动态几何问题的求解(学生版)
1L 动态几何问题
一、几何动态问题1.如图,△ABC中,∠B=90°,tan∠BAC= ,半径为2的⊙O从点A开始(图1),沿AB 向右滚动,滚动时始终与AB相切(切点为D);当圆心O落在AC上时滚动停止,此时⊙O 与BC相切于点E(图2).作OG⊥AC于点G.(1)利用图2,求cos∠BAC的值;(2)当点D与点A重合时(如图1),求OG;(3)如图3,在⊙O滚动过程中,设AD=x,请用含x的代数式表示OG,并写出x的取值范围.2.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.3.如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P 同时结束运动.(1)点P到达终点O的运动时间是________s,此时点Q的运动距离是________cm;(2)当运动时间为2s时,P、Q两点的距离为________cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y= 过点D,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.4.如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以1cm/s 的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为cm,AC=8cm,设运动时间为t秒.(1)求证:NQ=MQ;(2)填空:①当t=________时,四边形AMQN为菱形;②当t=________时,NQ与⊙O相切.5.如图1,点P为四边形ABCD所在平面上的点,如果∠PAD=∠PBC,则称点P为四边形ABCD关于A、B的等角点,以点C为坐标原点,BC所在直线为x轴建立平面直角坐标系,点B的横坐标为﹣6.(1)如图2,若A、D两点的坐标分别为A(﹣6,4)、D(0,4),点P在DC边上,且点P为四边形ABCD关于A、B的等角点,则点P的坐标为________;(2)如图3,若A、D两点的坐标分别为A(﹣2,4)、D(0,4).①若P在DC边上时,求四边形ABCD关于A、B的等角点P的坐标;②在①的条件下,将PB沿x轴向右平移m个单位长度(0<m<6)得到线段P′B′,连接P′D,B′D,试用含m的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值时点P′的坐标;③如图4,若点P为四边形ABCD关于A、B的等角点,且点P坐标为(1,t),求t的值;④以四边形ABCD的一边为边画四边形,所画的四边形与四边形ABCD有公共部分,若在所画的四边形内存在一点P,使点P分别是各相邻两顶点的等角点,且四对等角都相等,请直接写出所有满足条件的点P的坐标.6.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.7.如图,已知抛物线y= +bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.8.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE= .将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.9.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.10.如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2 cm/s;点Q在BD 上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=________;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.11.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.12.如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE= AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=________;②当θ=180°时,=________.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为________;②当△ADE旋转至B、D、E三点共线时,线段CD的长为________.13.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B 在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.14.如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF (点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图1,连接PD,填空:∠PFD=________,四边形PEAD的面积是________;(2)如图2,当PF经过点D时,求△P EF运动时间t的值;(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请求出S与t的函数关系式.15.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN 绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F (点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是________;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF= AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.16.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:________,AB与AP的位置关系:________;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.17.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC 的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t (s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由18.如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E 运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.。
用一元二次方程解决动态几何问题
用一元二次方程解决动态几何问题例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后△PBQ的面积等于8cm2?变式训练一:几秒钟后,若△PQD的面积等于8cm2呢?变式训练二:当点Q运动到点D时,P、Q两点同时停止运动,试求△PQD的面积S与P、Q两个点运动的时间t之间的函数关系式。
动态几何找等量关系的基本思路:1、若动态图形比较特殊,思考用基本几何图形的面积公式找等量关系列方程或函数关系式;2、如动态图形不特殊,则思考用组合图形的面积和差找等量关系列方程或函数关系式。
例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后⊿ PBQ的面积等于8cm2?例2:等腰直角⊿ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC 的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?例3:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P是AB上的一动点(不与A,B重合),且AP=x,过点P作直线l与AB垂直.i)设⊿ ABC位于直线l左侧部分的面积为S,写出S与x之间的函数关系式;ii)当x为何值时,直线l平分⊿ ABC的面积?1已知线段AB的长为a,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF丄CD,垂足为F点.若正方形AENM与四边形EFDB的面积相等,則AE的长为?2如图,矩形ABCD的周长是20cm,以AB,CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和68cm2,那么矩形ABCD的面积是?3如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于?4如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为?5一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时,有DC2=AE2+BC2.例2 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.1如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD 边上(不与A、D重合),在AD上适当移动三角板顶点P.(1)能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由;(2)再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC延长线交于点Q,与BC交于点E,能否使CE=2 cm?若能,请你求出这时AP的长;若不能,请你说明理由.2如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.3如图所示,甲、乙两人开车分别从正方形广场ABCD的顶点B、C两点同时出发,甲由C向D运动,乙由B向C运动,甲的速度为1km/min,乙的速度为2km/min;若正方形广场的周长为40km,问几分钟后,两人相距km?4如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,当点P到达B点或点Q到达C点时,两点停止移动,如果P、Q分别是从A、B同时出发,t秒钟后,(1)求出△PBQ的面积;(2)当△PBQ的面积等于8平方厘米时,求t的值.(3)是否存在△PBQ的面积等于10平方厘米,若存在,求出t的值,若不存在,说明理由.5、如图,在△ABC中,∠B=90°,BC=12cm,AB=6cm,点P从点A开始沿AB边向点B以2cm/s的速度移动(不与B点重合),动直线QD从AB开始以2cm/s速度向上平行移动,并且分别与BC、AC交于Q、D点,连结DP,设动点P与动直线QD同时出发,运动时间为t秒,(1)试判断四边形BPDQ是什么特殊的四边形?如果P点的速度是以1cm/s,则四边形BPDQ还会是梯形吗?那又是什么特殊的四边形呢?(2)求t为何值时,四边形BPDQ的面积最大,最大面积是多少?6、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?7、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?例3、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动, (1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;C A B P QD ← ↑ QPB D A CA D P例4、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;1、在等腰梯形ABCD 中,AB=DC=5,AD=4,BC=10. 