2.1.1 一元一次方程(1)
一元一次方程知识点归纳

一元一次方程知识点归纳一元一次方程是代数中的基本知识之一,以下是关于一元一次方程的知识点归纳:
1.定义:一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
2.一般形式:一元一次方程的一般形式为ax + b = c,其中a、
b、c为已知常数,x为未知数。
3.解的概念:解是使等式成立的未知数的值。
对于一元一次方程,解即为能够满足方程的未知数的值。
4.解法:解一元一次方程的常用方法包括移项、合并同类项、化简等步骤,通过逐步变换方程的形式来求解未知数的值。
5.解的性质:一元一次方程通常有唯一解,但也可能无解或有无穷多个解,取决于方程中系数的取值情况。
6.应用:一元一次方程在实际问题中有着广泛的应用,如物理、经济、工程等领域,常用于建模和问题求解。
2.1.1认识一元二次方程课堂精练北师大版数学九年级上册

2.1.1认识一元二次方程一、选择题1.下列方程中是关于x的一元二次方程的是()A.ax2+bx+c=0B.1-x=1x2C.x2-x=2D.(x-1)2+1=x22.方程2x2-6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,-6,9C.2,-6,-9D.-2,6,-93.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边.已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%.若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2-2x)(1-2x)=2×1D.(2+2x)(1+2x)=2×1×90%4.将方程2(x+3)(x-4)=x2-10化为一般形式为()A.x2-2x-14=0B.x2+2x+14=0C.x2+2x-14=0D.x2-2x+14=0二、填空题5.三个连续奇数的平方和是251,求这三个数.若设最小的数为x,则可列方程为.6.已知方程(m+2)x2+(m+1)x-m=0是关于x的方程,当m满足条件:时,它是一元一次方程;当m满足条件:时,它是一元二次方程.7.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,则m的值是.8.已知(m-1)x m2+1-3x+1=0是关于x的一元二次方程,则m=.三、解答题9.结合题意列出方程,并将其化成一元二次方程的一般形式.(1)一长方形的面积为64 cm2,若它的长是宽的2倍,则它的长,宽分别是多少?设它的宽为x cm.(2)两数之差是2,平方和是52,求此两数.设较小的数为x.(3)生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学.设全组有x名同学.10.已知关于x的方程(k2-1)x2+(k+1)x-2=0.(1)当k取何值时,此方程为一元一次方程?求出此时方程的解;(2)当k取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项.11、若x2a+b-2x a-b+3=0是关于x的一元二次方程,求a,b的值.张敏的想法如下:a,b必须满足{2a+b=2,a-b=2.张敏的想法全面吗?若不全面,请你写出a,b另外满足的条件.答案[课堂达标] 1.C2.C [解析] 方程2x 2-6x=9化成一般形式可以是2x 2-6x -9=0,∴二次项系数为2,一次项系数为-6,常数项为-9.故选C .3.B4.A5.x 2+(x+2)2+(x+4)2=2516.m=-2 m ≠-2 [解析] 当m+2=0,m+1≠0,即m=-2时,方程是一元一次方程;当m+2≠0,即m ≠-2时,方程是一元二次方程.7.-1 [解析] 根据题意,得m -1≠0,m 2-1=0,所以m=-1. 8.-19.解:(1)根据题意得2x 2=64,即x 2=32,化为一般形式为x 2-32=0(化为一般形式不唯一). (2)根据题意列方程,得x 2+(x+2)2=52, 化为一般形式为x 2+2x -24=0.(3)根据题意得x (x -1)=182,化为一般形式为x 2-x -182=0(化为一般形式不唯一). 10.解:(1)当k=1时,此方程为一元一次方程,其解为x=1.(2)当k ≠±1时,此方程为一元二次方程,二次项系数为k 2-1,一次项系数为k+1,常数项为-2. [素养提升]解:不全面,还有{2a +b =2,a -b =1或{2a +b =2,a -b =0或{2a +b =1,a -b =2或{2a +b =0,a -b =2.2.1.2一元二次方程的解的估算一、选择题1.若2是关于x 的方程x 2-3x+k=0的一个根,则常数k 的值为 ( ) A .1B .2C .-1D .-22.根据下列表格的对应值判断关于x 的方程ax 2+bx+c=0(a ≠0)的一个根x 的范围是 ( )x3.24 3.25 3.26ax 2+bx+c -0.02 0.01 0.03A .x<3.24B .3.24<x<3.25C .3.25<x<3.26D .3.25<x<3.283.观察表格中的数据得出方程x 2-2x -4=0的一个根的十分位上的数字应是 ( )x -2 -1.4 -1.3 -1.2 -1.1 0 x 2-2x -44 0.76 0.29 -0.16 -0.59 -4A.0B.1C.2D.34.