高考数学易考易错点总结_知识点总结

合集下载

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。

本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。

一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。

一旦出现符号混淆,就会直接导致答案错误或提高解题难度。

因此,考生在做题时要非常注意符号的正确使用。

2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。

所以一定要认真读题理解,分析问题。

尤其是碰到长篇阅读理解时,要先明确大意。

3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。

这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。

4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。

因此,我们必须学会正确地运用公式。

5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。

转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。

二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。

根式的运算和化简需要考生细心认真对待。

2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。

考生需要熟记这些知识点,并掌握相应的解题技巧。

3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。

4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。

考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。

5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。

以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。

知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。

知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。

知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。

知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。

知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。

知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。

知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。

知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。

知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。

知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。

知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。

知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。

知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。

知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。

数学高考易错知识点

数学高考易错知识点

数学高考易错知识点数学作为高考的一门必考科目,对于很多学生来说,常常是备考的难点。

在高考数学中,存在着一些易错的知识点,这些知识点往往容易被忽视或者掌握不牢固。

本文将针对数学高考易错的知识点进行一一介绍,帮助同学们更好地备考。

一、函数的性质函数作为高考数学中的重要知识点,其性质是备考中的一个难点。

容易出错的地方主要体现在函数的定义域和值域的确定以及性质的运用上。

1.1 定义域和值域的确定在确定函数的定义域和值域时,需要注意对于分式函数、根式函数以及复合函数等特殊函数的处理。

当函数中含有根式时,需要注意根式内的值域限制。

而对于复合函数,要注意其组成部分的定义域的交集。

1.2 函数性质的运用在解决函数题目时,要善于利用函数的性质,常见的函数性质包括奇偶性、周期性以及单调性等。

在运用这些性质时,需要注意掌握并理解函数性质的定义以及运用的场景。

二、立体几何立体几何是高考数学中的重要考点,易错知识点主要涉及到立体的表面积、体积以及空间几何体的相互关系。

2.1 表面积和体积的计算在计算立体的表面积和体积时,需要注意确定各个面的形状和计算公式的正确运用。

常见的错误包括计算面积时忽略一些面、计算体积时将单位换算错误等。

2.2 几何体的相互关系在解决空间几何体相互关系的题目时,容易出错的地方主要是在于立体的投影、截面的确定以及空间几何体的重叠和包含关系的分析。

在解题过程中,需要运用立体几何的相关定理和公式,确保分析的准确性。

三、数列与数学归纳法数列作为高考数学中的基础知识点,易错的地方主要涉及到数列的递推公式、通项公式的确定以及数学归纳法的运用。

3.1 数列的递推公式与通项公式在求解数列的递推公式与通项公式时,需要注意计算的正确性和准确性。

易错的地方包括计算错误、递推公式的误用以及通项公式的错误推导等。

3.2 数学归纳法的应用数学归纳法在解题时常常被用到,通过归纳给定命题的真假来解决问题。

但在使用数学归纳法时,需要注意归纳假设的正确性和递推的准确性。

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结2024年的高考数学考试易错知识点总结如下:
1. 函数与方程:易错点包括函数的定义域与值域、函数的奇偶性、解方程时的取值范围、解不等式时的符号变化等。