点E 在下底边BC 上,点F 在腰AB 上. (1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积;(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由;2、如图,直角坐标系中,已知点A (2,4),B (5,0),动点P 从B 点出发沿BO 向终点O 运动,动点Q 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1(1)Q 点的坐标为( , );(用含x (2)当x 为何值时,△APQ 是一个以AP 为腰的等腰三角形(3)记PQ 的中点为G .请你探求点G 随点P ,Q 并说明理由;3、如图,机器人在点A 处发现一个小球自点B 处沿x 轴向原点方向匀速滚来,机器人立即从A 处匀速直线前进去截小球.点A 的坐标为(2,5),点B 的坐标为(10,0),(1)若小球滚动速度与机器人的行驶速度相等,问机器人最快可在何处截到小球? (24如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2,(1)求面积S 与时间t 的关系式;(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由;5、如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC=8cm ,BC=6cm ,∠C=90°,EG=4cm ,∠EGF=90°,O 是ΔEFG 斜边上的中点,如图②,若整个ΔEFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在ΔEFG 平移的同时,点P 从ΔEFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,ΔEFG 也随之停止平移,设运动时间为x(s),FG 的延长线交AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况), (1)当x 为何值时,OP//AC ?(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围; (3)是否存在某一时刻,使四边形OAHP 面积与ΔABC 面积的比为 13:24?若存在,求出x 的值;若不存在,说明理由;(参考数据:,,或,,25.205.436.194.413456116132251151299611422222===== 16.216.42=)。
专题01 几何动态问题(解析版)
专题01 几何动态问题1.小明发现,若一个三角形中,中线的存在会和三角形的面积有一定的关系.如图1,ABC D 中,CD 为AB 边的中线,可得AD BD =,过点C 作CM AB ^于M ,则1122ADC BDC S AD CM BD CM S D D =×=×=.在持续研究中,小明发现,这个研究可以运用到很多问题解决中,请你帮助小明完成下列任务:(1)如图2,矩形ABCD 中,点M ,N 分别为CD ,AB 上的动点,且DM AN =,AM 与DN 交于点E .连接CE .①判断DAE D 与DME D 的面积关系;②若3AD =,4AB =,当点M 为CD 的中点时,求四边形BCEN 的面积;(2)ABC D 中,30A Ð=°,6AB =,点D 为AB 的中点,连接CD ,将ACD D 沿CD 折叠,点A 的对应点为点E ,若ECD D 与ABC D 重合部分的面积为ABC D 面积的14,直接写出ABC D 的面积.【解答】解:(1)①连接MN ,作DP AM ^,垂足为P ,//DM AN Q ,DM AN =,90ADM Ð=°,\四边形ANMD 是矩形,AE EM \=,DE EN =,12DAE S AE DP D \=×,12DME S EM DP D =×,DAE DME S S D D \=;②DNA DEC BCEN ABCD S S S S D D =--四边形四边形,E Q 为AM 的中点,E \到DM 的距离为12AD ,11114332222DEC S DC AD D \=×=´´´=,111433222DAN S AN AD D =×=´´´=,4312ABCD S AB CD =×=´=Q 矩形,12336BCEN S \=--=四边形;(2)设ACD S D 的高为h ,由前面提到的发现可知,CD 作为中线,可得ACD CDB S S D D =,11132222ACD S AD h AB h h D =×=´×=Q ,23ABC ACD S S h D D \==,设BC 交DE 于点Q ,Q 重合部分面积为ABC S D 的14,即13344CDQ S h h D =´=,11111244222CDQ ABC ADC ADC CDE CDB S S S S S S D D D D D D \==´===,CQ Q 是中线,QD QE \=,1111322222QE DE AD AB \===´=,CDE D Q 是由ACD D 沿CD 折叠,30A E \Ð=Ð=°,cos30°=Q\QE CE ==CE \,根据勾股定理得,CQ ==,CQE CQD S S D D \==14ABC CQE S S D D \=2.【问题再现】苏科版《数学》八年级下册第94页有这样一题:如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,CD ,AD 上的点,GE BF ^,垂足为M ,那么GE = BF .(填“<”、“ =”或“>” )【迁移尝试】如图2,在56´的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求AMC Ð的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求DMC Ð的度数;②连接AC 交DE 于点H ,直接写出DH BC的值为 .【解答】解:【问题再现】GE BF ^Q ,90BMG \Ð=°,将线段GE 向左平移至AL 处,交BF 于I ,AL GE \=,90AIB BMG Ð=Ð=°,90BAL ABI \Ð+Ð=°,Q 四边形ABCD 为正方形,AB BC \=,90ABC C Ð=Ð=°,90CBF ABI \Ð+Ð=°,BAL CBF \Ð=Ð,()ABL BCF ASA \D @D ,AL BF \=,GE BF \=,故答案为:=;【迁移尝试】将线段AB 向右平移至ND 处,使得点B 与点D 重合,连接PN ,如图2所示:AMC NDC \Ð=Ð,设正方形网格的边长为单位1,则由勾股定理可得:DN ==,PD ==,PN ==,222PN PD DN \+=,DPN \D 是直角三角形,90DPN Ð=°,且PN PD =,45AMC NDC \Ð=Ð=°;【拓展应用】①平移线段BC 至DK 处,连接KE ,如图3所示:则DMC KDE Ð=Ð,四边形DKBC 是平行四边形,DC KB \=,Q 四边形ADCP 与四边形PBEF 都是正方形,DC AD AP \==,BP BE =,90DAK KBE Ð=Ð=°DC AD AP KB \===,AG BP BE \==,在AKD D 和BEK D 中,AK BE DAK KBE AD KB =ìïÐ=Ðíï=î,()AKD BEK SAS \D @D ,DK EK \=,ADK EKB Ð=Ð,90EKB AKD ADK AKD \Ð+Ð=Ð+Ð=°,90EKD \Ð=°,45KDE KED \Ð=Ð=°,45DMC KDE \Ð=Ð=°;②如备用图所示:AC Q 为正方形ADCP 的对角线,45DAC PAC DMC \Ð=Ð=Ð=°,AC \=,HCM BCA Ð=ÐQ ,AHD CHM ABC \Ð=Ð=Ð,ADH ACB \D D ∽,\DH AD BC AC ==,.3.已知,矩形ABCD中,4=,AC的垂直平分线EF分别交AD、BCBC cmAB cm=,8于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;D和CDE(2)如图2,动点P、Q分别从A、C两点同时出发,沿AFBD各边匀速运动一周.即点P自A F B A®®®停止.在运动过程中,®®®停止,点Q自C D E C①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,0)ab¹,已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.【解答】解:(1)①Q四边形ABCD是矩形,\,AD BC//Ð=Ð,CAD ACB\Ð=Ð,AEF CFEQ垂直平分AC,垂足为O,EF\=,OA OC\D@D,AOE COFOE OF \=,\四边形AFCE 为平行四边形,又EF AC ^Q ,\四边形AFCE 为菱形,②设菱形的边长AF CF xcm ==,则(8)BF x cm =-,在Rt ABF D 中,4AB cm =,由勾股定理得2224(8)x x +-=,解得5x =,5AF cm \=.(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上或P 在BF ,Q 在CD 时不构成平行四边形,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,\以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =,Q 点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,5PC t \=,4124QA CD AD t t =+-=-,即124QA t =-,5124t t \=-,解得43t =,\以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,四边形APCQ 是平行四边形时,点P 、Q 在互相平行的对应边上.分三种情况:)i 如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b +=;)ii 如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =,即12b a -=,得12a b +=;)iii 如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b +=.综上所述,a 与b 满足的数量关系式是12(0)a b ab +=¹.4.(1)已知:如图1,ABC D 为等边三角形,点D 为BC 边上的一动点(点D 不与B 、C 重合),以AD 为边作等边ADE D ,连接CE .求证:①BD CE =,②120DCE Ð=°;(2)如图2,在ABC D 中,90BAC Ð=°,AC AB =,点D 为BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等腰Rt ADE D ,90DAE Ð=°(顶点A 、D 、E 按逆时针方向排列),连接CE ,类比题(1),请你猜想:①DCE Ð的度数;②线段BD 、CD 、DE 之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt ADE D ,90DAE Ð=°(顶点A 、D 、E 按逆时针方向排列),连接CE .①则题(2)的结论还成立吗?请直接写出,不需论证;②连接BE ,若10BE =,6BC =,直接写出AE 的长.【解答】证明:(1)①如图1,ABC D Q 和ADE D 是等边三角形,AB AC \=,AD AE =,60ACB B Ð=Ð=°,60BAC DAE Ð=Ð=°,BAC DAC DAE DAC \Ð-Ð=Ð-Ð,BAD EAC \Ð=Ð.