第11讲 列方程解应用题——设元的技巧

合集下载

列方程解应用题——设元的技巧

列方程解应用题——设元的技巧

列方程解应用题——设元的技巧
题目:超市购进苹果和橙子共270个,购进的苹果多于橙子120个,苹果的单价是橙子的2倍,总共花费了650元。

求苹果和橙子的单价。

设橙子的单价为x元/个,苹果的单价为2x元/个。

购进的苹果数量=购进的橙子数量+120(方程1)
购进的苹果单价=橙子的单价×2(方程2)
购进的苹果单价×购进的苹果数量+购进的橙子单价×购进的橙子数量=650(方程3)
根据方程1,可以得到购进的橙子数量为购进的苹果数量-120。

将方程1和方程2代入方程3中,得到:
购进的苹果单价×购进的苹果数量+橙子的单价×(购进的苹果数量-120)=650
进一步化简:
(2x)×(购进的苹果数量)+x×(购进的苹果数量-120)=650
2x×购进的苹果数量+x×购进的苹果数量-120x=650
合并同类项:
3x×购进的苹果数量-120x=650
移项:
3x×购进的苹果数量=120x+650
除以3x:
购进的苹果数量=(120x+650)/(3x)(方程4)
由于购进的橙子数量=购进的苹果数量-120,将方程4代入方程1中,得到:
购进的橙子数量=(120x+650)/(3x)-120
苹果的单价为2x元/个,将此值代入方程2中,得到:
橙子的单价=(2x)/2=x元/个
因此,苹果的单价为2x元/个,橙子的单价为x元/个。

综上所述,苹果和橙子的单价分别为2x元/个和x元/个。

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤

•列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:⑴审题:理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。

在这个过程中,列方程起着承前启后的作用。

因此,列方程是解应用题的关键。

•一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。

①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

一元一次方程解题技巧

一元一次方程解题技巧

一列方程解应用题的一般步骤1、审题就是弄清题意,弄清问题中有哪几种量?其中哪几个量是已知的?哪几个量是未知的?它们彼此之间遵循哪些数量关系?2、设元选择一个或几个未知量,用字母(x或x、y,……)来表示。

根据题目里给出的数量关系,用所设未知数的代数式来表示别的未知量。

设未知数的方法有三种:直接未知数、间接未知数、辅助未知数。

究竟设什么未知数,要因题而异酌情处理。

未知数设出后,都可以看成已知数,参与分析和计算,这是代数法与算术解应用题的区别。

设未知数一定要注明单位,特别是速度,它的单位是由时间单位和路程单位组成的复合单位。

3、分析根据题目所给出的条件(包括已知量、已经假设的未知量及数量关系)进行分析,找出等量关系。

4、列方程利用上述3中所得的等量关系,列出方程。

5、解方程6、检验和答案检验所得的解是否合理(并注意问题的实际意义),然后作答。

二设未知数的方法与技巧设未知数,是列方程解应用题中的重要一环。

未知数设得好,可使解题方便省事。

如何根据题目的特点,机动灵活地设置未知数呢?1、设直接未知数当题设中的关系能明显表示出所求的未知量时,可以采用直接设法,即求什么设什么,这是设未知数最常用的一种。

例 1 为了测量井深,将一定长度的绳子折成相等的3段后放下去,绳的下端碰到井底时,上端露出井口43 米,将绳子折成相等的4段后再放下去,下端碰到井底时,上端正好与井口平齐,求井深。