2. 三角函数与三角恒等式:易错点包括三角函数的定义、基本的三角恒等式的熟练掌握、解三角方程时的值域判断等。

3. 平面几何与立体几何:易错点包括平面图形的面积计算、立体图形的体积计算、立方体、正方体、圆锥体等几何体的计算等。

4. 概率与统计:易错点包括概率计算中的排列组合、事件的独立性与互斥性、统计数据的分析与解读等。

5. 导数与微分:易错点包括导数的定义与性质、函数的最值与最值点的求解、曲线的切线与法线方程的求解等。

6. 数列与数列极限:易错点包括数列的通项公式的求解、等差数列与等比数列的性质及求和公式、数列极限的判断与计算等。

7. 矩阵与行列式:易错点包括矩阵的加减乘除、对角矩阵、单位矩阵与逆矩阵的求解、行列式的性质与计算等。

8. 模型与实际问题:易错点包括问题的分析与建模、转化为数学问题的能力、解答实际问题时的合理性判断等。

以上是2024年高考数学考试易错知识点的总结,考生可以针对这些知识点进行有针对性的复习和备考,提高解题的准确性和效率。

高三数学最容易出错的知识点

高三数学最容易出错的知识点

高三数学最容易出错的知识点高三数学是所有高中生必须面对的一门课程,无论对于理科还是文科生来说,都具有重要的意义。

然而,由于难度较大,很多学生在学习过程中经常容易出现错误。

下面就来探讨高三数学最容易出错的知识点。

一、函数方程求解在高三数学中,函数方程求解是一个难点,也是容易出错的地方。

在这个部分中,学生经常会遇到的问题是没有正确地理解什么是函数和方程。

函数是一种映射关系,而方程是函数等式的表达形式。

因此,学生要明确整个解题过程的目标是找到使方程成立的变量的值。

例如,对于一个一次函数方程y=ax+b,有的学生会错误地理解成求解y的取值范围,而不是求解x的值。

这样的错误会导致学生在解题过程中迷失方向,最终得出错误的答案。

二、导数与极值导数是高三数学中的重要概念,与函数的变化趋势密切相关。

在求导过程中,学生容易疏忽导数的定义和求解规则,从而产生错误的结果。

常见的错误包括对函数求导时未进行连续求导、未正确运用导数的运算性质和规则等。

另外,极值也是一个容易出错的知识点。

在求极值的过程中,学生往往存在以下问题:未注意判断驻点的一阶和二阶导数变化的关系、未对极大值和极小值的定义和判断准则有清晰的认识等。

这些小细节的疏忽会导致最终答案的错误。

三、概率统计概率统计是高三数学中的另一个易错知识点。

学生在计算概率时容易忽略事件间的关系、未理解概率的加法和乘法定理、使用错排列组合等。

此外,在解答概率问题时,学生还容易将条件概率与联合概率混淆,导致最终结果的不准确。

在统计部分,学生常常未能正确理解总体和样本的概念,以及如何通过样本推断总体。

此外,学生在进行数据分析时,也容易将平均值、方差和标准差等相关概念混淆,导致数据处理结果的错误。

四、向量与坐标系向量和坐标系是高三数学中的基础知识,学生在这方面容易出错。

在解题过程中,学生经常会将向量的顺序弄错,导致向量的计算结果错误。

此外,学生在进行向量的分解和合成时,容易忽略向量共线的判断条件,从而导致错误的计算结果。

新最高考高中数学必考点易错点总结

新最高考高中数学必考点易错点总结

新最高考高中数学必考点易错点总结在高中数学中,存在一些常见的必考点和易错点。

掌握这些点,既可以避免常犯错误,又能帮助我们在考试中取得高分。

以下是关于数学必考点和易错点的详细总结:一、函数与方程组1.函数的定义、定义域和值域。

注意区分一个函数和一个方程。

2.函数的奇偶性和单调性的判定,包括简单函数的奇偶性和单调性的性质。

3.函数的复合和反函数的性质,例如求复合函数和反函数的定义域和值域。

4.一次、二次和高次方程的求解。

要掌握解方程的基本方法和技巧,包括因式分解、配方法、二次根式等。

5.方程组的解法,包括代入法、消元法和高斯消元法等。

6.二次函数的性质和应用,例如对称轴、顶点、开口方向和图像的绘制等。

二、数列与数列极限1.数列的定义、通项公式和性质。

要注意各种数列的特点,如等差数列、等比数列、等差数列和等比数列的应用。

2.数列的极限定义和判定,包括数列极限的收敛性和发散性。

3.数列极限存在的判定方法和计算方法,如夹逼定理和Stolz定理等。

4.数列极限的性质和计算,包括数列极限的四则运算法则和性质的应用。

