计算机图像处理实验
图像处理实验报告
图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
图像分割处理实验报告
图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。
图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。
本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。
2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。
每张图像的分辨率为500x500像素。
2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。
2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。
在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。
2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。
在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。
2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。
3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。
然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。
相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。
通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。
3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。
数字图像处理实验报告 (图像编码)
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
东北大学matlab计算机图像处理实验报告
计算机图像处理实验报告学院:信息学院班级:姓名:学号:实验内容:数字图像处理1、应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换;(1)、显示一副真彩RGB图像代码:I=imread('mikasa.jpg');>>imshow(I);效果:(2)、RGB转灰度图像代码:graycat=rgb2gray(I);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(graycat);效果:(3)、RGB转索引图像代码:[indcat,map]=rgb2ind(I,0.7);>> subplot(1,2,1);>> subimage(I);>> subplot(1,2,2);>> subimage(indcat,map);效果:(4)、索引图像转RGB代码:I1=ind2rgb(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(I1);效果:(5)、索引转灰度图像代码:i2gcat=ind2gray(indcat,map);>>subplot(1,2,1);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2gcat);效果:(6)、灰度转索引图像代码:[g2icat,map]=gray2ind(graycat,64);>>subplot(1,2,1);>>subimage(graycat);>>subimage(g2icat,map);效果:(7)、RGB转二值图像代码:r2bwcat=im2bw(I,0.5);>>subplot(1,2,1);>>subimage(I);>>subplot(1,2,2);>>subimage(r2bwcat);效果:(8)灰度转二值图像代码:g2bwcat=im2bw(graycat,0.5); subplot(1,2,1);>>subimage(graycat);>>subplot(1,2,2);>>subimage(g2bwcat);效果:(9)、索引转二值图像代码:>> i2bwcat=im2bw(indcat,map,0.7);>>subimage(indcat,map);>>subplot(1,2,2);>>subimage(i2bwcat);效果:2、应用MATLAB工具箱演示一幅图像的傅里叶变换、离散余弦变换,观察其频谱图。
数字图像处理图像变换实验报告.
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用和意义;4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。
