Transitional Lu and Spherical Ta Ground-State Proton Emitters in the Relativistic Hartree-B

合集下载

沉降处理的参考文献

沉降处理的参考文献

沉降处理的参考文献1. Shidehara, T., Osada, T., and Matsuo, T. (2010). Prediction model of ground deformations caused by excavation based on dynamic response analysis. Procedia Engineering, 8, 45-53.2. Peck, R.B. (1969). Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 19(2), 171-187.3. White, D.J., and Bolton, M.D. (2003). The effect of structure stiffness on ground movement induced by the tunnelling in soft ground. Geotechnique, 53(7), 733-743.4. Cacciola, P., and O’Reilly, M.P. (2009). Numerical analysis of the consolidation of a soft clay layer induced bya surcharge. Computers and Geotechnics, 36(1-2), 134-145.5. Chow, Y.K., and Hu, Y.Z. (2001). A numerical study of the consolidation of a soft ground under a strip footing. Geotechnique, 51(8), 701-707.6. Bienen, B., Thompson, P.D., and McCann, D.M. (2009). Impact of tunnelling on buildings in urban areas: How construction, site and building factors influence potential damage. Tunnelling and Underground Space Technology, 24(3), 311-322.7. Ng, C.W.W., Tang, W.H., and Wan, W.Y. (2005). A case study of the isolation of deep excavation-induced building movements using compensated foundation. Geotechnique, 55(6), 429-437.8. Poulos, H.G. (1971). Elastic solutions for soil and rock mechanics. Canadian Geotechnical Journal, 8(4), 532-543.9. Mitwally, H. (2012). Numerical simulation of the consolidation problem caused by deep excavations in clay deposits. International Journal of Advanced Structural Engineering, 4(3), 213-223.10. Peuchen, J., and Dias, D. (2016). Monitoring ofground deformations induced by tunnel excavation. Tunnelling and Underground Space Technology, 59, 40-50.以上是一些关于沉降处理的参考文献,这些文献涵盖了地质构造、地下挖掘、软土层固结、建筑物振动等方面的研究。

华东师范大学人文地理专业名词英文

华东师范大学人文地理专业名词英文
early expanding
late expanding
low sationary
diminishing
populationmovement
population migration
CHAPTER5
suitcasefarm
agribusiness
CHAPTER6
protourban forms
CHAPTER7
master industry
polarization
spread
core region
zone of influence
peripheral region
kolmogorov-smirnov
lovenz curve
CHAPTER 9
urban ststyem
functional segregation
relocation-type diffusion
central place theory
central good and service
central place function
functional unit
centrality
threshold
urban hierachy
loschian landscape
core
frame
CHAPTER5
optimumsize
economices of scope
backward integration
forward integration
merger field
contagious diffusion
threshold
CHAPTER6
transnatinal corporations

研究生学术英语高原第七单元课文翻译

研究生学术英语高原第七单元课文翻译

为什么材料的历史是真正的文化历史?1.每样东西都是由某种东西构成的。

如果把混凝土、玻璃、纺织品、金属和其他材料从我们的生活中拿走,我们就只能赤身裸体,在泥泞的田野里瑟瑟发抖。

我们生活的复杂性在很大程度上是由物质财富赋予的,如果没有我们的文明,我们将很快恢复到动物行为:使我们成为人类的是我们的衣服、我们的家、我们的城市、我们的东西,我们通过我们的习俗和语言赋予这些东西生命。

如果你去过灾区,这一点就会变得非常明显。

然而,物质世界不仅仅是我们技术和文化的展示,它是我们的一部分,我们发明它,我们创造它,它造就了我们。

2.材料的根本重要性从各个文明时代的命名——石器时代、铁器时代和青铜时代——就可以清楚地看出,每个新时代都由一种新材料带来。

钢铁是维多利亚时代的主要材料,工程师们可以充分发挥他们的梦想,建造悬索桥、铁路、蒸汽机和客轮。

Isambard Kingdom Brunel 将其作为改造世界的宣言,并播下现代主义的种子。

20世纪常被誉为硅的时代,在材料科学取得突破后,迎来了硅芯片和信息革命。

然而,其他新材料的万花筒也彻底改变了现代生活。

建筑师将大量生产的平板玻璃与结构钢结合在一起,建造摩天大楼,从而发明了一种新型的城市生活。

塑料改变了我们的家庭和衣着。

聚合物被用来制造电影胶片,并引入了一种新的视觉文化——电影。

铝合金和镍高温合金的发展使我们能够廉价飞行,并加速了文化的碰撞。

医疗陶瓷和牙科陶瓷让我们得以重建自我,重新定义残疾和衰老——正如“整形手术”一词所暗示的那样,材料往往是修复我们的功能(髋关节置换)或增强我们的特征(隆胸硅胶植入物)的新疗法的关键。

3.我对材料的痴迷始于青少年时期。

我对他们的默默无闻感到困惑,尽管他们就在我们身边。

有多少人能看出铝和钢的区别?木头之间明显不同,但有多少人能说出原因?塑料是混杂的;谁知道聚乙烯和聚丙烯的区别?最终,我进入牛津大学(Oxford University)材料科学系攻读学位,接着攻读喷气发动机合金博士学位,现在是伦敦大学学院(University College London)材料与社会教授和制造研究所(Institute of Making)主任。

英语作文我的家乡

英语作文我的家乡

My hometown is a place where I hold dear memories and a deep sense of belonging. Nestled in the heart of a picturesque landscape,it is a blend of natural beauty and cultural heritage that makes it unique.Geographically,it is situated in a region known for its fertile lands and clear waters.The lush greenery that surrounds the area provides a serene environment,perfect for relaxation and rejuvenation.The air is crisp and fresh,carrying the scent of blooming flowers and the distant sound of birds chirping.The community in my hometown is closeknit and warmhearted.Neighbors often gather for celebrations and festivals,which are deeply rooted in our local traditions.The sense of camaraderie and mutual support is palpable,creating a strong social fabric that binds us together.Culturally,my hometown boasts a rich tapestry of customs and practices.From the vibrant colors of our traditional attire to the melodious tunes of our folk music,every aspect of our culture is a testament to our history and identity.Our local cuisine is also a reflection of our heritage,with dishes that are flavorful and distinctive,passed down through generations.Education is highly valued in my hometown,with schools and institutions that are wellequipped and dedicated to nurturing the minds of our youth.The pursuit of knowledge and personal growth is encouraged,fostering a community that is not only rooted in tradition but also progressive in its outlook.Economically,my hometown has seen steady growth and development.Agriculture remains a significant part of our economy,with farmers cultivating a variety of crops that are both sustainable and profitable.Additionally,small businesses and industries have sprung up,providing employment opportunities and contributing to the overall prosperity of the area.In conclusion,my hometown is a place of natural splendor,cultural richness,and community spirit.It is a place where I feel a profound connection,and I am proud to call it my home.The memories and experiences I have gathered here will always hold a special place in my heart.。

土力学中英翻译

土力学中英翻译

Soil Mechanics 土力学Geotechnical Engineering 岩土工程Stress 应力,Strain 应变Settlement 沉降,Displacement 位移,Deformation 变形Consolidation 固结,Seepage 渗流Effective Stress 有效应力,Total Stress总应力Excess Pore Water Pressure 超孔隙水压力Shear Strength 抗剪强度,Stability 稳定性Bearing Capacity 承载力Consistency 稠度Coefficient of uniformity, uniformity coefficient 不均匀系数Thixotropy 触变Single-grained structure 单粒结构Honeycomb structure 蜂窝结构Dry unit weight 干重度Plasticity index 塑性指数Water content,moisture content 含水量Gradation,grading 级配Bound water,combined water, held water 结合水Particle size distribution of soils, mechanical composition of soil 颗粒级配Sensitivity of cohesive soil 粘性土的灵敏度Mean diameter,average grain diameter 平均粒径Coefficient of curvature 曲率系数V oid ratio 孔隙比Clay粘土Cohesionless soil 无粘性土Cohesive soil 粘性土Activity indexAtterberg limits 界限含水率Liquid limit 液限Plastic limit 塑限Shrinkage limit 缩限Unsaturated soil 非饱和土Secondary mineral 次生矿物Eluvial soil, residual soil 残积土Silty clay 粉质粘土Degree of saturation 饱和度Saturated density 饱和密度Specific gravity 比重Unit weight 重度Coefficient of uniformity 不均匀系数Block/skeletal/three phase diagram 三相图Critical hydraulic gradient 临界水力梯度Seepage 渗流Seepage discharge 渗流量Seepage velocity 渗流速度Seepage force 渗透力Darcy’s law 达西定律Piping 管涌Permeability 渗透性Coefficient of permeability 渗透系数Seepage failure 渗透破坏Phreatic 浸润线Flowing soil 流土Hydraulic gradient 水力梯度Critical hydraulic gradient 临界水力梯度Flow function 流函数Flow net 流网Sand boiling 砂沸Potential function 势函数Capillary water 毛细水Constant/falling head test 常/变水头试验Modulus of deformation 变形模量Poisson’s ratio 泊松比Residual deformation 残余变形Excess pore water pressure 超静孔隙水压力Settlement 沉降Coefficient of secondary consolidation 次固结系数Elastic formula for settlement calculation 地基沉降的弹性力学公式Layerwise summation method 分层总和法Superimposed stress 附加应力Secant modulus 割线模量Consolidation settlement 固结沉降Settlement calculation by specification 规范沉降计算法Rebound deformation 回弹变形Modulus of resilience 回弹模量Coefficient of resilience 回弹系数Swelling index 回弹指数Allowable settlement of building 建筑物的地基变形允许值Corner-points method 角点法Tangent modulus 切线模量。