三、概率与统计1.基本概念的理解,如随机试验、样本空间、事件等。

2.概率的计算方法,包括古典概型、几何概型和条件概率等。

3.概率分布的理解和计算,如离散型概率分布和连续型概率分布。

4.期望和方差的计算,包括离散型和连续型随机变量的期望和方差的计算。

5.统计图的绘制和解读,如频率分布表、频率直方图和累计频率图等。

四、解析几何和立体几何1.平面直角坐标系和空间直角坐标系的建立和使用方法。

2.直线的方程和性质,包括直线的斜率、截距、倾斜角等。

3.圆的方程和性质,包括圆的心、半径、弦长、切线和切点等。

4.平面图形的性质和判定,包括平行四边形、梯形、菱形的性质和判定。

5.空间图形的性质和计算,例如立体的体积、表面积、棱长和面积等。

五、三角函数1.三角函数的定义和性质,包括正弦、余弦、正切、余切、正割和余割的周期性、奇偶性和单调性等。

高考数学易错知识点总结

高考数学易错知识点总结

高考数学易错知识点总结高考数学是许多学生所关注的重点科目之一,由于数学的题目难度较大,造成了易错情况较为常见。

为了帮助考生更好地备考数学,下面总结了一些高考数学易错知识点,以供参考。

一、函数1. 定义域与值域的确定:在考试中,有些题目会给出函数的关系式或图像,需要根据这些信息确定函数的定义域和值域。

容易出错的情况包括分段函数的定义域、含有开方、分数、对数的函数等。

2. 函数的性质:考生常常容易混淆函数的奇偶性、单调性与增减性。

对于奇偶函数,需要知道它的定义域包括原点,并在不同象限上的函数值相等;对于单调性与增减性,需要知道如何通过函数的导数来判断。

3. 复合函数的计算:有些题目会考察复合函数的计算,可能需要使用反函数的知识。

容易出错的情况包括对复合函数的运算顺序不清晰、忽略了复合函数的定义域等。

二、数列与数列求和1. 等差数列与等比数列的求和公式:考生容易混淆等差数列与等比数列的求和公式,以及如何根据已知信息求出数列的通项公式。

容易出错的情况包括误用公式、计算中漏项或重复项等。

2. 数列中的特殊项:有些数列中会涉及到特殊项的计算,如最大项、最小项或第n项。

容易出错的情况包括对数列的性质不熟悉、对特殊项的计算方法不清楚等。

3. 递推数列的计算:递推数列是指每一项都由前一项或前几项确定的数列。

在计算递推数列时,需要熟悉递推公式的使用,以及如何根据已知前几项求出后面的项。

三、空间与向量几何1. 空间几何中的图像判断:在空间几何中,需要根据给定的条件来判断点、线、面等图形的性质。

容易出错的情况包括判断错误、漏掉某些条件或将辅助线误认为主线等。

2. 向量的计算:向量的计算是空间几何中的重要内容,包括向量的加减、数量积与向量积的计算等。

容易出错的情况包括计算错误、方向错误、遗漏某些条件等。

3. 立体几何的计算:立体几何是空间几何的重要分支,包括体积、表面积等计算。

容易出错的情况包括计算错误、单位换算错误、公式运用错误等。

高考数学常考的易错知识点归纳

高考数学常考的易错知识点归纳

高考数学常考的易错知识点归纳高考数学易错知识点函数与导数1.易错点求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。

对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

2.易错点带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。

研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

3.易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

4.易错点抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结随着高考科目数学的改革,考试内容和考试形式都在不断变化,但是总体来说,高考数学的出题思路和考查点并未发生太大变化。

根据近年高考数学试题的分析,我们可以总结出一些容易导致失分的知识点。

下面是2024年高考数学最易失分的知识点总结:一、函数与方程1. 函数的定义和性质在考试中,常常会涉及到对函数的定义、函数的性质、函数图像的绘制等问题,这是学生容易出错的一个知识点。