在ABD D 和ACE D 中,AB AC BAD EAC AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,BD CE \=;②ABD ACE D @D Q ,60ACE B \Ð=Ð=°,6060120DCE ACE ACB \Ð=Ð+Ð=°+°=°;(2)90DCE Ð=°,222BD CD DE +=.证明:如图2,90BAC DAE Ð=Ð=°Q ,BAC DAC DAE DAC \Ð-Ð=Ð-Ð,即BAD CAE Ð=Ð,在ABD D 与ACE D 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,45B ACE \Ð=Ð=°,BD CE =,90B ACB ACE ACB \Ð+Ð=Ð+Ð=°,90BCE \Ð=°,Rt DCE \D 中,222CE CD DE +=,222BD CD DE \+=;(3)①(2)中的结论还成立.理由:90BAC DAE Ð=Ð=°Q ,BAC DAC DAE DAC \Ð+Ð=Ð+Ð,即BAD CAE Ð=Ð,在ABD D 与ACE D 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,45ABC ACE \Ð=Ð=°,BD CE =,90ABC ACB ACE ACB \Ð+Ð=Ð+Ð=°,90BCE ECD \Ð=°=Ð,Rt DCE \D 中,222CE CD DE +=,222BD CD DE \+=;②Rt BCE D Q 中,10BE =,6BC =,8CE \===,8BD CE \==,862CD \=-=,Rt DCE \D中,DE ===,D Q\AE ==.5.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B ¢落在MN 上,折痕为EC ,连接DB ¢,如图2.①点B ¢在以点E 为圆心, BE 的长为半径的圆上;②B M ¢= ;③△DB C ¢为 三角形,请证明你的结论.拓展延伸(2)当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点)B 折叠后,点B 的对应点B ¢落在正方形ABCD 内部或边上.①ABB ¢D 面积的最大值为 ;②连接AB ¢,点P 为AE 的中点,点Q 在AB ¢上,连接PQ ,AQP AB E ¢Ð=Ð,则2B C PQ ¢+的最小值为 .【解答】解:(1)由折叠的性质知,BE BE =¢,BC B C =¢,1322MA MB NC ND AB =====,B EB C Ð=Т,①由题意得,点B ¢在以点E 为圆心,BE 的长为半径的圆上;②3MB MN MB MN ¢=-¢=-==;③BC B C CD =¢=Q ,而B D B C ¢===¢,\△DB C ¢为 等边三角形,故答案为①BE ;;③等边;(2)①33AB AE ==Q ,则1AE =,2BE =,Q 点B ¢在以点E 为圆心,BE 的长为半径的圆上,如图1,ABB ¢\D 面积的最大时,只要AB 边上的高最大即可,\当B E AB ¢^时,ABB ¢D 面积的最大,ABB ¢\D 面积1132322AB B E =´´¢=´´=,故答案为3;②AQP AB E ¢Ð=ÐQ ,//PQ B E \¢,P Q 是AE 的中点,PQ \是AEB D ¢的中位线,如图2,12PQ B E \=¢,即2B C PQ B C B E ¢+=¢+¢,E \、B ¢、C 三点共线时,2B C PQ ¢+取得最小值为CE ,则CE ===,.6.(1)如图1,菱形ABCD 中,4AB =,60ABC Ð=°,点M ,N 分别为边AD ,DC 上的动点,且4DM DN +=,则四边形BMDN 的面积为 (2)如图2,平行四边形ABCD 中,3AB =,5BC =,60ABC Ð=°,点M ,N 分别为边AD 、DC 上的动点,且4DM DN +=,则四边形BMDN 的面积是否为定值?若是,求出定值;若不是,请求出最值;(3)如图3,四边形ABCD 中,AB AD =,1CD =,90A C Ð=Ð=°,60ABC Ð=°,点M 、N 分别为边AD 、DC 上的动点,且2DM DN +=,是否存在M 、N ,使得四边形BMDN 面积最大且DMN D 的周长最小?若存在,求出DMN D 的周长最小值;若不存在,请说明理由.【解答】解:(1)过点B 作BE DA ^延长线于点E ,过点B 作BF DC ^延长线于点F ,则90BEA BFC Ð=Ð=°,Q 四边形ABCD 是菱形,//AB CD \,//AD BC ,60ABC D Ð=Ð=°,60BAE BCF \Ð=Ð=°,BE BF \==,连接BD ,设DM x =,则4DN x =-,BMD BNDBMDN S S S D D =+四边形1122MD BE DN BF =××+××11(4)22x =´+´-=故四边形BMDN 的面积为,故答案为:;(2)过点B 作BP DA ^延长线于点P ,过点B 作BQ DC ^延长线于点Q ,则90BPA BQC Ð=Ð=°,设DM x =,则4DN x =-,5AM AD DM BC DM x =-=-=-,3(4)1CN CD DN AB DN x x =-=-=--=-,Q 四边形ABCD 是平行四边形,//AD BC \,//AB CD ,60BAP ABC \Ð=Ð=°,60BCQ ABC Ð=Ð=°,在Rt ABP D 中,sin 60BP AB =×°=,在Rt BCQ D 中,sin 60BQ BC =×°=ABCD ABM BCNBMDN S S S S D D =--Y 四边形115(5)(1)22x x =-´-´-=-,3DN DC =Q …,43x \-…,1x \…,0k =<Q ,S \随着x 的增大而减小,1x \=时,四边形BMDN 的面积最大为=(3)连接BD ,AB AD =Q ,90A Ð=°,45ADB ABD \Ð=Ð=°,60ABC Ð=°Q ,15DBC \Ð=°,又90BCD Ð=°Q ,75BDC \Ð=°,120ADC Ð=°,设DM x =,则2DN x =-,21x \-…,1x \…,过点M 作MH BD ^,过点N 作NJ BD ^,BMD BDNBMDN S S S D D =+四边形1122BD MH BD NJ =´´+´´1[sin 45(2)sin 75]2BD x x =×××°+-°1[(sin 45sin 75)2sin 75]2BD x =×°-°+°,sin 45sin 750°-°<Q ,\当1x =时,BMDN S 四边形存在最大值,过点M 作CD 的垂线交于延长线于点K ,60MDK \Ð=°,12DK x \=,MK =,112222NK x x x =-+=-,在Rt MKN D 中,22221)(2)(1)32MN x x =+-=-+,当1x =时,2MN 存在最小值,最小值为3,MN \\存在M 、N ,使得四边形BMDN 面积最大且DMN D 的周长最小,DMN D 的周长最小为2+.7.阅读材料如图1,在ABCD中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF DE=,连接CF,证明ADE CFED@D,再证四边形DBCF是平行四边形即得证.类比迁移(1)如图2,AD是ABCD的中线,BE交AC于点E,交AD于点F,且AE EF=,求证:AC BF=.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD FD=,连接MC,¼¼请根据小明的思路完成证明过程.方法运用(2)如图3,在等边ABCD中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.①请你判断线段DF与AD的数量关系,并给出证明;②若4AB=,12CF CD=请直接写出CF的长.【解答】(1)证明:延长AD至M,使MD FD=,连接MC,在BDFD和CDMD中,BD CD BDF CDM DF DM =ìïÐ=Ðíï=î,()BDF CDM SAS \D @D ,MC BF \=,M BFM Ð=Ð,AE EF =Q ,EAF EFA \Ð=Ð,EFA BFM Ð=ÐQ ,M MAC \Ð=Ð,AC MC \=,AC BF \=;(2)①解:线段DF 与AD 的数量关系为:2AD DF =,证明如下:延长DF 至点M ,使DF FM =,连接BM 、AM ,如图2所示:Q 点F 为BE 的中点,BF EF \=,在BFM D 和EFD D 中,BF EF BFM EFD FM DF =ìïÐ=Ðíï=î,()BFM EFD SAS \D @D ,BM DE \=,MBF DEF Ð=Ð,//BM DE \,Q 线段CD 绕点D 逆时针旋转120°得到线段DE ,CD DE BM \==,120BDE Ð=°,18012060MBD \Ð=°-°=°,ABC D Q 是等边三角形,AB AC \=,60ABC ACB Ð=Ð=°,6060120ABM ABC MBD \Ð=Ð+Ð=°+°=°,180********ACD ACB Ð=°-Ð=°-°=°Q ,ABM ACD \Ð=Ð,在ABM D 和ACD D 中,AB AC ABM ACD BM CD =ìïÐ=Ðíï=î,()ABM ACD SAS \D @D ,AM AD \=,BAM CAD Ð=Ð,60MAD MAC CAD MAC BAM BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,AMD \D 是等边三角形,2AD DM DF \==;②解:CF 的长为1或2.当CF 为BDE D 的中位线时,1122CF CD DE ==,C \为BD 的中点,4CD BC \==,122CF CD \==,如图3,当CF 不是BDE D 的中位线时,连接CE ,取BC 的中点N ,连接FN ,过点D 作DG CE ^,过点G 作GI CD ^于点I ,过点F 作FH BC ^于点H ,CDE D Q 为等腰三角形,120CDE Ð=°,30DCE \Ð=°,12DG CD \=,12CG CE =,12CF CD =Q ,DG CF \=,N Q 为BC 的中点,F 为BE 的中点,NF \是BCE D 的中位线,//NF CE \,12NF CE CG ==,30CNF DCE \Ð=Ð=°,12HF NF \=,12GI CG =,HF GI \=,NH CI =,FC GD =Q ,Rt FCH Rt GDI(HL)\D @D ,CH DI \=,NH CH CI DI \+=+,即NC CD =,2CD \=,即1CF =,综上所述,CF 的长为1或2.8.如图,在正方形ABCD 中,4AB =,点G 在边BC 上,连接AG ,作DE AG ^于点E ,BF AG ^于点F ,连接BE 、DF ,设EDF a Ð=,EBF b Ð=,tan tan k a b =×.(1)求证:DE EF BF =+.(2)求证:BG k BC=.(3)若点G 从点C 沿BC 边运动至点B 停止,求点E ,F 所经过的路径与边AB 围成的图形的面积.【解答】(1)证明:Q 四边形ABCD 是正方形,AB BC AD \==,90BAD ABC Ð=Ð=°,DE AG ^Q ,BF AG ^,90AED BFA \Ð=Ð=°,90ADE DAE \Ð+Ð=°,90BAF DAE Ð+Ð=°Q ,ADE BAF \Ð=Ð,在AED D 和BFA D 中,ADE BAF AED BFA AD BA Ð=ÐìïÐ=Ðíï=î,()AED BFA AAS \D @D ,AE BF \=,DE AF =,DE AF AE EF BF EF \==+=+;(2)证明:在Rt DEF D 和Rt EFB D 中,tan tan EF EDF DE a Ð==,tan tan EF EBF BF b Ð==,\tan tan EF BF BF DE EF DEa b =×=,由(1)可知,ADE BAG Ð=Ð,90AED GBA Ð=Ð=°,AED GBA \D D ∽,\AE DE GB AB=,由(1)可知,AE BF =,\DE BF AB GB =,\BF GB DE AB=,tan tan k a b =×Q ,\GB k AB=,AB BC =Q ,\BG BG BF k BC AB DE===;(3)解:DE AG ^Q ,BF AG ^,90AED BFA \Ð=Ð=°,\当点G 从点B 沿BC 边运动至点C 停止时,点E 经过的路径是以AD 为直径,圆心角为90°的圆弧,同理可得点F 经过的路径,两弧交于正方形的中心点O ,如图所示:4AB AD ==Q ,\所围成的图形的面积14444AOB S S D ==´´=.9.