解设井深为x米,则绳长4x米,由题意得2、设间接未知数当设直接未知数列方程比较困难时,常用此法,此法最显著的特征便是所设的不是所要求的。

例2 一个两位数,个位数字是十位数字的两倍,如果把十位数字与个位数字对调,那么所得的两位数比原数大36。

求原两位数。

分析如果直接设原两位数为x,显然不好。

如果改设原两位数的十位数字为x,则个位数字为2x,这样列方程就容易多了。

解设原两位数的十位数字为x,则个位数字为2x,原数为_____,新数为_____。

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:x+x+8+x+10=35×3,15解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa -,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题【难度】3星【题型】解答【解析】设用x张铁皮制盒身,y张铁皮制盒底.⎩⎨⎧=⨯=+yxyx43216150解得xy==⎧⎨⎩8664所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题【难度】3星【题型】解答【解析】设乙车运x箱,每箱装y个苹果,列表如下:(x+4)(y-3)-xy=3xy-(x-4)(y+5)=5化简为:4y-3x=15, ①5x-4y=15, ②①+②,得:2x=30,于是x=15.将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l和17.这4人中最大年龄与最小年龄的差是多少?⎧⎨⎩【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72. 有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩. 但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7.60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】 在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题 【难度】4星 【题型】解答【解析】 设汽车、摩托车、助力车、自行车的速度分别为a ,b ,c ,d ,设在12时骑自行车的与坐汽车的距离为x ,骑自行车的与开摩托车的之间的距离为y .有(①+③)×2一(②+④),得 310()x c d =+,即10()3x c d =+ 设骑自行车的在t 时遇见骑助力车的,则 (12)(),x t c d =-⨯+即10123t -=,所以1153t =. 所以骑自行车的在15时20分遇见骑助力车的. 【答案】15时20分家庭作业【作业1】 甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设x 年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x), 解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设这列火车的速度是x 米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声).【答案】27【作业6】小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

专题11 设元的技巧

专题11 设元的技巧

专题11设元的技巧阅读与思考应用数学知识和方法解决实际问题是学习数学的重要目的之一.应用题联系实际,反映现实生活中的数量关系,通过解应用题可以培养运用数学知识去分析和解决问题的能力.列方程解应用题,一般有审题、设元、布列方程、解方程、作答等几个步骤.恰当地设元是列方程解应用题的关键步骤之一,常见的设元技巧有:1.直接设元题目要求什么量,就设什么量为未知数,或有几个要求的量,而设其中的某一个量为未知数.2.间接设元即所没的不是所求的,适当地选择与题目要求的未知数有关的某个量为未知数,则易找出符合题意的数量关系,从而列出方程.3.辅助设元有些应用题中隐含一些未知的常量,这些量对于求解无直接联系,但如果不指明这些量的存在,则难求其解,因而需把这些未知的常量设为参数,作为桥梁帮助思考,这就是辅助设元.4.整体设元有些应用题未知量太多而已知关系又少,如果在未知数的某一部分存在一个整体关系,可设这一部分为一个未知数,这样就减少了设元的个数,这就是整体设元.例题与求解【例1】某编辑用0~9这10个数字给一本书的各页标上页码,若共写了636个数字,则该书有____页.解题思路:依题意可知该书页码的数字组成有三种:一个数字、两个数字、三个数字.一共有636个数字,可设直接未知数,列方程求解.找出能够表示应用题全部含义的一个相等关系是列方程解应用题又一关键.寻找相等关系常用方法有:①从关键词中寻找相等关系;②利用基本公式寻找相等关系;③利用不变量寻找相等关系;④对一种“量”,从不同的角度进行表述(即计算两次),形成一种相等关系.行程问题、工程问题、劳力分配问题、浓度问题、数字问题等是列方程解应用题的基本类型,此外,还有趣味问题(如年龄、时钟等)、经济问题(如银行存款、销售利润等),尽管形式多变,但是解题实质未变,需要我们用数学观点,理清数量关系,恰当设未知数,准确列方程.【例2】某服装厂生产某种定型冬装,9月份销售冬装的利润(每件冬装的利润=出厂价一成本)是出厂价的25%,10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增加80%,那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长( )。

用方程解决问题

用方程解决问题

北师大版小学数学专题讲解——列方程解应用题在小学数学教学中,列方程解应用题是难点。

这一部分内容融入了等式的性质,利用四则运算各部分的关系,有助于对所学的算术知识进行巩固和加深理解,初步渗透代数的思想,然而在这一部分教学中存在一定的难点。

一、审清题意:审题,理解题意。

即全面分析题目中的已知量、未知量及二者之间的关系。

特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。

二、确立未知数:即用x表示所求的数量或有关的未知量。

若题中含有两个或两个以上的未知量,则找出他们之间数量关系,用含有x的式子分别将它们表示出来;三、寻找等量关系:“含有未知数的等式称为方程”因而是“等式”是列方程比不可少的条件。

所以寻找等量关系是解题的关键。

常见的等量关系有以下几种:1、总量相等;2、成倍数相等;3、按公式相等;小学常用数量关系总结:【行程问题】速度×时间=路程①合作行程:速度和×时间=路程和甲的路程+乙的路程=总路程甲的速度×甲的时间+乙的速度×乙的时间=总路程(注意:总路程是指已经行走的路程,未走的路程要扣除)②追及行程:速度差×时间=路程差甲的路程—乙的路程=路程差甲的速度×甲的时间—乙的速度×乙的时间=路程差(注意:路程差是指二者相差的路程,分为先天形成和后天形成两种)③流水行船:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度(静水速度是指船在不受外力影响的作用下,由船本身决定的速度,一般不会改变)【工程问题】工作效率×工作时间=工作总量①合作工程:工作效率和×工作时间=工作总量和甲的工作总量+乙的工作总量=总的工作总量甲的工作效率×甲的工作时间+乙的工作效率×乙的工作时间=总的工作总量(注意:总的工作总量是指已经完成的工作,未完成的工作要扣除)②追及工程:工作效率差×工作时间=工作总量差甲的工作总量—乙的工作总量=工作总量差甲的工作效率×甲的工作时间—乙的工作效率×乙的工作时间=工作总量差(注意:工作总量差是指二者相差的工作量,分为先天形成和后天形成两种)【商品问题】单价×数量=总价售价—成本=利润利润÷成本-利润率【植树问题】(一)在线段上的植树问题可以分为以下三种情形。

