明三点共线.(1)存在实数λ,使=λ成立.(2)对空间任一点O,有=+t(t∈R).(3)对空间任一点O,有=x+y(x+y=1).┃┃跟踪练习4__■e1,e2为不共线的非零向量,如果a=4e1-e2,b=e1-e2,试判断a,b是否共线.[解析]∵a=4e1-e2,b=e1-e2,∴a=4(e1-e2)=4b,∴a,b为共线向量.命题方向❺共面问题典例5正方体ABCD-A1B1C1D1中,M、N、P、Q分别为A1D1、D1C1、AA1、CC1的中点,用向量方法证明M、N、P、Q四点共面.[思路分析]要证M、N、P、Q四点共面,只需证明、、共面,即寻求实数λ、μ、k,使得λ+μ+k=0.为此,令=a,=b,=c,将、、都用a、b、c线性表示,再寻求它们系数之间关系或者令=λ+μ,建立λ、μ的方程组解之.[规范解答]令=a,=b,=c,∵M、N、P、Q均为棱的中点,∴=b-a,=+=a+c,=++=-a+b+c.令=λ+μ,则-a+b+c=(μ-λ)a+λb+μc,∴,∴.∴=2+,因此向量、、共面,∴四点M、N、P、Q共面.『规律总结』 1.证明点P在平面ABC内,可以用=x+y,也可以用=+x+y,若用=x+y+z,则必须满足x+y+z=1.2.判定三个向量共面一般用p=x a+y b,证明点线共面常用=x+y,证明四点共面常用=x+y+z(其中x+y+z=1).┃┃跟踪练习5__■如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点,用向量法证明E、F、G、H四点共面.[思路分析]要证E、F、G、H四点共面,根据共面向量定理,只需探求存在实数x,y,使=x+y成立.[解析]如图,连接BG、EG,则=,=,=(+),所以=+=+(+)=++=+.由共面向量定理的推论知E、F、G、H四点共面.学科核心素养空间向量的线性运算在立体几何中的应用(1)立体几何中的线线平行可转化为两向量的平行,即证明两向量具有数乘关系即可.证明线面平行、面面平行均可转化为证明线线平行,然后根据空间向量的共线定理进行证明.特别地,线面平行可转化为该直线的方向向量能用平面内的两个不共线向量表示.(2)在学习空间向量后,求解立体几何问题又增加了新的思路和方法.利用向量证明平行的关键是构造向量之间的线性关系.(3)解题时,应结合已知和所求,观察图形,联想相关的运算法则和公式,就近表示所需向量,再对照条件,将不符合要求的向量用新形式表示,如此反复,直到所有向量都符合目标要求为止.典例6如图所示,已知矩形ABCD和矩形ADEF所在平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE.求证:MN∥平面CDE.[思路分析]根据共面向量定理,证明向量平面CDE内两个不共线的向量共面即说明MN∥平面CDE.[规范解答]∵点M在BD上,且BM=BD,∴==+.同理,=+.∴=++=++=+=+.由于与不共线,根据向量共面的充要条件可知,,共面.因为MN不在平面CDE内,所以MN∥平面CDE.『规律总结』解答本题要注意向量共面与直线平行于平面的联系与区别,如果没有充分理解定义、定理的实质,本题容易漏掉MN不在平面CDE内而致错.┃┃跟踪练习6__■已知AB,CD是异面直线,CD⊂α,AB∥α,M,N分别是AC,BD的中点.求证MN∥α.[思路分析]运用共面向量定理先证出与平面α内两个不共线的向量共面,进而说明MN∥α.[证明]因为CD⊂α,AB∥α,且AB,CD是异面直线,所以在平面α内存在向量a,b,使得=a,=b,且两个向量不共线.由M,N分别是AC,BD的中点,得=(+++++)=(+)=(a+b).所以,a,b共面,所以MN∥α或MN⊂α.若MN⊂α,则AB,CD必在平面α内,这与已知AB,CD是异面直线矛盾.故MN∥α.易混易错警示典例7如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且=2,若=x+y+z,则x,y,z的值分别为__,,__.[错解]因为M为OA的中点,所以=,因为=2,所以=,所以=OM+=+=+(-)=+=×+(+)=++所以x,y,z的值分别为,,.[辨析]错误的根本原因是空间向量的数乘运算与加法运算的几何意义综合应用不当.实际上,本题中由N是BC的中点知=(+).[正解]∵M为OA中点,∴=,∵=,∴=∴=+=+M=+=·+·(+)=++∴x,y,z的值为,,.。
3.1.2空间向量的数乘运算 课件
答案 原式可以变形为 → → → → OP=(1-y-z)OA+yOB+zOC → → → → → → ∴OP-OA=y(OB-OA)+z(OC-OA), → → → 即AP=yAB+zAC.∴点 P 与点 A、B、C 共面.