已知关于x的方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和4a-2b+c=0,则方程的两个根分别为()A.1,0B.-2,0C.1,-2D.-1,25.已知关于x的一元二次方程x2+bx+a=0有一个非零根-a,则a-b的值为()A.1B.-1C.0D.-26.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是()A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<3二、填空题7.为估算方程x2-2x-8=0的解,列出了下表:x-2-101234x2-2x-80-5-8-9-8-50由此可判断方程x2-2x-8=0的解为.8.已知x2-3x+1=0,依据下表,它的一个解x的范围是.x-1-0.500.51x2-3x+152.751-0.25-19.若a是方程3x2-x-2=0的一个根,则2025+2a-6a2的值等于.三、解答题10.已知关于x的一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,求a的值.11.对于向上抛出的物体,在没有空气阻力的条件下,有如下关系:h=vt-1gt2,其中h是离抛出点2的高度,v是初速度,g是重力加速度(g取10 m/s2),t是抛出后所经过的时间.如果将一物体以25 m/s的初速度向上抛出,几秒钟后它在离抛出点20 m高的地方?12、有一个面积为54 m2的矩形,将它的一边剪短5 m,与其相邻的另一边剪短2 m后,恰好变成一个正方形.(1)若设这个正方形的边长为x m,请根据题意列出方程;(2)x可能小于0吗?说说你的理由;(3)正方形的边长可能是2 m吗?可能是3 m吗?为什么?(4)你能求出x的值吗?请写出求解过程.答案[课堂达标]1.B[解析] ∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得k=2.故选B.2.B[解析] 观察表格可知,当ax2+bx+c=0(a≠0)时,对应的一个根x的范围是3.24<x<3.25.3.C[解析] ∵当x=-1.3时,x2-2x-4=0.29>0;当x=-1.2时,x2-2x-4=-0.16<0,∴方程x2-2x-4=0的一个根x在-1.3<x<-1.2的范围内,∴方程x2-2x-4=0的一个根的十分位上的数字应是2.故选C.4.C[解析] 当x=1时,a+b+c=0;当x=-2时,4a-2b+c=0.所以方程的两个根分别为1,-2.故选C.5.B[解析] ∵关于x的一元二次方程x2+bx+a=0有一个非零根-a,∴a2-ab+a=0.∵-a≠0,∴a≠0.上式两边同时除以a,得a-b+1=0,∴a-b=-1.6.C7.x=-2或x=48.0<x<0.5[解析] ∵当x=0时,x2-3x+1=1>0;当x=0.5时,x2-3x+1=-0.25<0,∴当x在0<x<0.5的范围内取某一个值时,x2-3x+1=0,∴方程x2-3x+1=0的一个解的范围是0<x<0.5.故答案为0<x<0.5.9.2021[解析] ∵a是方程3x2-x-2=0的一个根,∴3a2-a-2=0,故3a2-a=2,则2025+2a-6a2=2025-2(3a2-a)=2025-2×2=2021.故答案为2021.10.[解析] 根据一元二次方程的定义和一元二次方程的根的定义得到a+1≠0且a2-1=0,然后解不等式和方程即可得到a的值.解:∵一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,∴a+1≠0且a2-1=0,∴a=1.11.解:由题意,得25t-5t2=20,列表略,可得方程的解为t=1或t=4,所以1 s或4 s后,物体在离抛出点20 m高的地方.[素养提升]解:(1)所列方程为(x+5)(x+2)=54,即x2+7x-44=0.(2)x不可能小于0,因为x表示正方形的边长.(3)正方形的边长不可能是2 m,也不可能是3 m,因为x=2和x=3都不满足方程x2+7x-44=0.(4)能.列表如下:x12345x2+7x-44-36-26-14016所以x=4.2.2.1用配方法求解二次项系数为1的一元二次方程一、选择题x2=8的根是()1.方程12A.x=2B.x=4C.x=±2D.x=±42.一元二次方程y2-y-34=0配方后可化为()A.y+122=1B.y-122=1C.y+122=34D.y-122=343.如果一元二次方程x2+bx+5=0配方后为(x-3)2=k,那么b,k的值分别为()A.0,4B.0,5C.-6,5D.-6,4二、填空题4.填空:(1)x2+10x+=(x+)2;(2)x2+()+916=[x+()]2.5.[2020·扬州] 方程(x+1)2=9的根是.6.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n-m)2021=.三、解答题7.解下列方程:(1)(x-1)2=36;(2)x2-2x-24=0;(3)x2-x+3=4;(4)x2-3x=3x+16;(5)x2-2√2x-3=0.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,求道路的宽.9、有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2+2nx-8n2=0.