图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。
计算机图形学实验报告
计算机图形学实验报告
实验目的:通过本次实验,深入了解并掌握计算机图形学的基本原理和相关技术,培养对图形处理的理解和能力。
实验内容:
1. 图像的基本属性
- 图像的本质及表示方法
- 像素和分辨率的概念
- 灰度图像和彩色图像的区别
2. 图像的处理技术
- 图像的采集和处理
- 图像的变换和增强
- 图像的压缩和存储
3. 计算机图形学的应用
- 图像处理在生活中的应用
- 计算机辅助设计中的图形学应用
- 三维建模和渲染技术
实验步骤和结果:
1. 在计算机图形学实验平台上加载一张测试图像,分析其像素构成
和基本属性。
2. 运用图像处理技术,对测试图像进行模糊、锐化、色彩调整等操作,观察处理后的效果并记录。
3. 学习并掌握计算机图形学中常用的处理算法,如卷积、滤波等,
尝试应用到测试图像上并进行实验验证。
4. 探讨计算机图形学在数字媒体制作、虚拟现实、计算机辅助设计
等领域的应用案例,并总结其在实践中的重要性和价值。
结论:
通过本次实验,我对计算机图形学有了更深入的了解,掌握了图像
处理技术的基本原理和应用方法。
计算机图形学作为一门重要的学科,对多个领域有着广泛的应用前景,有助于提高数字媒体技术、虚拟现
实技术等领域的发展水平。
希望在未来的学习和工作中能进一步深化
对计算机图形学理论和实践的研究,不断提升自己在这一领域的专业
能力和创新意识。
关于图形图像处理实训报告总结【九篇】
关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。
大学计算机实验:图像处理习题与答案
一、单选题1、以下属于PhotoShop专用的图像文件格式的是()。
A、TGAB、TIFC、GIFD、PSD正确答案:D2、下列属于Photoshop图象最基本的组成单元是()。
A、色彩空间B、节点C、像素D、路径正确答案:C3、在Photoshop中,RGB颜色模式所代表的三种基本颜色是()。
A、红绿黄B、红绿蓝C、蓝红橙D、绿蓝紫正确答案:B4、在通道中()代表选择的区域。
A、白色B、红色C、黑色D、绿色正确答案:A5、笔刷面板中,笔刷的直径是以()为单位。
A、厘米B、英寸C、毫米D、像素正确答案:D6、在用Photoshop CS编辑图像时,可以还原多步操作的面板是()。
A、图层面板B、路径面板C、动作面板D、历史记录面板正确答案:D7、在用Photoshop CS编辑图像时,只能用来选择规则图形的工具是()。
A、矩形选框工具B、魔棒工具C、套索工具D、钢笔工具正确答案:A8、图象分辨率的单位是()。
A、lpiB、pixelC、dpiD、ppi正确答案:D9、色彩深度是指在一个图象中()的数量。
A、饱和度B、灰度C、颜色D、亮度正确答案:C10、Photoshop CS中,在图层面板中不可以调节的参数是()。
A、透明度B、图层大小C、编辑锁定D、显示隐藏正确答案:B11、使用圆形选框工具时,需配合()键才能绘制出正圆。
A、SHIFTB、Photoshop不能画正圆C、TABD、CTRL正确答案:A12、下面这些选择工具形成的选区可以被用来定义画笔的形状的是()。
A、矩形工具B、套索工具C、椭圆工具D、魔棒工具正确答案:A13、在Photoshop CS中,下列说法不正确的是()。
A、“色相/饱和度”命令可以调整图像中特定颜色分量的色相饱和度和明度。
B、“色阶”命令可以调整图像的暗调、中间调和高光等强度级别,校正图像的色调范围和色彩平衡。
C、“亮度/对比度”命令可以调节图像的亮度及对比度,值为正数时,增强亮度和对比度,值为负数时相反。
数字图像处理实验报告
数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。
图像处理是信号处理在图像域上的一个应用。
目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。
此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。
然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。
(完整word版)数字图像处理实验 ——图像恢复
数字图像处理实验——图像恢复班级:信息10—1姓名:张慧学号:36实验四、图像复原一、实验目的1了解图像退化原因与复原技术分类化的数学模型;2熟悉图像复原的经典与现代方法;3热练掌握图像复原的应用;4、通过本实验掌握利用MATLAB编程实现数字图像的图像复原。
二、实验原理:图像复原处理是建立在图像退化的数学模型基础上的,这个退化数学模型能够反映图像退化的原因。
