2018年九年级数学下册第一章直角三角形的边角关系1.1第2课时正弦与余弦练习课件(新版)北师大版
北师版九年级数学下册1.1 第2课时 正弦与余弦1教案与反思
1.1 锐角三角函数师者,所以传道,授业,解惑也。
韩愈东进学校陈思思第2课时正弦与余弦1.理解正弦与余弦的概念;(重点)2.能用正弦、余弦的知识,根据三角形中已知的边和角求出未知的边和角.(难点)一、情境导入如图,小明沿着某斜坡向上行走了13m,他的相对位置升高了5m.如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m 呢?在上述情形中,小明的位置沿水平方向又分别移动了多少?根据相似三角形的性质可知,当直角三角形的一个锐角的大小确定时,它的对边与斜边的比值、邻边与斜边的比值也就确定了.二、合作探究探究点:正弦和余弦【类型一】直接利用定义求正弦和余弦值在Rt△ABC中,∠C=90°,AB=13,BC=5,求sin A,cos A.解析:利用勾股定理求出AC,然后根据正弦和余弦的定义计算即可.解:由勾股定理得AC=AB2-BC2=132-52=12,sin A=BCAB=513,cos A=AC AB =1213. 方法总结:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,熟记三角函数的定义是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题【类型二】 已知一个三角函数值求另一个三角函数值如图,在△ABC 中,∠C =90°,点D 在BC 上,AD =BC =5,cos ∠ADC =35,求sin B 的值. 解析:先由AD =BC =5,cos ∠ADC =35及勾股定理求出AC 及AB 的长,再由锐角三角函数的定义解答.解:∵AD =BC =5,cos ∠ADC =35,∴D =3.在Rt △ACD 中,∵AD =5,CD =3,∴AC =AD 2-CD 2=52-32=4.在Rt △ACB 中,∵AC =4,BC =5,∴AB =AC 2+BC 2=42+52=41,∴sin B =AC AB =441=44141 . 方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.变式训:见《学练优》本课时练习“课后巩固提升”第8题【类型三】 比较三角函数的大小sin70°,cos70°,tan70°的大小关系是( )A .tan70°<cos70°<sin70°B .cos70°<tan70°<sin70°C .sin70°<cos70°<tan70°D.cos70°<sin70°<tan70°解析:根据角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°<∠A<90°间变化时,0<sin A<1,1>cos A>0.当角度在45°<∠A<90°间变化时,tan A>1.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型四】与三函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC =α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD,sinβ=ACAB.∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.【类型五】三角函数的综合应用如图,在△ABC中,AD是BC上的高,tan B=cos∠DAC.(1)求证:AC=BD;(2)若sin C=1213,BC=36,求AD的长.解析:(1)根据高的定义得到∠ADB =∠ADC =90°,再分别利用正切和余弦的定义得到tan B =AD BD ,cos ∠DAC =AD AC ,再利用tan B =cos ∠DAC 得到AD BD =AD AC,所以AC =BD ;(2)在Rt △ACD 中,根据正弦的定义得sin C =AD AC =1213,可设AD =12k ,AC =13k ,再根据勾股定理计算出CD =5k ,由于BD =AC =13k ,于是利用BC =BD +CD 得到13k +5k =36,解得k =2,所以AD =24.(1)证明:∵AD 是BC 上的高,∴∠ADB =∠ADC =90°.在Rt △ABD 中,tan B =AD BD ,在Rt △ACD 中,cos ∠DAC =AD AC .∵tan B =cos ∠DAC ,∴AD BD =AD AC,∴AC =BD ; (2)解:在Rt △ACD 中,sin C =AD AC =1213.设AD =12k ,AC =13k ,∴CD =AC 2-AD 2=5k .∵BD =AC =13k ,∴BC =BD +CD =13k +5k =36,解得k =2,∴AD =12×2=24.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计正弦与余弦1.正弦的定义2.余弦的定义3.利用正、余弦解决问题本节课的教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.【素材积累】1、冬天是纯洁的。
九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)
第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。
3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。
1.正弦与余弦课件
知识点 1 正弦
知1-讲
正弦:如图,在Rt△ABC中,∠C=90°,∠A的对
边与斜边的比叫做∠A的正弦,记作sin A,即
sin A=
A的对边 斜边
BC . AB
知1-讲
•例1 如图,在Rt△ABC中,∠B=90°,AC=200,
• sinA= 0.6, 求BC的长.