【解分式方程的一般步骤】 解分式方程步骤6步

【解分式方程的一般步骤】 解分式方程步骤6步

【解分式方程的一般步骤】解分式方程步骤6步初一列方程解应用题的一般步骤列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:① 时针的速度是0.5°/分② 分针的速度是6°/分③ 秒针的速度是6°/秒1. 一列火车通过隧道,从车头进入道口到车尾离开隧道共需45 秒,当整列火车在隧道里需32 秒,若车身长为180 米,隧道x 米,可列方程为_______________。

浅谈整式方程中的设元技巧

浅谈整式方程中的设元技巧

答 :前年 这个 学校购买 了2 0 台计算机 。 二、 回避题 问,间接设 元 间接 设元就是把题 目中要求 的量 以外 的某 未知量设 为未知
数 ,然 后 用 未 知 数 来 表 示 要 求 的量 。 例2 :小 民和爷 爷在 4 0 0 米 的 环 形 操 场 上 跑 步 , 同 时 同 向
析 问题 与解决 问题 的能力。设元是列方程解应 用题 的第一步 。 恰 当设 元能使列方程更 容易 ,解题更简便 。常用的设元方法有 直接设 元和间接设元 。但对 于一些关系较 复杂 、所求 问题较 多 时 ,直 接 设 元 和 间 接 设 元 不 易 解 决 问题 ,还 需 要 我 们 进 行 整 体 设元和辅助 设元 以及 比例设 元。现举例说 明列 方程 解应用题 中 的 五 种 常 见 设元 技巧 。
答 :爷爷跑2 圈后 ,小 民超过爷爷一圈。
三、着眼全局,整体设元
有些实 际问题 中某一部分未知量 间存在一个整体关系 ,则 可设这一 部分 为一个未 知数 ,称为整体设元 。 例3 :一个五位数,个位数为4 ,此五位数加上6 1 2 0 后所得 的新 五位 数的万位 、干位 、百位 、十位、个位上的数恰巧分别
量 关系可 以直接列 出方程 。 解 :设前年购买计算机x 台 ,依 题 意 得 :
+ 2x + 4x = 1 40 7x = 1 40
X = 20
过程 中被消去 ,不影 响 问题的结果 。这种方法 叫做 “ 辅助 设元
法”,也叫 “ 设而不求法”。 例4 :小 明骑 自行 车 早 上 5 时 从家 里 出 发 , 下午 1 6 时 到达 姑 姑 家 ;哥 哥骑摩托 车上午9 时从家 里 出发 ,下午 l 4 时到达姑姑

解一元一次方程应用题的技巧(综合)

解一元一次方程应用题的技巧(综合)

解一元一次方程应用题的技巧(综合)一元一次方程应用题是七年级上学期的重点当然也是难点,它的学习对今后不等式解应用题以及函数问题有着决定性的意义,如果没有学好它,那今后的学习将显得比较困难. 一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种:1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错;2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算;3,在分数应用题中,我们设单位'1'为X,4,在有比的问题中,我们设一份数为X,5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人.解应用题的基本步骤有:1,依据题目要求设出合适的未知数;2,根据题目实际情况找出等量关系,用文字关系式表示出来;3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程;4,解方程,依据题目问题计算;5,把方程的解代入原题目检验. 其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题:1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?分析:属于和的问题,所以任意设一个为X。

设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是:爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为:X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘.2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?分析:本题没有明显类型,所以直接设问题,设圆柱形容器中的水有X厘米。

题目中的等量关系是隐含的:圆锥形容器中的水的体积=圆柱形容器中水的体积1/3×3.14×(30/2)×(30/2)×8=3.14×(10/2)×(10/2)X解之得X=24.列方程解应用题的过程,是提高分析问题和解决问题能力的重要过程,列方程解应用题的关键是找出题目中的等量关系,再把各部分分别用代数式表示出来,根据题意中的相等关系列出方程,对于设未知数时,一般是问什么就直接设什么,若直接设未知数有难度,可间接设未知数,列方程时,要检查等量关系是否正确,方程两边的量所用单位是否统一,求得方程的解后必须检验,对照应用题看其是否合理。