青藏高原巨厚地壳:生长、加厚与演化

青藏高原巨厚地壳:生长、加厚与演化
期改造与破坏,因此可被现代地质观察和 精 细年 代
学研究予以准确标定,其物质演变 及其 深部过 程也
可被同位素填图和地球物理探测予以明确限定。
对 于 青 藏 高 原 巨 厚 地 壳 的 成 因 与 生 长 ,前 人 已
提出了若干 模 式,如 印 度 大 陆 地 壳 楔 入 模 式 (Zhao Wulingand Morgan,1985;Nábeleketal.,2009)、 地 壳 缩 短 与 加 厚 模 式 (Englandand Houseman, 1986)、新 生 幔 源 岩 浆 注 入 模 式 (Niu Yaolingetal., 2013;HouZengqianetal.,2015a)、地壳连 续生 长 加厚模式(ZhuDichengetal.,2017)等。 然 而,地 球物理探测发现,印度大陆岩石圈地幔可 能 以低 缓
注:本文为国家重点研发计划项目(编号 2016YFC0600310),变革 性 技 术 项 目(编 号 2019YFA0708602),中 国 科 学 院 战 略 性 先 导 科 技 专 项(编号 XDA20070304)联合资助成果。 收 稿 日 期 :20201007;改 回 日 期 :20201012;网 络 发 表 日 期 :20201013;责 任 编 辑 :周 健 。 作 者 简 介 :侯 增 谦 ,男 ,博 士 ,中 国 科 学 院 院 士 ,矿 物 学 、岩 石 学 、矿 床 学 专 业 ,主 要 从 事 矿 床 学 研 究 。Email:houzengqian@126.com。
本文拟 在 前 人 研 究 基 础 上,结 合 笔 者 研 究 成 果,从物质记录与构 造 变 形 两 个 角 度,系 统 剖 析 青 藏高原从 俯 冲 到 碰 撞 全 过 程 的 地 壳 生 长 与 加 厚 原 因,半定量评估 俯 冲 与 碰 撞、岩 浆 与 构 造 对 地 壳 生 长和加厚的相对贡献,深入揭 示大 陆碰 撞引 发地 壳 生长与物质演化的作用机制和深部过程。

First-principles Calculations on Crystal Structure and

First-principles Calculations on Crystal Structure and

First-principles Calculations on Crystal Structure andThermodynamic Properties of CeramicsYue Zhang, Xue Gao, Jiaxiang Shang and Xiaoping HanSchool of Material Science and Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100083, P.R. China Keywords: First-principles calculations, Interfaces, Thermodynamic propertiesAbstract. First-principles calculations have been widely used to describe the ground state properties of materials over almost 20 years. Recently, a great progress was made in the first-principle calculations.Thermodynamic properties can also be gotten by calculations of the phonon densities of states (phonon DOS) and phonon dispersions of materials, which show widely potential applications in materialresearches. In the present work, the energetics and bonding properties of interfaces between ZrO 2 and Ni metal were given by first-principles calculations. The results show that alloy element impurities (Al, Crand Y) influence remarkably the adhesion of the ceramic and metal. On the other hand, the phonon densities of states and phonon dispersions of ZrO2 were calculated with density functional perturbationtheory. From the phonon DOS, the thermodynamic properties were derived and the phase transformation of ZrO 2 was discussed. By this method, the thermodynamic properties of material can be gotten fromatom and electron levels without any experiment data. It is a new approach to design and study thethermodynamic properties in new material system.IntroductionFirst-principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotentials, has become a prized technique in condensed matter theory, which is vastly ambitious because its goal is to model real systems using no approximations whatsoever [1]. It hasbeen widely used to predict electronic structure, lattice parameter and energy of condensed matterunder the ground state, ranging from bulk materials to surface, interfaces, and clusters. However, theapplication of first-principles calculations to the study of thermodynamic properties such as phase diagrams, defect energetics and growth remains challenging.Recent progresses in computational technique enable us to determine the full phonon dispersion of solids [2-4]. Thus one can compute specific heat, vibrational entropy, and other thermodynamicproperties as a function of temperature and can deal with phase transformation in finite temperaturesor high pressures [5-9]. Density functional perturbation theory (DFPT) is by now a common andwell-established tool for calculating the full phonon dispersion from first principles.Ni/ZrO 2 interfaces play a crucial role in a wide range of technological applications such as coating, heterogenous catalysis, fuel cells, microelectronic, optoelectronic or structural composites [10-12]. These applications mainly rely on the interaction at the metal-ceramic interface. However, to our knowledge, little has been made about the theoretical investigation on the ZrO 2/Ni interface. On the other hand, the thermodynamic properties of zirconia are also very important. The ZrO 2 has threephases: the cubic phase (c-ZrO 2), the tetragonal phase (t-ZrO 2) and the monoclinic phase (m-ZrO 2). The large volume expansion associated with the tetragonal to monoclinic transformation is known as the origin of shielding force on crack propagation and thereby leads to high fracture toughness [13]. In this work, we in detail probed into the energetics and bonding properties of the Ni/ZrO 2 interface by first-principles method based on DFT, and the influence of alloy element impurities (Al, Cr and Y) were also considered. Then the density functional perturbation theory was used to investigate thermodynamic properties of ZrO 2 polymorphs and phase transformation.C o p y ,E d i t a n d P r i n t i n g d e a c t i v a t e d . O r i g i n a l d o c u m e n t h a s 4 p a g e s F u lll ibr ar yac ce ssish er eht tp://w w w.s cien tifi c.ne t/r eq u es tp ap e r/50201。

地质学术语翻译研究

地质学术语翻译研究

地质学术语翻译研究地质学是研究地球构造、岩石组成、地球表面以及地球历史演化的学科。

在地质学中,有许多专业术语,下面是一些常见的地质学术语及其中文翻译。

1. Plate tectonics 板块构造学2. Volcano 火山3. Earthquake 地震4. Mineral 矿物5. Rock 岩石6. Sediment 沉积物7. Fossil 化石8. Crust 地壳9. Mantle 地幔10. Core 地核11. Continental drift 大陆漂移12. Erosion 侵蚀13. Deposition 沉积14. Weathering 风化15. Fault 断层16. Fold 褶皱17. Igneous rock 火成岩18. Metamorphic rock 变质岩19. Sedimentary rock 沉积岩20. Geologic time scale 地质时代尺度21. Geologic formation 地质层系22. Geologic map 地质图23. Stratigraphy 地层学24. Paleontology 古生物学25. Geomorphology 地貌学26. Geochronology 地质年代学27. Geothermal energy 地热能28. Geologic hazard 地质灾害29. Groundwater 地下水30. Karst landscape 喀斯特地貌这些是常见的地质学术语,其中许多术语在地质学研究、实地考察和学术交流中经常使用。

熟悉这些术语的翻译有助于理解和传播地质学领域的知识。

根据具体的研究内容和背景,还有其他更具专业性的地质学术语,但以上列举的术语是一个很好的起点。

裴攀-翻译中文

裴攀-翻译中文

第6章光源和放大器在光纤系统,光纤光源产生的光束携带的信息。

激光二极管和发光二极管是两种最常见的来源。

他们的微小尺寸与小直径的光纤兼容,其坚固的结构和低功耗要求与现代的固态电子兼容。

在以下几个GHz的工作系统,大部分(或数Gb /秒),信息贴到光束通过调节输入电流源。

外部调制(在第4、10章讨论)被认为是当这些率超标。

我们二极管LED和激光研究,包括操作方法,转移特性和调制。

我们计划以获得其他好的或理念的差异的两个来源,什么情况下调用。

当纤维损失导致信号功率低于要求的水平,光放大器都需要增强信号到有效的水平。

通过他们的使用,光纤链路可以延长。

因为光源和光放大器,如此多的共同点,他们都是在这一章处理。

1.发光二极管一个发光二极管[1,2]是一个PN结的半导体发光时正向偏置。

图6.1显示的连接器件、电路符号,能量块和二极管关联。

能带理论提供了对一个)简单的解释半导体发射器(和探测器)。

允许能带通过的是工作组,其显示的宽度能在图中,相隔一禁止区域(带隙)。

在上层能带称为导带,电子不一定要到移动单个原子都是免费的。

洞中有一个正电荷。

它们存在于原子电子的地点已经从一个中立带走,留下的电荷原子与净正。

自由电子与空穴重新结合可以,返回的中性原子状态。

能量被释放时,发生这种情况。

一个n -型半导体拥有自由电子数,如图图英寸6.1。

p型半导体有孔数自由。

当一种P型和一种N型材料费米能级(WF)的P和N的材料一致,并外加电压上作用时,产生的能垒如显示的数字所示。

重参杂材料,这种情况提供许多电子传到和过程中需要排放的孔。

在图中,电子能量增加垂直向上,能增加洞垂直向下。

因此,在N地区的自由电子没有足够的能量去穿越阻碍而移动到P区。

同样,空穴缺乏足够的能量克服障碍而移动进入n区。

当没有外加电压时,由于两种材料不同的费米能级产生的的能量阻碍,就不能自由移动。

外加电压通过升高的N端势能,降低一侧的P端势能,从而是阻碍减小。

如果供电电压(电子伏特)与能级(工作组)相同,自由电子和自由空穴就有足够的能量移动到交界区,如底部的数字显示,当一个自由电子在交界区遇到了一个空穴,电子可以下降到价带,并与空穴重组。

郯庐断裂带对鲁西隆升过程的影响:磷灰石裂变径迹证据

郯庐断裂带对鲁西隆升过程的影响:磷灰石裂变径迹证据

郯庐断裂带对鲁西隆升过程的影响:磷灰石裂变径迹证据许立青;李三忠;郭玲莉;索艳慧;曹现志;戴黎明;王鹏程;惠格格【摘要】郯庐断裂带(TLFZ)是一条贯穿华北的NNE向巨型断裂带.新生代以来,在郯庐断裂带的两侧及其内部发生了显著的伸展构造变形,形成了泰安-莱芜-蒙阴NW向断陷盆地群,并使鲁西块体发生了急剧的陆内伸展隆升.本文在前人研究的基础上,分别在鲁西沂山、徂徕山和蒙山三处进行了大量的样品采集,总计完成了25个样品的测试,获得了一系列新的磷灰石裂变径迹(AFT)年代学结果.结合前人已发表的裂变径迹结果,对鲁西地区新生代与伸展变形有关的剥露-隆升作用的时空分布特征、隆升剥露模式及隆升幅度进行分析,并揭示郯庐断裂带在鲁西新生代热隆升过程中的影响.主要认识有:1)新生代以来,鲁西主要经历了始新世-早渐新世和新近纪以来两期快速剥露-隆升阶段.2)始新世-早渐新世主要表现为幕式差异性快速剥露-隆升,鲁西南受NW向断层控制形成向北、向东的掀斜抬升作用,鲁西北受NE向断裂控制,形成向北、向西的掀斜抬升作用.新近纪以来,进入相对低速区域性剥露-隆升阶段.3)AFT模拟显示,与始新世-早渐新世的幕式快速剥露-隆升相比,中新世以来,鲁西剥露-隆升速率相对减小,但剥蚀量剥露-抬升量较大.故鲁西整体抬升于中新世以来.4)结合前人研究成果,新生代以来,鲁西宏观上受郯庐断裂带伸展活动影响,越靠近郯庐断裂带剥蚀量越大,局部受NW或NE向断裂控制.【期刊名称】《岩石学报》【年(卷),期】2016(032)004【总页数】18页(P1153-1170)【关键词】磷灰石裂变径迹;新生代;剥露-隆升;鲁西地块;郯庐断裂带【作者】许立青;李三忠;郭玲莉;索艳慧;曹现志;戴黎明;王鹏程;惠格格【作者单位】海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100;海底科学与探测技术教育部重点实验室,青岛266100;中国海洋大学海洋地球科学学院,青岛266100【正文语种】中文【中图分类】P542;P597.3鲁西是傲立于中国东部地区的独立块体,三面为华北平原区所围限(图1左下图),其突兀于华北平原的独特地貌吸引了大批地质学家的关注。