C
解:在Rt△ABC中,
∵sin A BC , AC
求一个直角三角形中锐角的三角函数值时, ①若已知两边长,先根据勾股定理求第三边长,然后根
据概念直接求; ②若已知两边的比,则设辅助未知数表示出两边长,然
后再用方法①求.
知3-练
1 若α是锐角,sin α=3m-2,则m的取值范围是( )
2 A. 2 <m<1 3
B.2<m<3
3 C.0<m<1
D.m>23
∴sin A= BC 5 , cos A= AC 12 .
AB 13
AB 13
总结
知2-讲
在直角三角形中,求锐角的正弦和余弦时,一定 要根据正弦和余弦的定义求解.其中未知边的长度往 往借助勾股定理进行求解.
例3 如图,在Rt△ABC中,∠C=90°,sin A= 求△ABC的周长和面积.
知2-讲
4 如果0°<∠A<90°,并且cos A是方程
5
x
1 2
(x-0.35)=0的一个根,那么cos A=_______
.
1.正弦的定义 2.余弦的定义 3.求锐角三角函数值的三种方法: (1)在直角三角形里,确定各个边,根据定义直接求出. (2)利用类似、全等等关系,寻找与所求角相等的角(若
该角的三角函数值知道或者易求). (3)利用互余的两个角间的特殊关系求.
九年级数学下册 第一章 直角三角形的边角关系 1.1 锐角三角函数 第2课时 正弦、余弦
3
A.2
2
B.3
5
C.6
第九页,共十七页。
4
D.3
3
∠CAM=5,
综合能力提升练
9.如图,在 Rt△ABC 中,∠ACB=90°,BC=3,AC= 15,AB 的垂直平分线
ED 交 BC 的延长线于点 D,垂足为 E,连接 AD,则 sin ∠CAD=( A )
1
A.4
∴AB=15.
∴BD= 2 - 2 = 152 -122 =9,
∴CD=BC-BD=14-9=5.
( 2 )在 Rt△ACD 中,E 为 AC 的中点,
∴ED=EC,
∴∠EDC=∠C,
∴tan∠EDC=tan C= =
12
.
5
第十四页,共十七页。
综合能力提升练
15.如图,在正方形ABCD中,M是AD的中点(zhōnɡ diǎn),BE=3AE,试求sin ∠ECM的
10
D. 10
知识要点基础练
【变式拓展】在正方形网格中,△ABC 的位置如图所示,则 sin A 的
值为( D )
1
A.3
2 5
C. 5
1
B.4
10
D. 10
第四页,共十七页。
知识要点基础练
2.如图,在△ABC 中,∠C=90°,BC=4 cm,AB 的垂直平分线 MN 交 AC
于点 D,且 CD∶DA=3∶5,则 sin A 的值是( B )
第一章
直角三角形的边角
第一页,共十七页。
(biān jiǎo)
关系
1.1
锐角三角函数
(hánshù)
第二页,共十七页。
九年级数学下册第一章直角三角形的边角关系1锐角三角函数1.1.2正弦和余弦练习北师大版(2021年
2018-2019学年九年级数学下册第一章直角三角形的边角关系1 锐角三角函数1.1.2 正弦和余弦同步练习(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第一章直角三角形的边角关系1 锐角三角函数1.1.2 正弦和余弦同步练习(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第一章直角三角形的边角关系1 锐角三角函数1.1.2 正弦和余弦同步练习(新版)北师大版的全部内容。
课时作业(二)[第一章 1 第2课时正弦和余弦]一、选择题1.2018·黄浦区一模在△ABC中,∠C=90°,则下列等式成立的是()A.sin A=错误! B.sin A=错误!C.sin A=错误! D.sin A=错误!2.2018·孝感如图K-2-1,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sin A等于()图K-2-1A。
错误! B.错误! C.错误! D。
错误!3.如图K-2-2,在Rt△ABC中,∠C=90°,AB=6,cos B=错误!,则BC的长为( )图K-2-2A.4 B.2 错误! C。
错误! D.错误!4.在Rt△ABC中,∠C=90°,sin A=错误!,则cos A的值为错误!()A.错误! B。
错误! C.错误! D。
错误!5.等腰三角形的底边长为10 cm,周长为36 cm,那么底角的余弦值是错误!()A.错误!B.错误! C。
错误! D.错误!6.直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC按图K-2-3所示方式折叠,使点A与点B重合,折痕为DE,则cos∠CBE的值为( )图K-2-3A.错误!B.错误! C。
北师版九年级下册第一章直角三角形的边角关系知识点及习题
九年级下册第一章 直角三角形的边角关系【知识要点】一、锐角三角函数:正切:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即b A atan =; 正弦..:.在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即ca sin =A ; 余弦:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cA bcos =; 余切:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cA b cot =; 注:(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形). (2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号; (3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位. (4)sinA,cosA,tanA, 的大小只与∠A 的大小有关,而与直角三角形的边长无关. (5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 1、三角函数和角的关系tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