人教版小学数学六年级下册专题训练11第十一讲 式与方程

人教版小学数学六年级下册专题训练11第十一讲 式与方程

第十一讲式与方程一、知识梳理1.列代数式2.解方程3.用方程解应用题(鸡兔同笼问题、盈亏问题、调配问题)二、方法归纳1.列代数式的方法:直接法、间接法(先列等式,然后将等式变形)2.解方程的方法:算式各部分关系法(倒推法)、天平原理法、移项法。

3.列方程的方法:找到等量关系,把文字语言转化为数学语言。

三、课堂精讲(一)列代数式例1学校有男生x人,女生人数比男生的3倍少20人,女生有()人,女生比男生多()人。

【变式训练1】某水果店运进苹果m千克,比梨的4倍少n千克,运进梨多少千克?正确的是()A.m÷4-nB. (m-n)÷4C. (m+n)÷4D.m×4-n例2如图,用火柴棍拼成一排由三角形组成的图形。

观察规律填下表:(1)填表(2)用99根火柴可以摆多少个三角形?【变式训练2】有一棵树苗,刚栽下去时,树高2.1米,一年后树高2.4米,二年后树高2.7米,三年后树高3米,按照这种规律,预测n年后树高()米。

【规律方法】代数式表达数量关系、表达规律。

(二)解方程 例34(1)275x x += (2)5×3.82-4x=9.5(3)7(x+1.3)=56 (4)(x-6)÷1.5=5(5)4x-24=2x+20 (6)一个数的60%是35的37,求这个数。

【变式训练3】(1)x-80%x=600 (2)74.950.82x ÷-= (3)223x x =-(4)8(x+9)=112 (5)8(x —2)=2(x+7) (6)463154x x --=(7)一个数的5倍减去15与0.8的积,差是6.8,求这个数。

(8)规定a #b=,a ba b+÷已知x #(5#1)=6,求x 的值。

【规律方法】解方程用算式中各部分关系法,移项法。

(三)用方程解应用题例41.四年级某班的同学去植树,他们分了一下小组。

如果增加一小组,正好每小组5人,如果减少一小组,正好每组7人。

初中数学工程实际问题如何设元更简便

初中数学工程实际问题如何设元更简便

初中数学工程实际问题如何设元更简便发布时间:2021-08-02T16:22:35.953Z 来源:《中小学教育》2021年3月第9期(下)作者:黄嘉[导读] 学习不是死记硬背的过程,而是持续探索的过程。

初中数学有相关的问题解决技巧,不仅可以让学生更好地理解所学知识,还可以提高学习动机。

黄嘉南宁经济开发区明阳第二初级中学 530226摘要:学习不是死记硬背的过程,而是持续探索的过程。

初中数学有相关的问题解决技巧,不仅可以让学生更好地理解所学知识,还可以提高学习动机。

学生掌握着探索数学知识的主动权。

本文针对当前的初中数学工程初中数学工程实际问题进行了相关的探究,并提出了设元的解题技巧,希望可以对广大教师今后教学有所指导。

关键词:初中数学;设元;工程初中数学工程实际问题新课程改革的持续深入发展使我国教师面临着新的挑战,教师需要在常规教学过程中不断改进教学思想和教学方法,以帮助学生更好的学习知识。

数学的科目与其他科目不同,很多问题的结果是一样的,但是过程却有很大的不同,解决问题的能力对知识的掌握起着重要的作用。

在初中数学的学习中,应用数学知识解决初中数学工程实际问题是一类重要题型,其中列方程解应用题是常见的一种,也是中考的高频题型。

列方程解应用题是将初中数学工程实际问题转化为数学问题,利用常见的数量关系列出代数式,根据能反映应用题全部含义的等量关系建立方程,通过解方程得到初中数学工程实际问题的答案。

选择适当的未知数是列方程解应用题的重要步骤,设什么为元,需要根据具体问题的条件来确定。

根据所设未知数与数学工程实际问题的关系。

一、当前初中数学教学现状(一)教师教学方式古板,教学模式僵化许多受传统教育概念影响的,初中数学教师在日常教学中使用传统的教学方法,盲目地向学生灌输知识,不知道如何让学生自己去探索,在这种教学模式下,学生无法学到更多的东西。

(二)学生们基础水平差,课堂积极性不足许多学生没有在小学阶段打下坚实的基础,在中学阶段,随着课程的增加,他们被所学的知识所压倒,许多学生产生了放弃数学的想法。

2020年初一数学一元一次方程的13种应用题型全解析

2020年初一数学一元一次方程的13种应用题型全解析

一、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

二、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

(完整版)小升初数学讲义专题讲义15讲(基础+提高)