恐龙时代的英语作文带翻译

恐龙时代的英语作文带翻译

In the era of dinosaurs, the Earth was a vastly different place than it is today. The landscape was dominated by lush forests and vast swamps, teeming with life of all shapes and sizes. The skies were filled with the calls of pterosaurs, while the ground shook beneath the footsteps of the colossal dinosaurs that roamed the land.Dinosaurs roamed the Earth during a time when the continents were different, and the climate was much warmer. There were no humans, and the world was ruled by these magnificent creatures. Some of the most famous dinosaurs include the Tyrannosaurus rex, with its fearsome teeth and powerful jaws, and the longnecked Apatosaurus, which could reach vegetation high above the ground.The dinosaurs lived in a variety of environments, from the dense jungles of the Mesozoic era to the arid deserts. They adapted to their surroundings, developing unique traits and behaviors to survive. For instance, the Stegosaurus had plates along its back that may have helped regulate its body temperature, while the Velociraptor was a fast and agile predator, using its speed to catch prey.Despite their size and strength, the dinosaurs were not invincible. They faced many challenges, including competition for food and territory, as well as natural disasters like volcanic eruptions and floods. The most significant event that affected the dinosaurs, however, was the mass extinction that occurred around 65 million years ago. The exact cause of this extinction is still debated among scientists, with theories ranging from a massive asteroid impact to intense volcanic activity.The legacy of the dinosaurs can still be seen today in the fossils that have been discovered around the world. These fossils provide valuable insights into the lives of these ancient creatures and help us understand the history of our planet. The study of dinosaurs, known as paleontology, continues to be a fascinating field of research, with new discoveries being made all the time.In conclusion, the age of dinosaurs was a time of incredible biodiversity and dominance by some of the most aweinspiring creatures to have ever lived. Though they are long gone, their impact on our world and our understanding of it remains profound.在恐龙时代,地球是一个与今天截然不同的地方。

雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译

雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译

DOI :10.16031/ki.issn.1003-8035.2021.03-05雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译李 壮1,2,李 滨1,高 杨1,王 猛3,赵超英2,刘晓杰2(1. 中国地质科学院地质力学研究所,北京 100081;2. 长安大学地质工程与测绘学院,陕西 西安 710054;3. 四川省遥感中心,四川 成都 610081)摘要:色东普沟位于雅鲁藏布江下游左岸、加拉白垒峰下方,受温度、降水和地震的因素影响,曾多次发生高位地质灾害并造成雅鲁藏布江堵塞。

通过实地调查,结合Landsat 等多源、多期遥感影像以及InSAR 雷达数据,对色东普沟高位地质灾害发育特征进行分析,并对现存变形体进行解译和分析,得到以下结论:色东普沟发育多处冰川、崩塌、滑坡和冰湖灾害;色东普沟自2001年起20年间,发生高位地质灾害堵塞雅鲁藏布江干流事件共5次;沟内上部极高山区现存确定变形体3处和疑似变形体2处;针对发生于2018年的两次色东普高位地质灾害,认为其物源来自于一处高位岩崩区和三处高位冰崩区。

研究结果为色东普高位地质灾害的进一步研究提供了初步数据,并为类似地质灾害的研究提供了有效的科学思路。

关键词:色东普沟;雅鲁藏布江;高位地质灾害;遥感解译中图分类号: P642 文献标志码: A 文章编号: 1003-8035(2021)03-0033-09Remote sensing interpretation of development characteristics ofhigh-position geological hazards in Sedongpu gully,downstream of Yarlung Zangbo RiverLI Zhuang 1,2,LI Bin 1,GAO Yang 1,WANG Meng 3,ZHAO Chaoying 2,LIU Xiaojie 2(1. Institute of Geomechanics , Chinese Academy of Geological Sciences , Beijing 100081, China ;2. School of Geological Engineering and Surveying and Mapping , Chang’an University , Xi’an , Shaanxi 710054, China ;3. Sichuan Remote SensingCenter , Chengdu , Sichuan 610081, China )Abstract :Sedongpu gully is a branch gully on the left bank of the lower reaches of the Yarlung Zangbo River. It is located below the galabaire peak. It often accumulates abundant moraines and loose deposits every year. Affected by temperature,rainfall and earthquake, high-position geological disasters have occurred many times and caused the blockage of the Yarlung Zangbo River. Through field investigation, combined with Landsat and other multi-source and multi-phase remote sensing images and InSAR radar data, the development characteristics of high-position geological disasters in Sedongpu gully are analyzed, and the existing deformation bodies are interpreted and analyzed: There are many glaciers, collapses, landslides and ice lakes in sedongpu gully; In the past 20 years since 2001, there have been five high-position geological disasters blocking the mainstream of the Yarlung Zangbo River; There are 3 identified deformations and 2 suspected deformations in the upper part of the gully; According to the two high-position geological disasters occurred in 2018 in Sedongpu gully, it is considered that the provenance comes from one high-position rock avalanche area and three high-position ice avalanche areas. This paper providespreliminary data for the further study of high-position geological disasters in Sedongpu gully, and provides effective scientific收稿日期:2021-05-21; 修订日期:2021-05-25基金项目:中国地质调查局地质调查项目(DD20211540);西藏自治区自然资源厅项目(藏财采【2020】0546)第一作者:李 壮(1995-),男,河南周口人,硕士研究生,主要从事高位地质灾害动力学研究。

上外考研翻译硕士英语天文学专业词汇整理分享

上外考研翻译硕士英语天文学专业词汇整理分享

上外考研翻译硕士英语天文学专业词汇整理分享find 发见陨星finder chart 证认图finderscope 寻星镜first-ascent giant branch初升巨星支first giant branch 初升巨星支flare puff 耀斑喷焰flat field 平场flat field correction 平场改正flat fielding 平场处理flat-spectrum radio quasar 平谱射电类星体flux standard 流量标准星flux-tube dynamics 磁流管动力学f-mode f 模、基本模following limb 东边缘、后随边缘foreground galaxy 前景星系foreground galaxy cluster 前景星系团formal accuracy 形式精度Foucaultgram 傅科检验图样Foucault knife-edge test 傅科刀口检验fourth cosmic velocity 第四宇宙速度frame transfer 帧转移Fresnel lens 菲涅尔透镜fuzz 展云Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatory heavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy ( NGC 2685 ) 螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar ( HPQ ) 高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Ida 艾达( 小行星243号)IEH, International Extreme Ultraviolet Hitchhiker〈IEH〉国际极紫外飞行器IERS, International Earth Rotation Service国际地球自转服务image deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy ( UGC 3697 ) 积分号星系integrated diode array ( IDA ) 集成二极管阵intensified CCD 增强CCD Intercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame ( ICRF ) intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- meter 红外光度计/分光计irregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet Explorer〈IUE〉国际紫外探测器Jewel Box ( NGC 4755 ) 宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre Spectroscopic Telescope大型多天体分光望远镜Laplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar Telescope〈LEST〉大型地基太阳望远镜level-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table ( LUT ) 对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-α forest 莱曼-α森林MACHO ( massive compact halo object ) 晕族大质量致密天体Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding Spring Observatory斯特朗洛山和赛丁泉天文台multichannel astrometric photometer ( MAP )多通道天测光度计multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物理naked-eye variable star 肉眼变星naked T Tauri star 显露金牛T 型星narrow-line radio galaxy ( NLRG ) 窄线射电星系Nasmyth spectrograph 内氏焦点摄谱仪natural reference frame 自然参考架natural refenence system 自然参考系natural seeing 自然视宁度near-contact binary 接近相接双星near-earth asteroid 近地小行星near-earth asteroid belt 近地小行星带near-earth comet 近地彗星NEO, near-earth object 近地天体neon nova 氖新星Nepturian ring 海王星环neutrino astrophysics 中微子天文NNTT, National New Technology Telescope国立新技术望远镜NOAO, National Optical Astronomical 国立光学天文台Observatories nocturnal 夜间定时仪nodal precession 交点进动nodal regression 交点退行non-destroy readout ( NDRO ) 无破坏读出nonlinear infall mode 非线性下落模型nonlinear stability 非线性稳定性nonnucleated dwarf elliptical 无核矮椭圆星系nonnucleated dwarf galaxy 无核矮星系nonpotentiality 非势场性nonredundant masking 非过剩遮幅成象nonthermal radio halo 非热射电晕normal tail 正常彗尾North Galactic Cap 北银冠NOT, Nordic Optical Telescope 北欧光学望远镜nova rate 新星频数、新星出现率NTT, New Technology Telescope 新技术望远镜nucleated dwarf elliptical 有核矮椭圆星系nucleated dwarf galaxy 有核矮星系number density profile 数密度轮廓numbered asteroid 编号小行星oblique pulsator 斜脉动星observational cosmology 观测宇宙学observational dispersion 观测弥散度observational material 观测资料observing season 观测季occultation band 掩带O-Ne-Mg white dwarf 氧氖镁白矮星one-parameter method 单参数法on-line data handling 联机数据处理on-line filtering 联机滤波open cluster of galaxies 疏散星系团Ophelia 天卫七optical aperture-synthesis imaging 光波综合孔径成象optical arm 光学臂optical disk 光学盘optical light 可见光optical luminosity function 光学光度函数optically visible object 光学可见天体optical picture 光学图optical spectroscopy 光波分光orbital circularization 轨道圆化orbital eccentricity 轨道偏心率orbital evolution 轨道演化orbital frequency 轨道频率orbital inclination 轨道倾角orbit plane 轨道面order region 有序区organon parallacticon 星位尺Orion association 猎户星协orrery 太阳系仪orthogonal transformation 正交变换oscillation phase 振动相位outer asteroid belt 外小行星带outer-belt asteroid 外带小行星outer halo cluster 外晕族星团outside-eclipse variation 食外变光overshoot 超射OVV quasar, optically violently OVV 类星体variable quasar、optically violent variable quasar oxygen sequence 氧序pan 摇镜头parry arc 彩晕弧partial-eclipse solution 偏食解particle astrophysics 粒子天体物理path of annularity 环食带path of totality 全食带PDS, photo-digitizing system、PDS、数字图象仪、photometric data system 测光数据仪penetrative convection 贯穿对流pentaprism test 五棱镜检验percolation 渗流periapse 近质心点periapse distance 近质心距periapsis distance 近拱距perigalactic distance 近银心距perigalacticon 近银心点perimartian 近火点period gap 周期空隙period-luminosity-colour relation 周光色关系PG 1159 star PG 1159 恒星photoflo 去渍剂photographic spectroscopy 照相分光。