小静同学解第1个方程x2+2x-8=0的步骤为“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.”(1)小静的解法是从步骤开始出现错误的;(2)用配方法解第n个方程x2+2nx-8n2=0(用含n的式子表示方程的根).答案[课堂达标] 1.D2.B [解析] y 2-y -34=0,y 2-y=34, y 2-y+14=1,y -122=1. 故选B .3.D [解析] ∵(x -3)2=k ,∴x 2-6x+9-k=0.∵一元二次方程x 2+bx+5=0配方后为(x -3)2=k ,∴b=-6,9-k=5,∴k=4,∴b ,k 的值分别为-6,4.故选D . 4.(1)25 5 (2)±32x ±345.x 1=2,x 2=-4 [解析] (x+1)2=9,x+1=±3,x 1=2,x 2=-4.故答案为x 1=2,x 2=-4.6.-1 [解析] 由题意得x 2+4x=-n , ∴x 2+4x+4=4-n ,即(x+2)2=4-n. 又(x+m )2=3,∴m=2,n=1, 则(n -m )2021=(1-2)2021=-1. 故答案为-1.7.解:(1)直接开平方,得x -1=±6, ∴x -1=6或x -1=-6, ∴x 1=7,x 2=-5.(2)移项,得x 2-2x=24.配方,得x 2-2x+1=24+1,即(x -1)2=25. 两边开平方,得x -1=±5. ∴x 1=6,x 2=-4. (3)移项,得x 2-x=1. 配方,得x 2-x+14=54.整理,得x -122=54,∴x -12=±√52, 即x 1=1+√52,x 2=1-√52.(4)原方程可化为x 2-6x=16. 配方,得x 2-6x+9=16+9. 整理,得(x -3)2=25,∴x -3=±5, 即x 1=8,x 2=-2. (5)移项,得x 2-2√2x=3.配方,得x 2-2√2x+(√2)2=(√2)2+3, 即(x -√2)2=5.两边开平方,得x -√2=±√5. ∴x 1=√2+√5,x 2=√2-√5. 8.解:设道路的宽为x 米. 根据题意,得(62-x )(42-x )=2400.整理,得x2-104x+204=0.解得x1=2,x2=102(不合题意,舍去).答:道路的宽是2米.[素养提升]解:(1)⑤(2)x2+2nx-8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x=-n±3n,∴x1=-4n,x2=2n.2.2.2用配方法求解二次项系数不为1的一元二次方程一、选择题1.用配方法解方程2x2-4x+3=0,配方正确的是()A.2x2-4x+4=3+4B.2x2-4x+4=-3+4C .x 2-2x+1=32+1D .x 2-2x+1=-32+12.[2020·聊城] 用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( ).A .x -342=1716B .x -342=12C .x -322=134D .x -322=1143.图中用配方法解方程12x 2-x -2=0的四个步骤中,出现错误的是( )A .①B .②C .③D .④ 4.对于任何实数m ,n ,多项式m 2+n 2-6m -10n+36的值总是 ( )A .2B .0C .大于2D .不小于2二、填空题5.一元二次方程5x 2-4x=1的解为 .6.把方程2x 2+4x -1=0配方后得(x+m )2=k ,则m= ,k= .7.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,则这个三角形的周长为 .8.如图,在Rt △ABC 中,∠B=90°,AB=6厘米,BC=3厘米,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,到点C 停止运动,此时点P 也停止运动.如果点P ,Q 分别从A ,B 两点同时出发,则经过 秒后,P ,Q 两点间的距离为4√2厘米.三、解答题9.用配方法解下列方程:(1)2x2-4x-6=0;(2)2x2+2=5x;=0.(3)2x2+x-1210、求y2+4y+8的最小值.阅读下面的解答过程.解:y2+4y+8=y2+4y+4+4=(y+2)2+4.∵(y+2)2≥0,∴(y+2)2+4≥4,即y2+4y+8的最小值为4.仿照上面的解答过程,解答下列问题.(1)求m2+2m+4的最小值;(2)求4-x2+2x的最大值.答案[课堂达标] 1.D2.A [解析] 移项,得2x 2-3x=1,二次项系数化为1,得x 2-32x=12,配方,得x 2-32x+342=12+342, 即x -342=1716.故选A .3.D4.D [解析] m 2+n 2-6m -10n+36=m 2-6m+9+n 2-10n+25+2=(m -3)2+(n -5)2+2. ∵(m -3)2≥0,(n -5)2≥0, ∴(m -3)2+(n -5)2+2≥2,∴多项式m 2+n 2-6m -10n+36的值总是不小于2.故选D . 5.x 1=-15,x 2=16.1 32[解析] 把方程2x 2+4x -1=0配方得(x+1)2=32.∵把方程2x 2+4x -1=0配方后得(x+m )2=k , ∴m=1,k=32. 