一些常见的错误包括对函数的定义不够准确、不理解函数的性质、绘制函数图像时不符合函数的定义域等。

2. 一次函数与二次函数的性质一次函数和二次函数是高考数学中最常见的函数类型,对于这两类函数的性质要熟悉掌握。

一次函数涉及到直线的斜率和截距,二次函数涉及到抛物线的顶点、焦点、对称轴等概念。

不理解这些性质会导致在解题过程中出现偏差。

3. 求解方程求解方程是高考数学中的基本题型,要掌握各种方法和技巧。

一些常见的错误包括未注意解析解的存在性、对方程的变形不熟练、未注意特殊解的存在等。

二、几何与向量1. 平面几何基本定理和性质平面几何基本定理和性质是高考数学中的重点,要牢记各种定理和性质,并能熟练应用到解题中。

一些常见的错误包括对基本定理的不理解、应用错误的定理、判断条件不准确等。

2. 向量的运算求向量数量积、向量叉积等是高考数学中的重要内容,要熟练掌握向量运算的定义和性质。

一些常见的错误包括计算错误、向量的表示方法不准确等。

3. 圆与圆的位置关系圆与圆的位置关系是高考数学中的难点,涉及到圆的切线、切点、相交、内切、外切等问题。

一些常见的错误包括判断不准确、对位置关系的认识不准确等。

三、数列与数学归纳法1. 数列的概念和性质数列是高考数学中的重点内容,要掌握数列的概念、数列的通项公式、数列的性质等。

一些常见的错误包括对数列的概念不理解、对数列的通项公式使用不熟练等。

2. 数列的求和数列的求和是高考数学中的常见问题,要熟练掌握各种求和方法和技巧。

知识点 高考数学易错

知识点  高考数学易错

知识点高考数学易错高考数学易错知识点解析在高考数学中,有些知识点容易让考生疏忽或者理解不透彻,导致易错。

以下将对其中几个常见的易错知识点进行解析,希望对广大考生有所帮助。

一、比例与相似比例与相似是高中数学中的重要概念,在高考中经常涉及到。

其中,一些易错点主要集中在比例与相似的性质和计算上。

比例的性质要牢记:首先是比例的定义,即两个比例相等;其次是比例的运算规则,如比值的倒置是否合理等。

相似的性质要注意理解:相似三角形的性质有比例性质、对应边比例、对应角相等等。

在解题过程中,应根据题目提供的已知条件判断相似的三角形关系,并灵活运用这些性质。

二、函数函数是高中数学的核心内容,也是高考数学的难点之一。

易错知识点主要涉及函数的定义、性质和运算。

一是函数的定义:要理解函数的定义及其符号表示,明确自变量和因变量的概念。

二是函数的性质:如定义域、值域、奇偶性等。

在解题时,需灵活应用函数的性质,注意确定函数的取值范围,排除错误选项。

三是函数的运算:要熟悉函数的四则运算和复合函数的概念。

在运算过程中,尤其是复合函数的运算中,一定要注意正确写出函数的表达式、代入正确的值进行计算。

三、立体几何立体几何是数学中的重要分支,也是高考数学中的难点部分。

易错知识点主要涉及立体几何的空间概念、立体图形的计算等。

一是空间概念的理解:如几何体的名称、性质、包容关系等。

在解题时,需根据已知条件,灵活应用空间几何的性质。

二是立体图形的计算:如表面积、体积等。

对于不同的几何体,计算公式不尽相同,考生要熟悉各类几何体的计算方法,并能根据题目特点选用合适的公式进行计算。

四、概率概率是高中数学的重要内容,也是高考数学中易出错的部分。

主要涉及基本概念的理解和概率计算的方法。

一是基本概念的理解:如样本空间、事件等。

理解事件的概念及其关系,注意事件之间的互斥与独立性质。

二是概率计算的方法:要掌握计算概率的基本方法,如几何概率、频率概率、条件概率等。

高考数学易失分知识点总结

高考数学易失分知识点总结

高考数学易失分知识点总结导语:高考是每个学生人生中的重要考试,数学作为其中一门重要科目,是很多学生认为难以应对的科目之一。

受制于时间限制以及对一些易失分知识点的不熟悉,很多学生在考试中容易犯错。

下面,我们将总结一些高考数学易失分的知识点,希望对广大考生有所帮助。

易失分知识点一:函数与方程1.函数与方程的概念混淆。

函数是一个或多个自变量与一个因变量之间的关系,例如y = f(x),而方程则是由字母以及数与运算符号构成的等式或不等式。

有些学生往往将函数与方程的概念混淆,导致理解和应用上的错误。

因此,在准备高考时,学生应该对函数和方程的概念进行明确的区分和理解。

2.函数图像的分析错误。

在解析几何中,函数的图像是一个非常重要的概念,可以通过图像直观地看到函数的性质和变化趋势。

然而,有些学生在解析函数图像时容易犯错,例如将函数图像的拐点、极值点或者当x趋近于正无穷时的情况分析错误。

易失分知识点二:三角函数与向量1.常用三角函数的应用错误。

在高考数学中,三角函数是经常出现的知识点之一。

例如,对于正弦函数的应用,很多学生容易混淆正弦值和角度的关系,导致计算错误。

因此,在考试准备中,建议学生通过大量的习题练习,熟悉和掌握三角函数的应用。

2.向量共线性的判断错误。

在向量的几何性质中,共线性是一个非常重要的概念。

有些学生往往在判断向量共线时容易犯错,例如对向量的平行性与共线性的区别不清楚。

因此,在学习向量的过程中,学生应该对共线向量和平行向量的概念进行深入的理解和区分。

易失分知识点三:几何与平面解析几何1.平行线与垂直线的判断错误。

在几何中,平行线和垂直线的判断是一个基本的几何常识。

然而,在高考中,有些学生在判断平行线和垂直线时容易犯错,例如错误地使用了平行线的判定条件,或者在平面解析几何中,使用了错误的判定式。

因此,在学习几何和平面解析几何时,学生要注意掌握平行线和垂直线的判定方法,多进行练习,加深理解。

2.坐标系的选择错误。

高三数学易失分知识点归纳

高三数学易失分知识点归纳

高三数学易失分知识点归纳在高中数学学习过程中,很多学生都会遇到一些易失分的知识点。

这些知识点可能因为概念理解不清晰、计算错误、解题思路不清晰等原因导致学生失分。

为了帮助同学们更好地掌握高三数学考试中的易失分知识点,下面将对其中几个重要的知识点进行归纳和解析。

1. 基础知识点1.1 几何与三角函数几何与三角函数是高中数学的基础,然而很多同学在理解相关概念时容易混淆或者记忆不牢固。