图像的退化过程可以理解为施加于原图像上的运算和噪声两者联合作用的结果,图像退化模型如图1所示,可以表示为:g ( x, y ) H [ f ( x, y )] n( x, y ) f ( x, y )h( x, y ) n( x, y) (1)图1 图像退化模型(1)在测试图像上产生高斯噪声lena图-需能指定均值和方差;并用滤波器(自选)恢复图像;噪声是最常见的退化因素之一,也是图像恢复中重点研究的内容,图像中的噪声可定义为图像中不希望有的部分。
噪声是一种随机过程,它的波形和瞬时振幅以及相位都随时间无规则变化,因此无法精确测量,所以不能当做具体的处理对象,而只能用概率统计的理论和方法进行分析和处理。
本文中研究高斯噪声对图像的影响及其去噪过程。
①高斯噪声的产生:所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。
一个高斯随机变量z的PDF可表示为:P(z)()22x pz u2σ-⎡⎤-⎢⎥⎣⎦(2)其中z代表灰度,u是z的均值,σ是z的标准差。
高斯噪声的灰度值多集中在均值附近。
图2 高斯函数可以通过不同的算法用matlab 来产生高斯噪声。
②高斯噪声对信号的影响噪声影响图像处理的输入、采集、处理的各个环节以及输出结果的全过程,在图像中加高斯噪声通常会使图像变得模糊并且会出现细小的斑点,使图像变得不清晰。
③去除高斯噪声的一些方法去除高斯噪声的方法有直方图变换,低通滤波,高通滤波,逆滤波,维纳滤波,中值滤波等。
本文应用高斯平滑滤波进行去噪处理。
基于Matlab的图像处理算法优化与实验
基于Matlab的图像处理算法优化与实验一、引言图像处理是计算机视觉领域的重要分支,随着数字图像技术的不断发展,图像处理算法在各个领域得到了广泛的应用。
Matlab作为一种强大的科学计算软件,提供了丰富的图像处理工具和函数,为研究人员提供了便利。
本文将探讨基于Matlab的图像处理算法优化与实验,旨在提高图像处理算法的效率和准确性。
二、图像处理算法优化1. 图像去噪图像去噪是图像处理中常见的问题,影响着图像的清晰度和质量。
在Matlab中,可以利用各种去噪算法对图像进行处理,如中值滤波、均值滤波、小波变换等。
通过比较不同算法的效果和速度,优化选择最适合的去噪方法。
2. 图像增强图像增强旨在改善图像的视觉效果,使其更加清晰和易于分析。
在Matlab中,可以使用直方图均衡化、灰度变换等方法对图像进行增强。
通过调整参数和比较实验结果,优化图像增强算法,提高图像的质量。
3. 特征提取特征提取是图像处理中的关键步骤,用于从原始图像中提取出有用信息。
在Matlab中,可以利用各种特征提取算法,如边缘检测、角点检测、纹理特征提取等。
通过优化算法参数和选择合适的特征描述子,提高特征提取的准确性和稳定性。
三、实验设计与结果分析1. 实验环境搭建在进行图像处理算法优化实验前,需要搭建合适的实验环境。
选择适当的Matlab版本和工具箱,并准备测试用的图像数据集。
2. 实验步骤步骤一:对比不同去噪算法在同一张图片上的效果,并记录去噪前后的PSNR值。
步骤二:比较不同图像增强方法对同一张图片的效果,并进行主观评价。
步骤三:提取同一组图片的特征,并比较不同特征提取算法的性能。
3. 实验结果分析根据实验数据和结果分析,可以得出以下结论: - 在某些情况下,中值滤波比均值滤波效果更好; - 直方图均衡化对于低对比度图像效果显著; - Harris角点检测在复杂背景下表现更稳定。
四、结论与展望通过基于Matlab的图像处理算法优化与实验研究,我们可以得出一些有益的结论,并为未来研究方向提供参考。
关于图形图像处理实训报告总结
关于图形图像处理实训报告总结近年来,图形图像处理技术在计算机科学领域得到了广泛的应用。
图形图像处理技术可以通过数字图像处理算法和计算方法对图像进行编辑、修饰、增强、处理等,对于我们日常生活和工作中的图像处理有着非常重要的意义。
因此,进行图形图像处理实训是非常必要且重要的。
在实训中,我们首先学习了Python语言的基础知识和常用的Python库,包括Numpy、Pandas、Matplotlib、OpenCV等。
这些工具既通过Python语言进行使用,也相互交互,实现了图形图像处理的各个方面。
通过理论学习及实践操作,我们掌握了基础的图像处理算法,如图像读取、图像灰度转换、边缘检测、图像分割、直方图均衡、模板滤波等。
此外,我们还学习和实践了高级的图像处理算法,如哈尔小波变换、离散余弦变换、小波包变换、分形压缩等。
本次实训最大的收获是在学习和实践过程中深刻认识到图形图像处理算法对于应用的极大意义。
在实践中,我们发现不同的算法和不同的应用场景需要不同的算法参数。
例如,在进行边缘检测算法时,不同的影响因素、膨胀系数、卷积核大小对于结果有着决定性的影响。
因此,我们需要深入掌握图像处理算法并熟练运用不同的参数和组合方式,才能够解决实际问题。
此外,在实践操作中,我们还深入了解了计算机视觉技术和人工智能技术的发展现状和应用前景。
纵观人工智能技术的发展历程,我们发现图形图像处理技术已经成为人工智能应用的重要组成部分。
由于数字摄像机技术和计算机图形图像处理技术的跨越式发展,许多智能相机的应用正在变得越来越方便和普及。
例如,现今的智能相机已经可以实现人脸识别、目标跟踪、智能控制等功能。