研一研· 问题探究、课堂更高效
3.1.2
问题 4 向量共面在几何中有什么应用?
又因为 E、F 分别为 AD、BC 的中点, → → → → 所以EA=-ED,BF=-CF → → → → → → → → 所以 2EF=(EA+ED)+(BF+CF)+(AB+DC)=AB+ → → 1 → → DC,所以EF=2(AB+DC).
研一研· 问题探究、课堂更高效
3.1.2
问题 2 向量共线在几何中有什么应用?
例 2 如图所示, 在正方体 ABCD—A1B1C1D1 → → 中,E 在 A1D1 上,且A1E=2ED1,F 在对 → 2→ 角线 A1C 上,且A1F= FC. 3 求证:E,F,B 三点共线. → → → 证明 设AB=a,AD=b,AA1=c. → → → 2→ → 2 → → 2→ ∵A1E=2ED1,A1F=3FC∴A1E=3A1D1,A1F=5A1C. → 2→ 2 ∴A1E=3AD=3b, 2 → → → 2 2 2 → 2 → → ∴A1F=5(AC-AA1)=5(AB+AD-AA1)=5a+5b-5c.
3.1.2
3.1.2
空间向量的数乘运算
1.掌握空间向量数乘运算的定义和运算律,了解共线(平 行)向量、共面向量的意义. 2.能理解共线向量定理和共面向量定理及其推论,并能运 用它们证明空间向量的共线和共面问题. 利用空间向量的数乘运算,理解和表示共线向量和 共面向量,充分体现向量的工具性.
研一研· 问题探究、课堂更高效
高中数学 第三章3.1.2 空间向量的数乘运算讲解与例题
3.1.2 空间向量的数乘运算问题导学一、空间向量的数乘运算活动与探究1如图所示,已知正方体ABCD -A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x ,y ,z 的值:(1)''BD xAD y AB z AA =++u u u u r u u u r u u u r u u u r ;(2)'AE x AD y AB z AA =++u u u r u u u r u u u r u u u r .迁移与应用1.已知正方体ABCD -A ′B ′C ′D ′中,点F 是侧面CDD ′C ′的中心,若AF u u u r =AD u u u r+x AB u u u r +y 'AA u u u r,则x -y 等于( ).A .0B .1C .12D .-122.如图,平行六面体A 1B 1C 1D 1-ABCD 中,AM u u u u r =12MC u u u u r ,1A N u u u u r =2ND u u u r ,设AB u u u r =a ,ADu u u r=b ,1AA u u u r=c ,试用a ,b ,c 表示MN u u u u r .确定要表示的向量的终点是否是三角形边的中点,若是,利用平行四边形法则即可;若不是,利用封闭图形,寻找到所要表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系,进行相应的向量运算是处理此类问题的基本技巧.一般地,可以找到的封闭图形不是唯一的.但无论哪一种途径,结果应是唯一的.二、共线向量活动与探究2如图,在平行六面体ABCD-A1B1C1D1中,M,N分别是C1D1,AB的中点,E在AA1上且AE=2EA1,F在CC1上且CF=12FC1,判断MEu u u r与NFu u u r是否共线?迁移与应用1.已知向量a ,b 且AB u u u r=a +2b ,BC uuu r =-5a +6b ,CD uuu r =7a -2b ,则一定共线的三点为( ).A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D2.如图,四边形ABCD 和ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点.判断CE u u u r 与MN u u u u r是否共线.1.判断向量a,b共线的方法有两种:(1)定义法,即证明a,b所在基线平行或重合.(2)利用“a=λb⇒a∥b”判断.2.如果a,b是由空间图形中的有向线段表示的,可利用空间向量的运算性质,结合具体图形,化简得出a=λb,从而得出a∥b,即a与b共线.三、共面向量活动与探究3已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM u u u u r =13OA u u u r +13OB uuu r +13OC u u u r.(1)判断MA u u u r ,MB u u u r ,MC u u uu r 三个向量是否共面;(2)判断点M 是否在平面ABC 内.迁移与应用1.下列说法中正确的是( ). A .平面内的任意两个向量都共线 B .空间的任意三个向量都不共面 C .空间的任意两个向量都共面 D .空间的任意三个向量都共面2.如图所示,已知ABCD ,从平面AC 外一点O 引向量OE uuu r =k OA u u u r ,OF u u u r =k OB uuu r ,OG u u u r=k OC u u u r ,OH u u u r =k OD u u u r,求证:(1)四点E ,F ,G ,H 共面; (2)平面AC ∥平面EG .1.证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行、直线在平面内等进行证明.2.利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过程中注意直线与向量的相互转化.3.