Cheng Hao,2009,Lithos

Cheng Hao,2009,Lithos

Transitional time of oceanic to continental subduction in the Dabie orogen:Constraints from U –Pb,Lu –Hf,Sm –Nd and Ar –Ar multichronometric datingHao Cheng a ,b ,⁎,Robert L.King c ,Eizo Nakamura b ,Jeffrey D.Vervoort c ,Yong-Fei Zheng d ,Tsutomu Ota b ,Yuan-Bao Wu e ,Katsura Kobayashi b ,Zu-Yi Zhou aaState Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,ChinabInstitute for Study of the Earth's Interior,Okayama University at Misasa,Tottori 682-0193,Japan cSchool of Earth and Environmental Sciences,Washington State University,Pullman,Washington 99164,USA dCAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China eState Key Laboratory of Geological Processes and Mineral Resources,Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 22August 2008Accepted 9January 2009Available online 8February 2009Keywords:Continental subduction Dabie EclogiteGeochronologyOceanic subduction Tectonic transitionWe investigated the oceanic-type Xiongdian high-pressure eclogites in the western part of the Dabie orogen with combined U –Pb,Lu –Hf,Sm –Nd and Ar –Ar geochronology.Three groups of weighted-mean 206Pb/238U ages at 315±5,373±4and 422±7Ma are largely consistent with previous dates.In contrast,Lu –Hf and Sm –Nd isochron dates yield identical ages of 268.9±6.9and 271.3±5.3Ma.Phengite and amphibole Ar –Ar total fusion analyses give Neoproterozoic apparent ages,which are geologically meaningless due to the presence of excess 40Ar.Plagioclase inclusions in zircon cores suggest that the Silurian ages likely represent protolith ages,whereas the Carboniferous ages correspond to prograde metamorphism,based on the compositions of garnet inclusions.Despite weakly-preserved prograde major-and trace element zoning in garnet,a combined textural and compositional study reveals that the consistent Lu –Hf and Sm –Nd ages of ca.270Ma record a later event of garnet growth and thus mark the termination of high-pressure eclogite –facies metamorphism.The new U –Pb,Lu –Hf and Sm –Nd ages suggest a model of continuous processes from oceanic to continental subduction,pointing to the onset of prograde metamorphism prior to ca.315Ma for the subduction of oceanic crust,while the peak eclogite –facies metamorphic episode is constrained to between ca.315and 270Ma.Thus,the initiation of continental subduction is not earlier than ca.270Ma.©2009Elsevier B.V.All rights reserved.1.IntroductionSubduction zones are essential to the dynamic evolution of the earth's surface due to plate tectonics.Subduction of oceanic and continental crust eventually leads to closure of backarc basins and arc-continent and continent-continent collisions (O'Brien,2001;Ernst,2005;Zheng et al.,2008),forming various types of high-pressure (HP)and ultrahigh-pressure (UHP)metamorphic rocks.Subduction of oceanic lithosphere causes a complex continuum of diagenetic and metamorphic reactions;many kilometres of oceanic lithosphere are ultimately consumed prior to the subsequent continental slab subduction and collision.Subducted continental slabs that detach from the oceanic lithosphere that was dragging them into the mantle are expected to rapidly rise to Moho depths because of their positive buoyancy.Thus,studying subducted oceanic crust in subduction zones can provide clues to the incorporation rate of supercrustal materialinto the mantle and can shed light on the initiation of successive continental subduction.Determining a geochronological framework for determining the sequence and duration of oceanic to continental subduction and HP and UHP metamorphism plays an essential role in this respect.Zircon has long been recognized as a promising geochronometer of the U –Pb decay system because of its refractory nature,commonly preserved growth zones and mineral inclusions within a single grain.Recent developments in analytical techniques allow us to unravel a wealth of information contained in zircons with respect to their growth history and thus the prograde and retrograde metamorphic evolution of the host rock (Gebauer,1996;Wu et al.,2006;Zheng et al.,2007).The Lu –Hf garnet technique has been applied to constrain the prograde and high-temperature histories of metamorphic belts (e.g.,Duchêne et al.,1997;Blichert-Toft and Frei,2001;Anczkiewicz et al.,2004,2007;Lagos et al.,2007;Kylander-Clark et al.,2007;Cheng et al.,2008a )because of its high closure temperature (Dodson,1973;Scherer et al.,2000)and the fact that garnet strongly partitions Lu over Hf,resulting in a high parent/daughter ratio (Otamendi et al.,2002).Combined with Sm –Nd age determination,the Lu –Hf garnet geochronometer can potentially be used to estimate the duration ofLithos 110(2009)327–342⁎Corresponding author.State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China.Tel.:+862165982358;fax:+862165984906.E-mail address:chenghao@ (H.Cheng).0024-4937/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.lithos.2009.01.013Contents lists available at ScienceDirectLithosj ou r n a l h o m e pa g e :ww w.e l s ev i e r.c o m/l o c a t e /l i t h o sFig.1.Simpli fied geologic map of the Huwan mélange area (b)in southern Dabie orogen (a),modi fied after Ye et al.(1993)and Liu et al.(2004b),showing the sample localities for the Xiongdian eclogite.References:asterisk,this study;[1],Ratschbacher et al.(2006);[2],Jahn et al.(2005);[3],Liu et al.(2004a);[4],Eide et al.(1994);[5],Webb et al.(1999);[6],Xu et al.(2000);[7],Ye et al.(1993);[8],Sun et al.(2002);[9],Jian et al.(1997);[10],Jian et al.(2000);[11],Gao et al.(2002);[12],Li et al.(2001);[13],Wu et al.(2008).amp —amphibole;brs —barroisite;phen —phengite;zrn —zircon.328H.Cheng et al./Lithos 110(2009)327–342garnet growth,which either reflects early prograde metamorphism (Lapen et al.,2003),exhumation(Cheng et al.,2009)or a particular garnet growth stage(Skora et al.,2006).Dating the exhumation of high-pressure(HP)and ultra-high-pressure(UHP)metamorphic rocks by conventional step-heating Ar–Ar technique was largely hampered and discredited due to the presence of excess/inherited argon(Li et al.,1994;Kelley,2002).However,the Ar–Ar geochron-ometer remains irreplaceable in constraining the exhumation of HP/ UHP metamorphic rocks because of its intermediate closure tempera-ture.Nevertheless,timing must be integrated with textures and petrology in order to quantify the dynamics of geological processes, whichever geochronological method is used.During the past two decades,considerable progress has been made in constraining the prograde metamorphism and exhumation of HP/ UHP metamorphism of the Dabie–Sulu orogen by a variety of geochronological methods,indicating a Triassic collision between the South China and North China Blocks(e.g.,Eide et al.,1994;Ames et al., 1996;Rowley et al.,1997;Hacker et al.,1998;Li et al.,2000,2004; Zheng et al.,2004).The initiation of continental subduction is pinned to ca.245Ma(Hacker et al.,2006;Liu et al.,2006a;Wu et al.,2006; Cheng et al.,2008a),but the exact time is poorly constrained.On the other hand,thefingerprints of early continental subduction may not be preserved in continental-type metamorphic rocks due to the succes-sive high-temperature prograde and retrograde overprints.Alterna-tively,the timing of initiation of continental subduction subsequent to the termination of oceanic subduction may be registered in the HP/ UHP eclogites,whose protoliths are of oceanic origin.Currently,the only outcropping candidate is the Xiongdian HP eclogite in the western part of the Dabie orogen(Li et al.,2001;Fu et al.,2002).However,U–Pb zircon ages ranging from216±4to449±14Ma have been obtained for the Xiongdian eclogite(Jian et al.,1997;Sun et al.,2002;Gao et al., 2002);the geological significance of this age spread is controversial. Efforts to clarify the geochronological evolution of the Xiongdian eclogite were hampered by a much older Sm–Nd garnet-whole-rock isochron of533±13Ma(Ye et al.,1993)and the fact that further Sm–Nd and Rb–Sr analyses failed to produce mineral isochrons(Li et al., 2001;Jahn et al.,2005),although oxygen isotopic equilibrium was largely attained(Jahn et al.,2005).Here,we present a combined U–Pb,Lu–Hf,Sm–Nd,Ar–Ar and oxygen multi-isotopic and mineral chemical study of the Xiongdian eclogite.The differences in these systems,in conjunction with chemical profiles in garnet porphyroblasts and zircons,provide a window into the time-scales of the oceanic subduction and sub-sequent exhumation.2.Geochronological background and sample descriptionsThe Qinling–Dabie–Sulu orogen in east-central China marks the junction between the North and South China Blocks(Cong,1996; Zheng et al.,2005).The western part of the Dabie orogen,usually termed the West Dabie and sometimes the Hong'an terrane,is separated from the Tongbaishan in the west by the Dawu Fault and from the East Dabie by the Shangma fault in the east(Fig.1a).It contains a progressive sequence of metamorphic zones characterized by increasing metamorphic grade,from transitional blueschist–greenschist in the south,through epidote–amphibolite and quartz eclogite,to coesite eclogite in the north(e.g.,Zhou et al.,1993;Hacker et al.,1998;Liu et al.,2004b,2006b).The Xiongdian eclogites crop out in the northwestern corner of the West Dabie,in the Xiongdian mélange within the Huwan mélange after the definition of Ratschba-cher et al.