证明数列型不等式的常用方法

合集下载

第8讲数列不等式的证明

第8讲数列不等式的证明

第8讲 数列不等式的证明(一) ∑=><n i i n f a1)()(及)()(n f a i ><∏型不等式的证明解法突破:(1) 设∑==n i ib n f 1,)(证明i i b a <,同向相加∑∑===<⇒n i ni i i n f b a 11)( (2) 设i b n f ∏=)(证明i i b a <<0,同向同正相乘)(n f b a i i =∏<∏⇒ 例1. 求证:1)1(13121)2(2222+<++++<+n n n n n 变式1. 求证:2)2()1(32212)1(+<+++⨯+⨯<+n n n n n n 变式2. 求证:n nn 212111)11(2<+++<-+ 变式3. 求证:n n n <+++⨯+⨯)1(1321211 例2. 求证:1212414212+>+⨯⨯+⨯+n nn 变式1. 求证:12121-2n 654321+<⋅⋅⋅⋅n n 变式2. 求证:2231335623333+>⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛n n n 变式3. 求证:1122642)12(531423121-+<⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯+n nn 练习1. 等比数列}{n a 的前n 项和为n S ,已知对*N n ∈∀,点),(n S n 均在函数)1,0(≠>+=b b r b y x (b,r 均为常数)的图像上(1) 求r 的值(2) 当2=b 时,记))(1(log 2*2N n a b n n ∈+=,求证:对*N n ∈∀,不等式11112211+>+⋅⋅+⋅+n b b b b b b nn 成立 练习2. 已知曲线),2,1(02:22: ==+-n y nx x C n ,从点)0,1(-P 向曲线n C 引切线n l ,且知其斜率为)0(>n n k k ,切点为),(n n n y x P(1) 求数列}{n x 的通项公式(2) 求证:nn n x x x x x x +-<⋅⋅⋅-1112531 练习3. 已知各项均为正数的数列}{n a 的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=(1) 求}{n a 的通项公式(2) 设数列}{n b 满足1)12(=-⋅n bn a ,并记n T 为}{n b 的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+练习4. 已知x x x f -+=)1ln()(,记)(x f 在区间)](,0[*N n n ∈上的最小值为n b ,令n n b n a -+=)1ln(,求证:1122421231423121-+<+++-n n n a a a a a a a a a a a a a 例3. 求证:*,1211)1ln(113121N n nn n ∈+++<+<++++ 变式:求证:*,)1(2)1ln(131211N n n n n n ∈+++>++++ (二) ∑=><n i i C a1)(及C a i )(><∏(C 为常数)型不等式的证明例4. 求证:12121212132<++++n )(*N n ∈ 变式1. 求证:2223222132<++++n n )(*N n ∈ 变式2. 求证:112112112112132<++++++++n )(*N n ∈ 变式3. 求证:2232322212132<++++++++n n n )(*N n ∈ 例5. 求证:)(,21)12)(12(1751531311*N n n n ∈<+-+⨯+⨯+⨯ 变式1. 求证:113121222<+++n ),2(*N n n ∈≥ 变式2. 求证:2131211222<++++n)(*N n ∈ 变式3. 求证:47131211222<++++n )(*N n ∈变式4. 求证:35131211222<++++n )(*N n ∈ 练习1. 求证:45)12(151311222<-++++n )(*N n ∈ 练习2. 已知2n )1(),1(+=+=n b n n a n ,求证:1251112211<++++++n n b a b a b a 练习3. 设数列}{n a 的前n 项和n S ,已知*211,32312,1N n n n a n S a n n ∈---==+ (1) 求1a 的值(2) 求数列}{n a 的通项公式(3) 求证:对一切整数n ,有4711121<+++n a a a 例6. 求证:232312312312313322<-++-+-+-n n )(*N n ∈ 变式1. 求证:141723123123123132<-++-+-+-n )(*N n ∈ 例7. 已知122-=n nn a ,求证:3)1(1<-∑=n i i i a a 例8. 求100131211++++= S 的整数部分 常见的裂项放缩技巧。

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

导数数列型不等式证明问题

导数数列型不等式证明问题

导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。

以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。

例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。

构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。

例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。

微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。

例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。

需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。

同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。

证明不等式的基本方法

证明不等式的基本方法
用换元法证明不等式时一定要注意新元的 约束条件及整体置换策略. 主要是三角换元和均值换元。
x2
例7(1)设

y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)