如图,射线AB 和射线CB 相交于点B ,(0180)ABC a a Ð=°<<°,且AB CB =.点D 是射线CB 上的动点(点D 不与点C 和点B 重合),作射线AD ,并在射线AD 上取一点E ,使AEC a Ð=,连接CE ,BE .(1)如图①,当点D 在线段CB 上,90a =°时,请直接写出AEB Ð的度数;(2)如图②,当点D 在线段CB 上,120a =°时,请写出线段AE ,BE ,CE 之间的数量关系,并说明理由;(3)当120a =°,1tan 3DAB Ð=时,请直接写出CE BE的值.【解答】解:(1)连接AC ,如图①所示:90a =°Q ,ABC a Ð=,AEC a Ð=,90ABC AEC \Ð=Ð=°,A \、B 、E 、C 四点共圆,AEB ACB \Ð=Ð,90ABC Ð=°Q ,AB CB =,ABC \D 是等腰直角三角形,45ACB \Ð=°,45AEB \Ð=°;(2)AE CE =+,理由如下:在AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图②所示:ABC AEC Ð=ÐQ ,ADB CDE Ð=Ð,180180ABC ADB AEC CDE \°-Ð-Ð=°-Ð-Ð,A C \Ð=Ð,在ABF D 和CBE D 中,AF CE A C AB CB =ìïÐ=Ðíï=î,()ABF CBE SAS \D @D ,ABF CBE \Ð=Ð,BF BE =,ABF FBD CBE FBD \Ð+Ð=Ð+Ð,ABD FBE \Ð=Ð,120ABC Ð=°Q ,120FBE \Ð=°,BF BE =Q ,11(180)(180120)3022BFE BEF FBE \Ð=Ð=´°-Ð=´°-°=°,BH EF ^Q ,90BHE \Ð=°,FH EH =,在Rt BHE D 中,12BH BE =,FH EH ===,22EF EH \===,AE EF AF =+Q ,AF CE =,AE CE \=+;(3)分两种情况:①当点D 在线段CB 上时,在AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图②所示:由(2)得:FH EH ==,1tan 3BH DAB AH Ð==Q ,332AH BH BE \==,32CE AF AH FH BE \==-=-=,\CE BE =②当点D 在线段CB 的延长线上时,在射线AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图③所示:同①得:FH EH ==,332AH BH BE ==,32CE AF AH FH BE \==+==,\CE BE =;综上所述,当120a =°,1tan 3DAB Ð=时,CE BE .10.如图,直线:2l y x =+与x 轴交于点A ,与y 轴交于点B ,C 为线段OA 的一个动点,以A 为圆心,AC 长为半径作A e ,A e 交AB 于点D ,连接OD 并延长交A e 于点E ,连接CD .(1)当2AC =时,证明:OBD D 是等边三角形;(2)当OCD ODA D D ∽时,求A e 的半径r ;(3)当点C 在线段OA 上运动时,求OD DE g 的最大值.【解答】解:(1)Q 直线:2l y x =+与x 轴交于点A ,与y 轴交于点B ,\点A ,0),点(0,2)B ,OA \=2OB =,tan OB BAO OA \Ð==30BAO \Ð=°,24AB OB \==,60ABO Ð=°,2AC AD ==Q ,2BD BO \==,且60ABO Ð=°,BDO \D 是等边三角形;(2)如图1,过点D 作DH AO ^于H ,OCD ODA D D Q ∽,30ODC OAB \Ð=Ð=°,AC AD =Q ,30BAO Ð=°,75ACD \Ð=°,45DOH ACD ODC \Ð=Ð-Ð=°,DH AO ^Q ,30DAO Ð=°,12DH r \=,AH ==,DH AO ^Q ,45DOH Ð=°,12DH OH r \==,AO OH AH =+=Q ,12r \=,6r \=-(3)如图2,连接EH ,过点O 作OG AB ^于G ,OG AB ^Q ,30BAO Ð=°,12OG AO \==3AG ==,3GD AD \=-,DH Q 是直径,90DEH OGD \Ð=°=Ð,又ODG HDE Ð=ÐQ ,ODG HDE \D D ∽,\GD OD DE DH=,239(3)22()22OD DE GD DH AD AD AD \==-=--+g g g ,\当32AD =时,OD DE g 的最大值为92.11.[问题提出](1)如图1,已知线段4AB =,点C 是一个动点,且点C 到点B 的距离为2,则线段AC 长度的最大值是 6 ;[问题探究](2)如图2,以正方形ABCD 的边CD 为直径作半圆O ,E 为半圆O 上一动点,若正方形的边长为2,求AE 长度的最大值;[问题解决](3)如图3,某植物园有一块三角形花地ABC ,经测量,AC =120BC =米,30ACB Ð=°,BC 下方有一块空地(空地足够大),为了增加绿化面积,管理员计划在BC 下方找一点P ,将该花地扩建为四边形ABPC ,扩建后沿AP 修一条小路,以便游客观赏.考虑植物园的整体布局,扩建部分BPC D 需满足60BPC Ð=°.为容纳更多游客,要求小路AP 的长度尽可能长,问修建的观赏小路AP 的长度是否存在最大值?若存在,求出AP 的最大长度;若不存在,请说明理由.【解答】解:(1)当C 在线段AB 延长线上时,AC 最大,此时426AC AB BC =+=+=,故答案为:6;(2)连接AO 并延长交半圆O 于F ,如图:Q 正方形ABCD 的边CD 为直径作半圆O ,边长为2,90ADO \Ð=°,2AD =,1OD OD OF ===,当E 运动到F 时,AE 最大,AF 的长度即是AE 的最大值,Rt AOD D 中,AO ==1AF AO OF \=+=,即AE 1;(3)作BC 的垂直平分线DE ,在BC 下方作30BCO Ð=°,射线CO 交DE 于O ,以O 为圆心,OC 为半径作O e ,连接OB 、连接AO 并延长交O e 于P ,则AP 为满足条件的小路,过A 作AF OC ^于F ,如图:30BCO Ð=°Q ,30ACB Ð=°,60ACF \Ð=°,Rt ACF D 中,sin 6030AF AC =×°=,cos60CF AC =×°=DE Q 垂直平分BC ,120BC =,60CE \=,90OEC Ð=°,cos30CE OC OP \===°,OF OC CF \=-=,Rt AOF D 中,60OA ==,60AP OA OP \=+=+.即小路AP 的长度最大为60+12.在O e 中,弦CD 平分圆周角ACB Ð,连接AB ,过点D 作//DE AB 交CB 的延长线于点E .(1)求证:DE 是O e 的切线;(2)若1tan 3CAB Ð=,且B 是CE 的中点,O e DE 的长.(3)P 是弦AB 下方圆上的一个动点,连接AP 和BP ,过点D 作DH BP ^于点H ,请探究点P 在运动的过程中,BH AP BP+的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.【解答】证明:(1)如图1,连接OD 交AB 于点F ,连接OA ,OB ,AD ,CD Q 平分ACB Ð,ACD BCD \Ð=Ð,\AD BD =,AOD BOD \Ð=Ð,OA OB =Q ,OD AB \^,//AB DE Q ,OD DE \^,DE \是O e 的切线.解:(2)如图2,连接OC ,OD ,OE ,过点O 作OF BC ^于点F ,2BOC BAC \Ð=Ð,OB OC =Q ,OF BC ^,12COF COB CAB \Ð=ÐÐ=Ð,1tan tan 3CF COF CAB OF \Ð==Ð=,设CF x =,3OF x =,O Qe ,OC \=,222OF CF +Q ,222(3)x x \=+,解得:12x =,12CF \=,32OF =,1BC \=,B Q 是CE 的中点,1BE BC \==,32EF \=,222OE OF EF =+Q ,2223318((224OE \=+=,222OD DE OE +=Q ,DE \===(3)解法一:如图3,延长BP 至Q 使得PQ AP =,连接AQ ,OC ,连接OB ,BD ,连接OD 交AB 于点K ,连接HK ,A Q ,P ,B ,C 四点共圆,APQ ACB \Ð=Ð,AP PQ =Q ,Q QAP \Ð=Ð,1902Q ACB \Ð=°-Ð,DE Q 是O e 的切线,OD DE \^,//DE AB Q ,OD AB \^,K \是AB 的中点,DH BH ^Q ,90BHD \Ð=°,90BKD Ð=°Q ,B \,K ,H ,D 四点共圆,BHK ODB \Ð=Ð,BOD ACB Ð=ÐQ ,OB OD =,1902ODB ACB \Ð=°-Ð,ODB Q \Ð=Ð,BHK Q \Ð=Ð,//AQ HK \,\12BH BK BQ AB ==,BQ BP QP =+Q ,QP AP =,BQ BP AP \=+,\12BH BP AP =+.解法二:如图4,在BP 上截取BM AP =,连接DM ,BD ,DP ,AD ,Q 弦CD 平分圆周角ACB Ð,AD BD \=,Q AP AP =,PAD PBD MBD \Ð=Ð=Ð,()APD BMD SAS \D @D ,DP DM \=,AP BM =,DH BP ^Q ,DH \为PDM D 的中线,HP HM \=,2BP BM PM BM HM \=+=+,BH BM HM =+Q ,\122BH BM HM AP BP BM BM HM +==+++.13.在ABC D 中,90ACB Ð=°,AC BC =,点D 是直线AB 上的一动点(不与点A ,B 重合)连接CD ,在CD 的右侧以CD 为斜边作等腰直角三角形CDE ,点H 是BD 的中点,连接EH .【问题发现】(1)如图(1),当点D 是AB 的中点时,线段EH 与AD 的数量关系是 12EH AD =, .EH 与AD 的位置关系是 .【猜想论证】(2)如图(2),当点D 在边AB 上且不是AB 的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.【拓展应用】(3)若AC BC ==,其他条件不变,连接AE 、BE .当BCE D 是等边三角形时,请直接写出ADE D 的面积.【解答】解:(1)如图1中,CA CB=Q,90ACBÐ=°,AD BD=,CD AB\^,CD AD DB==,45A B\Ð=Ð=°,45DCB ACDÐ=Ð=°,45DCEÐ=°Q,\点E在线段CB上,DE BC^Q,45EDB B\Ð=Ð=°,DH HB=Q,EH DB \^,1122EH DB AD==,故答案为12EH AD=,EH AD^.(2)结论仍然成立:理由:如图2中,延长DE到F,使得EF DE=,连接CF,BF.DE EF=Q.CE DF^,CD CF\=,45CDF CFD\Ð=Ð=°,45ECF ECD\Ð=Ð=°,90ACB DCF\Ð=Ð=°,ACD BCF\Ð=Ð,CA CB=Q,()ACD BCF SAS\D@D,AD BF \=,45A CBF Ð=Ð=°,45ABC Ð=°Q ,90ABF \Ð=°,BF AB \^,DE EF =Q ,DH HB =,12EH BF \=,//EH BF ,EH AD \^,12EH AD =.