sinA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,sinA 的值越大。
cosA 的值越小,梯子越陡,∠A 越大;∠A 越大,梯子越陡,cosA 的值越大。
2、三角函数之间的关系 (1)互为余角的函数之间的关系0º 30 º 45 º 60 º 90 º若∠A 为锐角,则①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=;)90tan(cot A A ∠-︒=(2)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA ·cotA =13)商的关系:tanA =A o A s c sin ,cotA =A Asin cos二、解直角三角形:※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
九年级 第一章 直角三角形的边角关系
九年级下册第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(一) 一 知识要点1. 能够用tanA 表示直角三角形中两边的比,表示生 活中物体的倾斜程度、坡度等正切的定义:在Rt △ABC 中,锐角A 的 与 锐角A 的比叫做∠A 的正切,记作tanA,即 tanA=2. 能够用正切进行简单的计算. 二、典型例题与分析例1:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?跟踪练习1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.例2:在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.随堂练习(见课本P 6 1、2)3、补充:在等腰△ABC 中,AB=AC=13,BC=10,求tanB.三、拓展训练例3如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)四、中考链接1:若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米2、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.§1.2从梯子的倾斜程度谈起(2)正弦与余弦一.知识要点:1.正弦,余弦的定义(1).在Rt△ABC中,锐角A的与的比叫做∠A的正弦,记作sinA,即sinA=(2).在Rt△ABC中,锐角A的与的比叫做∠A的余弦,记作cosA,即cosA=总结:①锐角三角函数的定义.锐角A的, , 都叫做∠A的三角函数.②定义中应该注意的几个问题(1)sinA,cosA,tanA, 是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).(2)sinA,cosA,tanA, 是一个完整的符号,表示∠A,习惯省去“∠”号;(3)sinA,cosA,tanA,是一个比值.注意比的顺序,且sinA,cosA,tanA,均﹥0,无单位.(4)sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.练习:如图,分别根据图(1)和图(2)求∠A的三个三角函数值.二.典型例题与分析:例1.如图:在Rt△ABC中,∠B=090,AC=200,sinA=0.6.求:BC的长.跟踪练习:1.如图,已知直角三角形A B C中,斜边A B的长为m,40B∠=,则直角边B C的长是()A.s in40m B.co s40mC.tan40m D.ta n40m2.如图, ∠C=90°CD⊥AB.(1)SinB=()()=()()=()()(2)若BD=6,CD=12.求cosA的值.3.在等腰△ABC中,AB=AC=13,BC=10,求sinB,cosB.三.基础练习:A BC 1.已知△ABC 中,90=∠C ,3cosB=2, AC=52 ,则AB= . 2.在Rt ABC ∆中,90=∠C ,如果2=AB ,1=BC ,那么Bsin的值是( )A.21B.23C.33D.33.在R t A B C △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A =4.如图,一架梯子斜靠在墙上,若梯子到墙的距离A C =3米,3c o s 4B AC ∠=,则梯子A B 的长度为 米.5.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12B.2C.1D.2四.知识延伸1.如图,P 是∠α的边OA 上一点,且点 P 的坐标为(3,4), 则sin α= ( ) A .35B .45C .34D .432.如图,A D C D ⊥,13A B =,12B C =,3C D =,4A D =,则sin B =( ) A .513B .1213C .35D .453.直角三角形纸片的两直角边长分别为6,8,现将A B C △如图那样折叠,使点A 与点B 重合,折痕为D E ,则tan C B E ∠的值是( ) A .247B .3C .724D .134.