例如,对于周长和面积的概念,许多学生容易混淆或者计算错误。

另外,在三角函数中,正弦定理和余弦定理的应用也是容易出错的地方。

因此,同学们在备考中要反复温习这些基础知识点,并通过大量的练习巩固记忆。

1.2 计算和推导在高三数学考试中,计算和推导是非常常见的题型。

然而,很多学生在计算和推导过程中经常犯错。

例如,在解方程的过程中,容易出现计算错误或者忽略解的判断范围。

在求导求积分的题目中,很多同学容易出错,例如忘记运用链式法则或者移项计算错误等。

因此,同学们在做这类题目时一定要细心,将每一步的计算都仔细核对,避免不必要的失分。

2. 高阶知识点2.1 解析几何解析几何是高三数学考试中的一个重要知识点,也是易失分的重灾区之一。

在解析几何中,直线和曲线的方程、点的位置关系等都是比较考察的内容。

同学们在解这类题目时经常会出现误用公式、计算错误等问题。

因此,要提前掌握各种图形的性质和方程,多进行推导练习,并及时纠正错误,做到知其然更要知其所以然。

2.2 空间几何与立体几何在空间几何和立体几何领域,同学们也经常容易犯错。

例如,在立体几何中,求体积和表面积的计算容易混淆,或者在想象和绘制图形时失误。

因此,同学们在解决这类题目时要注重绘图、标记和计算的准确性,善于利用各种已知条件和几何关系进行解题。

3. 解题技巧和应试策略3.1 切忌草率行事在高三数学考试中,切忌草率行事。

即使遇到熟悉的题型,也要仔细审题,认真计算,不要因为着急或者粗心导致低级错误。

高考数学易混淆知识点总结

高考数学易混淆知识点总结

高考数学易混淆知识点总结数学是高考科目中一个相对容易失分的科目,很多学生在数学考试中容易混淆一些知识点,导致失分。

为了帮助大家更好地复习数学,我总结了一些容易混淆的知识点,希望对大家有所帮助。

一、代数知识点1. 二次函数与二次方程的区别二次函数是形如y=ax²+bx+c的函数,a≠0,其中a、b、c 是常数,x是自变量,y是因变量。

二次函数的图像是抛物线。

二次方程是形如ax²+bx+c=0的方程,a≠0,其中a、b、c 是常数,x是未知数。

解二次方程就是找到方程的根,也就是方程的解。

混淆的原因:二次函数和二次方程的公式都带有x²,容易让人混淆。

解决方法:理解二次函数和二次方程的概念和特点,二次函数是一个函数关系,而二次方程是一个方程,要求找到方程的解。

2. 整式与多项式的区别整式是由有限个数的项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数。

多项式是特殊的整式,是由若干项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数,并且不能有分式以及根式。

混淆的原因:整式是多项式的一种特殊情况,容易被误认为整式就是多项式。

解决方法:了解整式和多项式的定义和概念,多项式是整式的一种常见形式。

3. 幂的混淆正整数次幂:a^n=a×a×...×a,其中a是底数,n是指数。

零次幂:a^0=1,其中a≠0。

负整数次幂:a^(-n)=1/(a^n),其中a≠0。

混淆的原因:容易混淆正整数次幂、零次幂和负整数次幂的概念。

解决方法:理解正整数次幂、零次幂和负整数次幂的定义和特点,注意在计算幂时要遵循相应的规律。

二、几何知识点1. 长度与面积的混淆长度是表示一条线段的大小,通常用单位长度来度量,如厘米、米等。

面积是表示一个平面图形大小的量,通常用单位面积来度量,如平方厘米、平方米等。

混淆的原因:长度和面积都是度量物体大小的量,容易混淆。

解决方法:理解长度和面积的概念和计算方法,注意在计算时要根据题目中的要求选择适当的计算方式。

高考数学知识点和易错点

高考数学知识点和易错点

高考数学知识点和易错点高考是每个学生都非常重要的一道门槛,数学作为其中一科,是许多学生头疼的科目之一。

在备考中,掌握数学的知识点以及易错点是非常关键的。

下面将对高考数学常见的知识点和易错点进行分析和讨论。

一、函数与方程函数与方程是数学中的基础概念,也是高考数学中的重点考点。

对于一元一次方程、二次方程以及函数的定义和性质,学生需要牢固掌握。

在解题过程中,要特别注意一些易错点,比如在解二次方程时,容易忽略常数项,导致答案错误。

二、立体几何立体几何是数学中的抽象概念,要求学生具备一定的立体空间想象能力。

在高考中,了解立体几何中的基本概念和性质是非常重要的。

常见的知识点包括立体的表面积、体积计算以及相关定理的应用等。

易错点主要集中在对图形的识别和计算上,比如容易将表面积和体积的计算概念混淆,导致计算错误。

三、概率与统计概率与统计是数学中的重要分支,也是高考数学的重点考点之一。

学生需要掌握基本的概率计算方法,包括事件的互斥和独立、概率的加法和乘法原理等。

在统计学中,了解调查和统计的基本概念以及相关图表的分析方法是非常重要的。

易错点主要出现在对概率计算规则的理解和应用上,比如容易将互斥事件和独立事件混淆,导致计算错误。

四、导数与微积分导数与微积分是高考数学中的难点和重点考点。

学生需要掌握导数的定义和基本性质,以及函数的求导方法和应用。

在微积分中,了解函数的极限以及计算不定积分的方法是非常重要的。

易错点主要出现在对导数求解规则的应用上,比如容易忽略链式法则和乘积法则,导致计算错误。

五、数列与数级数数列与数级数也是高考数学中的考点之一。

学生需要掌握数列的定义、通项公式以及数列的性质和判断方法。

在数级数中,了解等比级数和等差级数的求和公式和性质是非常重要的。

易错点主要出现在对递推公式的应用和求和公式的使用上,比如容易将公式记错或者计算错误,导致最终答案错误。

综上所述,高考数学的知识点和易错点分别涉及函数与方程、立体几何、概率与统计、导数与微积分以及数列与数级数等内容。

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学易错点及重要知识点归纳作为高考的一门重要科目,数学在考试中扮演着至关重要的角色。