而随着计算机视觉技术和人工智能技术的发展,图形图像处理技术将越来越广泛地应用于安防、交通、医疗、电子商务、娱乐等各个领域。
本次实训的收获不仅仅体现在理论知识的掌握,还有对于计算机科学应用的深刻认识。
在实践过程中,我们深刻认识到计算机科学和技术的广泛应用和重要意义。
图像增强实验报告
图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。
灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。
令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a',b'],线性拉伸的公式为:b'?a'g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。
非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。
)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。
图像的平滑是一种消除噪声的重要手段。
图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。
图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。
图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。
四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。
图像处理综合实验报告
图像处理综合实验报告一、引言图像处理是计算机科学中的重要研究领域,其应用范围广泛,涵盖了图像增强、图像分割、图像识别等多个方面。
本实验旨在通过综合实验的方式,探索图像处理的基本方法和技术,并对实验结果进行分析和总结。
二、实验目的1. 了解图像处理的基本概念和原理;2. 熟悉常用的图像处理工具和算法;3. 掌握图像处理中常见的操作和技术;4. 分析实验结果并提出改进意见。
三、实验步骤1. 实验准备在实验开始之前,我们需要准备一台计算机和图像处理软件,例如MATLAB、Python等。
同时,需要收集一些图像数据作为实验样本。
2. 图像增强图像增强是图像处理中常用的操作,旨在改善图像的质量和视觉效果。
我们可以通过调整图像的亮度、对比度、色彩等参数来实现图像增强。
在实验中,我们可以选择一些常见的图像增强算法,如直方图均衡化、灰度拉伸等。
3. 图像滤波图像滤波是图像处理中常用的技术,用于去除图像中的噪声和平滑图像。
常见的图像滤波算法包括均值滤波、中值滤波、高斯滤波等。
在实验中,我们可以选择适合实验样本的滤波算法,并对比不同滤波算法的效果。
4. 图像分割图像分割是将图像划分为不同的区域或对象的过程。
常见的图像分割算法包括阈值分割、边缘检测、区域生长等。
在实验中,我们可以选择一种或多种图像分割算法,并对比它们的分割效果和计算复杂度。
5. 图像识别图像识别是图像处理的重要应用之一,它可以用于识别和分类图像中的对象或特征。
在实验中,我们可以选择一些常用的图像识别算法,如模板匹配、神经网络等,并通过实验样本进行图像识别的实验。
四、实验结果与分析1. 图像增强实验结果我们选取了一张低对比度的图像作为实验样本,经过直方图均衡化和灰度拉伸处理后,图像的对比度得到了明显的改善,细节部分更加清晰。
2. 图像滤波实验结果我们选取了一张带有高斯噪声的图像作为实验样本,经过均值滤波、中值滤波和高斯滤波处理后,图像的噪声得到了有效的去除,图像更加平滑。
计算机图像处理三
姓名蒋安祥学号222015322092089 班级 2 年级/专业电气工程及其自动化实验日期2017/6/17 实验学时 3 同组人实验成绩(五级记分) 指导教师签字年月日课程名称:计算机图像处理实验名称:实验三图像增强技术实验一、实验目的(1)了解图像频域变换和几何变换的目的和意义。
(2)掌握MATLAB中常用的图像增强函数的使用方法。
(3)掌握图像傅灰度变换、图像平滑和图像锐化的算法原理。
二、实验内容(包括源程序和程序运行结果)(1)编写程序利用函数imadjust对灰度图像pout.tif进行对比度变换,显示变换前后的图像。
源程序:clear,clc;close all;i1=imread('pout.tif');subplot(221);imshow(i1),title('原始图像');subplot(222);i2=imadjust(i1,[0 1],[0.3 0.7]);imshow(i2),title('变换图像');subplot(223);k=(0.7-0.3)/(1-0);x=0:255;y=k*x+0.3;plot(x,y);程序运行结果:(2)编写程序对灰度图像pout.tif进行直方图均衡化显示均衡化前后的直方图。