(2006),in analogy to the terms of the Sujiahe mélange(Jian et al.,1997)and Huwan shear zone(Sun et al.,2002).The Huwan mélange consists of eclogite,gabbro,amphibolite,marble,and quartzite.The eclogitic metamorphic peak for the Xiongdian eclogite is estimated at600–730°C,1.4–1.9GPa(Fu et al.,2002),550–570°C,∼2.1GPa(Liu et al.,2004b)and540–600°C,∼2.0GPa(Ratschbacher et al.,2006),followed by retrogression at530–685°C and∼0.6GPa (Fu et al.,2002).Except for the Xiongdian eclogite,consistent Triassic metamorphic ages have been obtained for other eclogites across the West Dabie (Webb et al.,1999;Sun et al.,2002;Liu et al.,2004a;Wu et al.,2008). This indicates that West Dabie is largely a coherent part of an HP–UHP belt elsewhere in the Dabie–Sulu orogenic belt.Geochronological debate is limited to the Xiongdian eclogite(Fig.1b).U–Pb zircon ages ranging from ca.216to ca.449Ma have been obtained for the Xiongdian eclogite.Jian et al.(1997)reported ca.400,ca.373and 301±0.6Ma ages by ID–TIMS method.Weighted-mean SHRIMP ages range from335±2to424±5Ma(Jian et al.,2000).The Silurian U–Pb zircon ages were interpreted as the age of the protolith,while the Carboniferous ages mark high-pressure metamorphism(Jian et al., 1997,2000).Weighted-mean206Pb/238U SHRIMP U–Pb zircons ages of 433±9,367±10and398±5Ma were interpreted as the protolith age,while323±7and312±5Ma likely date the high-pressure metamorphism(Sun et al.,2002).A Triassic age of216±4Ma together with449±14and307±14Ma weighted-mean206Pb/238U SHRIMP U–Pb zircon ages appear to argue for the involvement of the Triassic subduction in the Xiongdian eclogite(Gao et al.,2002).A garnet-whole-rock Sm–Nd isochron of533±13Ma(Ye et al.,1993)was interpreted to reflect the high-pressure metamorphism age.Several Table1Chemical compositions of the Xiongdian eclogite from the western Dabie.Sample number DB17DB18(Major oxides in%)SiO254.5452.45 TiO20.370.43 Al2O314.6212.35 Fe2O38.7710.15 MnO0.150.16 MgO 6.669.91 CaO10.3510.26 Na2O 2.88 2.65 K2O0.600.28 P2O50.060.05 Cr2O3⁎6601118 NiO⁎137247 L.O.I0.87 1.28 Total99.95100.11 (Trace elements in ppm)Li27.627.0 Be0.560.47 Rb9.7813.8 Sr178130Y12.612.7 Cs0.89 3.67 Ba86552.4 La 2.21 1.77 Ce 5.97 5.12 Pr0.880.80 Nd 4.35 4.10 Sm 1.25 1.26 Eu0.470.39 Gd 1.53 1.52 Tb0.280.29 Dy 1.83 1.91 Ho0.410.42 Er 1.14 1.19 Tm0.190.19 Yb 1.31 1.34 Lu0.200.20 Pb 6.44 1.85 Th0.050.07 U0.110.06 Zr28.828.2 Nb 1.19 1.77 Hf0.870.88 Ta0.050.08⁎In ppm.329H.Cheng et al./Lithos110(2009)327–342Sm –Nd and Rb –Sr analyses failed to produces isochrons (Li et al.,2001;Jahn et al.,2005),which was believed to be due to unequilibrated isotopic systems despite the fact that oxygen isotopic equilibrium was largely attained (Jahn et al.,2005).Phengite 40Ar/39Ar ages of ca.430–350Ma have been explained as the retrograde metamorphic age (Xu et al.,2000).The 310±3Ma phengite 40Ar/39Ar age (Webb et al.,1999)is likely geologically meaningless due to the concave-upward age spectrum,indicating the presence of excess argon.Collectively,existing geochronology provides an apparently con flicting picture for the Xiongdian eclogites.The timing of the oceanic crust subduction and exhumation essentially remains to be resolved.The two eclogites examined in this study were selected based on their mineral assemblages,inclusion types and geological context (Fig.1).The one (DB17)from the east bank of the river to the east of Xiongdian village is a coarse-grained and strongly foliated banded eclogite,composed mainly of garnet,omphacite and phengite.A second (DB18)eclogite was sampled about 50m to the north of DB17and is strongly foliated with a similar mineralogy assemblage but smaller garnet grains.3.MethodsSample preparation,mineral separation and chemical procedures for isotope analysis,instrumentation and standard reference materials used to determine whole rock and bulk mineral compositions,in situ major and trace element analyses (Institute for Study of the Earth's Interior,Okayama University at Misasa,Japan),zircon U –Pb isotope and trace element analyses (China University of Geosciences in Wuhan),Lu –Hf and Sm –Nd isotope analyses (Washington State University),Ar –Ar isotope analyses (Guangzhou Institute of Geo-chemistry,Chinese Academy of Sciences)and oxygen isotope analyses (University of Science and Technology of China)are described in the Appendix .4.Results4.1.Bulk chemical compositionThe Xiongdian eclogites are mainly of basaltic composition,but they show a wide range of major and trace element abundances.Despite the high SiO 2(52–58%)and low TiO 2(0.32–0.43%)contents,Fig.2.Whole rock chemical analysis data.(a)Chondrite-normalized REE distribution patterns of the Xiongdian eclogites.(b)Primitive-mantle-normalized spidergrams of the Xiongdianeclogites.Fig.3.Backscattered-electron images and rim-to-rim major-element compositional zoning pro files of representative garnets in the matrix and as inclusions in zircon.Amp —amphibole;Ap —apatite;Cal —calcite;Cpx —clinopyroxene;Zo —zoisite;Phen —phengite;Omp —omphacite;Qtz —quartz;Zrn —zircon.330H.Cheng et al./Lithos 110(2009)327–342they have MgO=5.1–9.9%,Cr=430–1118ppm,Ni=88–247ppm (Table 1;Li et al.,2001;Fu et al.,2002;Jahn et al.,2005).In contrast to existing LREE-enriched chondritic REE patterns,our samples have rather flat REE patterns around ten times more chondritic abundances with small,both negative and positive Eu anomalies (Fig.2a).Rubidium is depleted and Sr displays enrichment with respect to Ce.Both negative and no Nb anomalies relative to La were observed (Fig.2b).The N-MORB-normalized value of Th is around 0.5,lower than previous reported values of up to 25(Li et al.,2001).4.2.Petrography and mineral compositionThe Xiongdian eclogites occur as thin layers intercalated with dolomite –plagioclase gneiss and phengite –quartz schist (Fu et al.,2002),mainly consisting of garnet,omphacite,epidote (clinozoisite),phengite and minor amphibole,quartz and kyanite (Fig.3).Zircons were observed both as inclusions in garnet porphyroblasts and in the matrix.The samples have similar mineral assemblages,but differ in modal compositions.Omphacite (X Jd =0.46–0.48)is unzoned.Phengite has 3.30–3.32Si apfu and ∼0.4wt.%TiO 2.Garnets range in size from 0.5to 5mm in diameter,either as porphyroblasts or as coalesced polycrystals,mostly with idioblastic shapes with inclusions of quartz,calcite,apatite and omphacite (Fig.3).Garnet is largely homogeneous (Prp 24–25Alm 49–50Grs 24–25Sps 1.5–1.9),but shows a slightly Mn-enriched core (Fig.3d;Table 2).HREEs in large garnet porphyroblasts,such as Yb and Lu,display weak but continuous decreases in concentration from core to rim (Fig.4a),mimicking the MnO zoning pattern,which could be explained by their high af finity for garnet and likely arises from an overall Rayleigh distillation process during early garnet growth (Hollister,1966;Otamendi et al.,2002).However,the limited variation in MREE concentrations,such as Sm and Nd,in garnet with respect to the weak zoning in HREE (Fig.4a)might be explained by growth in an environment where MREEs are not limited and continuously supplied by the breakdown of other phases.Hafnium has a fairly flat pro file (Table 3),re flecting its incompatible character in garnet and absence of Hf-competing reactions involved in garnet growth.Two distinct domains can be de fined in the large garnet porphyroblasts based on the chemical zoning and the abundance of inclusions.These zones are an inclusion-rich core with richer Mn and HREE and an inclusion-free rim with poorer Mn and HREE (Fig.3d).The inclusion-free rim for individual garnet has a rather similar width of 200–250μm (Fig.3).Although concentrations of Nd (0.22–0.41ppm)and Sm (0.33–0.48ppm)vary within single garnet grains,the Sm/Nd ratios (0.8–2.2)are consistentTable 2Representative major-element data of the garnets,omphacites,phengites,amphiboles and zoisites.(wt.%)Grt Omp RimCore Inclusions-in-zircon Rim Core SiO 238.6838.6438.6638.5338.6538.6637.8637.7555.9356.1256.1356.20TiO 20.050.060.050.050.050.050.050.080.120.110.110.11Al 2O 321.9221.9422.0721.9921.9921.8421.6821.8611.2611.2211.3311.26FeO ⁎22.9823.0523.0623.1623.0523.1124.4224.33 4.25 4.23 4.32 4.27MnO 0.680.720.790.880.750.680.990.930.030.020.030.02MgO 6.37 6.38 6.28 6.31 6.36 6.35 4.23 4.748.158.027.968.13CaO 9.108.949.028.929.038.9910.579.5013.2213.3613.3213.34Na 2O 0.030.030.030.030.030.030.020.01 6.65 6.41 6.39 6.42K 2O 0.000.000.000.000.000.000.000.000.000.000.000.00Total 99.8099.7799.9699.8799.9199.7199.8299.2199.6099.6099.7099.87O.N.12121212121212126666Si 2.986 2.984 2.981 2.975 2.980 2.988 2.958 2.962 1.996 2.010 2.010 2.007Al 1.994 1.997 2.006 2.001 1.999 1.990 1.997 2.0210.4740.4730.4780.474Ti 0.0030.0030.0030.0030.0030.0030.0030.0050.0030.0030.0030.003Fe 2+ 1.486 1.491 1.489 1.499 1.489 1.496 1.596 1.5990.1270.1270.1290.128Mn 0.0440.0470.0520.0580.0490.0440.0660.0620.0010.0010.0010.001Mg 0.7330.7350.7220.7260.7310.7320.4930.5540.4340.4280.4250.433Ca 0.7530.7400.7450.7380.7460.7440.8850.7980.5060.5130.5110.511Na 0.0040.0050.0050.0050.0050.0050.0030.0020.4600.4450.4430.445K0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000Phn Amp Zo RimCore Rim Core Mantle Core SiO 248.8649.0949.3349.0147.0847.0746.7246.7539.0538.9239.0239.02TiO 20.400.410.410.400.220.220.220.220.130.130.130.12Al 2O 329.0328.6829.0129.1912.6612.8112.5812.6228.5528.2128.7328.62FeO ⁎ 1.99 1.99 2.00 1.9711.6011.4811.4611.36 6.01 6.01 6.03 6.07MnO 0.000.000.000.010.100.090.090.090.050.050.060.05MgO 2.79 2.77 2.78 2.8012.2012.4712.4412.300.070.060.070.07CaO 0.010.010.010.019.9710.0910.0710.1024.1023.8624.1324.14Na 2O 0.930.920.920.91 2.79 2.77 2.82 2.830.000.000.000.00K 2O 10.009.919.819.780.480.470.470.470.000.000.000.00Total 94.0293.7894.2894.0997.0997.4996.8896.7697.9697.2498.1698.09O.N.111111112323232312.512.512.512.5Si 3.302 3.323 3.318 3.304 6.831 6.800 6.799 6.809 3.008 3.019 3.000 3.003Al 2.313 2.288 2.300 2.319 2.164 2.182 2.158 2.167 2.592 2.579 2.603 2.596Ti 0.0200.0210.0210.0200.0240.0240.0240.0240.0070.0070.0070.007Fe 2+0.1120.1130.1130.111 1.407 1.387 1.394 1.3830.3870.3900.3880.390Mn 0.0000.0000.0000.0000.0120.0120.0120.0120.0040.0040.0040.004Mg 0.2820.2800.2790.282 2.639 2.686 2.699 2.6700.0070.0070.0070.008Ca 0.0010.0010.0010.001 1.550 1.562 1.570 1.577 1.989 1.983 1.988 1.990Na 0.1220.1210.1200.1190.7840.7770.7950.7980.0000.0000.0000.000K0.8620.8550.8420.8410.0890.0870.0880.0880.0000.0000.0000.000⁎Total iron;concentrations reported as wt.