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP u u u r =x MA u u u r+y MB u u u r.满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.答案:课前·预习导学 【预习导引】1.(1)λa 向量 (2)①相同 ②0 ③相反 ④|λ| (3)①λa +λb λa +μa ②(λμ)a预习交流1 提示:OG u u u r =OM u u u u r +MG u u u u r =OM u u u u r +23MN u u u u r=12OA u u ur +23(MO u u u u r +OC u u u r +CN u u u r )=12a +2311+()22⎡⎤-+-⎢⎥⎣⎦a c b c =12a -13a +23c +13b -13c =16a +13b +13c . 2.(1)互相平行或重合 共线向量 平行向量 (2)a =λb (3)方向向量 OA u u u r +t AB u u u r预习交流2 提示:由加法的平行四边形法则知①中P ,A ,B 三点不共线;②中向量表达式可化为PA u u u r =-2PB u u u r,故三点共线;同理③中P ,A ,B 三点也共线.3.(1)同一个平面 (2)(x ,y ) x a +y b (3)x AB u u u r +y AC u u u r OA u u u r +x AB u u u r+y AC u u u r预习交流3 (1)提示:不成立.因为当p 与a ,b 都共线时,存在不唯一的实数对(x ,y )使p =x a +y b 成立.当p 与a ,b 不共线时,不存在实数对(x ,y )使p =x a +y b 成立.(2)提示:原式可以变形为OP uuu r =(1-y -z )OA u u u r +y OB uuu r +z OC u u u r, ∴OP uuu r -OA u u u r =y (OB uuu r -OA u u u r )+z (OC u u u r -OA u u u r),即AP u u u r =y AB u u u r+z AC u u u r .∴点P 与点A ,B ,C 共面. 课堂·合作探究 【问题导学】活动与探究1 思路分析:利用三角形法则或平行四边形法则表示出指定向量,再根据对应向量系数相等,求出x ,y ,z 的值.解:(1)因为'BD u u u u r =BD u u u r +'DD u u u u r=BA u u u r +AD u u u r +'DD u u u u r =-AB u u u r +AD u u u r +'AA u u u r , 又'BD u u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =1,y =-1,z =1.(2)因为AE u u u r ='AA u u u r +'A E u u u u r ='AA u u u r +12''A C u u u u ur='AA u u u r +12(''A B u u u u u r +''A D u u u u u r )='AA u u u r +12''A B u u u u u r +12''A D u u u u u r=12AD u u ur +12AB u u u r +'AA u u u r , 又AE u u u r =x AD u u u r +y AB u u u r +z 'AA u u u r ,所以x =12,y =12,z =1.迁移与应用 1.A解析:如图所示,∵AF AD DF =+u u u r u u u r u u u r,∴'DF x AB y AA =+u u u r u u u r u u u r .∴1''2DC xAB y AA =+u u u ur u u u r u u u r . ∴1''2AB xAB y AA =+u u uu r u u u r u u u r 'xAB yBB =+u u u r u u u r .∴11'''22AB BB xAB yBB +=+u u uu r u u u r u u u r u u u r . ∴12x y ==,x -y =0.2.解:MN u u u u r =MC u u u u r +CD uuu r +DN u u u r =23AC u u u r -AB u u u r +131DA u u uu r=23(AB u u ur +AD u u u r )-AB u u u r +13(1DD u u u u r +11D A u u u u r ) =23(AB u u ur +AD u u u r )-AB u u u r +13(1AA u u u r -AD u u u r ) =-13AB u u ur +13AD u u u r +131AA u u u r=-13a +13b +13c .活动与探究2 思路分析:结合给出的平行六面体,利用向量的线性运算对ME u u u r 或NFu u u r 进行化简转化,根据共线向量定理进行判断.解:由已知可得:ME u u u r =1MD u u u u r +11D A u u u u r +1A E u u u r=12BA u uu r +CB u u u r +131A A u u u r =-NB uuu r +CB u u u r +131C C u u u u r =CN u u u r +FC uuu r =FN u u u r =-NF u u u r .