7.1528.25 [解析] 设t 秒后PQ=4√2, 则BP=6-t ,BQ=2t. ∵∠B=90°,∴BP 2+BQ 2=PQ 2, ∴(6-t )2+(2t )2=(4√2)2. 解得t=25或t=2. 由题意,得t ≤32,∴t=25.故答案为25.9.解:(1)原方程可化为x 2-2x -3=0, 移项、配方得x 2-2x+1=3+1,即(x -1)2=4, 两边开平方,得x -1=±2, ∴x 1=1+2=3,x 2=1-2=-1. (2)原方程可化为x 2-52x=-1. 配方,得x 2-52x+2516=916,即(x -54)2=916. 两边开平方,得x -54=±34, ∴x 1=2,x 2=12.(3)原方程可化为x 2+12x=14,配方,得x 2+12x+116=14+116,即x+142=516,两边开平方,得x+14=±√54, ∴x 1=-1+√54,x 2=-1-√54.。
北师大版 九年级数学上册 第二章_2.1.1一元二次方程 电子教案

第二章一元二次方程2.1 认识一元二次方程2.1.1一元二次方程1.要求学生会根据具体问题列出一元二次方程.通过“未铺地毯区域有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力.2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力.一元二次方程的概念.如何把实际问题转化为数学方程.导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是一种常见的数学方法.从这节课开始学习一元二次方程知识,先来学习一元二次方程的有关概念.播放“未铺地毯区域有多宽”的课件幼儿园活动教室矩形地面的长为8 m,宽为5 m,现准备在地面的正中间铺设一块面积为18 m2的地毯(如图2-1-1),四周未铺地毯的条形区域的宽度都相同.你能求出这个宽度吗?教师:根据这一情境,结合已知量你想求哪些量?学生:想求出地毯的长和宽.教师:根据条件,你能列出关于这个量的什么关系式?学生:地毯的长×地毯的宽=18.教师:如果设所求的宽度为x m,那么你能列出怎样的方程?学生:地毯的长为(8-2x)m,地毯的宽为(5-2x)m,根据题意,可列方程为(8-2x)(5-2x)=18.板书等式102+112+122=132+142,提出问题观察下面等式:102+112+122=132+142,你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?教师:如果将这五个连续整数中的第一个数设为x,那么怎样用含x的代数式表示其余四个数?学生:第二个数是x+1,第三个数是x+2,第四个数是x+3,第五个数是x+4.教师:根据题意,你能列出怎样的方程?学生:x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.播放“梯子的底端滑动多少米”的课件如图2-1-2,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?教师:你能计算出滑动前梯子底端距墙的距离吗?学生:根据勾股定理,可以知道滑动前梯子底端距墙的距离为6 m.教师:如果设梯子底端滑动x m.那么你能列出怎样的方程?学生:(x+6)2+72=102.·议一议由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.(x+6)2+72=102.教师:这三个方程有什么共同特点?学生:这三个方程都只含有一个未知数,未知数的最高次数是2.教师:还有没有其他的共性?比如:从整式和分式的角度,展开、整理后的形式的角度.学生:它们都是整式.由此得到一元二次方程的概念:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫作一元二次方程.一元二次方程的一般形式:我们把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数.例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0),因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2 (学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数,一次项、一次项系数,常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得x2+2x+1+x2-4=1.移项、合并同类项,得一元二次方程的一般形式为x2+x-2=0.其中二次项为x2,二次项系数为1,一次项为x,一次项系数为1,常数项为-2.一元二次方程的根的概念:(1)类比一元一次方程的根的概念获得一元二次方程的根的概念.(2)下面哪些数是方程x2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4.【巩固练习】教材第4页练习第1,2题.补充练习:1.判断下列方程是否为一元二次方程.(1)3x+2=5y-3;(2)x2=4;=0;(4)x2-4=(x+2)2;(3)3x2-5x(5)ax2+bx+c=0.解:(1)(3)(4)(5)不是一元二次方程.(2)是一元二次方程.2.