%.331H.Cheng et al./Lithos 110(2009)327–342with those obtained by ID-MC-ICPMS (1.9–2.4)within error (Fig.5a),indicating that the Nd isotopic analyses in this study are essentially unaffected by MREE-rich inclusions,likely due to ef ficient mineral picking and/or concentrated H 2SO 4pre-leaching.The consistent Hf concentrations of 0.10–0.13ppm within single grains with those (0.11–0.13ppm)by ID-MC-ICPMS indicates the Hf-rich phases were essentially removed during digestion (Fig.5b).The overall Lu concentration slightly skews towards the garnet rim because of the weak zoning pattern and the spherical geometry effect,i.e.,the outershells dominate the volume of Lu (Cheng et al.,2008a ).The 0.90–0.93ppm Lu contents by ID-MC-ICPMS apparently resemble those of the garnet rim,which could be readily explained by the spherical geometry effect.However,we interpret this with caution because individual garnet porphyroblasts could have different zoning patterns and the individual Lu pro file might not be representative of the population of garnet grains,although the chemical zoning center (nucleation site)coincides with the geometric center (Fig.3d),suggesting asymmetric garnet growth.In addition,biased mineral hand-picking should be considered (Cheng et al.,2008a,b ).Moreover,since the thin-section preparation method for this study cannot ensure that the real center of the garnet was exposed,the observed zoning here likely only represents a minimum zoning of particular garnet porphyroblasts.4.3.Estimation of P –T conditionsMetamorphic peak P –T conditions of 2.2GPa and 620°C for the DB17Xiongdian eclogite (Fig.6)are evaluated on the basis of recent cali-brations of the assemblage garnet+omphacite+phengite+kyanite+quartz,according to the dataset of Holland and Powell (1998).Higher P –T values of 2.4GPa and 650°C are calculated with the calibrations of Krogh Ravna and Terry (2004).While a temperature of 620±29°C is estimated by quartz –garnet O isotope thermometer (Zheng,1993),Ti-in-zircon thermometer (Watson et al.,2006;Ferry and Watson,2007)gives similar value of 695±22°C.Zr-in-rutile thermometer (Watson et al.,2006;Ferry and Watson,2007)yields a lower value of 634–652°C and a similar temperature of 683–701°C (Fig.6)when using the pressure-dependent calibration of Tomkins et al.(2007)at 2.2GPa.Calibration 1uses updated versions of the thermodynamic dataset and activity models in the programs THERMOCALC3.26and AX (Holland,Powell,1998;latest updated dataset;Powell et al.,1998)by using an avPT calculation in the simpli fied model system NCKFMASH with excess SiO 2and H 2O.Calibration 2uses thermobarometry based on the database of Holland and Powell (1998)and activity models for garnet (Ganguly et al.,1996),clinopyroxene (Holland and Powell,1990)and phengite (Holland and Powell,1998).Analyses of garnet,omphacite and phengite (Table 2)were processed according to the two calibrations.Calibration 3uses mineral O isotope compositions (Table 4)to estimate temperature based on the quartz –garnet O isotope thermometer (Zheng,1993).Calibrations 4and 5use Ti contents in zircon by LA-ICPMS and Zr concentration of rutile by SIMS (Table 5)to temperature estimations based on the Ti-in-zircon and Zr-in-rutile thermometers,respectively (Watson et al.,2006;Ferry and Watson,2007;Tomkins et al.,2007).The assemblage of garnet –omphacite –kyanite –phengite –quartz is representative of metamorphic peak conditions of theXiongdianFig.4.Chondrite-normalized REE patterns (Sun and McDonough,1989)of zircons,garnets and omphacite from Xiongdian eclogite (a)and REE distribution patterns between zircon and garnet (b).The equilibrium D REE(Zrn/Grt)values of Rubatto (2002),Whitehouse and Platt (2003)and Rubatto and Hermann (2007)are presented for comparison.Table 3SIMS Sm,Nd,Hf and Lu concentration pro files of the garnets in Figs.4and 5.(ppm)RimCore Cpx Li 0.93 1.140.880.840.890.980.750.520.990.580.690.870.670.7522.1Sr 0.100.130.120.120.100.100.100.120.110.120.130.100.110.1033.5Y 45.646.846.647.346.447.148.350.052.053.553.155.354.657.80.92Hf 0.110.130.120.120.110.110.120.120.120.100.110.100.100.100.41La 0.010.020.020.010.000.000.010.010.010.010.010.010.020.010.02Ce 0.040.050.050.060.050.040.040.040.050.030.040.040.050.030.12Pr 0.010.020.030.020.020.020.020.020.020.020.030.020.020.020.03Nd 0.390.330.280.380.350.270.220.280.340.310.270.410.280.260.36Sm 0.450.360.380.440.470.410.480.450.450.410.340.330.420.410.31Eu 0.270.270.270.280.300.240.280.280.250.300.290.240.250.220.22Gd 1.85 1.96 1.75 1.80 1.85 1.78 1.85 1.84 1.93 1.82 1.57 1.92 1.69 1.530.65Dy 5.68 5.86 5.58 6.18 5.87 5.84 5.79 6.19 6.46 6.40 5.50 6.91 6.09 6.400.26Er 3.74 4.13 4.04 4.25 4.23 4.16 3.76 4.15 4.65 4.99 4.53 4.98 4.63 5.200.06Yb 4.10 4.18 4.01 3.86 4.23 4.11 4.49 4.34 4.97 5.19 5.19 5.65 5.10 5.690.12Lu0.900.910.880.840.840.891.131.151.281.261.261.331.321.420.01332H.Cheng et al./Lithos 110(2009)327–342eclogite.A partly-calibrated thermobarometer is de fined by the three reactions of 3Celadonite +1Pyrope +2Grossular =3Muscovite +6Diopside,2Kyanite+3Diopside =1Pyrope +1Grossular +2Quartz,and 3Celadonite +4Kyanite=3Muscovite +1Pyrope +4Quartz.An intersection point of 2.2GPa and 620°C is de fined and therefore independent of commonly-used Fe –Mg exchange thermometers.This offers an advantage with regards to garnet –clinopyroxene,which is prone to retrograde reactions and problems stemming from ferric iron estimation of omphacite (Li et al.,2005).Results are plotted according to the calibrations mentioned above.The three reactions and intersection points are shown according to programs of calibrations 1–5in Fig.6.4.4.Oxygen isotopic dataThe O isotope compositions of minerals for the two eclogites are presented in Table 4.When paired with quartz for isotope geothermo-metry,garnet,omphacite,phengite,kyanite,zoisite and amphibole yield temperatures of 620±29,563±35,567±43,508±31,404±28and 685±39°C for eclogite DB17,respectively.Because these temperatures are concordant with rates of O diffusion and thus closure temperatures in the mineral assemblage garnet +omphacite +kyanite+phengite+quartz (Zheng and Fu,1998),representative of metamorphic peak conditions,a continuous resetting of O isotopes in the different mineral-pair systems is evident during cooling (Giletti,1986;Eiler et al.,1993;Chen et al.,2007).Quartz –garnet pairs from eclogite DB17give temperatures of 620±29°C,which are consistent with those calibrated by the THERMOCALCmethod,indicating that O isotope equilibrium was achieved and preserved during eclogite –facies recrystallization (Fig.7a).This is also evidenced by the apparent equilibrium fractionation between garnet and omphacite (Fig.7b).In contrast,equilibrium fractionation was not attained between garnets and omphacites in eclogite DB18.The calculated quartz –amphibole pair temperature of 685±39°C is distinctly higher than the 508±31°C from the quartz –zoisite pair.Because oxygen diffusion in amphibole is faster than in zoisite and kyanite (Zheng and Fu,1998),amphibole exchanges oxygen isotopes with water faster than zoisite during retrogression.Consequently,the O isotope temperature increases for the quartz –amphibole pair,whereas the quartz –zoisite temperature decreases relative to the formation temperature.In this regard,the retrograde metamorphism of amphibolite –facies should take place at a temperature between ∼685and ∼508°C.On the other hand,the low quartz –kyanite pair temperature (404±28°C)could be interpreted as a result of in fluence by retrogressive metamorphism without a clear geologicalmeaning.Fig.5.Sm/Nd versus Nd and Lu/Hf versus Hf plots for garnet and whole rock.ID:data obtained by the isotope dilution method using MC-ICPMS.IMS:data obtained by ion microprobe.bombWR —whole rock by bomb-digestion,savWR —whole rock by Savillex-digestion.Error bars for both IMS and ID methods are signi ficantly smaller than thesymbols.Fig.6.Peak P –T estimates of the Xiongdian eclogite.Reactions of py +2gr +3cel =6di +3mu;3di+2ky =py+gr +2q;and 3cel +4ky =py +3mu +4q and intersection points are plotted according to the calibrations of Holland and Powell (1998,latest updated dataset)in solid lines and Krogh Ravna and Terry (2004)in dashed lines.Coesite quartz equilibrium is also shown (Holland and Powell,1998).Abbreviations:alm —almandine,gr —grossular,py —pyrope,cel —celadonite,mu —muscovite,di —diopside,jd —jadeite,coe —coesite.Temperatures estimated by quartz –garnet oxygen isotope thermometry (Zheng,1993),Ti-in-zircon and Zr-in-rutile thermometries (Watson et al.,2006;Tomkins et al.,2007)are also shown.Table 4Oxygen isotope data of minerals for the Xiongdian eclogite.Sample number Mineral δ18O (‰)Pair Δ18O (‰)T 1(°C)T 2(°C)DB17Quartz 12.86,12.66Phengite 10.26,10.14Qtz –Phn 2.57567±43Garnet 8.83,8.85Qtz –Grt 3.93620±29605±22Omphacite 9.64,9.56Qtz –Omp 3.17563±35574±28Zoisite 9.31,9.43Qtz –Zo 3.40508±31494±21Amphibole 9.83,9.60Qtz –Amp 3.06685±39Kyanite 9.36,–Qtz –Ky3.41404±28WR 9.85,9.91DB18Garnet 9.74,9.59Omphacite 8.58,8.48Omp –Grt −1.14WR10.15,9.99T 1and T 2were calculated based on the theoretical calibrations of Zheng (1993)and Matthews (1994),respectively,with omphacite (Jd 45Di 55).Uncertainty on the temperature is derived from error propagation of the average reproducibility of ±15‰for δ18O (‰)values in the fractionation equations.333H.Cheng et al./Lithos 110(2009)327–342。