所以ME u u u r=-NF u u u r ,故ME u u u r 与NF u u ur 共线.迁移与应用 1.A 解析:因为BD u u u r =BC uuur +CD uuu r =-5a +6b +7a -2b =2a +4b =2AB u u u r ,所以AB u u u r 与BD u u u r共线,即A ,B ,D 三点共线.2.解:∵M ,N 分别是AC ,BF 的中点,而四边形ABCD ,ABEF 都是平行四边形,∴MN u u u u r =MA u u u r +AF u u u r +FN u u u r =12CA u u u r +AF u u u r +12FB u u u r .又∵MN u u u u r =MC u u u u r +CE u u u r +EB u u u r +BN u u u r=-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r ,∴12CA u uu r +AF u u u r +12FB u u u r =-12CA u uu r +CE u u u r -AF u u u r -12FB u u u r .∴CE u u u r =CA u u u r +2AF u u u r +FB u u u r =2(MA u u u r +AF u u u r +FN u u ur )=2MN u u u u r , ∴CE u u u r ∥MN u u u u r ,即CE u u u r 与MN u u u u r共线.活动与探究3 思路分析:要证明三个向量共面,只需证明存在实数x ,y ,使MA u u u r =x MB u u u r+y MC u u u u r,证明了三个向量共面,点M 就在平面内.解:(1)∵OA u u u r +OB uuu r +OC u u u r =3OM u u u u r, ∴OA u u u r -OM u u u u r =(OM u u u u r -OB uuu r )+(OM u u u u r -OC u u u r),∴MA u u u r =BM u u u u r +CM u u u u r =-MB u u u r -MC u u uu r .∴向量MA u u u r ,MB u u u r ,MC u u uu r 共面.(2)由(1)向量MA u u u r ,MB u u u r ,MC u u uu r 共面,三个向量又有公共点M ,∴M ,A ,B ,C 共面.即点M 在平面ABC 内. 迁移与应用 1.C2.证明:(1)因为四边形ABCD 是平行四边形,所以AC u u u r =AB u u u r +AD u u u r ,EG u u u r =OG u u u r -OE uuu r =k OC u u u r -k OA u u u r =k AC u u u r =k (AB u u u r +AD u u u r )=k (OB uuu r -OA u u u r +OD u u u r -OA u u u r )=OF u u u r -OE uuu r +OH u u u r -OE uuu r =EF u u u r +EH u u u r .所以E ,F ,G ,H 共面.(2)EF u u u r =OF u u u r -OE uuu r =k (OB uuu r -OA u u u r )=k AB u u u r,且由第(1)小题的证明中知EG u u u r =k AC u u u r,于是EF ∥AB ,EG ∥AC .所以平面EG ∥平面AC .当堂检测1.当|a|=|b|≠0,且a ,b 不共线时,a +b 与a -b 的关系是( ). A .共面 B .不共面 C .共线 D .无法确定答案:A 解析:空间中任何两个向量都是共面向量,但不一定共线. 2.下面关于空间向量的说法正确的是( ). A .若向量a ,b 平行,则a ,b 所在的直线平行B .若向量a ,b 所在直线是异面直线,则a ,b 不共面C .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,CD uuur 不共面D .若A ,B ,C ,D 四点不共面,则向量AB u u u r ,AC u u u r ,AD u u u r不共面答案:D 解析:可以通过平移将空间中任意两个向量平移到一个平面内,因此空间任意两个向量都是共面的,故B ,C 都不正确.注意向量平行与直线平行的区别,可知A 不正确,可用反证法证明D 是正确的.3.如图所示,已知空间四边形ABCD 中,F 为BC 的中点,E 为AD 的中点,若EF u u u r =λ(AB u u u r+DC u u u r),则λ=______.答案:12 解析:如图所示,取AC 的中点G ,连结EG ,GF ,则EF u u u r =EG u u u r +GF u u u r =12(AB u u u r +DC u u u r ).∴12λ=. 4.在空间四边形ABCD 中,连结AC ,BD .若△BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--u u u r u u u r u u u r u u u r 的化简结果为__________. 答案:0 解析:如图,延长DE 交BC 于点F ,根据题意知F 为BC 的中点.