(完整版)小升初数学讲义专题讲义15讲(基础+提高)

第一讲:四大重点全方位训练之一—计算与简算(1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 第二讲:四大重点全方位训练之一—计算与简算(2)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4 第三讲:解较复杂的方程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 第四讲:列方程解应用题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10 第五讲:和差、和倍及差倍应用题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 第六讲:算术法解分数应用题——玩转对应关系(1)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14 第七讲:算术法解分数应用题——玩转对应关系(2)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17 第八讲:算术法解分数应用题——玩转单位“1”‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20 第九讲:经典分数应用题类型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23 第十讲:工程问题(一)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27 第十一讲:工程问题(二)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 第十二讲:工程问题(三)‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33 第十三讲:牛吃草问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36 第十四讲:行程中的相遇问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38 第十五讲:行程中的追击问题‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥412010+⨯98100+⨯9702++2010+122011+++++505050⎛⎫+++⎪⎝⎭123-9+⎪⎭⎝ 9900+122010+++++。

小学数学解方程答题技巧附练习题提高孩子做题速度

小学数学解方程答题技巧附练习题提高孩子做题速度

小学数学解方程答题技巧附练习题,提高孩子做题速度!同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。

列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。

如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。

一、首先是审题,确定未知数。

审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键。

“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。

解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

【核心考点突破】2023学年七年级数学上册精选专题培优讲与练(人教版)设元的五种技巧-原卷版

【核心考点突破】2023学年七年级数学上册精选专题培优讲与练(人教版)设元的五种技巧-原卷版

设元的五种技巧(原卷版)【专题精讲】解应用题时,设元是常用来解题的方法,通过设元可以找到条件和结论之间的联系,准确、恰当地设元往往有助于简化解题过程,达到事半功倍的作用,设什么元需要根据具体问题的条件确定,就常见的设元法简析如下:1.直接设元法就是将题目中需要求的量直接设为未知元,即求什么设什么,这是最常用的设元法。

1.(2022·全国·七年级专题练习)A,B两地相距448km,一列慢车从A地出发,速度为60km/h,一列快车从B地出发,速度为80km/h,两车相向而行,慢车先行28min,快车开出多长时间后两车相遇?2.(2022·全国·七年级专题练习)甲乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点13千米,已知甲车比乙车每小时多行3千米,A、B两城相距多少千米?3.(2022·江西赣州·七年级期末)石城县矿山机械设备闻名省内外.在某矿山机械设备车间工人正在紧张地按订单进度进行生产,若每人每天平均可以生产轴承12个或者轴杆16个,1个轴承与2个轴杆组成一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.(2022·辽宁大连·七年级期末)列一元一次方程解应用题∶某社区为响应抗击“新冠病毒”号召,组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排20个志愿者,在乙街道安排12个志愿者,但到现场后发现任务较重,决定增派16名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的2倍,请问新增派的志愿者中有多少名去支援甲街道?2.间接设元法对于直接设元比较困难的问题,通常可以间接设元,所设的量不是要求的,但更易找出符合题意的等量关系,这种把题中要求量以外的量设为未知元的方法,称为间接设元法。

5.(2021·江苏·南通市八一中学七年级阶段练习)列一元一次方程解应用题:在风速为24 km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8 h,它逆风飞行同样的航线要用3h.求无风时这架飞机在这一航线的平均航速和两机场之间的航程.6.(2021·湖北·襄阳市樊城区青泥湾中学七年级阶段练习)小刚和小强分别从A、B两地出发,小刚骑自行车,小强步行,沿同一线路相向匀速而行,出发两小时两人相遇,相遇时小刚比小强多走了24千米,相遇后0.5小时小刚到达B点.(1)两人的行驶速度各是多少?(2)AB两地相距多少千米?7.(2022·河南驻马店·七年级期末)在一条铁路上,有甲,乙两个站,相距408千米,一列慢车从甲站开出每小时行72千米,一列快车从乙站开出,每小时行96千米,若两车同向而行,几小时后两车相距60千米?8.(2022·全国·九年级专题练习)在比例尺是1:3000000的地图上,量得两地之间的距离是10厘米,甲、乙两车同时从两地相向而行,2小时后,两车相遇,已知甲、乙两车的速度比是3:2,甲、乙两车的速度各是多少?3.整体设元法3个有些问题未知量太多,而等量关系又太少,若末知量的某一部分存在一个整体关系,则可设这一部分为未知数,这样就成少了设未知数的个数,这种设元的方法叫做整体设元法。