源程序:clear,clc;close all;i1=imread('pout.tif');subplot(221);imshow(i1),title('原始图像');subplot(222);imhist(i1),title('原始直方图');i2=histeq(i1,256);subplot(223);imshow(i2),title('均衡化后的图像');subplot(224);imhist(i2),title('均衡化后的直方图’);程序运行结果:(3)编写程序对灰度图像pout.tif分别添加三种不同类型的噪声,并显示加噪声前后的图像。
数字图像处理课程内容及要求
《数字图像处理》实验内容及要求实验内容一、灰度图像的快速傅立叶变换1、 实验任务对一幅灰度图像实现快速傅立叶变换(DFT ),得到并显示出其频谱图,观察图像傅立叶变换的一些重要性质。
2、 实验条件微机一台、vc++6。
0集成开发环境。
3、实验原理傅立叶变换是一种常见的图像正交变换,通过变换可以减少图像数据的相关性,获取图像的整体特点,有利于用较少的数据量表示原始图像。
二维离散傅立叶变换的定义如下:112()00(,)(,)ux vy M N j M Nx y F u v f x y eπ---+===∑∑傅立叶反变换为:112()001(,)(,)ux vy M N j M Nu v f x y F u v eMNπ--+===∑∑式中变量u 、v 称为傅立叶变换的空间频率。
图像大小为M ×N.随着计算机技术和数字电路的迅速发展,离散傅立叶变换已经成为数字信号处理和图像处理的一种重要手段。
但是,离散傅立叶变换需要的计算量太大,运算时间长。
库里和图基提出的快速傅立叶变换大大减少了计算量和存储空间,因此本实验利用快速傅立叶变换来得到一幅灰度图像的频谱图。
快速傅立叶变换的基本思路是把序列分解成若干短序列,并与系数矩阵元素巧妙结合起来计算离散傅立叶变换.若按照奇偶序列将X(n)进行划分,设:()(2)()(21)g n x n h n x n =⎧⎨=+⎩ (n=0,1,2, (12)-)则一维傅立叶变换可以改写成下面的形式:1()()N mnNn X m x n W -==∑11220()()N N mn mnN N n n g n W h n W --===+∑∑ 1122(2)(21)(2)(21)NN m n m n N N n n x n W x n W --+===++∑∑1122022(2)(21)NN mn mn mN N N n n x n W x n W W --===++∑∑ =G(m)+mN W H(m)因此,一个求N 点的FFT 可以转换成两个求2N点的 FFT 。
opencv实验报告
opencv实验报告OpenCV实验报告引言:计算机视觉是一门研究如何使计算机“看”的学科,而OpenCV(Open Source Computer Vision Library)则是计算机视觉领域中最为常用的开源库之一。
本文将介绍我在学习和实践OpenCV过程中的一些实验和心得体会。
一、图像处理实验1.1 灰度图像转换在图像处理中,灰度图像转换是一个常见的操作。
通过OpenCV的函数,我们可以将彩色图像转换为灰度图像,这样可以方便后续的处理。
实验中,我使用了一张彩色图片,通过OpenCV提供的函数将其转换为灰度图像,并将结果进行了展示和比较。
1.2 图像平滑图像平滑是一种常见的图像处理技术,可以去除图像中的噪声,使图像更加清晰。
在实验中,我尝试了使用OpenCV中的高斯滤波和均值滤波两种方法对图像进行平滑处理,并对比了它们的效果和处理速度。
二、图像特征提取实验2.1 边缘检测边缘检测是图像处理中的重要任务之一,它可以帮助我们识别图像中的边缘和轮廓。
在实验中,我使用了OpenCV提供的Sobel算子和Canny算子两种方法对图像进行边缘检测,并对比了它们的效果和处理速度。
2.2 特征点检测特征点检测是计算机视觉中的一个重要任务,它可以帮助我们在图像中找到具有独特性质的点,用于图像匹配和目标识别等应用。
在实验中,我使用了OpenCV中的SIFT算法对图像进行特征点检测,并对比了不同参数设置下的检测结果。
三、图像识别实验3.1 目标检测目标检测是计算机视觉中的一个重要任务,它可以帮助我们在图像中找到特定的目标物体。
在实验中,我使用了OpenCV中的Haar Cascade分类器对人脸进行检测,并对比了不同参数设置下的检测结果。
3.2 图像分类图像分类是计算机视觉中的一个热门研究方向,它可以帮助我们将图像分为不同的类别。
在实验中,我使用了OpenCV中的机器学习算法SVM对图像进行分类,并对比了不同特征提取方法和分类器参数设置下的分类准确率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位图文件信息的提取和二值化处理实验步骤:1.拷贝MinGW文件夹至C:(路径为C:\MinGW)2.编辑setc.bat文件,然后运行此批处理以设置路径。