(3)如图31-中,当BCE D 是等边三角形时,过点E 作EH BD ^于H .90ACB Ð=°Q ,60ECB Ð=°,30ACE \Ð=°,AC CB CE EB DE =====Q 75CAE CEA \Ð=Ð=°,45CAB Ð=°Q ,30EAH \Ð=°,90DEC Ð=°Q ,60CEB Ð=°,150DEB \Ð=°,15EDB EBD \Ð=Ð=°,EAH ADE AED Ð=Ð+ÐQ ,15ADE AED \Ð=Ð=°,AD AE \=,设EH x =,则2AD AE x ==,AH =,222EH DH DE +=Q ,22(2)8x x \+=,1x \=-,2AD \=-,112)1)422ADE S AD EH D \=××=´×-=-如图32-中,当BCE D 是等边三角形时,过点E 作EH BD ^于H .同法可求:1EH =,2AD =,111)422ADE S AD EH D \=××=´+=+综上所述,满足条件的ADE D 的面积为4-或4+.14.在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF FE AG ==,且12AG AB …,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求P Ð的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中P Ð的度数是否发生变化,若有改变,请求出P Ð的度数,若不变,请说明理由;(3)在(2)的条件下,作DN GP ^于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC 为定值.==Q,E与C重合,BF CF BG AG\===,\Ð=°,BGF45//Q,AB CD\Ð=Ð=°.45P BGF(2)不变.理由如下:如图所示,连接BD,取BD中点O,连接OG,OF,OC.在正方形ABCD中,有:Ð=Ð=°,OC OBOCF OBG=,45又AG BF=Q,\=,BG CF\D@D.OCF OBG SAS()Ð=Ð,\=,COF BOGOG DF\Ð=Ð=°,GOF BOC90GOF\D为等腰直角三角形.又OQ,F分别是BD,BE的中点,\,//OF DE\Ð=Ð=°.P OFG45(3)如图所示,取DP 中点Q ,连接NQ ,BD ,MQ ,由题意可得,DNP D 为等腰直角三角形,Q Q 为DP 中点,NQ DP \^.设CDP a Ð=,则45NDC a Ð=°+,45BDP a Ð=°-,M Q ,Q 分别是BP ,DP 的中点,//MQ BD \,45MQP BDP a \Ð=Ð=°-,90(45)45NQM a a \Ð=°-°-=°+,NQM NDC \Ð=Ð.,CD BD \又NQD D Q 为等腰直角三角形,\NQ ND =\NQ MQ ND CD ==,NQM NDC \D D ∽.\MN NQ NC ND ==\MNNC为定值.15.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将BCED绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF 是 (填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,10AB BC==,2CD=,AD AB>,过点B作BE AD^于E.①过C作CF BF^于点F,试证明:BE DE=,并求BE的长;②若M是AD边上的动点,求BCMD周长的最小值.【解答】解:(1)Q将BCED绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,ABF CBE \Ð=Ð,BF BE =,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE CBE \Ð+Ð=°,90ABE ABF \Ð+Ð=°,即90EBF D Ð=Ð=°,180EBF D \Ð+Ð=°,90EBF Ð=°Q ,BF BE =,\四边形BEDF 是“直等补”四边形.故答案为:是;(2)①证明:Q 四边形ABCD 是“直等补”四边形,10AB BC ==,2CD =,AD AB >,90ABC \Ð=°,180ABC D Ð+Ð=°,90D \Ð=°,BE AD ^Q ,CF BE ^,90DEF \Ð=°,90CFE Ð=°,\四边形CDEF 是矩形,DE CF \=,2EF CD ==,90ABE A Ð+Ð=°Q ,90ABE CBE Ð+Ð=°,A CBF \Ð=Ð,90AEB BFC Ð=Ð=°Q ,AB BC =,()ABE BCF AAS \D @D ,BE CF \=,AE BF =,DE CF =Q ,BE DE \=;Q 四边形CDEF 是矩形,2EF CD \==,ABE BCF D @D Q ,AE BF \=,2AE BE \=-,设BE x =,则2AE x =-,在Rt ABE D 中,222(2)10x x +-=,解得:8x =或6x =-(舍去),BE \的长是8;②BCM D Q 周长BC BM CM =++,\当BM CM +的值最小时,BCM D 的周长最小,如图,延长CD 到点G ,使DG CD =,连接BG 交AD 于点M ¢,过点G 作GH BC ^,交BC 的延长线于点H ,90ADC Ð=°Q ,\点C 与点G 关于AD 对称,BM CM BM MG BG \+=+…,即BM CM BM M C +¢+¢…,\当点M 与M ¢重合时,BM M C ¢+¢的值最小,即BCM D 的周长最小,在Rt ABE D 中,6AE ===,Q 四边形ABCD 是“直等补”四边形,180A BCD \Ð+Ð=°,180BCD GCH Ð+Ð=°Q ,A GCH \Ð=Ð,90AEB H Ð=Ð=°Q ,ABE CGH \D D ∽,\10542BE AE ABGH CH CG====,即88252GH CH-==,165GH\=,125CH=,12621055BH BCCH\=+=+=,BG\===,BCM\D周长的最小值为10+.16.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,2OE=,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE CF=;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.【解答】(1)证明:如图1,由旋转得:90EDFÐ=°,ED DF=,Q四边形ABCD是正方形,90ADC\Ð=°,AD CD=,ADC EDF\Ð=Ð,即ADE EDC EDC CDFÐ+Ð=Ð+Ð,ADE CDF\Ð=Ð,在ADED和CDFD中,QAD CDADE CDFDE DF=ìïÐ=Ðíï=î,()ADECDF SAS\D@D,AE CF\=;(2)解:如图2,过F作OC的垂线,交BC的延长线于P,O Q 是BC 的中点,且AB BC ==A Q ,E ,O 三点共线,OB \=由勾股定理得:5AO =,2OE =Q ,523AE \=-=,由(1)知:ADE CDF D @D ,DAE DCF \Ð=Ð,3CF AE ==,BAD DCP Ð=ÐQ ,OAB PCF \Ð=Ð,90ABO P Ð=Ð=°Q ,ABO CPF \D D ∽,\2AB CP OB PF ===,2CP PF \=,设PF x =,则2CP x =,由勾股定理得:2223(2)x x =+,x =(舍),\,OP ==,由勾股定理得:OF ==,(3)解:如图3,由于2OE =,所以E 点可以看作是以O 为圆心,2为半径的半圆上运动,延长BA 到P 点,使得AP OC =,连接PE ,AE CF =Q ,PAE OCF Ð=Ð,()PAE OCF SAS \D @D ,PE OF \=,当PE 最小时,为O 、E 、P 三点共线,OP===,\==-=-,PE OF OP OE2\的最小值是2.OF17.ABC=,点D为直线BC上一动点(点D不与B,C重Ð=°,AB ACBACD中,90合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为: 垂直 .②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若已知AB =,14CD BC =,请求出GE 的长.【解答】解:(1)①正方形ADEF 中,AD AF =,90BAC DAF Ð=Ð=°Q ,BAD CAF \Ð=Ð,在DAB D 与FAC D 中,AD AF BAD CAF AB AC =ìïÐ=Ðíï=î,()DAB FAC SAS \D @D ,B ACF \Ð=Ð,90ACB ACF \Ð+Ð=°,即BC CF ^;故答案为:垂直;②DAB FAC D @D ,CF BD \=,BC BD CD =+Q ,BC CF CD \=+;故答案为:BC CF CD =+;(2)CF BC ^成立;BC CD CF =+不成立,CD CF BC =+.Q 正方形ADEF 中,AD AF =,90BAC DAF Ð=Ð=°Q ,BAD CAF \Ð=Ð,在DAB D 与FAC D中,AD AF BAD CAF AB AC =ìïÐ=Ðíï=î,()DAB FAC SAS \D @D ,ABD ACF \Ð=Ð,90BAC Ð=°Q ,AB AC =,45ACB ABC \Ð=Ð=°.18045135ABD \Ð=°-°=°,1354590BCF ACF ACB \Ð=Ð-Ð=°-°=°,CF BC \^.CD DB BC =+Q ,DB CF =,CD CF BC \=+.(3)解:过A 作AH BC ^于H ,过E 作EM BD ^于M ,EN CF ^于N ,90BAC Ð=°Q ,AB AC =,4BC \==,122AH BC ==,114CD BC \==,122CH BC ==,3DH \=,由(2)证得BC CF ^,5CF BD ==,Q 四边形ADEF 是正方形,AD DE \=,90ADE Ð=°,BC CF ^Q ,EM BD ^,EN CF ^,\四边形CMEN 是矩形,NE CM \=,EM CN =,90AHD ADE EMD Ð=Ð=Ð=°Q ,90ADH EDM EDM DEM \Ð+Ð=Ð+Ð=°,ADH DEM \Ð=Ð,在ADH D 与DEM D 中,ADH DEM AHD DME AD DE Ð=ÐìïÐ=Ðíï=î,()ADH DEM AAS \D @D .3EM DH \==,2DM AH ==,3CN EM \==,3EN CM ==,45ABC Ð=°Q ,45BGC \Ð=°,BCG \D 是等腰直角三角形,4CG BC \==,1GN \=,EG \==.18.如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接GD ,求证:ADG ABE D @D ;(2)连接FC ,观察并猜测FCN Ð的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB a =,(BC b a =、b 为常数),E 是线段BC 上一动点(不含端点B 、)C ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN Ð的大小是否总保持不变?若FCN Ð的大小不变,请用含a 、b 的代数式表示tan FCN Ð的值;若FCN Ð的大小发生改变,请举例说明.【解答】(1)证明:Q四边形ABCD和四边形AEFG是正方形,\=,AE AGAB ADÐ=Ð=°,BAD EAG=,90\Ð+Ð=Ð+Ð,BAE EAD DAG EADBAE DAG\Ð=Ð,\D@D.BAE DAG(2)解:45Ð=°,FCN理由是:作FH MN^于H,Q,Ð=Ð=°AEF ABE90Ð+Ð=°,FEH AEB90\Ð+Ð=°,90BAE AEB\Ð=Ð,FEH BAEQ,90又AE EF=Ð=Ð=°,EHF EBA\D@D,EFH ABE\=,EH AB BCFH BE==,\==,CH BE FHÐ=°Q,FHC90\Ð=°.FCN45(3)解:当点E由B向C运动时,FCNÐ的大小总保持不变,理由是:作FH MN^于H,由已知可得90Ð=Ð=Ð=°,EAG BAD AEF结合(1)(2)得FEH BAE DAGÐ=Ð=Ð,又GQ在射线CD上,。