以-2为根的一元二次方程是( D ).A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=03.已知方程5x2+mx-6=0的一个根是x=3,则m的值为-13 .例3 求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值该方程都是一元二次方程.分析:要证明不论m取何值该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,∴(m-4)2+1≠0,即m2-8m+17≠0.∴不论m取何值,该方程都是一元二次方程.【巩固练习】补充练习:1.下列方程哪些是一元二次方程?(1)7x2-6x=0;(2)2x2-5xy+6y=0;(3)2x2-13x-1=0;(4)y22=0;(5)x2+2x-3=1+x2.2.关于x的方程(k-3)x2+2x-1=0,当k时,该方程是一元二次方程.3.关于x的方程(k2-1)x2+2(k-1)x+2k+2=0,当k时,该方程是一元二次方程,当k时,该方程是一元一次方程.本节课要掌握:1.一元二次方程的概念:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫作一元二次方程.2.一元二次方程的一般形式:我们把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数.课本习题2.1。
专题2.1 一次方程及方程组(知识讲解)

专题2.1 一次方程及方程组(知识讲解)【基本考点要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式。
2.方程的概念(1)含有未知数的等式叫做方程。
(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根)。
(3)求方程的解的过程,叫做解方程。
3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程。
(2)一元一次方程的一般形式:0(0)ax b a +=≠。
(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来)。
特别说明:解一元一次方程的一般步骤(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法; (3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组 特别说明:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 特别说明:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0 3. 二元一次方程组的解法(1) 代入消元法 (2) 加减消元法 特别说明:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解。
一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
2.1.1一元二次方程的概念、一般形式、列方程

解:如果设五个连续整数中的第一个数为x,那么后面四
个数依次可表示
为: x+1 , x+2 , x+3 , x+ .
根据题意,可得方程:
4
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. 该方程中未知数的个数和
化简得,x2 - 8x - 20=0. ②
最高次数各是多少?
解题技巧 4
列一元二次方程步骤:
分析题意→找等量关系→设未知数→列方程
课后作业
11.下列是一元二次方程有
(1)7x2 - 6x = 0
(6)
(2)2x2 - 5xy + 6y = 0
(3) 2 x 1 1 0
3x
(4) y 2 0
2
(5) x2 + 2x - 3 = 1 + x2
(3x+2)2=4(x-3)2
x2 + x - 8 = 0 7x2 - 4 = 0
1
1
-8
7
0
-4
课后作业
3 a为何值时,(a-1)2 x ∣ a ∣ +1 -2ax-a+1=0为一 元二次方程?
课后作业
4 随堂练习 第1题
5 习题2.1 第1题
解题技巧 3
描述一元二次方程的各项及其系数:
(1)先将一元二次方程化成一般形式再进行判断. (2)将一个一元二次方程化成一般形式,可以通过去分母、 去括号、移项、合并同类项等步骤. (3)指出一元二次方程的各项及其系数时,各项或各项的系 数应包括它们前面的符号.
解题技巧 4
《从算式到方程》(第1课时)教案doc