3.编辑hdr.h 和hdr.c文件4.编辑bmphdr.c文件,然后在当前文件路径下,使用DOS命令:gcc -c hdr.c //编译,生成hdr.o目标文件gcc -c bmphdr.c //编译,生成bmphdr.o目标文件gcc -o bmphdr.exe hdr.o bmphdr.o //链接,生成bmphdr.exe执行文件使用bmphdr.exe来提取某一个bmp文件的头信息,例如:bmphdr test.bmp5.编辑 ez.c文件(用于图像的二值化处理),然后gcc -c ez.c //编译,生成ez.o目标文件gcc -o ez.exe hdr.o ez.o //链接,生成ez.exe执行文件使用 ez.exe文件来对某一个bmp文件进行二值化处理。
例如:ez test.bmp result.bmp 108 (对test.bmp文件进行二值化处理,阈值为108,处理的结果为result.bmp文件)hdr.h文件内容:#ifndef __HDR_H__#define __HDR_H__struct bmphdr {char signature[2];int size;short reserved[2];int offset;int hdr_size;int width;int height;short nr_planes;short bits_per_pixel;int compress_type;int data_size;int resol_hori;int resol_vert;int nr_colors;int important_color;char info[1024];};struct bmphdr *get_header(char filename[]);#endifhdr.c文件内容:#include <stdio.h>#include <memory.h>#include "hdr.h"struct bmphdr *get_header(char filename[]){FILE *fp;struct bmphdr *hdr;fp = fopen(filename, "rb");if (!fp) {printf("File open error or such file does not exist!\n");return NULL;}hdr = (struct bmphdr *)malloc(sizeof(struct bmphdr));fread(hdr->signature, 2, 1, fp);if (hdr->signature[0] != 'B' || hdr->signature[1] != 'M') { printf("Not a bmp file!\n");return NULL;}fread(&hdr->size, 4, 1, fp);fread(hdr->reserved, 4, 1, fp);fread(&hdr->offset, 4, 1, fp);fread(&hdr->hdr_size, 4, 1, fp);fread(&hdr->width, 4, 1, fp);fread(&hdr->height, 4, 1, fp);fread(&hdr->nr_planes, 2, 1, fp);fread(&hdr->bits_per_pixel, 2, 1, fp);fread(&hdr->compress_type, 4, 1, fp);fread(&hdr->data_size, 4, 1, fp);fread(&hdr->resol_hori, 4, 1, fp);fread(&hdr->resol_vert, 4, 1, fp);fread(&hdr->nr_colors, 4, 1, fp);fread(&hdr->important_color, 4, 1, fp);if (hdr->offset > 54)fread(&hdr->info, 1024, 1, fp);fclose(fp);return hdr;}bmphdr.c文件内容:#include <stdio.h>struct bmphdr {char signature[2];int size;short reserved[2];int offset;int hdr_size;int width;int height;short nr_planes;short bits_per_pixel;int compress_type;int data_size;int resol_hori;int resol_vert;int nr_colors;int important_color;} header;int main(int argc, char *argv[]){FILE *fp;if (argc != 2) {printf("Usage: %s <filename>\n", argv[0]);exit(1);}fp = fopen(argv[1], "r");if (!fp) {printf("File open error or such file does not exist!\n");exit(1);}fread(header.signature, 2, 1, fp);if (header.signature[0] != 'B' || header.signature[1] != 'M') {printf("Not a bmp file!