数轴上的九类动态模型(学生版)--七年级数学几何模型全归纳
数轴上的九类动态模型数轴中的动态问题属于七年级上册必考压轴题型,主要以数轴为载体,体现分类讨论和数形结合等思想,考查学生的分析与综合能力。
解题时,一般遵循“点、线、式”三步策略。
即:先根据题意中动点的出发位置,移动方向和速度,用含t的式子表示动点,然后根据题中要求提炼出线段,用动点的含t表达式表示线段,最后根据线段间的等量关系,列出式子,然后求解(要检验解是否符合动点的运动时间范围)。
模型1.动态规律(左右跳跃)模型模型2.单(多)动点匀速模型模型3.单(多)动点变速模型模型4.动点往返运动模型模型5.动态中点与n等分点模型模型6.动态定值(无参型)模型模型7.动态定值(含参型)模型模型8.数轴折叠(翻折)模型模型9.数轴上的线段移动模型【知识储备】①若A、B两点在数轴上对应的数字是a、b,则AB两点间的距离AB=a-b;AB的中点对应的数字是:a+b2。
②数轴动点问题主要步骤:1)画图--在数轴上表示出点的运动情况:运动方向和速度;2)写点--写出所有点表示的数:常用含t的代数式表示,向右运动用“+”表示,向左运动用“-”表示;3)表示距离--右-左,若无法判定两点的左右需加绝对值;4)列式求解--根据条件列方程或代数式,求值。
注意:要注意动点是否会来回往返运动,速度是否改变等。
③分类讨论的思想:(1)数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况的分类讨论。
(2)对于两个动点P、Q,若点P、Q的左右位置关系不明确或有多种情况,可用p、q两数差的绝对值表示PQ 两点距离,从而避免复杂分类讨论。
模型1.动态规律(左右跳跃)模型模型(1):“1左1右”的等差数列式跳跃,两个一组根据规律计算即可;模型(2):“2左2右”的等差数列式跳跃,四个一组根据规律计算即可。
例1.(23-24七年级上·广西南宁·阶段练习)在数轴上,点O表示原点,现将点A从O点开始沿数轴如下移动,第一次点A向左移动1个单位长度到达点A1,第二次将点A1向右移动2个单位长度到达点A2,第三次将点A2向左移动3个单位长度到达点A3,第四次将点A3向右移动4个单位长度到达点A4,按照这种移动规律移动下去,第n次移动到点A n,当n=100时,点A100与原点的距离是个单位.例2.(2023·山东·七年级期中)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①x3=3;②x5=1;③x108<x104;④x2019>x2020.其中,正确结论的序号是.变式1.(23-24七年级上·湖北十堰·阶段练习)已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+ 6|+(b+3)2=0,又b,c互为相反数.(1)求a,b,c的值.(2)若电子蚂蚁从B点开始连续移动,第1次向右移动1个单位长度;第2次向右移动2个单位长度;第3次向左移动3个单位长度;第4次向左移动4个单位长度;第5次向右移动5个单位长度;第6次向右移动6个单位长度;第7次向左移动7个单位长度;第8次向左移动8个单位长度⋯依次操作第2019次移动后到达点P,求P点表示的数.变式2.(23-24七年级上·福建泉州·期中)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动4个单位长度至C点,第3次从C点向右移动7个单位长度至D点,第4次从D点向左移动10个单位长度至E点,⋯以此类推,移动5次后该点对应的数为.这样移动2023次后该点到原点的距离为.模型2.单(多)动点匀速模型模型(1):动点P从点A(点A在数轴上对应的数是a)出发,以每秒v个单位的速度向右移动,t秒后,到达B 点,B点对应的数是:a+vt。
中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)
专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);P m,且四边形OADP的面积是(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1∆面积的2倍,求满足条件的点P的坐标;ABC(3)如图,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N从点A出发.以每秒2t>,在M,个单位的連度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒()0N运动过程中.当5MN=时,直接写出时间t的值.【举一反三】如图,▱ABCD 的对角线AC 、BD 相交于点O ,AB ⊥AC ,AB =3,BC =5,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连结PO 并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长,(用含t 的代数式表示)(2)当四边形ABQP 是平行四边形时,求t 的值(3)当点O 在线段AP 的垂直平分线上时,直接写出t 的值.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B 出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒?(2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行?如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.类型四【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y=ax2﹣34x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P 在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【新题训练】1.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF 向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°;(2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上.6.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.(1)①依据题意补全图形;②猜想OE与OF的数量关系为_________________.(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.……请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是_________________.9.(1)(问题情境)小明遇到这样一个问题:如图①,已知ABC ∆是等边三角形,点D 为BC 边上中点,60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在的直线于点E ,试探究AD 与DE 的数量关系.小明发现:过D 作//DF AC ,交AB 于F ,构造全等三角形,经推理论证问题得到解决.请直接写出AD 与DE 的数量关系,并说明理由. (2)(类比探究)如图②,当D 是线段BC 上(除,B C 外)任意一点时(其他条件不变)试猜想AD 与DE 的数量关系并证明你的结论. (3)(拓展应用)当D 是线段BC 上延长线上,且满足CD BC =(其他条件不变)时,请判断ADE ∆的形状,并说明理由.10.如图,直线y =﹣23x +4与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+103x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标; (3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.如图,边长为4的正方形ABCD 中,点P 是边CD 上一动点,作直线BP ,过A 、C 、D 三点分别作直线BP 的垂线段,垂足分别是E 、F 、G .(1)如图(a )所示,当CP =3时,求线段EG 的长;(2)如图(b )所示,当∠PBC =30°时,四边形ABCF 的面积;(3)如图(c )所示,点P 在CD 上运动的过程中,四边形AECG 的面积S 是否存在最大值?如果存在,请求出∠PBC 为多少度时,S 有最大值,最大值是多少?如果不存在,请说明理由.12.已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10cm AB =,8cm BC =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点O 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()t s ()05t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上? (2)设四边形PEGO 的面积为()2mS c ,求S 与t 的函数关系式.(3)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.13.已知:如图1,矩形OABC 的两个顶点A ,C 分别在x 轴,y 轴上,点B 的坐标是(8,2),点P 是边BC 上的一个动点,连接AP ,以AP 为一边朝点B 方向作正方形P ADE ,连接OP 并延长与DE 交于点M ,设CP =a (a >0).(1)请用含a 的代数式表示点P ,E 的坐标.(2)连接OE ,并把OE 绕点E 逆时针方向旋转90°得EF .如图2,若点F 恰好落在x 轴的正半轴上,求a 与EMDM的值. (3)①如图1,当点M 为DE 的中点时,求a 的值.②在①的前提下,并且当a >4时,OP 的延长线上存在点Q ,使得EQ +22PQ 有最小值,请直接写出EQ +22PQ 的最小值.14.如图,边长为6的正方形ABCD 中,,E F 分别是,AD AB 上的点,AP BE ⊥,P 为垂足. (1)如图①, AF =BF ,AE =23,点T 是射线PF 上的一个动点,则当△ABT 为直角三角形时,求AT 的长;(2)如图②,若AE AF =,连接CP ,求证:CP FP ⊥.15.边长相等的两个正方形ABCO 、ADEF 如图摆放,正方形ABCO 的边OA 、OC 在坐标轴上,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连AG ,已知OA 长为3. (1)求证:AOG ADG ∆≅∆;(2)若12∠=∠,AG =2,求点G 的坐标;(3)在(2)条件下,在直线PE 上找点M ,使以M 、A 、G 为顶点的三角形是等腰三角形,求出点M 的坐标.16.定义:有一组邻角相等的凸四边形叫做“梦想四边形”。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
立体几何中“动态问题”的求解策略1
A. 30 5
B. 30 10
C. 4 3 9
D. 5 3 9
H
小试身手
跟踪练习1:
等边三角形ABC的边长为a,将它沿平行于BC 的线段DE折起,使平面ADE 平面BDEC, 若折叠后AB的长度为d,则d的最小值为( D )
A. 3 a B. 5 a
4
4
C. 3 a 4
D. 10 a 4
A
D
B
OE
F C
策略二、运动变化中寻求变化的“轨迹”
例2、正方体 ABCD A1B1C1D1中,M是棱的 DD1 中点,O是底面ABCD的中心,P为棱 A1B1 上任意一点,则直线OP与直线AM所成角为
(C)
A.