又因为E 为正三角形BCD 的中心, 所以DE u u u r =23DF u u u r 即DF u u u r =32DE u u u r , 所以AB u u u r +12BC u u u r -32DE u u u r -AD u u u r =(AB u u u r -AD u u u r )+BF u u u r -32DE u u u r =DB u u u r +BF u u u r -DF u u u r =DF u u u r -DF u u u r =0.5.已知ABCD -A ′B ′C ′D ′是平行六面体.(1)化简12'23AA BC AB ++u u u r u u u r u u u r ,并在图中标出其结果; 答案:解:)如图,取AA ′的中点E ,则12'AA u u u r ='EA u u u r .又BC uuu r =''A D u u u u u r ,AB u u u r =''D C u u u u u r ,取F 为D ′C ′的一个三等分点2'''3D F D C ⎛⎫= ⎪⎝⎭,则'D F u u u u r =23AB u u u r . ∴12'AA u u u r +BC uuu r +23AB u u u r ='EA u u u r +''A D u u u u u r +'D F u u u u r =EF u u u r . (说明:表示方法不惟一) (2)设M 是底面平行四边形ABCD 的中心,N 在侧面BCC ′B ′的对角线BC ′上,且BN =3NC ′,设MN u u u u r =αAB u u u r +βAD u u u r +γ'AA u u u r ,试求α,β,γ的值. 答案:解:MN u u u u r =MB u u u r +BN u u u r =12DB u u u r +34'BC u u u u r =12(DA u u u r +AB u u u r )+34(BC uuu r +'CC u u u u r )=12(-AD u u u r +AB u u u r )+34(AD u u u r +'AA u u u r )=12AB u u u r +14AD u u u r +34'AA u u u r , ∴12α=,14β=,34γ=.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.。
高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2 空间向量的数乘运算学案(
3.1.2 空间向量的数乘运算[目标] 1.掌握空间向量的数乘运算的定义和运算律,了解共线(平行)向量的意义.2.理解共线向量定理和共面向量定理及其推论,会证明空间三点共线与四点共面问题.[重点] 应用共线定理与共面定理解决共线问题与共面问题.[难点] 证明线面平行与面面平行.知识点一空间向量的数乘运算[填一填][答一答]1.空间向量的数乘运算与平面向量的数乘运算有什么关系?提示:相同.2.类比平面向量,空间向量的数乘运算满足(λ+μ)a=λa+μa(λ,μ∈R),对吗?提示:正确.类比平面向量的运算律可知.知识点二共线、共面定理[填一填][答一答]3.a =λb 是向量a 与b 共线的充要条件吗?提示:不是.由a =λb 可得出a ,b 共线,而由a ,b 共线不一定能得出a =λb ,如当b =0,a ≠0时.4.空间中任意两个向量一定共面吗?任意三个向量呢?提示:空间任意两个向量一定共面,但空间任意三个向量不一定共面. 5.共面向量定理中为什么要求a ,b 不共线?提示:如果a ,b 共线,则p 一定与向量a ,b 共面,却不一定存在实数组(x ,y ),使p =x a +y b ,所以共面向量基本定理的充要条件要去掉a ,b 共线的情况.6.已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 是否共面?提示:四点共面.∵x +y +z =1,∴x =1-y -z ,又∵OP →=xOA →+yOB →+zOC →∴OP →=(1-y -z )OA →+yOB →+zOC →∴OP →-OA →=y (OB →-OA →)+z (OC →-OA →) ∴AP →=yAB →+zAC →, ∴点P 与点A ,B ,C 共面.1.共线向量、共面向量不具有传递性.2.共线向量定理及其推论是证明共线(平行)问题的重要依据.定理中的条件a ≠0不可遗漏.3.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.4.空间任意两个向量总是共面的,空间任意三个向量可能共面,也可能不共面. 5.向量p 与a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.类型一 空间向量的数乘运算【例1】 设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,试用向量OA →,OB →,OD →表示AE →.【分析】 将向量AE →分解成OA →,OB →,OD →的线性组合的形式. 【解】 由题意,可以作出如下图所示的几何图形.在封闭图形ADOE 中,有:AE →=AD →+DO →+OE →, ①在△AOD 中,AD →=OD →-OA →. ②在△BOC 中,OC →=BC →-BO →,∵AD →=BC →,∴OC →=AD →+OB →=OD →-OA →+OB →. 