然而,由于高考数学难度较高,考生在备考过程中很容易遇到一些易错点或者盲区。

下面,笔者将对高考数学的易错点和重要知识点进行一些归纳和总结,以便更好地帮助考生备考和提高分数。

易错点部分:1. 未掌握基础知识高考数学难度比较高,但考试题目的基础知识却很基础。

例如,直线的斜截式、函数的基本性质、数列的通项公式等等。

如果考生没有掌握这些基础知识,就很难对后面的题目进行解答。

2. 混淆概念在高考数学中,各种概念、公式和定理层出不穷,而且经常会让考生感到混淆和晦涩。

其中,最容易混淆的就是求导和求积分的概念。

很多考生在解题时不注意细节,就会导致答案错误。

3. 题目理解不清高考数学的题目往往需要考生进行复杂的推理和计算,如果考生没有完全理解题目的意思,就会导致答案错误。

此时,建议考生仔细阅读题目,理解题目意思,再进行计算和推理。

4. 粗心大意高考数学的题目有很多细节,如果考生对细节不够注意,就会导致答案错误。

例如,计算过程中漏乘或漏加,符号弄错等等。

此时,建议考生慢慢计算,认真检查答案,防止粗心大意导致失分。

重要知识点部分:1. 数学公式在高考数学中,有很多重要的公式需要掌握,例如三角函数公式、立体几何公式、向量公式等等。

这些公式是解决相关题目的重要基础,考生必须掌握。

2. 计算技巧在高考数学中,有很多复杂的计算和变换,考生必须掌握一些重要的计算技巧。

例如分式分解技巧、配方法技巧、二次函数判别式等等。

这些技巧能够帮助考生提高解题效率和正确率。

3. 解题方法高考数学题目类型复杂,每种类型的题目都需要有对应的解题方法。

例如,函数的单调性证明、逆三角函数的恒等变形、等比数列的求和等等。

对于每种题目类型,考生必须掌握解题思路和方法。

4. 数学定理高考数学包含了很多数学定理,如中值定理、拉格朗日中值定理、柯西-施瓦茨不等式等等。

数学高考知识点易错点

数学高考知识点易错点

数学高考知识点易错点数学是高考中的一门重要科目,也是考生们备考过程中的难点之一。

在数学的学习与考试中,总有一些知识点容易被忽略或者易错。

本文将重点讨论数学高考中的易错知识点,帮助考生们提高备考效果。

1.函数与方程在函数与方程的考点中,考生常常容易搞混混合运算、方程的根与解集等概念。

混合运算指的是同时含有加减乘除等多种运算符号的运算,考生容易在复杂的运算中出错。

方程的根与解集,根是指方程等号左右两边相等的解,而解集指的是方程的所有解的集合。

考生经常将根和解集混淆,导致答案错误。

2.立体几何在立体几何的考点中,考生较容易混淆面、棱和顶点的概念。

面是指由三个或三个以上点组成的平面,棱是指连接两个顶点的线段,顶点是指多个棱的交汇点。

考生在解题过程中要清楚地区分这些概念,以免出现错误答案。

3.概率与统计在概率与统计的考点中,考生常常容易混淆独立事件与互不相容事件的概念。

独立事件指的是两个或多个事件之间互不影响,一个事件的发生不会影响其他事件的发生概率。

而互不相容事件指的是两个事件不可能同时发生。

考生在解题中要注意判断事件的性质,确定事件之间的关系,避免在计算概率时出现错误。

4.导数与微分在导数与微分的考点中,考生容易混淆导数与微分的概念。

导数是函数在某一点的变化率,表示函数曲线在该点处的切线斜率。

而微分是函数在某一点的变化量,包括函数值的变化和自变量的变化。

考生在计算导数和微分时要注意准确理解这两个概念的不同,并注意计算的方法和公式。

5.三角函数在三角函数的考点中,考生常常容易混淆同角三角函数的比值和同边三角函数的比值。

同角三角函数是指角度相同的两个三角函数的值之比,同边三角函数是指同一直角三角形中的两个三角函数值之比。

考生在应用三角函数进行计算时要注意选择正确的比值,避免出现计算错误。

以上是数学高考中的一些易错知识点,希望考生们能够认真对待这些知识点,在备考过程中加以复习和理解。

通过系统地掌握这些易错知识点,考生们能够提高解题能力,避免在考试中犯错,取得理想的成绩。

高中数学最易失分知识点汇总(高考必备)

高中数学最易失分知识点汇总(高考必备)

高中数学最易失分知识点汇总(高考必备)1、an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。

这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

2、对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。

3、数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。

数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。

在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。

4、错位相减求和项处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。

基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。

5、遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。

解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

6、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学知识点总结一遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

高考数学知识点总结二忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

高考数学知识点总结三四种命题的结构不明致误错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。

高考数学知识点总结四充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B 的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

高考数学易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p 假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p 假<=>p真(概括为一真一假)。