4
B.
3
C.
2
D.与P点的位置有关
D1
C1
A1 P M B1
D
C
AG
OH B
小试身手
跟踪练习2:
例1、如图,某人在垂直于水平地面ABC的墙面 前的点A处进行射击训练。已知点A到墙面的距离 为AB,某目标点P沿墙面上的射线CM移动,此 人为了准确瞄准目标点P,需计算由点A观察点P
的仰角 的大小(仰角 为直线AP与平面ABC
所成的角)。若AB=15,AC=25,BCM 30 则 tan 的最大值是( D )
A E DC
于A、D的任一点,
B
求证:EF FC1 ;
(2)若AB=2a,
在线段AD上是否存在点E,
使得直线EF与平面 BB1C1C
A1
成 60 角。
F C1
B1
小试身手
跟踪练习3:
在棱长为a的正方体 ABCD A1B1C1D1中,E、F 分别为棱AB、BC上的动点,且AE=BF。
初中数学总复习《动态几何之存在性问题探讨》学生版 讲义
教师辅导讲义学员姓名:辅导课目:数学年级:九年级学科教师:汪老师授课日期及时段课题初中数学总复习——动态几何——存在性问题探讨学习目标教学内容初中数学总复习——动态几何——存在性问题探讨动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。
结合2012年全国各地中考的实例,我们从七方面进行动态几何之存在性问题的探讨:(1)等腰(边)三角形存在问题;(2)直角三角形存在问题;(3)平行四边形存在问题;(4)矩形、菱形、正方形存在问题;(5)梯形存在问题;(6)全等、相似三角形存在问题;(7)其它存在问题。
【一、等腰(边)三角形存在问题:】例1、(2012广西崇左10分)如图所示,抛物线c=2(a≠0)的顶点坐标为点A(-2,3),y++axbx且抛物线c=2与y轴交于点B(0,2).+bxaxy+(1)求该抛物线的解析式;(2)是否在x轴上存在点P使△P AB为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由(3)若点P是x轴上任意一点,则当PA-PB最大时,求点P的坐标.例2、(2012山东临沂13分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.例3、(2012福建龙岩14分)在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求点P的坐标;若不存在,请说明理由.【二、直角三角形存在问题:】例1、(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为 (-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂 足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.例2、(2012内蒙古赤峰12分)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧), 与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC |:|OA |=5:1.(1)求抛物线的解析式; (2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例3、(2012重庆市12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【三、平行四边形存在问题:】例1、(2012山西省14分)综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B 两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B.D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.例2、(2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西10分)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1) 求A、B两点的坐标。
专题10 几何动态探究问题
专题九:几何动态探究问题动态型问题是探究几何图形在运动变化过程中与图形相关的某些量(线段的长、图形的周长于面积等)。
此类问题常与平移变换、轴对称变换、旋转变换相结合。
解决此类问题要“变动为静,以静制动”,善于从特殊位置到一般位置状态的分析,结合几何变换的性质特点,准确把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,建立相关的方程或函数数学模型。
1.平移型动态探究问题例1.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.针对训练1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB -BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动.(1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图22.轴对称型动态探究问题例2.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.针对训练2.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE 交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).3.旋转型动态探究问题例3.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.针对训练3.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E 在AC边上.(1)如图1,连接BE,若AE=3,BE=,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转,旋转角为α(0°<α<180°),旋转过程中,直线EF分别与直线AC,BC交于点M,N,当△CMN是等腰三角形时,求旋转角α的度数;(3)如图3,将△CEF绕点C顺时针旋转,使得点B,E,F在同一条直线上,点P为BF 的中点,连接AE,猜想AE,CF和BP之间的数量关系并说明理由.4.动态点的运动轨迹探究问题例4.(2019•兰州)二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M 作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.针对训练4.如图,已知点A坐标为(﹣1,0),点B坐标为(3,0),顶点为D的抛物线y =ax2+bx+经过点A、点B,交y轴于点C.若点P是x轴的正半轴上一个动点,将△OCP 沿边CP翻折,得到△ECP,(1)求抛物线的解析式和顶点D的坐标;(2)当点E落在抛物线的对称轴上时,求此时点P的坐标;(3)连接DE,则DE的最小值是;(4)若点P是线段OB上一动点,并由点O向点B运动,则点E的运动路径长.。
动态几何中的函数问题--学生版
在现实世界中,处处都有运动,我们常说“运动是绝对的,静止是相对的”。
在数学学习中我们也研究动态的几何问题。
运动的对象有点、线、角等几何图形;运动形式有平移、旋转、折叠等。
由于动态的几何问题有较强的综合性,近几年成为了中考试卷压轴题的热门。
例1、如图,在△ABC中,AB=AC=5,BC=6。
点D是边AB上的点,DE//BC交AC于点E。
(1)求△ABC的面积;(2)若点D在AB上移动(D不与A、B重合),以DE为边,在点A的下方作正方形DEFG。
设AD=x,△ABC与正方形DEFG重叠部分的面积为S,试求S关于x的函数关系式,并写出定义域;(3)在(2)中,连结BG。
当△BDG是等腰三角形时,请直接写出AD的长。
小结:例1是一个典型的几何动态问题,我们来梳理动态几何问题的基本题型结构以及相应解决问题的策略和方法。
(1)问题结构这类问题的突出特点是给出一个几何图形,使图形中某些元素的相对位置变化,但某种位置关系(如平行、垂直、保持某种角度等)不变,或者保持某种数量关系不变,探求某两个元素间的函数关系。
这是用函数思想研究动态图形的典型问题。
从问题的层次来看,一般有三个层次:→问题起点:静止的定态,即针对背景图形,解决常规问题;→一般化:按某一规则运动的动态,求变量之间的关系,通常建立函数模型;→特殊化:求特殊位置关系和特殊值的静态,常常寻找等量关系,建立方程模型求解。
(2)方法策略静→充分观察研究静止的背景图形,挖掘隐含条件,为后面解决动态问题减少障碍;动→用运动与变化的眼光去观察和研究图形,以“不变”应“万变”,寻找动态元素的变化规律,从而建立函数关系;静→通过进一步几何推理,进行变化过程中特殊状态下几何元素间关系的挖掘和使用,寻找特殊状态下的等量关系建立方程;而由于运动过程中出现特殊状态的瞬间不止一个,因此通常要进行分类讨论,找到恰当的分类标准进行分类讨论,分析相应的静止图形,以静制动,各个击破。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
八年级数学几何图形第17讲 图形变换和动态问题中的全等(学生版)
第17讲图形变换和动态问题中的全等(原卷版)第一部分典例剖析+针对训练类型一图形变换中的全等典例1(2019秋•来宾期末)如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为()A.20°B.30°C.40°D.45°典例2(2019•广阳区一模)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B 重合),给出以下五个结论:①AE=CF;②∠APE=∠CPF;③连接EF,△EPF是等腰直角三角形;④EF=AP;⑤S四边形AFPE=S△APC,其中正确的有几个()A.2个B.3个C.4个D.5个典例3(德惠市期末)如图,在直角三角形ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,连接AD、AE,则下列结论中不成立的是()A.AD∥BE,AD=BE B.∠ABE=∠DEFC.ED⊥AC D.△ADE为等边三角形针对训练11.(2020秋•旌阳区校级月考)如图,△ABE、△ADC是△ABC分别沿着AB、AC边翻折180°形成的.若∠BAC:∠ABC:∠ACB=28:5:3,则∠EFC的度数为()A.75°B.80°C.95°D.100°2.(门头沟区期末)在△ABC中,∠ACB=90°AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当MN绕点C旋转到图1的位置时,请你探究线段DE、AD、BE之间的数量关系(直接写出结论,不要求写出证明过程);(2)当MN绕点C旋转到图2的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明;(3)当MN绕点C旋转到图3的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明.3.如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.本*号资料*皆来源于微信公众号:数学第六感(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.类型二动态问题中的全等典例4(2020秋•姜堰区期中)如图,在Rt△ABC中,∠ACB=90°,AC=7cm,BC=5cm,CD为AB边上的高,点E从点B出发,在直线BC上以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD;(2)当CF=AB时,点E运动多长时间?并说明理由.典例5(镇康县期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=3cm,CQ=3cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?针对训练24.(邗江区期末)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.本号资料皆来源于微信@公众号:数学第六感活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A =45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,求证:△ACB≌△CBM.活动三:如图4,已知点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的在第一象限的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.5.(2021秋•松滋市期中)如图,在△ABC中,∠ACB=90,AC=6,BC=8.点P从点A出发,沿折线AC ﹣﹣CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.。
动态几何问题的解题分析
动态几何问题的解题分析一、动点问题:(1)单点运动;(2)双点运动例1如图,在Rt ABC==AB AC,.若动点D从点B出发,∠=°,86△中,90A沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE BC∥交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,BDE△的面积S有最大值,最大值为多少?分析:此题为一个点动的问题,比较简单,利用相似或三角函数即可求解,解决此问题的关键是要分清点动、线动、三角形面积变化问题,最后转化到二次函数求最值。
例2如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。
⑴求出直线OC的解析式及经过O、A、C三点的抛物线的解析式。