第二章一元一次方程2.1 从算式到方程2.1.1 一元一次方程(一)一、教材分析1.教学目标、重点、难点.教学目标:(1)了解什么是方程,什么是一元一次方程.(2)会用未知数表示生活中的数量关系.(3)体会用字母表示数的优越性.重点:知道什么是方程,什么是一元一次方程.难点:方程的意义和一元一次方程的意义.2.例、习题的意图本节课的知识点有三个:知识点1 通过实例体会方程是研究数量关系的重要数学模型.方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要.例1中的两个问题的提出,目的是让学生亲身体验两种解法,算术方法和列方程(代数法)方法解决问题,其思维方向是不同的,感受两种解题中,列方程更便于思考,尤其是问题2体现的更加明显,使学生认识到引进未知数列方程解决实际问题的必要性,这是数学的一个进步.教材P69的思考,利用不同的相等关系还可以有不同的列方程的方法,可根据学生实际情况,教师带领学生完成,不必让学生在思考相等关系上耽误很长时间.采用填空方法列式,继而列方程是在引导学生得到结论,重点应放在从算式到方程这是一个进步,而不是放在如何列方程上.知识点2 方程的意义.例2(补充题)由实际问题引出方程的概念后,为使学生对方程概念有一个准确的认识,补充这个例题.判断下列各式哪些是等式,哪些是方程,并说出为什么?使学生能正确的认识什么是等式,什么是方程,培养学生的观察能力和言必有据的良好学习习惯.知识点3 一元一次方程的意义.借助例2引出一元一次方程的意义,在具体题目中,注意培养学生的说理能力.例3(补充题)巩固一元一次方程的概念,求某些未知数的值.3.认知难点及突破方法教学难点之一是方程的概念,应使学生在具体问题中,分清什么是等式,什么是方程,建立起等式不一定是方程,但方程一定是等式的正确认识.教学难点之二是一元一次方程的概念,应紧紧抓住一元一次方程的概念,引导学生通过观察、比较、学生之间的交流,来认识什么是一元一次方程.二、新课引入填空:1、 小明的体重是11公斤,爸爸的体重是小明体重的7倍少1,爸爸的体重是 76 公斤,如果小明的体重是x 公斤,那么爸爸的体重是(71)x - 公斤.2、 从王家庄到青山的路程是x 千米,汽车行驶需2小时,则汽车的速度可以表示为2x 千米/时. 三、例题讲解例1 问题1 (补充题) 小明爸爸的体重是76公斤,他比小明体重的7倍少1公斤,你知道小明的体重是多少公斤吗?不限解法,说出你的思考.用算术解法:()761711+÷= (公斤).用方程解法(即代数法):设未知数,找相等关系,列方程求解.此题的相等关系是:爸爸的体重=小明体重的7倍-1.解:设小明体重为x 公斤,根据题意,得 7176x -=,解得11x =.答:小明的体重是11公斤.让学生比较两种解法思维方式有什么不同?哪种解法更便于思考?算术法属于逆向思维,列方程(代数法)属于顺向思维,未知数作为已知数直接参与列式,方程解法从思维方式上直接,更便于思考,所以说方程解法优于算术解法(可能会有一部分学生说算术解法更好,这里不能强加给学生这个结论,随即引出问题2,让学生自己去感受).问题2:教材P68章前图中的问题.引导学生搜集表中的信息:王家庄到青山需3小时,青山到秀水需2小时,王家庄到秀水需5小时;搜集图中的信息:青山距翠湖50千米,翠湖距秀水70千米,青山距秀水120千米.用算术法解,可由汽车从青山到秀水用2个小时及两地相距50+70=120千米,得到汽车的时速为5070602+=(千米),进而得出王家庄距离秀水共(3+2)×60=300(千米),最终求出王家庄距翠湖300-70=230(千米),列综合算式为:(50+70)÷2×(3+2)-70=230(千米),还有其它列式方法请学生课下完成,在这不必耽误更多时间,重点放在下面的用方程方法上.用方程(代数法)解,用教材P68填空部分,引导学生列方程. 注意利用书上的示意图,帮助学生理解问题,直接设未知数,利用汽车匀速行驶,各段路程的车速是相等的这个关系列方程,得507035x x -+=. 以后我们将学习如何求出这个方程中的未知数x ,从而得出王家庄到翠湖的路程. 教材P69思考栏目,带领学生完成. 也可以利用:“路程比等于时间比”这个相等关系列方程,得50350702x -=+.若间接设未知数,王家庄到青山的路程为x 千米,则根据题意,得()32703x +- 50x =+.也可以利用:“路程比等于时间比”这个相等关系列方程,得350702x =+. 注意:各种列方程的方法,可结合学生实际情况,如果学生有困难,教师要带领学生得出,以便控制课堂时间,重点应放在对方程解法的感受上.问题2中对两种解法(算术解法和方程解法)比较其思维方式的优劣,得出用方程解决问题更直接,更便于思考.归纳为:注意收集题目中所提供的表格、图形信息,多角度全面思考问题.本章我们将学习一元一次方程.1.方程的意义:列方程时,要先设字母表示未知数(一般用x ),然后根据问题中的相等关系,写出含有未知数的等式,这样的等式叫做方程.注意:等式是含有等号的式子. (这里的等式指只含一个等号的式子)方程满足两个条件2⎧⎨⎩(1)是等式(含有等号的式子);()等号的左边或右边含有未知数.例2(补充题)下列各式哪些是等式,哪些方程,为什么?(1)53a b -; (2)437+=;(3)5323x x -=+; (4)102x y -=; (5)61x -<-; (6)2534y -=; (7)()2423a a -=-; (8)2154m m -=; (9)135x x-=. 分析:解这个题目可根据方程的意义来判断. 含有未知数的等式叫做方程,否则就不是方程.培养学生细心观察,言必有据的良好学习习惯.答案:(1)不是等式,所以也不是方程,因为53a b -只有运算关系没有相等关系.(2)是等式,但不是方程,因为虽然是等式但不含有未知数.(3)是等式,也是方程.(4)是等式,也是方程.(5)不是等式,所以也不是方程.(6)是等式,也是方程.(7)是等式,也是方程.(8)是等式,也是方程.(9)是等式,也是方程.可以进一步让学生指明方程中的未知数是什么?2.一元一次方程的意义:只含有一个未知数(元),且未知数的指数都是1(次),这样的方程叫做一元一次方程.