高考数学出错知识点

高考数学出错知识点

高考数学出错知识点近年来,随着高考数学难度的增加,考生对于数学出错知识点的关注也越来越高。

本文将详细介绍高考数学中常见的出错知识点,帮助广大考生避免犯错,取得好成绩。

一、函数知识点容易出错1.函数概念混淆:有些考生经常将函数的自变量和因变量搞混,这是一个常见的错误。

函数的自变量是指函数中的变量,而因变量则是由自变量决定的变量。

2.函数运算错误:在进行函数的加、减、乘、除等运算时,考生容易出错。

在进行函数运算时,需要正确对函数进行合并、分解等操作。

3.反函数的理解不准确:有关反函数的相关概念,考生容易混淆。

反函数是指一个函数f的逆函数,记为f的倒数。

考生在使用反函数时,需要注意区分正函数和反函数之间的关系。

二、概率与统计中容易出错的知识点1.概率的计算错误:在计算概率时,考生容易犯错。

计算概率时,需要根据事件的样本空间和样本点进行确定,而不是随意计算。

2.核心概念混淆:在统计学中,考生容易混淆样本均值和总体均值、样本方差和总体方差等概念。

考生需要明确这些概念的含义和计算方法。

3.抽样调查错误:在进行抽样调查时,考生经常犯错。

抽样调查需要满足一定的条件,而不是随意进行,否则会导致结果的不准确。

三、函数与方程中容易出错的知识点1.解方程错误:在解方程时,考生容易漏项、错项或者运算错误。

在解方程的过程中,要仔细检查每一步是否正确,保证解答的准确性。

2.函数的性质混淆:在讨论函数的增减性、单调性和最值等性质时,考生容易混淆。

对于函数的性质要有清晰的理解,并运用正确的方法来推导和分析。

3.函数图像认知错误:在绘制函数图像时,考生容易出错。

对于不同函数类型,考生应该熟悉其图像特点,并正确绘制。

四、几何中常见的出错知识点1.平行线与垂直线的判断错误:在判断平行线和垂直线时,考生容易混淆。

考生需要掌握判断平行线和垂直线的准确方法。

2.图形对称性分析错误:在分析图形的对称性时,考生容易出错。

对于不同类型的对称图形,考生需要准确判断其对称轴和对称点。

高考数学易错知识点总结内容

高考数学易错知识点总结内容

高考数学易错知识点总结内容高考数学易错知识点归纳总结的内容集合和简单逻辑1易错点,遗忘空集,造成错误错误分析:因为空集是任何非空集的适当子集,对于集合B,有三种情况:B=A,B,B,如果在解题时考虑不够仔细,可能会忽略B的这种情况,导致解题结果错误。

特别是在求解带参数的集合问题时,更要注意当参数在一定范围内时,给定集合可能为空的情况。

空集是一种特殊的集合。

由于思维定势,考生在解题时往往会忘记这一套,导致解题错误或不完整。

2易错点忽略集合元素的三个属性导致的错误错误分析:一个集合中的元素是确定的、无序的、相互不同的。

集合元素的三个性质中,互差对解题影响很大,尤其是带字母参数的集合,实际上隐含了对字母参数的一些要求。

解题时也可以先确定字母参数的范围,再具体解题。

3易错点四个命题的结构未知,会导致错误错误分析:如果原命题是如果a是b,那么这个命题的逆命题是如果b是a,无命题是如果A那么B,而逆无命题是如果B那么a。

有两组等价命题,即原命题与其逆无命题等价,反无命题与其逆命题等价。

在求解一个命题所写的其他形式的命题时,必须搞清楚四个命题的结构及其等价关系。

另外,在否定一个命题时,要注意全称命题的否定是一个特殊命题,而特殊命题的否定是一个全称命题。

如果a和b是偶数,那么否定应该是a和b不是偶数,而不是a和b是奇数。

4易错点颠倒了导致错误的充要条件错误分析:对于A和B两个条件,如果A=B成立,那么A是B and B的充分条件是A的必要条件;如果B=A成立,那么A是B的必要条件,B是A的充分条件;如果是AB,那么a和b是相互充分必要条件。