⑵试在⑴中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标。
⑶设从出发起,运动了t秒。
如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围。
⑷设从出发起,运动了t秒。
当P、Q两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。
分析:此题为两个动点,构造三角形全等及面积问题,有一定的难度,要求学生先定位置,然后找等量关系进行求解。
二、动线问题例3已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在ABC△的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M N、分别作AB边的垂线,与ABC△的其它边交于P Q、两点,线段MN运动的时间为t秒.(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.分析:(1)线段MN的运动路径是什么?(2)线段MN在运动的过程中,PM、QN的位置关系是否改变?四边形MNQP的面积如何求?(3)线段MN在运动的过程中,PM、QN的长的求法是否有变化?例4如图直线l的解析式为y=-x+4, 它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;当2<t≤4时,试探究S2 与t之间的函数关系;CPQBA M N在直线m 的运动过程中,当t 为何值时,S 2 为△OAB 的面积的165?分析:注意重叠部分图形形状的变化,此题中形状变了,解析式也随之改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态几何问题的求解专题 (一)例1. 如图1,正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ; (2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积.例 2. 如图,在ABC 中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1-1的位置时,求证:①ADC ≌CED ;②DE AD BE =+;(2)当直线MN 绕点C 旋转到图1-2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图1-3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.例3. 如图1-1,在Rt △ABC 和Rt △DEF 中,90ABC ∠=,4AB =,6BC =,90DEF∠= ,4DE EF ==.(1)移动△DEF ,使边DE 与AB 重合(如图1-1),再将△DEF 沿AB 所在的直线向左平移,使点F 落在AC 上(如图1-3),求BE 的长.(2)将图1-3中的△DEF绕点A 顺时针旋转,使点F 落在BC 上,连接AF (如图1-4),请找出图中的全等三角形,并说明它们全等的理由(不再添加辅助线和标注其它字母).例4 如图1-1,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .解答下列问题:(1)如果AB AC =,∠90BAC =.①当点D 在线段BC 上时(与点B 不重合),如图1-2,线段CF 、BD 之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线上时,如图1-3,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC ≠90,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF BC⊥(点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)CBA ED 图1-1NM ABC DEMN图1-2ACBED NM图1-3E图1-3 B(D )F图1-2 E图1-4 图1-1AB 6 F4 图1DACN(3)若AC=3BC =,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值..练习:1.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43, B .()34,C .()12--, D .()21--,2.ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A BC △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是( ) A .1A 的坐标为()31, B .113ABB A S =四边形C .2B C =D .245AC O ∠=°3.如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ).A .π5168 B .π24 C .π584D .π124.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是5.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm . 6.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?7.△ABC 中,点O 是AC 边上的一个动点,过点O 作直线//MN BC 设MN 交BCA ∠的平分线于点E ,交DCA ∠的平分线点F .(1) 求证:OE OF =;当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)若AC 边上存在点O ,使四边形AECF 是正方形,且26=BC AE ,求B ∠的大小.图1-1 图1-2图1-3(二)例1. 已知:如图1,半圆O 的直径cm DE 12=,在ABC ∆中,︒=∠90ACB ,︒=∠30ABC ,cm BC 12=.半圆O 以每秒cm 2的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上.设运动时间为t (秒),当0=t (秒)时,半圆O 在ABC ∆的左侧,cm OC 8=. (1)当t 为何值时,ABC ∆的一边所在直线与半圆O 所在的圆相切? (2)当ABC ∆的一边所在直线与半圆O 所在的圆相切时,如果半圆O 与直线DE 围成的区域与ABC ∆三边围成的区域有重叠部分,求重叠部分的面积.例2. 已知:如图1,△ABC 中,∠C =90°,AC =3厘米,CB =4厘米.两个动点P 、Q 分别从A 、C 两点同时按顺时针方向沿△ABC 的边运动.当点Q 运动到点A 时,P 、Q 两点运动即停止.点P 、Q 的运动速度分别为1厘米/秒、2厘米/秒,设点P 运动时间为t (秒). (1)当时间t 为何值时,以P 、C 、Q 三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2;(2)当点P 、Q 运动时,阴影部分的形状随之变化.设PQ 与△ABC 围成阴影部分面积为S (厘米2),求出S 与时间t 的函数关系式,并指出自变量t 的取值范围;(3)点P 、Q 在运动的过程中,阴影部分面积S 有最大值吗?若有,请求出最大值;若没有,请说明理由.例3. 如图1-1,在Rt △PMN 中,90P ∠=,PM PN =,8MN =㎝,矩形ABCD 的长和宽分别为8㎝和2㎝,C 点和M 点重合,BC 和MN 在一条直线上.令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1㎝的速度移动(图1-2),直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ㎝2.求y 与x 之间的函数关系式.图1-1 图1-2 三、练习 1.(2009年长春)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )2、如图,等腰直角三角形ABC (90C ∠=)的直角边长与正方形MNPQ 的边长均为4cm ,CA 与MN 在直线l 上,开始时A 点与M 点重合;让△ABC 向右平移;直到C 点与N 点重合时为止.设△ABC 与正方形MNPQ 的重叠部分(图中阴影部分)的面积为y cm 2,MA 的长度为x cm ,则y 与x 之间的函数关系大致是( )3.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )B 、M PAB CQ图14.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且45ACD =,DF AB ⊥于点F ,EG AB ⊥于点G ,当点C 在AB 上运动时,设AF x =,DE y =,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A5.如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).6.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .7. 在ABCD 中,过点C 作CE CD ⊥交AD 于点E ,将线段EC 绕点E 逆时针旋转90得到线段EF (如图1)(1)在图1中画图探究:①当1P 为射线CD 上任意一点(1P 不与C 重合)时,连结1EP 绕点E 逆时针旋转90得到线段1EG 判断直线1FG 与直线CD 的位置关系,并加以证明;②当2P 为线段DC 的延长线上任意一点时,连结2EP ,将线段2EP 绕点E 逆时针旋转90得到线段2EG .判断直线12G G 与直线CD 的位置关系,画出图形并直接写出你的结论. (2)若6AD =,tan B =43,1AE =,在①的条件下,设1CP x =,S 11PFG =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.BDA (P )C第6题图ABC DOP B .D .A .C .(三)例1. 如图1-1,正方形ABCD 的顶点A 、B 的坐标分别为(0,10)、(8,4),顶点C 、D 在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点(4,0)E 出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P 、Q 两点同时停止运动,设运动的时间为t 秒.(1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,△OPQ 的面积S (平方单位)与时间t (秒)之间函数图象为抛物线的一部分(如图1-2所示),求P 、Q 两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标.(4)若点P 、Q 保持(2)中的速度不变,则点P 沿着AB 边运动时,∠OPQ 的大小随着时间t 的增大而增大;沿着BC 运动时,∠OPQ 的大小随着t 的增大而减小.当点P 沿着这两边运动时,使∠90OPQ = 的点P 有_________个.例2 下表给出了代数式2x bx c ++与x 的一些对应值:(1)根据表格中的数据,确定b 、c 的值,并填出表格空白处的对应值;(2)设2y x bx c =++的图象与x 轴的交点为A 、B 两点(A 点在B 点左侧),与y 轴交于点C ,P 为线段AB 上一动点,过P 点作//PE AC 交BC 于E ,连结PC ,当△PEC 的面积最大时,求P 点的坐标.例3. 如图1,已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值. 练习:1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且45ACD =,DF AB ⊥于点F ,EG AB ⊥于点G ,当点C 在AB 上运动时,设AF x =,DE y =,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A2. 如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=,6cm CD =,AD =2cm ,动点P 、Q 同时从点B 出发,点图1-1图1-2P 沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,两点运动时的速度都是1cm/s ,而当点P 到达点A 时,点Q 正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为y 2(cm ).下图中能正确表示整个运动中y 关于t 的函数关系的图象大致是( )A .B .C .D .3.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底边AC 上一个动点,M N,分别是AB BC ,的中点,若PM PN +的最小值为2,则ABC △的周长是_________.4.如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .5. 如图,正方形ABCD 的边长为2, 将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为________.6.如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作90AEF ∠=,使EF 交矩形的外角平分线BF 于点F ,设(,)C m n .(1)若m n =时,如图,求证:EF AE =;(2)若m n ≠,如图,试问边OB 上是否还存在点E ,使得EF AE =?若存在,请求出点E 的坐标;若不存在,请说明理由.(3)若m nt =(1t >)时,试探究点E 在边OB 的何处时,使得(1)EF t AE =+E 成立?并求出点E 的坐标.ABC M NABCDNM。