北京版数学七年级上册《列一元一次方程解应用题——和、差、倍、分问题》教学设计

北京版数学七年级上册《列一元一次方程解应用题——和、差、倍、分问题》教学设计

北京版数学七年级上册《列一元一次方程解应用题——和、差、倍、分问题》教学设计一. 教材分析本节课的教学内容是北京版数学七年级上册中的《列一元一次方程解应用题——和、差、倍、分问题》。

这部分内容是在学生已经掌握了方程的解法以及一元一次方程的基本概念的基础上进行学习的,旨在让学生能够运用一元一次方程解决实际问题。

教材中给出了丰富的例题和练习题,供学生巩固所学知识。

二. 学情分析面对七年级的学生,他们在之前的学习中已经初步建立了数学模型的概念,具备了一定的逻辑思维能力。

但是对于一元一次方程在实际问题中的应用,他们可能还存在着一定的困难。

因此,在教学过程中,需要注重引导学生将实际问题转化为数学模型,培养他们的建模能力。

三. 教学目标1.知识与技能:使学生掌握一元一次方程在解决和、差、倍、分问题中的应用,能够正确列出方程并求解。

2.过程与方法:通过解决实际问题,培养学生将问题转化为数学模型的能力,提高他们的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们运用数学解决实际问题的意识。

四. 教学重难点1.重点:一元一次方程在解决和、差、倍、分问题中的应用。

2.难点:如何将实际问题转化为数学模型,并正确列出方程。

五. 教学方法采用问题驱动法,通过引导学生解决实际问题,培养他们的建模能力。

同时,运用讲解法、演示法、练习法等,使学生能够熟练掌握一元一次方程在解决和、差、倍、分问题中的应用。

六. 教学准备1.教案:提前准备详细的教学设计,明确每个环节的目标和内容。

2.课件:制作课件,辅助讲解,使学生更直观地理解知识。

3.练习题:准备适量的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学模型来解决这类问题。

例如:甲、乙两地相距100公里,甲地一辆汽车以60公里/小时的速度出发,乙地一辆汽车以80公里/小时的速度出发,两车同时出发,几小时后两车相遇?2.呈现(10分钟)讲解如何将这个问题转化为数学模型,并引导学生列出方程。

7年级数学上册(人教版)课件专项训练——列一元一次方程解应用题的设元技巧

7年级数学上册(人教版)课件专项训练——列一元一次方程解应用题的设元技巧

6.某商场销售某种高端品牌的家用电器,若按标价 八折销售该电器 1 件,则获利润 500 元,其利润率为 20%. 现若按同一标价九折销售该电器 1 件,则获得的纯利润 是___8_7_5___元.
解析:设该商品的标价为 x 元.由题意,得 0.8x-2500%0 =500.解得 x=3 750.所以 3 750×0.9-2500%0 =875(元).即 获得的纯利润是 875 元.
3.为了节约能源,某物业公司按以下规定收取每月 电费;若用电不超过 140 度,则按每度 0.43 元收费;若 超过 140 度,则超过部分按每度 0.57 元收费.如果某用 户四月份的电费平均每度 0.5 元,那么该用户四月份用 电多少度?应缴电费多少元?
解:设该用户四月份用电 x 度,则应缴电费 0.5x 元. 由题意,得 0.43×140+0.57(x-140)=0.5x. 解得 x=280.所以 0.5x=140. 答:该用户四月份用电 280 度,应缴电费 140 元.
类型二 间接设未知数 5.服装店销售某款服装,一件服装的标价为 300 元.若按标价的八折销售,仍可获利 60 元,则这款服装 每件的标价比进价多__1_2_0____元. 解析:设这款服装每件的进价为 x 元.由题意,得 x +60=300×0.8.解得 x=180.所以 300-x=120.即这款服 装每件的标价比进价多 120 元.
D.x5+.254=x-624
2.某校组织师生春游,如果单独租用 45 座客车若 干辆,刚好坐满;如果租用 60 座客车,可少租 1 辆,且 余 30 个空座位.求该校参加春游的人数.
解:设该校参加春游的人数为 x. 由题意,得4x5=x+6030+1.解得 x=270. 答:该校参加春游的人数为 270.