在解决问题时,X因为颠倒了充分性和必要性而容易出错,所以在解决这类问题时,需要根据充分必要条件的概念做出准确的判断。

5个容易出错的点。

对逻辑连词的错误理解会导致错误错误分析:用逻辑连词判断命题时,由于理解不准确,容易出错。

下面我们给出一些常见的判断方法,希望对大家有所帮助:P=p真或q真,P=p假和q假(总结为一真一真);Pq真,p真和q真,Pq假p假或q假(总结为一个假或假);p真p假,p假p真(概括为一真一假)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学易考易错点总结_知识点总结
高考数学易考易错点总结
1.指数、对数函数的限制条件你注意了吗?(真数大于零,底数大于零且不等于1)它们的函数值分布情况是如何的?
2.利用换元法证明或求解时,是否注意“新元”的范围变化?是否保证等价转化?
3.利用放缩法证明或求解时,是否注意放缩的尺度及方向的统一?
4.图像变换的时候是否清楚任何变换都是对“变量本身”进行的?
5.对于集合,你是否清楚集合中的元素(数、点、符号、图形等)是什么及元素的特性(确定性、互异性、无序性)?在集合运算时是否注意空集和全集?
6.命题的否定(只否结论)与否命题(条件、结论全否)的区别你知道吗?
7.求一个函数或其反函数的解析式的时候你标明函数的定义域了吗?
8.映射的概念你了解吗?对于映射f:A→B,是否注意到集合A中元素的任意性和集合B中与它对应元素的唯一性(B中可有多余元素)?
9.根据定义证明函数的单调性时的一般步骤是什么(取值规定大小、作差化连乘积、判断符号下结论)?
10.判断一个函数的奇偶性时是否注意到定义域关于原点对称这个必要非充分条件了?
11.“三个二次”的关系你清楚吗?(二次函数的图像与轴的交点的横坐标即二次方程的根;不等式的解集为二次函数图像上方或下方的点的横坐标的集合)含有参数的二次型你是否注意对二次项系数、对称轴、定义域、判别式、根的大小等的讨论?
12.数列也是一种特殊的函数你忽视了吗?是否能利用数列性质解题?
13.你还记得三角变换化简的通性通法吗(“角”的变换、“名”的变换、“幂”的变换、“形”的变换等)?
14.利用“均值不等式”证明或求最值的时候是否注意“一正、二定、三相等”的条件?如果等号取不到经常采用哪些办法(利用单调性、配凑、图像法等)?
15.分式不等式的一般解法是什么(移项、通分、合并同类项、分式化整式)?
16.理解直线的倾斜角和斜率的概念了吗?在设直线方程解题时是否忽略斜率不存在的情况?
17.直线的截距概念如何理解(截距可以是正数、负数、零)?
18.会求球面距离吗?它的基本类型有哪些?你能把它们转化为熟悉的图形吗(经度同纬度不同转化为线面角、纬度同经度不同转化为二面角)?
19.排列、组合应用问题的解题策略有哪些?(特殊元素优先安排、合理分类准确分步、混合问题先选后排、正难则反等价转化、相邻捆绑不邻插空、分排问题直排处理、定序问题除法处理、分配问题列表隔板、取与不取用组合数、分堆问题没有顺序)
20.过定点的圆切线方程的求法你清楚吗(首先判断定点与圆的位置关系,如果在圆上,直接利用公式;如果在圆外,可由代数法列方程组求解,也可由几何法圆心到直线的距离等于半径列等式求解)?
21.圆的弦长的求法你清楚吗(代数法、几何法)?
22.能区分互斥事件和相互独立事件(事件A或B是否发生对于事件B或A发生的概率没有影响)吗?
23.解答选择题、填空题的特殊方法是什么?(数形结合、特值、排除、验证、转化、分析、估算、极限等)
24.掌握椭圆、双曲线、抛物线的定义,在它们的统一定义里清楚常数e的含义。

掌握一些
常用的求轨迹方程的方法并注意验证,会用定义法判断动点轨迹是什么曲线吗?
25.能尽量多地记住圆锥曲线中的一些重要的点(如焦点、顶点)、线段(如长半轴、短半轴、半焦距、焦准距、焦半径、通径)、线(如准线、渐近线)、图形(如a,b,c的直角关系三角形、焦点三角形、直角梯形)及结论(如焦点弦、焦点三角形的面积公式)的含义并加以灵活运用吗?
26.在直线与圆锥曲线的存在性或范围问题的处理时,是否注意对联立消去参数之后的方程的二次项系数、判别式等进行讨论?是否也能想到利用曲线变量本身的范围进行求解(如椭圆的有界性)?
27.采用不同的抽样方法从总体中抽取相同容量的样本各个体被抽到的概率相同吗?(相同,可自行证明)
28.会用数学归纳法证明一些简单的数学命题吗?证明的一般步骤是什么(归纳、猜想、证明)?
29.能用定义说明函数是否连续吗?
30.两个复数只能说相等或不相等,不能比较大小。

会用两个复数相等的充要条件解题吗(实部和实部相等、虚部和虚部相等)?
31.清楚导数的物理意义和几何意义吗?函数连续与函数可导有什么联系(可导一定连续,但连续不一定可导)?
32.了解复数的代数表示和几何意义。

能区分好复平面与平面直角坐标系吗?
33.高中阶段都遇到了哪些角的范围,你能分清楚吗?(1)直线与直线平行时为0;(2)直线与直线相交时夹角的范围是(0,π/2],到角的范围是(0,π);(3)两异面直线(含垂直)所成角的范围是(0,π/2];(4)两非零向量所成角的范围是[0,π];(5)直线与平面所成角的范围是[0,π/2];(6)斜线与平面所成角的范围是(0,π/2);(7)二面角的平面角的范围是[0,π]。

34.在证明空间位置关系和求距离的时候除了直接法以外是否能利用转化法或向量法,高三?
35.反三角函数表示角只能是特定区间上的角,你能用反三角函数表示任意区间上的角吗?
36.向量是既有大小又有方向的量,不可比较大小。

如何进行向量运算?
37.数量积的几何意义是什么?数量积的运算率你清楚吗(交换率、分配率)?
38.在解三角问题时,你是否注意到三角函数的定义域、有界性、周期性等,是否能利用图像对三角函数问题进行分析?在条件求值问题中是否注意角的范围讨论?
39.图像按向量平移的本质是什么(实际上就是点的平移,简言之向量的坐标等于终点坐标减去起点坐标)?
40.不等式有哪些重要性质?其中哪些性质在应用的时候要注意限制条件(可乘、累乘、乘方、开方)?
41.能区分互斥事件(A,B两事件不可能同时发生)和对立事件(A,B两事件不可能同时发生,但必有一个发生)吗?
42.解答探索性问题时要注意思维的广度,注重知识间的联系,善于运用数学思想解题,一般分猜想归纳型、存在型问题、分类讨论型几种基本题型。

43.求数列通项公式的技巧有哪些(观察、公式、作差、作积、构造等),是否验证每一项都满足所求因式了?数列求和时是否先对通项公式加以分析?。

相关文档
最新文档