又∵OE →=12OC →,∴OE →=12(OD →-OA →+OB →)=-12OA →+12OB →+12OD →. ③又DO →=-OD →, ④ 将②、③、④代入①可得: AE →=(OD →-OA →)-OD →+⎝ ⎛⎭⎪⎫-12OA →+12OB →+12OD →=-32OA →+12OB →+12OD →,∴AE →=-32OA →+12OB →+12OD →.寻找到以欲表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系进行相应的向量运算是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的.但需知,无论哪一种途径,结果应是唯一的.如下图所示,在平行六面体ABCD A ′B ′C ′D ′中,设AB →=a ,AD →=b, AA ′→=c ,E 和F分别是AD ′和BD 的中点,用向量a ,b ,c 表示D ′B →,EF →.解:D ′B →=D ′A ′→+A ′B ′→+B ′B →=-b +a -c .EF →=EA →+AB →+BF →=12D ′A →+a +12BD →=12(-b -c )+a +12(-a +b )=12(a -c ).类型二 空间向量的共线问题【例2】 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.【解】 因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.判断向量共线就是充分利用已知条件找到实数λ,使a =λb 成立,同时要充分运用空间向量的运算法则,结合空间图形,化简得出a =λb ,从而得出a ∥b .如图所示,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.证明:设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25(a -23b -c ).又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →,所以E ,F ,B 三点共线.类型三 空间向量的共面问题【例3】 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.【解】 (1)∵OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →)=BM →+CM →,∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行或直线在平面内进行证明.2向量共面向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面向量的起点、终点共面.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: (1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH .证明:如下图,连接EG ,BG .(1)因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .1.下列命题中正确的是( C )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .零向量没有确定的方向D .若a ∥b ,则存在唯一的实数λ,使a =λb解析:A 中,若b =0,则a 与c 不一定共线;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;D 中,若b =0,a ≠0,则不存在λ.2.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( A ) A .共面 B .不共面 C .共线D .无法确定解析:a +b 与a -b 不共线,则它们共面.3.设O ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( A )A .(14,14,14)B .(34,34,34)C .(13,13,13)D .(23,23,23)解析:因为OG →=34OG 1→=34(OA →+AG 1→)=34OA →+34×23[12(AB →+AC →)]=34OA →+14[(OB →-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,而OG →=xOA →+yOB →+zOC →,所以x =14,y =14,z =14.4.已知A 、B 、C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A 、B 、C 共面,则λ=2.解析:M 与A 、B 、C 共面,则OM →=xOA →+yOB →+zOC →,其中x +y +z =1,结合题目有-2+1+λ=1,即λ=2.5.如下图,正方体ABCD A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →,B 1C →,EF →是共面向量.证明:EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →,B 1C →,EF →是共面向量.。
3.1.2空间向量数乘运算
由向量共面的充要条件知 E,F,G,H 四点共面.