列二元一次方程组解应用题的基本步骤与设题技巧

列二元一次方程组解应用题的基本步骤与设题技巧

列二元一次方程组解应用题的基本步骤与设题技巧列二元一次方程组解应用题的基本步骤与设题技巧一.列二元一次方程组解应用题的步骤1.弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;2.找出能够表示应用题全部含意的两个相等关系;3.根据两个相等关系列出代数式,从而列出两个方程并组成方程组;4.解这个二元一次方程组,求出未知数的值;5.检查所得结果的正确性及合理性;6.写出答案(例1 甲、乙两人的收入之比为4?3,支出之比为8?5,一年间两人各储存了500元,求两人的年收入各是多少,二、设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个(例2 李红用甲、乙两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元(已知这两种储蓄的年利率的和为3.24,,问这两种储蓄的年利率各是百分之几, 公民应交利息所得税,利息金额×20,((2)设间接未知数:即设的不是所求量(有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程( 例3 、甲、乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112,,乙厂完成了计划的110,,两厂共生产了机床400台,问上月两厂各超额生产了机床多少台,(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解(例4 怎样把45分成甲、乙、丙、丁四个数,使甲数加2,乙数减2,丙数加倍,丁数减半的结果相等,(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数(例5 甲车和乙车共坐了93人,乙车和丙车共坐了96人,丙车和丁车共坐了98人,问甲车和丁车共坐了多少人,【巩固练习】1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛,2. 某厂买进甲、乙两种材料共56吨,用去9860元。

-五年级上册数学导学案-第11讲-简易方程(沪教版)有答案

-五年级上册数学导学案-第11讲-简易方程(沪教版)有答案

学员姓名:学科教师:年级:辅导科目:授课日期时间主题简易方程教学内容1、初步掌握列方程解应用题的步骤;2、在理解题意的基础上正确寻找“和倍”、“差倍”、“和差”应用题的等量关系,初步掌握列方程解两、三步计算的简单实际问题。

➢用字母表示数➢化简与求值一、导入:1.用简便方法表示下列各式。

2×x a×1 b×t2×a+2×b答案:2x a bt2a+2b2.填空,并口答利用了什么运算定律。

50×23×2=(50 ×2)×2325×a×4=(25 ×4)×a31×47+31×53=(47 +53)×317×t+3×t=(7+3)×t3.用字母式子表示下面的数量关系。

文具店卖出15支钢笔,每支售价a元;卖出12支圆珠笔,每支售价b元(1)卖出钢笔和圆珠笔,一共收款多少元?(2)卖出钢笔比卖出圆珠笔多收款多少元?答案:(1)15a+12b; (2) 15a-12b➢方程的概念1、方程的意义:(1)用等号表示相等关系的式子叫做等式。