注意:一元一次方程首先是方程,其次一元指一个未知数,这里不考虑同一个未知数出现了几次,且未知数的最高指数是1次.再来看前面例1(一题多用),我们从方程中选出一元一次方程是第(3)、(6)、(7);方程(4)含有两个未知数x 和y ;方程(8)未知数的最高次数不是1;方程(7)中的()24-,底数不是未知数,其次数与未知数的次数无关;方程(9)未知数在分母,不是一元一次方程,今后我们再研究它是什么方程.回顾前面例1中的问题1和问题2,所列的方程是什么方程?例3※(补充题)已知关于x 的方程()212m x mx -+=是一元一次方程,求m 的值. 分析:由一元一次方程的意义,只有()210m x -=,即10m -=,得1m =. 解:略.四、随堂练习1、(补充题)选择题:(1)下列各式中,是方程的是( ).A .530m -<B . 538+=C . 83x -D . 269a b += (2 ) 在方程3xy =,350y -=,2176a a a -+=-,230m m -=, 374x=,0x =中,是一元一次方程的有( )个.A . 2B . 3C . 4D . 52.(补充题)七年级一班全体学生去旅游,租车每人交20元,还差19元;每人交21元,又多18元,设该班有x 名学生,可用式子_____________或______________表示租车的费用,并列方程为________________.答案:1.(1)D ; (2)B .2. 2019x +;2118x -;20192118x x +=-2.五、课后练习1.(补充题)指出下列方程中的未知数是什么,方程的左边是什么,方程的右边是什么?并且判断它是否是一元一次方程?(1)321x =-; (2)27x y +=;(3)2515x x +-=; (4)222x y y =+; (5)3x π-=; (6)23547m m +=-; (7)11123a a +--=. 2. (补充题)方程 ()()22230a x a x +---=是一元一次方程,则a 等于( ).A .2-B . 2C . 2±D . 03. (补充题)若关于x 的方程()1350n m x +--=是一元一次方程,则m 、n 的取值是( ).A . 3,1m n ==-B . 3,0m n ≠=C . 0,0m n ≠=D . 3,1m n ≠=-4.(补充题)甲厂有某种原料120吨,乙厂有同样原料96吨,现在每天甲厂用原料15吨,乙厂用原料9吨,请你用数学式子表示x 天后两厂剩下的原料相等.5. 教材P75习题2.1 5、6、7.答案:1. 略. 2. A 3. B 4. 设x 天后两厂剩下原料相等,则有12015969x x -=-.。
高中数学 第二章 等式与不等式 2.1.1 等式的性质与方程的解集教学设计(1)新人教B版必修第一册

2.1.1 等式的性质与方程的解集教学设计本节学习等式的性质与方程的解集,是人教B版必修一第二章第一节的内容。
学生尽管已经学习过等式的性质的一些内容,包括一元一次方程以及一元二次方程的解法,但我们会继续学习,并体会解方程的基本依据是等式的性质,为后续的学习打好基础。
课程目标核心素养(1)掌握等式的性质并会应用;(2)掌握几个重要的恒等式(3)会用十字相乘法进行因式分解;(4)会求一元一次方程以及一元二次方程的解集. a.数学抽象:理解等式的性质,体会用等式的性质解方程;b.逻辑推理:通过类比推理形式,掌握等式推理的基本形式和规则,探索出解方程的核心方法;c.数学运算:求方程的解集;d.直观想象:十字相乘法分解因式;e.数据分析: 例3中对常数a的分类讨论,是理解和处理数据a的方法教学重点:(1)掌握等式的性质及恒等式;(2)会求一元一次方程以及一元二次方程的解集. 教学难点:会用十字相乘法进行因式分解。
一、等式的性质1.复习回顾我们已经学习过等式的性质:(1)等式的两边同时加上同一个数或代数式,等式仍成立;(2)等式的两边同时乘以同一个不为零的数或代数式,等式仍成立。
2.尝试与发现用符号语言和量词表示上述等式的性质:(1)如果b a =,则对任意c ,都有 c b c a +=+ ; (2)如果b a =,则对任意不为零的c ,都有 bc ac =.因为减去一个数等于加上这个数的相反数,除以一个数等于乘以这个数的倒数,因此上述等式性质中的“加上”与“乘以”如果分别改为“减去”与“除以”,结论仍成立.二、恒等式1.尝试与发现补全下列(1)(2)中的两个公式,然后将下列含有字母的等式进行分类,并说出分类的标准:(1) a 2-b 2= (平方差公式);(2) (x+y)2= (两数和的平方公式);(3) 3x-6=0;(4) (a+b)c=ac+bc ;(5) m(m-1)=0;(6) t 3+1=(t+1)(t 2-t+1).2.感受新知(1)从量词的角度来对以上6个等式进行分类:对任意实数都成立的等式有:(1(2)(4)(6)只是存在实数使其成立的等式有: (3)(5)(2)一般地,含有字母的等式,如果其中的字母取任意实数时等式都成立,则称其为恒等式,也称等式两边恒等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
书本P73 1,5,6 精选P44 6,7,8,9,10,12
情景引入
判断 例2 练习
实例
例1 百羊问题 作业
汽车匀速行驶途径王家庄、青山、翠湖、秀水四地 (如图)。翠湖距青山50千米,距秀水70千米。请问 王家庄到翠湖的路程有多远?