小结数列与不等式证明题的四种实用方法

小结数列与不等式证明题的四种实用方法

小结数列与不等式证明题的四种实用方法高中数学,当数列与不等式以综合题的形式出现时,难度较大。

怎样在紧张而又急迫的考试中准确的选择合适的方法解决难题并且不浪费时间,这成为众多学者头痛的问题。

笔者在高中自主学习和课堂听课中总结了四种实用的方法。

在这篇文章中,笔者把不等式右边是常数的证明题定义为常数型,把不等式右边是变量的证明题定义为变量型。

有的方法只适合常数型的不等式,而有的方法既适合变量型的不等式,也适合常数型的不等式。

下面笔者分常数型和变量型依次总结。

方法一:GP.放缩法。

(常数型)这种方法的应用比较广泛,同时也是放缩法中较简单的一种方法。

下面我们以例题的形式来说明。

例:求证:2121...915131211n <++++++-。

解析:该题属于和式与和式作比较,将2看成某个数列求和即可。

等比数列中,当公比q ≠1时, q 1q a q 1a q 1q 1a n 11n 1n ---=--=)(S ,若使q1q a n1-随n 的增大而趋向于0,则︳q ︳∈(0,1),观察通项1211n +-,q 取21的可能性较大,则令q=21,2q1a 1=-,解得1a 1=。

所以可以得出目标等比数列1n n 21a -=)(。

证明:因为121n +->1n 2-, 所以1211n +-<1n 21-, 得121...915131211n ++++++-<1n 21...8141211-+++++=1n 212--)(<2,所以原不等式得证。

这种方法的关键点在于找出目标等比数列,当然也有局限性,不适用于变量型不等式。

方法二:数学归纳法。

(常数型和变量型)数学归纳法的应用比较广范,在某些证明题中,数学归纳法常常作为考生首选的方法,它的重要性是毋庸置疑的。

但是,某些题型不适合用数学归纳法证明。

当不等号左边的第一项是某个具体的常数时,直接用数学归纳法就不可以证明,必须选择恰当的中间量方可。

例如:求证:2121...915131211n <++++++-。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

例谈证明数列不等式问题的三种途径

例谈证明数列不等式问题的三种途径
数列不等式问题,常需采用数学归纳法和构造函数
法来进行求证,但这两种方法较为繁琐,且运算量
较大.
(作者单位:山东省聊城市东阿县实验高中)
Copyright©博看网. All Rights Reserved.
∴不等式1 +
n
2
3
1
通过观察发现,该数列的通项公式为
,很难
n
1
1 <
求 得 数 列 的 和 ,于 是 先 将
进行放缩:
n
n
∴1+
)
n - n - 1 ,然后再进行求和,这样数列中的部分
放缩方式.
= 2 k + 1,
= 2 n,
(
Hale Waihona Puke 项便会相互抵消,化简所得的结果,即可证明不等式
c1 + c 2 + ⋯ + c k + c k + 1 < 2 k +
又 ∵∠CEF = 90° ,
即 EF ⊥ CE ,
∴PB ⊥ CE ,PB ⊥ 平面 PAC ,
∴ 正三棱锥 P - ABC 的三条侧棱两两互相垂直,
把三棱锥补形为正方体,则正方体的外接球即为
半径为 6 ,
2
公式进行求解.
三棱锥的外接球,
其直径为 D = PA2 + PB2 + PC 2 = 6 ,
∴ 三棱锥 P - ABC 为正三
棱锥,
∴顶点 P 在底面的射影
O1 为底面三角形的中心,连接
图8
BO1 交 AC 于 G ,
∴AC ⊥ BG ,
又 PO1 ⊥ AC ,PO1 ⋂ BG = O1 ,
∴AC ⊥ 平面 PBG ,∴PB ⊥ AC ,

数列中的不等式的证明

数列中的不等式的证明

数列中的不等式的证明证明数列中的不等式的一般方法包括数学归纳法和放缩法。

数学归纳法可以直接应用于正整数相关的命题,包括数列不等式。

但有些数列不等式必须经过加强后才能使用数学归纳法证明。

放缩法包括单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。

能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然。

第一种证明方法是直接应用数学归纳法。

例如,对于函数$f(x)=-x+ax$在$(0,1)$上为增函数的情况,可以通过数学归纳法求出实数$a$的取值集合$A$,并比较数列$\{a_n\}$中相邻两项$a_{n+1}$和$a_n$的大小。