研一研·问题探究、课堂更高效
因此E→G=O→G-O→E =kO→C-kO→A=kA→C =k(A→B+A→D)=k(O→B-O→A+O→D-O→A) =O→F-O→E+O→H-O→E=E→F+E→H. 由向量共面的充要条件知 E,F,G,H 四点共面.
是对只平于有面这一内一对的平实两面数个内1 不的,2共任使线意的 向a 向 量 量a1e,1,那有2么e且2
如果空间向量
p
与两不共线向量
a
,b
共
面,那么可将三个向量平移到同一平面 ,则
有 p x yb
反果过p来 ,x对空y间b,任那意么两向个量不p共与线向的量向a量 ,
小结 证明三个向量共面(或四点共面),需利用共面向量定 理,证明过程中要灵活进行向量的分解与合成,将其中一 个向量用另外两个向量进行表示.
跟踪训练 3 如图所示,已知矩形 ABCD 和
矩形 ADEF 所在的平面互相垂直,点 M, N 分别在对角线 BD,AE 上,且 BM=13BD, AN=13AE.求证:向量M→N,C→D,D→E共面.
a
a // b(b 0)
b (b 0)
a b (b 0) 性质 a // b (b 0) 判定
由此可判断空间中两直线平行或三点共线问题
如图,l 为经过已知点A且平行已知非零向量 a
的直线, 若点P是直线l上任意一点,则
由
l
//
a
知存在唯一的t,
选修2-1 第三章 3.1.2 空间向量的数乘运算
→ → → → → 又∵MN=MC+CE+EB+BN 1 → → → 1→ =-2CA+CE-AF-2FB, 1→ → 1→ 1→ → → 1→ ∴2CA+AF+2FB=-2CA+CE-AF-2FB. → → → → → → → ∴CE=CA+2AF+FB=2(MA+AF+FN). → → → → → → ∴CE=2MN,∴CE∥MN,即CE与MN共线.
新知导学
6.a∥α是指a所在的直线____________ 在平面α内 或_____________. 平行于平面α 同一个平面 的向量叫做共面向量,共面向量所在 平行于____________ 异面 . 的直线可能相交、平行或________
7.空间任意两个向量总是共面的, 但空间任 意三个向量就不一定共面了.例如,图中的长 → → → 方体,向量AB、AC、AD,无论怎样平移都不 能使它们在同一平面内.
指明两向量有公共点,同理证明二直线平行方法类似.
如右图,已知四边形 ABCD 是空间 四边形, E、 H 分别是边 AB、 AD 的中点, → F、G 分别是边 CB、CD 上的点,且CF= 2→ → 2 → 3CB,CG=3CD. 求证:四边形 EFGH 是梯形.
[证明] ∵E、H 分别是 AB、AD 的中点, → 1→ → 1 → ∴AE=2AB,AH=2AD. → 2→ → 2 → ∵CF=3CB,CG=3CD, → 3→ → 3 → ∴CB=2CF,CD=2CG,
共线向量 温故知新 回顾复习平面向量中数乘向量与共线向量的概念与定理, 运算律. 思维导航 1 .参照平面向量思考,空间向量中,数乘向量的定义, 运算律,共线向量定理还成立吗?