例如:3+3.5=6.5、2.7-x=1.4都是等式。

(2)方程的意义:含有未知数的等式叫做方程。

例如:2x=3、2.7-x=1.4、x÷3.2=16等都是方程。

(3)方程与等式的关系:方程都是等式,但等式不一定是方程。

例如:35÷5=7是等式,2x=3是方程。

:例题1:(1)、小花今年12岁,比小兰大a岁,小兰今年()岁。

试一试:根据下列问题,设未知数并列出方程:(1)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?(2)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?答案:(1)设宽为xcm,则长为1.5xcm2(x+1.5x)=24x=4.8(2) 设学校有x个学生52%x-48%x=80X=2000一、填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一讲 列方程解应用题——设元的技巧
应用题联系生活实际,反映实际生活中的数量关系,列方程解应用题是从具体问题中抽象归纳出所需要的数量关系,根据数量间的关系,依照题意合理选择未知数、找出隐含的等量关系,列方程进行求解.
恰当地设元是列方程解应用题的关键步骤之一,设什么为元,需要根据具体问题的条件来确定.
对未知元的选择,有时可将要求的量设为未知元(即问什么设什么),称此为直接设元;有时需要将要求的量以外的其他量设为未知元(即所设的不是所求的,则更易找出符合题意的数量关系),称此为间接设元;有些应用题中隐含一些未知的常量,这些量对于求解无直接联系,但如果不指明这些量的存在,则难求其解,因此需把这些未知的常量设为参数,以便建立等量关系,称此为辅助设元.
【例1】 如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为 . (济南市中考题)
思路点拨 要求长方形的面积需求出务正方形的边长,为便于求出长方形长与宽,故不宜直接设元,由于6个正方形边长有一定的依存关系,所以,可以从间接设某个正方形边长
入手.
注: 列方程解应用题又一关键是:找寻能够表示应用题全部意义的相等关系,找寻相等关系的基本方法有:
(1)运用基本公式找寻相等关系; (2)从关键词中找寻基本关系;(3)运用不变量找寻相等关系;(4)对一种“量”,从不同的角度进行表述(即计算两次),得到相等关系.
【例2】一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( ).
A .0.5小时
B .1小时
C . 1.,2小时
D .1.5小时 (2001年武汉市选拔赛试题)
思路点拨 要求从乙港返回甲港所需的时间,需求甲、乙两港的距离及顺水速度,考虑增设辅助未知数.
【例3】某音乐厅月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,
其中团体票占总票数的
3
2
,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体票数的5
3
;零售票每张16元,共售出零售票数的—半,如果在六月份
内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平? (北京市东城区中考题)
思路点拨 票款与票数、票价有关,既要用字母表示六月份零售价,又要用字母表示总票数.
【例4】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.
(全国初中联赛试题)
思路点拨 因售出价=进货价×(1+利润率),故还需设出进货价,利用售出价不变,辅助建立方程.
【例5】 有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:
(1) 如果放牧16头牛,几天可以吃完牧草? (2) 要使牧草永远吃不完,至多放牧几头牛?
(全国通讯赛试题)
思路点拨 需要考虑草每天的增长量、每头牛每天的吃草量及牧场原有的草量之间的关系,故需增设一些辅助未知数,便于把这些关系表示出来.
注: 应用数学知识和方法解决实际问题是学习数学的重要目的之一.而列方程解应用题对初一同学来说是一个困难所在,学习列方程解应用题应注重两个方面:(1)促使综合型思维向分析型思维的转轨.从各个侧面分析列方程的来龙去脉,突破小学形成的固有的综合思维模式(从已知出发列综合算式求未知数,形成分析思维模式. (2)善于把应用题中的生活语言转换成数学语言.应留心生活,多看报刊杂志电视,注意生活常识的积累.有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知敷辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求”.
学力训练
1.一个6位数abcde 2的3倍等于9abcde
,则这个6位数等于 . 2.有人问一位老师:他教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位学生正在操场踢足球.”则这个“特长班”共有学生 人.
3.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需 小时. ( “希望杯”邀请赛试题)
4.某种产品是由A 种原料x 千克、B 种原料y 千克混合而成,其中A 种原料每千克50元,B 种原料每千克40元,后来调价,A 种原料价格上涨l0%,B 种原料价格减少15%,经核算产品价格可保持不变,则y x :的值是( ). A .
32 B .65 C .56 D .34
55 5.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,
再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是( ).
A .5千克
B .6千克
C .7千克
D .8千克
6.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费,已知某用户4月份的煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费( ).
A .60元
B .66元
C .75元
D .78元 (全国初中数学联赛试题)
7.某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了m 件.为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高lo %,要使销售利润(销售利润=销售价一成本价)保持不变,该产品每件的成本价应降低多少元? (陕西省中考题)
8.如图,几块大小不等的正方形纸片A 、B 、……,I ,无重叠地铺满了一块长方形.已知正方形纸片E 的边长为7,求其余务正方形的边长. 9.某人购买钢笔和圆珠笔各若干支,钢笔的价格是圆珠笔价格的2倍,付款时,发现所买两种笔的数量颠倒了,因此,比计划支出增加了50%,则此人原计划购买钢笔与圆珠笔数量的比为 .
10.电影胶片绕在盘上,空盘的盘心直径为60毫米.现有厚度为0.15
毫米的胶片,它紧绕在盘上共有600圈,那么这盘胶片的总长度约为 米(π≈3.14). (江苏省竞赛题)
11.为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 天.
12.完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( ). A .2.8 B .3 C .6 D . 12 13.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费16m ,则该职工这个月实际用水为( )立方米. A .13 B .14 C .18 D .26 (广西省中考题)
14.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ). A .25% B .40% C .50% D .66.7%
15.某水库共有6个相同的泄洪闸,在无上游洪水注入的情况下,打开一个水闸泄洪使水库水位以a 米/时匀速下降.某汛期上游的洪水在未开泄洪闸的情况下使水库水位以b 米/时匀速上升,当水库水位超警戒线^米时开始泄洪.
(1)如果打开n个水闸泄洪x小时,写出表示此时相对于警戒线的水面高度的代数式;
(2)经考察测算,如果只打开一个泄洪闸,则需30个小时水位才能降至警戒线;如果同时打开两个泄洪闸,则需10个小时水位才能降至警戒线.问该水库能否在3个小时内使水位降至警戒线?
(连云港市中考题)
16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次船运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:
(1)乙车每次所运货物量是甲车每次所运货物量的几倍?
(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1
吨运费20元计算)
(天津市中考题)
17.某同学想用5个边长不等的正方形,拼成如图所示的正方形,请问该
同学的想法能实现吗?如果能实现,试求这5个正方形的边长;如果不能,
请说明理由.
( “希望杯”邀请赛试题)
18.山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量
相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完? (江苏省竞赛题)
参考答案。

相关文档
最新文档