另一个例子是已知数列$\{a_n\}$中$a_1=2$,$a_{n+1}=(2-1)(a_n+2)$,可以求出数列的通项公式,并证明$2<b_n\leq a_{4n-3}$,其中$b_n=3a_{2n+1}/(2a_{2n}+3)$。

第二种证明方法是放缩法。

例如,已知数列$\{a_n\}$中$a_n+(a_{n+1}+2)a_n+2a_{n+1}+1=3$,$a_1=-2$,可以证明$-1a_{2n-1}$。

另一个例子是已知函数$f(x)=ax-x$的最大值不大于$/428$,且在$x\in[1,1]$时$f(x)\geq11/428$,可以求出$a$的值,并证明$a_n<2n+111$,其中$a_{n+1}=f(a_n)$。

综上所述,证明数列中的不等式可以通过数学归纳法和放缩法两种方法进行。

具体方法包括直接应用数学归纳法、加强命题后应用数学归纳法、单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。

在使用放缩法时,需要根据具体情况选择合适的方法进行证明。

1.若数列{b_n}中b_1=2,b_{n+1}=\frac{3-b_n}{2},证明b_n>0且b_n<\frac{2}{3}。

2.用数学归纳法证明:对于任意正整数n,有1+2+3+\cdots+n\leq n^2.3.已知a_1=1,a_{n+1}=\sqrt{a_n+6},证明a_n<3.4.设数列{a_n}的通项公式为a_n=\frac{1}{n(n+1)},求证\sum_{k=1}^n\frac{1}{k}-\ln(n+1)<1.5.已知数列{a_n}为等差数列,数列{b_n}为等比数列,且a_1=b_1,a_2=b_2,a_3=b_3,求证a_n\leq b_n。

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

数列不等式证明大题解题技巧

数列不等式证明大题解题技巧

数列不等式证明大题解题技巧
1. 把数列的不等式转化为数学归纳法或数列递推公式证明:通过利用归纳假设或递推公式,将数列的不等式转化为一系列数学运算的等式或不等式,从而证明原始的数列不等式。

2. 利用数列的性质进行变形:通过对数列进行一系列变形,利用数列的性质,等式性质或不等式性质,将原始的数列不等式转化为更容易证明的形式。

3. 利用基本不等式或数学不等式进行转化:通过利用已知的基本不等式或数学不等式,对不等式进行转化或放缩,从而证明原始的数列不等式。

4. 利用函数性质进行推理:如果数列具有某种特定的性质,可以将数列不等式化为函数不等式,然后根据函数性质进行推理和证明。

5. 利用数列的特殊性质进行归纳:如果数列具有某种特殊的性质,可以通过归纳法证明数列的不等式。

总之,数列不等式的证明需要将数列不等式转化为一些更易于证明的形式,利用数列的特性、基本不等式、数学不等式、函数性质等进行推理和证明。

熟练掌握这些解题技巧,并结合具体题目的特点进行灵活应用,可以帮助解决数列不等式的证明大题。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

放缩法证明数列型不等式的注意问题以及解题策略

放缩法证明数列型不等式的注意问题以及解题策略

放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。

处理数列型不等式最重要要的方法为放缩法。

放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。

对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。

1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。

2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。

3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。

4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。

这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。

一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。

谈谈证明数列不等式的三种方法

谈谈证明数列不等式的三种方法

解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。

数列不等式证明中的三种常用方法

数列不等式证明中的三种常用方法

方 法一 : 适 当放缩后变成等比数列 分析: (I) 、 ( Ⅱ) 略; ( m) 显然 { } 的前几项 和
an
求不 出 , 但通项 :
可通过适 当放缩化 为等 比
数列 , 具体过程见下 面的解析 。
解: ( 1 1 1 ) ・ . ・ 3 . _ 3 . - 1 = 2 ・ 3 . 1 >2 / ・ 2 . 1 = 2 n . 3 " - 2 ≥3 . 1 1 ≤ 于是 + 1+ . . . ≤1 + + . . . + :


0 l n 2 啦
5 1 9 2
j 一< 】 + × 一 3: _ 3
3 2 2

当n ≥4 时, ・ . ・ < 6
an
= 1 3 i - 2
所以命题在n = k + l 时也成立。
综合①② , 由数学归 纳法可得 , 对一切正整数n ,

— —

— —
<——

a n 2
方法二 : 适当放缩后裂项求和 证明: n = 2 时, 3 2 - 2 a > 2 x 2 x ( 2 - 1 ) 成立 当n ≥3 时,
3 — 2 =( 1 + 2) 一 2 n =1 + Cn 1 2 + C n 2 - 2 +…+C n ・ 2 一
1 > C n ・ 2 2 = 2 n ( n 一1 )
故:
≤一 1×