\n");exit(1);}fread(&header.size, 4, 1, fp);fread(header.reserved, 4, 1, fp);fread(&header.offset, 4, 1, fp);fread(&header.hdr_size, 4, 1, fp);fread(&header.width, 4, 1, fp);fread(&header.height, 4, 1, fp);fread(&header.nr_planes, 2, 1, fp);fread(&header.bits_per_pixel, 2, 1, fp);fread(&press_type, 4, 1, fp);fread(&header.data_size, 4, 1, fp);fread(&header.resol_hori, 4, 1, fp);fread(&header.resol_vert, 4, 1, fp);fread(&header.nr_colors, 4, 1, fp);fread(&header.important_color, 4, 1, fp);fclose(fp);printf("signature %c%c\n", header.signature[0], header.signature[1]);printf("size %d\n", header.size);printf("offset %d\n", header.offset);printf("hdr_size %d\n", header.hdr_size);printf("width %d\n", header.width);printf("height %d\n", header.height);printf("nr_planes %d\n", header.nr_planes);printf("bits_per_pixel %d\n", header.bits_per_pixel);printf("compress_type %d\n", press_type);printf("data_size %d\n", header.data_size);printf("resol_hori %d\n", header.resol_hori);printf("resol_vert %d\n", header.resol_vert);printf("nr_colors %d\n", header.nr_colors);printf("important_color %d\n", header.important_color);printf("\n");return 0;}二值化程序ez.c 文件内容:#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"struct bmphdr *hdr;unsigned char *bitmap, *to;char buf[2048];int main(int argc, char *argv[]){int i, j, k, nr_pixels;FILE *fp, *fpnew;unsigned g;if (argc != 4) {printf("Usage: %s <file_from> <file_to> <threshold>\n", argv[0]);exit(1);}hdr = get_header(argv[1]);if (!hdr) exit(1);fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}fseek(fp, hdr->offset, SEEK_SET);nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);fread(bitmap, nr_pixels, 1, fp);fclose(fp);k = atoi(argv[3]);to = malloc(nr_pixels);memset(to, 0, nr_pixels);for (i = 0; i < nr_pixels; i++)to[i] = bitmap[i] > (unsigned char)k ? 255 : 0;fpnew = fopen(argv[2], "wb+");if (!fpnew) {printf("File create error!\n");exit(1);}fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, hdr->offset - 54, 1, fpnew);fwrite(to, nr_pixels, 1, fpnew);fclose(fpnew);free(hdr);free(bitmap);return 0;}直方图均衡化直方图均衡化实质上是减少图象的灰度级以换取对比度的加大例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。