构建下转换荧光-适配体的免疫层析试纸条用于快速检测黄曲霉毒素B_(1)

构建下转换荧光-适配体的免疫层析试纸条用于快速检测黄曲霉毒素B_(1)

构建下转换荧光-适配体的免疫层析试纸条用于快速检测黄曲霉毒素B1王邹璐琪1,李立煌1,李丹阳1,艾超超1,任磊1,*,孙本强2,*(1.厦门大学材料学院,福建厦门361005;2.厦门医学院附属口腔医院,福建厦门361005)摘 要:构建下转换荧光-适配体免疫层析试纸条用于食品中黄曲霉毒素B1(aflatoxin B1,AFB1)的快速高效检测。

体系中AFB1存在会减弱下转换荧光-适配体纳米颗粒层析至T线时与AFB1半抗原的结合能力,从而导致下转换荧光信号衰减,进而实现对AFB1的高效检测。

该方法在AFB1质量浓度1~40 ng/mL范围内与荧光信号呈良好的线性关系,线性相关系数为0.994,检测限为0.287 ng/mL。

该方法利用稀土掺杂荧光纳米颗粒的长寿命发光及近红外荧光特性,有效降低了生物背景荧光干扰并提高了检测体系的特异性。

该方法在AFB1的快速高灵敏检测中具有良好的应用前景。

关键词:稀土掺杂荧光纳米颗粒;荧光免疫层析;黄曲霉毒素B1;快速检测Construction of Down-conversion Fluorescence-Aptamer Immunochromatographic Strip for Rapid Detection of Aflatoxin B1 WANG Zouluqi1, LI Lihuang1, LI Danyang1, AI Chaochao1, REN Lei1,*, SUN Benqiang2,*(1. College of Materials, Xiamen University, Xiamen361005, China;2. Stomatological Hospital of Xiamen Medical College, Xiamen361005, China)Abstract: In this study, a down-conversion fluorescence-aptamer immunochromatographic strip was constructed for the rapid and efficient detection of aflatoxin B1 (AFB1) in foods. The presence of AFB1 in the system will weaken the binding ability of down-conversion-aptamer fluorescent nanoparticles to the hapten AFB1 when down-conversion-aptamer fluorescent nanoparticles reach the T-line, thus leading to the attenuation of down-conversion fluorescence signal and consequently highly efficient detection of AFB1. In the range of 1–40 ng/mL, the concentration of AFB1 had a good linear relationship with the fluorescence signal, showing a correlation coefficient of 0.994, and the detection limit for AFB1 was0.287 ng/mL. By taking advantage of the long-lived luminescence and the near infrared fluorescence characteristics of rareearth doped fluorescent nanoparticles, this method effectively reduced the interference of biological background fluorescence and improved the specificity of the detection system, making it a promising candidate for application in the rapid and sensitive detection of AFB1.Keywords: rare earth doped fluorescent nanoparticles; fluorescence immunochromatographic assay; aflatoxin B1; rapid detection DOI:10.7506/spkx1002-6630-20191030-337中图分类号:TS201.2 文献标志码:A 文章编号:1002-6630(2021)12-0295-07引文格式:王邹璐琪, 李立煌, 李丹阳, 等. 构建下转换荧光-适配体的免疫层析试纸条用于快速检测黄曲霉毒素B1[J]. 食品科学, 2021, 42(12): 295-301. DOI:10.7506/spkx1002-6630-20191030-337. WANG Zouluqi, LI Lihuang, LI Danyang, et al. Construction of down-conversion fluorescence-aptamer immunochromatographic strip for rapid detection of aflatoxin B1[J]. Food Science, 2021, 42(12): 295-301. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-20191030-337. 收稿日期:2019-10-30基金项目:福建省自然科学基金项目(2017Y0078);国家自然科学基金面上项目(31870994)第一作者简介:王邹璐琪(1996—)(ORCID: 0000-0002-7715-1267),女,硕士研究生,研究方向为生物医学材料。

as自然地理学实习录音翻译(1)

as自然地理学实习录音翻译(1)

自然地理学实习录音翻译1、六月四号今天处于副热带高压边缘,前面的云为积云,积云再发展下去为积雨云。

目前这几分钟又晴朗。

今天的天气有分散阵雨,赶得上赶不上看我们的运气了,由副热带高压控制的,副热带高压还么有分到我们这么西。

湖北、玉林、广东是晴朗的。

2、实习要看线路,如何走。

三塘、四塘、……九塘,过昆仑关到宾阳境内。

我们实习,时间有限,所以从县上走。

要看植被土壤、交通线路路边的滑坡、水土流失都需要看。

过半小时出市。

3、岩性构造与地貌之间的关系,岩性与风化峭的关系,风化峭与土壤的关系土壤与地面的关系,这些东西都要综合地看。

4、什么时间到哪了,天气如何。

白天跑完晚上要把白天跑的东西全部整理一遍,总结,把该画的图画了,把看到的现象,要理解的问题整理好。

5、邕江导出来的田基,现在我们走到田基的边缘了,大致方向是东北方向,下面为一个背斜,这个背斜在南宁市的北边,看起来是一座山,是长条状的。

东西走向的背斜,这些的核心是花岗岩鼓上来的,核心沉积岩、砂岩,寒武纪的。

海拔在四五百米,如果那样只能叫丘陵了。

三叠纪的基岩,主要是砂岩、泥岩和页岩,几乎南宁市的周围边缘都是这些岩。

6、如果再沉的话叫冲击平原,这是侵蚀的,大部是沉积,沉积大多数来自河谷地,当然有一部分是没有沉积的。

7、最好是在波状起伏较高的地方种植植被、经济林,然后在低平的地方种植农作物。

8、昆仑关属于九塘镇的。

9、无10、二叠的,但是我没有看到石灰岩,可能还要老一些,应该是接近泥盆纪的了。

有的人工挖开的坡面,那个就叫做风化峭,在这些地方的土壤叫赤红壤,这些应该是亚热带的常绿阔叶林或者叫做常绿杂木阔叶林,是人为的,种些桉树之类的。

11、台地和丘陵在海拔高度上是一样的。

按规定500米以下的叫丘陵,如果坡度≤7度或6度叫台地,如果≥6度或7度叫丘陵,台地都是比较平的,这些的坡度大概在3或度吧。

12、无13、整个河床的宽度、深度比越来越小,在南宁的地方宽,深度不大,然后逐渐变的没那么宽了,但是相对来说深度要大一些了,这些地方是扁平的,现在我们行的是河谷台地。

地质专业英语翻译(张翼翼)

地质专业英语翻译(张翼翼)

Unit1Cosmic Beginnings宇宙的起源地球的历史上是何时何地开始的?只有在过去的几十年里,这个问题才有了一个比较科学的回答来解释。

当然存在一个较好的说法是地球的起源时间是当组成地球的物质在宇宙中开始与太空中组成太阳系其它成员的物质分离的时候。

虽然故事很可能开始在这里,许多重要的问题仍悬而未决。

一些有必要提及的物质构成了地,这将推动更偏远的起源问题。

现在我们知道从其他星球上得到的第一手观察的物理条件,这让我们可以尽早寻求合理的答案,为什么地球是不同于早期火星和月球。

为了理解差异和相似之处,我们必须研究包括太阳的整个太阳系。

为了了解恒星太阳所属的类,我们需要知道更多关于银河系的其他天体。

当我们超过银河系的领域到太空中的其他部分来获得能说明的证据就更不容易了。

现在我们知道(太空中)有很多不同种类的星系,也包括很多像我们一样的。

那么这些不同的种类是怎么开始的然后变得不同的呢?这个问题现在是在天文学研究的最前沿而且很明显它是能够真正理解太阳系的关键。

显然,没有太阳就没有其他行星,没有星系就没有太阳,没有宇宙就没有星系,没有空间和物质也就没有宇宙。

[笔者认为这里倒着翻译从大到小更好一些]因此,我们的关于地球物质起源的探究路线,最终也会带领我们去(探究)空间和物质的起源,这是一个很重大的课题,伴随着很多模糊的和未知或不可知的次要领域。