( n ≥2 )
+—— +… + —— <—— o


3 2
j 一 Z“
L 1 7 , -l J n
0l 啦
分析 : 易求得( 1 ) n 1 = 1 ; ( 2 ) a n = 3 n 一 2 n

放缩法证明数列不等式经典例题

放缩法证明数列不等式经典例题

放缩法证明数列不等式经典例题放缩法证明数列不等式放缩法是一种证明数学不等式的方法,它利用一些基本的放缩技巧来推导出更复杂的不等式。

下面介绍几种常用的放缩技巧:1.$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$证明:将右边的式子化简得到$\frac{1}{n(n+1)}<\frac{1}{2n}-\frac{1}{2(n+1)}$,再将右边的两项合并得到$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$。

2.$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$证明:将右边的式子平方得到$\frac{n}{n+1}<\frac{n}{n+1}<\frac{(n+1)^2}{n(n+1)}$,再将中间的式子平方根得到$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$。

3.$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$证明:将右边的式子通分得到$\frac{1}{n(n-1)}-\frac{1}{(n+1)n}=\frac{1}{n(n+1)}-\frac{1}{n(n-1)}$,再将右边的两项合并得到$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$。

4.$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$证明:将右边的式子通分得到$\frac{1}{n-1}-\frac{1}{n+1}=\frac{2}{n(n+1)}$,再将右边的式子倒数得到$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$。

数列型不等式的证明

数列型不等式的证明

数列型不等式证明的常用方法一.放缩法数列型不等式证明是前见年高考中的一个热点,在多省试题中常常作为压轴题出现。

放缩法是数列不等式证明的一个重要方法,它具有很强的技巧性的特点,学生往往无从下手,下面总结放缩法证明的一些常用技巧,例如归一技巧、抓大放小技巧、回头追溯技巧、利用函数性质技巧,仅供参考.1 归一技巧归一技巧,指的是将不容易求和的和式中的所有项或假设干项全部转化为同一项,或是将和式的通项中的一局部转化为同一个式子〔或数值〕,既到达放缩的目的,使新的和式容易求和. 归一技巧有整体归一、分段归一。

例如 设n 是正整数,求证121211121<+++++≤nn n . 【证明】111122n n n +++++1211112222n nn n n n ≥++⋅⋅⋅⋅⋅⋅++个12=.另外:111122n n n+++++11111n nn n n n <++⋅⋅⋅⋅⋅⋅++个1=. 【说明】在这个证明中,第一次我们把11n +、12n +、12n这些含n的式子都“归一〞为12n,此时式子同时变小,顺利把不易求和的111122n n n+++++变成了n个12n的和,既将式子缩小,同时也使缩小后的式子非常容易求和,这就是“归一〞所到达的效果。