xkm
50km 王家庄 10:00 青山 13:00 翠湖 70km 秀水 15:00
王家庄到青山的距离:(x-50)km
王家庄到秀水的距离: (x+70)km
小结
实际问题
设未知数、列方程
一元一次方程
分析实际问题中的数量关系,利 用其中的相等关系列出方程,是用 数学解决实际问题的一种方法。
例2.王老师利用假期带领团员同学到农村搞社会调 查,每张车票原价是50元。甲车主说:“乘我的 车可以打8折优惠。”;乙车主说:“乘我的车学 生打9折,老师不买票。”王老师心里计算了一下, 觉得不论坐谁的车,车费都一样,请问:王老师 一共带了多少学生?请列出方程。
( 1) x 1 2 ( 2) x y 1 ( 3) m 1 0 ( 4) x 3 a b c ( 5) x 3 ( x 1) 4 2 1 ( 6) 3 2 x ( 7) p 0 ( 8) x 2 x 3 0
2
例1.根据下列问题,设未知数并列出方程。
3.设某数为x,根据下列各条件列出方程。
解 答 题
(1)某数的3倍比这个数大4。
(2)某数的一半与3的和等于这个数与2的差。 (3)某数的相反数比这个数的绝对值小6。
(4)某数与3的和的一半比某数的2倍与4的差 三分之一小5。 (5)比某数的2倍少9的数比它的25%大7。
探 究 与 创 新
4.你能根据“3x+4(6-x)=100”编一道应用题吗?
(2)一件衣服按8折销售的售价为72元,这件衣服的 原价是多少元? 设这件衣服的原价为x元,可列方程 0.8x 72 ; (3)有一棵树,刚移栽时树高为2米,假设以后平均 每年长0.3米,几年后树高为5米? 设x年后树高为5米,可列出方程 2 0.3x 5 。
判断下列各式哪些是方程,哪些是一元一次方程: 方程 一元一次方程
(1)一台计算机已使用1700小时,预计每月再使用150 小时,经过多少月这台计算机的使用时间达用一根长24cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各应是多少? (3)某校女生占全体学生数的52%,比男生多80人, 这个学校有多少学生?
小结
列算式:只用已知数,表示计算程序, 依据是问题中的数量关系。 列方程:可用未知数,表示相等关系, 依据是问题中的等量关系。
根据下列问题中的条件,分别列出方程:
(1)一名射击运动员,两次射击的平均成绩为6.5环, 其中第二次的成绩为9环,问第一次射击的成绩是多 x9 少环? 6.5 设第一次射击的成绩为x环,可列出方程 ; 2
1.填空: (1)长方形的长为acm,宽为bcm,则该长方 形的周长为 2(a+b)cm. (2)一个两位数,个位上的数字为a,十位 上的数字为b,则这个两位数可表示为 10b+a .
填 空 题
2.填空 (1)如果关于x的方程3x5-2k-3=0是一元一次 方程,则k= 2 ; (2)已知方程-(m-1)y|m|+3=0是一元一次 方程,则m= -1 。
有一位牧童赶着一群羊朝前走,另一牧童牵着 一头羊从后面走 来. 问牧童甲: “你这群羊有多少头?有100头吗?” 牧童甲答道:“不满100头,要是再给我这么一 群 羊, 再给我这群羊的一半,再给我这群羊的 四分之一,再把你牵的一头羊也给我,才刚 好凑满100头羊.” 请问这群羊有多少头?
填 空 题