太阳系在太空中是一个巨大的,平坦的,透镜状的区域,行星和大部分的更小的组件沿着一个几乎完整的面绕着太阳转。

这个结构好比与螺旋星系和土星和它的卫星或不明飞行体一样。

虽然太阳系在细节上也不像这些集合体,但是带有平坦的螺旋圈或旋臂仍然是现代起源理论的起点。

早在1644年,伟大的法国哲学家和数学家笛卡尔就提出了太阳系形成于一团松散的,原始的云状物质。

他认为,太阳和行星是这团物质通过旋转、涡流而成的积聚物。

在1755年,康德考虑了牛顿于1687年描述的万有引力定律后发表了一个更为详细的理论。

pendulum

pendulum

pendulumPendulumIntroductionThe concept of a pendulum has intrigued scientists and philosophers for centuries. From Galileo Galilei's experiments with pendulums in the late 16th century to its applications in various fields today, the pendulum has played a significant role in understanding physics, mechanics, and timekeeping. This document explores the history, mechanics, and applications of the pendulum.Historical OverviewThe use of pendulums dates back to ancient times, where it was used primarily for timekeeping. However, it was Galileo Galilei who first made significant contributions to the study of pendulum motion. In the late 16th century, Galileo observed that the period (time taken to complete one full swing) of a pendulum remains constant, regardless of the amplitude (angle of swing). This discovery paved the way for further research and led to the development of various applications.Mechanics of a PendulumA pendulum consists of a mass (known as a bob) attached to a fixed point by a string or rod. When displaced from its equilibrium position, the pendulum experiences a restoring force, which causes it to oscillate back and forth. The motion of a pendulum can be described by three main factors: length, mass, and gravitational acceleration.The period of a pendulum is influenced by its length. According to Galileo's observation, longer pendulums have longer periods, while shorter pendulums have shorter periods. This relationship can be mathematically represented by the formula T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.The mass of the pendulum bob also affects its oscillation. A heavier bob will have a slower period compared to a lighter one. However, for small oscillations, the mass does not significantly impact the period.Applications of PendulumsTimekeeping:One of the most notable applications of pendulums is in timekeeping devices such as clocks. Pendulum clocks were widely used from the 17th century until the introduction of quartz oscillators in the 1930s. The swinging motion of the pendulum used in these clocks provided a mechanism to measure time accurately.Physics:Pendulums have also been used in various physics experiments to study and demonstrate fundamental principles. They are often used as simple harmonic oscillators in wave and vibration experiments. In addition, pendulums provide a simplified model for understanding concepts such as potential energy, kinetic energy, and conservation of energy.Pendulum Waves:Pendulum waves, also known as \。

生物化学的发现英文

生物化学的发现英文

生物化学的发现英文In the realm of biochemistry, the discovery of DNA's double helix structure stands as a monumental breakthrough.It revolutionized our understanding of genetic informationand paved the way for modern molecular biology.The intricate dance of enzymes and substrates, orchestrating the metabolic pathways within cells, is amarvel of nature's design. Each enzyme, with its unique shape, ensures the specificity and efficiency of biochemical reactions.Another significant revelation in biochemistry is therole of amino acids in protein synthesis. The sequence ofthese building blocks determines the structure and functionof proteins, which are the workhorses of the biological world.The exploration of lipid bilayers and their role in cell membranes has deepened our comprehension of how cellsmaintain their integrity and selectively interact with their environment.The study of biochemistry also unveils the mysteries of cellular energy production. The citric acid cycle andoxidative phosphorylation are processes that convertnutrients into the energy currency of the cell, ATP.Understanding the molecular mechanisms of disease hasbeen greatly advanced by biochemistry. For instance, the identification of the molecular basis of cystic fibrosis has led to more targeted and effective therapies.The emerging field of epigenetics, where biochemistry intersects with genetics, has shed light on how environmental factors can influence gene expression without altering the DNA sequence itself.Finally, the ongoing quest to decode the human proteomeis a testament to the vastness of biochemical knowledge. Each protein's unique function contributes to the symphony of life, and understanding them is key to unlocking the mysteries of health and disease.。

TPO28 R-1原文翻译

TPO28 R-1原文翻译

TPO28 R-1 原文翻译Groundwater世界上大部分的饮用水(新鲜的适合饮用的)都是地下水,这种水被储存在岩石的小孔和断裂处。

地下储存的新鲜水源是地球上所有江河湖泊中的水的50倍。

在地球更深的地方,上层岩石的压力使得小孔和裂缝闭合,减少了可储存水的空间,并且几乎10千米以下的所有空间。

大部分的储存水的空间都处在浅层的岩层中。

●含水土层,多孔性和渗透性地下水储存在各种不同类型的岩石中。

能从地下储水处取出水的叫做含水土层。

我们可以形象地将含水土层比作水的“存款”。

取水取决于含水土层的两个特性:多孔性和渗透性。

在沉积物之间的空间是可以被水充满的。

这些孔状空间被称为多孔性,并且被包括于岩石的总体积。

对于储水能力来说,多孔性非常重要,但是如果要想水能在岩石间流动,这些孔状空间必须互相连接。

水或者其他的液体可以在不连接的岩石孔状空间中流动的能力被称作渗透性。

断裂处和连接处都有非常高的渗透能力。

但是在岩石的颗粒状空间中,液体必须在颗粒间扭曲的通道流动;这样弯曲的通道导致了流动阻碍。

水克服这种阻碍的比率决定于岩石的渗透性。

沉积物的排序和紧密程度影响了其渗透性和多孔性。

越是分选差的或者越是紧密压缩的沉积层,它的多孔性和渗透性就越低。

表层最常见的岩石,沉积石也是最常见的储水石,因为他们有着很多可以充水的空间。

总体来说,沙石也是很好的储水层,但是紧密的泥石基本是不能渗透的不具有渗透性的岩石被称作隔水层。

火山岩和变质岩质地更紧密,通常是透明的,并且在颗粒间很少有空间。

但是,如果大量的裂口存在于这种岩石中,并且断裂系统间联通,即使是火山岩或是变质岩也可以充当地下水库的角色,●地下水位地下水位是所有裂缝和孔洞中的水的边界。

有时候,地下水位会与地球表面平齐,这样就会出现河流,湖泊,和沼泽。

不过更典型是,地下水位可能会低于表面成十或上百米。

地下水位并不是平齐的,但是通常跟随着地势的等高线。

在地下水位置上是渗流层,通过这里雨水得以渗透进入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PACS numbers: 21.60.Jz, 21.10.Dr, 23.50.+z, 27.60+j
The structure and decays modes of nuclei beyond the proton drip-line represent one of the most active areas of experimental and theoretical studies of exotic nuclei with extreme isospin values. In the last few years many new data on ground-state and isomeric proton radioactivity have been reported. In particular, detailed studies of odd-Z ground-state proton emitters in the regions 51≤Z≤55 and 69≤Z≤ 83, have shown that the systematics of spectroscopic factors is consistent with half-lives calculated in the spherical WKB or distorted-wave Born (DWBA) approximations [1,2]. More recent data [3,4] indicate that the missing region of light rare-earth nuclei contains strongly deformed systems at the drip-lines. In the theoretical description of ground-state and isomeric proton radioactivity, two es-
1பைடு நூலகம்
sentially complementary approaches have been reported. One possibility is to start from a spherical or deformed phenomenological single-particle potential, a Woods-Saxon potential for instance, and to adjust the parameters of the potential well in order to reproduce the experimental one-proton separation energy. The width of the single-particle resonance is then determined by the probability of tunneling through the Coulomb and centrifugal barriers. Since the probability strongly depends on the valence proton energy and on its angular momentum, the calculated half-lives provide direct information about the spherical or deformed orbital occupied by the odd proton. For a spherical proton emitter it is relatively simple to calculate half-lives in the WKB or DWBA approximations [2]. On the other hand, it is much more difficult to quantitatively describe the process of three-dimensional quantum mechanical tunneling for deformed proton emitters. Modern reliable models for calculating proton emission rates from deformed nuclei have been developed only recently [4,5]. A shortcoming of this approach is that it does not predict proton separation energies, i.e. the models do not predict which nuclei are likely to be proton emitters. In fact, if they are used to calculate decay rates for proton emission from excited states, the depth of the central potential has to to be adjusted for each proton orbital separately. In addition, the models of Refs. [2,4,5] do not provide any information about the spectroscopic factors of the proton orbitals. Instead, experimental spectroscopic factors are defined as ratios of calculated and measured half-lives, and the deviation from unity is attributed to nuclear structure effects. In Refs. [6–8] we have used the relativistic Hartree Bogoliubov (RHB) theory to calculate properties of proton-rich spherical even-even nuclei with 14≤Z≤28, and to describe odd-Z deformed ground-state proton emitters in the region 53 ≤ Z ≤ 69. RHB presents a relativistic extension of the Hartree-Fock-Bogoliubov theory, and it provides a unified framework for the description of relativistic mean-field and pairing correlations.Such a unified and selfconsistent formulation is especially important in applications to drip-line nuclei. The RHB framework has been used to study the location of the proton drip-line, the ground-state quadrupole deformations and one-proton separation energies at and beyond the drip line, the deformed single particle orbitals occupied by the odd valence proton, and the corre2
1
Physik-Department der Technischen Universit¨ at M¨ unchen, D-85748 Garching, Germany
2
Physics Department, Faculty of Science, University of Zagreb, Croatia
sponding spectroscopic factors. The results of fully self-consistent calculations have been compared with experimental data on ground-state proton emitters. However, since it is very difficult to use the self-consistent ground-state wave functions in the calculation of proton emission rates, one could say that the RHB model provides informations which are complementary to those obtained with the models of Refs. [2,4,5]. It should be noted that in the relativistic framework the strength and the shape of the spin-orbit term are determined selfconsistently. This is essential for a correct description of spin-orbit splittings in regions of nuclei far from stability, where the extrapolation of effective strength parameters becomes questionable. The motivation for the present work are the very recent data on proton emission from the closed neutron shell nucleus
相关文档
最新文档