而不等式右边的证明也类似.1.1整体归一放缩法中,如果通过将所有项转化为同一项而到达放缩目的的,称之为“整体归一〞.例 1.数列{}na的各项均为正数,n S为其前n项和,对于任意*Nn∈,总有2,,n n na S a成等差数列.(Ⅰ)求数列{}na的通项公式;(Ⅱ) 设数列{}n b的前n项和为n T,且2lnnnn axb=,求证:对任意实数(]ex,1∈〔e是常数,e=⋅⋅⋅〕和任意正整数n,总有n T< 2;〔Ⅰ〕解:由:对于*Nn∈,总有22n n nS a a=+①成立∴21112n n nS a a---=+〔n ≥ 2〕②①--②得21122----+=nnnnnaaaaa∴()()111----+=+nnnnnnaaaaaa∵1,-nnaa均为正数,∴11=--nnaa〔n ≥ 2〕∴数列{}na是公差为1的等差数列又n=1时,21112S a a =+, 解得1a =1∴n a n =.(*N n ∈)〔Ⅱ〕证明:∵对任意实数(]e x ,1∈和任意正整数n ,总有2ln nn n a x b =≤21n. 〔放缩通项,整体归一〕 ∴()nn n T n 11321211112111222-++⋅+⋅+<+++≤ 〔放缩通项,裂项求和〕21211131212111<-=--++-+-+=nn n例2.数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k k x k x k -++⋅=的两个根,且212(123)k k a a k -=≤,,,.〔I 〕求1a ,2a ,3a ,7a ; 〔II 〕求数列{}n a 的前2n 项和2n S ;〔Ⅲ〕记sin 1()32sin nf n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…,求证:15()624n T n ∈*N ≤≤ 【分析】〔1〕略. 12a =;34a =;58a =时;712a =. 〔II 〕略. 2nS 2133222n n n ++=+-.〔III 〕此题应注意到以下三点,①(){1,2}f n ∈,且()f n 具有周期性. (){1,2}f n ∈,这就有()(1){1,1}f n -∈-,()f n 虽有周期性,可周期为2π. 这就使当n 很大时,和式通项(1)212(1)f n n na a +--的符号增加了不确定性.②很显然,当4n ≥时,213n a n -=,22nn a =;当3n ≤时,212n n a -=,23n a n =.纵然没有符号的问题,通项132n n ⋅如何求和?也需要解决.③112116T a a ==,2123411524T a a a a =+=,此题相当于证明12()n T T T n ∈*N ≤≤.基于以上三点,我们可以看到:1n T T ≤等价于从第二项开场的项之和为非负数,可否考虑将第三项开场的项缩小,此时可以做两方面的“归一〞,一是符号“归一〞,二是分母的局部“归一〞,两者都是要到达容易求和的目的. 【解答】 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++,345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭≥从第三项起“归一〞为负=)2312431921(6416143nn ⋅+⋅⋅+⋅-⋅+ =)21241231(6164161132-⋅+⋅+⋅-⋅+n n 2341111116626222n ⎛⎫>+-++⎪⋅⎝⎭ (3,4,5,…,n “归一〞为2)11662n =+⋅ 16>, 至于不等式右边原理一样:(1)5678212511(1)24f n n n n T a a a a a a +--=--++5678212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤(从第四项起“归一〞为正34551111249234235232n n =-++++⋅⋅⋅⋅⋅⋅34511112492922n ⎛⎫<-+++ ⎪⋅⎝⎭(4,5,…,n “归一〞为3)512492n =-⋅524<.又112116T a a ==,2123411524T a a a a =+=,原结论成立 1.2 分段归一放缩法中,如果我们把和式分为假设干段,每一段中的各个项都转化为同一项而到达放缩并容易求和的目的的,称之为“分段归一〞.例 3 数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S .〔1〕求数列{}n b 的通项公式;〔2〕求证:对任意的n N *∈有21122n n S n +≤≤+成立.分析:〔1〕略. 1n b n=. 〔2〕此问可以用数学归纳法证明,也可以用“分段归一〞的放缩法解答. 【解答】左边证明21111232n n S =+++⋅⋅⋅⋅⋅⋅+1111111111111()()()()2345678916212n n -=+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅++11128162111111111111()()()()2448888161622n nn n -≥+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅+个个12111112222n =++++⋅⋅⋅⋅⋅⋅+个=1+2n这里我们以12,212,312,412,……,12n 为界,将和式111232n ++⋅⋅⋅⋅⋅⋅+分为n 段,每段1121i -++1122i -++ (1)2i +〔1,2,3,,i n =⋅⋅⋅〕,每段中的数对缩小归一为12i ,这就使每一段的数缩小后和为12,从而得证.至于不等号右边,原理类似:21111232n n S =+++⋅⋅⋅⋅⋅⋅+1111111111111111()()()()2345678915221212n n n n--=+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅+++⋅⋅⋅+++-111111128816211111*********()()()()()224444881616222n n n n n----≤++++++++⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅++个个16个 11111112nn =++++⋅⋅⋅⋅⋅⋅++个 12nn =+12n ≤+【说明】此题我们需要关注到不等号两边的性质:一方面,12111+1222n n =++⋅⋅⋅+个,接着我们把不等式中间的和式除1外的局部拆分成n 段,每段都不小于12;另一方面,1111122n n +=++⋅⋅⋅++个1,接着我们把不等式中间的和式除12n外的局部拆分成n 段,每段都不大于1;在归一放缩时,我们需要注意到题设的条件和式子的性质,它是我们考虑如何归一、往哪个地方归一的关键. 2 抓大放小在将和式通项中,我们保存式子主要的、数值较大的局部,去掉次要的、数值相对较小的局部,以便到达放缩和容易求和的目的,这种放缩技巧,我们称之为“抓大放小〞技巧.例如求证:2232322212132<++++++++nnn通项放缩为 nnn nn 22<+, 求和即证。

数列与不等式证明方法归纳

数列与不等式证明方法归纳

数列与不等式证明方法归纳一、数列证明方法的归纳法数列的归纳法证明主要有以下几个步骤:1、证明初值成立:首先要证明当$n=1$时,数列的性质成立。

也就是证明$a_1$的性质成立。

2、假设$n=k$时数列的性质成立:假设当$n=k$时,数列的性质成立,即假设$a_k$的性质成立。

3、证明当$n=k+1$时数列的性质也成立:通过假设的$a_k$的性质,证明$a_{k+1}$的性质也成立。

4、结论:由于初值成立,且从$k$到$k+1$时性质成立,所以根据数学归纳原理,数列的性质对所有自然数成立。

二、不等式证明方法的归纳法不等式的归纳法证明与数列的归纳法类似,主要有以下几个步骤:1、证明初值成立:首先要证明当$n=1$时,不等式的性质成立。

也就是证明当$x=1$时,不等式的性质成立。

2、假设$n=k$时不等式的性质成立:假设当$n=k$时,不等式的性质成立,即假设当$x=k$时,不等式的性质成立。

3、证明当$n=k+1$时不等式的性质也成立:通过假设的$x=k$时不等式的性质,证明当$x=k+1$时,不等式的性质也成立。

4、结论:由于初值成立,且从$k$到$k+1$时性质成立,所以根据数学归纳原理,不等式的性质对所有自然数成立。

三、数列与不等式证明的综合例题为了更好地理解数列与不等式的证明方法的归纳法,下面我们通过一个综合例题进行说明。

例题:证明数列$\{a_n\}$,其中$a_1=2$,$a_{n+1}=\frac{a_n}{1+a_n}$对于$n\geq1$时,$0 \leq a_n < 1$。

解题步骤:1、证明初值成立:当$n=1$时,$a_1=2$,显然有$0 \leq a_1 <1$成立。

2、假设$n=k$时不等式的性质成立:假设当$n=k$时,有$0 \leq a_k <1$成立。

3、证明当$n=k+1$时不等式的性质也成立:根据已知条件,$a_{n+1}=\frac{a_n}{1+a_n}$,代入假设的$a_k<1$,得到$a_{k+1}=\frac{a_k}{1+a_k}$。

数列不等式的证明方法

数列不等式的证明方法

数列不等式的证明方法一、数学归纳法:数学归纳法是一种证明数学命题的方法,常用于证明数列不等式的成立。

1.基本思路:数学归纳法证明数列不等式的基本思路如下:(1)首先,证明当n=1时命题成立;(2)然后,假设当n=k时命题成立,即假设P(k)成立;(3)最后,证明当n=k+1时命题也成立,即证明P(k+1)成立。

2.具体操作步骤:(1)证明当n=1时命题成立;(2)假设当n=k时命题成立,即假设P(k)成立;(3)证明当n=k+1时命题也成立,即证明P(k+1)成立。

3.举例说明:以证明斐波那契数列F(n)的递推形式F(n)=F(n-1)+F(n-2)为例。

(1)首先,证明当n=1时命题成立。

易知F(1)=1,F(0)=0,F(1)=F(0)+F(-1)成立。

(2)假设当n=k时命题成立,即假设F(k)=F(k-1)+F(k-2)成立。

(3)证明当n=k+1时命题也成立,即证明F(k+1)=F(k)+F(k-1)成立。

根据假设,F(k+1)=F(k)+F(k-1)成立,所以命题成立。

二、递推法:递推法的证明思路是通过已知条件和递推关系来逐步推导出结论。

1.基本思路:递推法证明数列不等式的基本思路如下:(1)首先,根据数列的递推关系列出递推式;(2)然后,推导出递推式的通项公式;(3)最后,利用递推式的通项公式证明数列不等式的成立。

2.具体操作步骤:(1)根据数列的递推关系列出递推式;(2)推导出递推式的通项公式;(3)利用递推式的通项公式证明数列不等式的成立。

3.举例说明:以证明斐波那契数列F(n)的递推式F(n)=F(n-1)+F(n-2)为例。

(1)根据递推关系列出递推式:F(n)=F(n-1)+F(n-2);(2)推导出递推式的通项公式:解这个递推方程得到F(n)=A*φ^n+B*λ^n,其中A、B为常数,φ和λ为一元二次方程x^2-x-1=0的两个根,φ≈1.618,λ≈-0.618;(3)利用递推式的通项公式证明数列不等式的成立:证明F(n)>n,通过证明A*φ^n+B*λ^n>n,根据递推式的通项公式可得证。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档