如图所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于 ( ) A. 12223五.中考链接 1.正方形网格中,A O B ∠如图放置,则co s A O B∠的值为() 55C.12D.22.如图,在A B C △中,90A C B ∠=,C D A B ⊥于D ,若A C =A B =tan B C D ∠的值为( )2333.如图,在A B C ∆中,90C ∠=︒,点D 、E 分别在A C 、A B 上,B D 平分A B C ∠,D E A B ⊥,6A E =,3c o s 5A =.求(1)D E 、C D 的长; (2)tan D B C ∠的值.§1.3 300,450,600角的三角函数值(1)D ABCABO第1题一、知识要点(1)直角三角形中的边角关系(2)特殊角300,450,600角的三角函数值. (3)互余两角之间的三角函数关系. (4)同角之间的三角函数关系 二、典型例题例1:(1)sin300﹢cos450(2) sin 2600+cos 2600﹣tan450跟踪练习:(1)sin600﹣cos450; (2)cos600+tan600例2: 如图:一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为600,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m).跟踪练习:2.某商场有一自动扶梯,其倾斜角为300,高为7m,扶梯的长度是多少?例3、如图,在Rt △ABC 中,∠C=90°, ∠A,∠B ,∠C 的对边分别是a,b,c.求证:sin 2A+cos 2A=1C跟踪练习:1.tan α×tan300 =1,且α为锐角。
北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷 含解析
第1章直角三角形的边角关系一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.511.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm215.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二.填空题(共5小题)16.比较大小:cos36°cos37°.17.已知α为锐角,sin(α﹣15°)=,则α=度.18.若坡度i=,则坡角为α=19.计算;sin30°•tan30°+cos60°•tan60°=.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC=三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.参考答案与试题解析一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.【分析】根据正弦的定义列式计算即可.【解答】解:在△ABC中,∠C=90°,sin A=,∴=,解得,BC=4,故选:B.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sin A===.故选:B.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:在△ABC中,若∠C=Rt∠,sin A=,cos B=,故选:A.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:如图,AC=b=,AB=c=4,所以BC=a==1,由三角函数的定义可得sin A==,则sin A=,故选:A.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=m sin35°,故选:A.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.【分析】因为∠A与∠B互余,则tan A•tan B=1,代入计算即可.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∴tan A•tan B=1,∵tan B==,故选:D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα【分析】直接利用锐角三角函数关系分析得出答案.【解答】解:∵sinα=,tanα=,且斜边>α的邻边,∴sinα<tanα.故选:A.9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=30°,进而得出答案.【解答】解:∵tan C=,cos A=,∴∠C=30°,∠A=30°,∴∠B=120°.故选:C.10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.5【分析】根据同角三角函数关系tanα=进行解答.【解答】解:由=1,得=1.所以=1.解得tanα=2.5.故选:D.11.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.【分析】利用锐角三角函数定义判断即可.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin A=sin∠BCD=,故选:D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【解答】解:∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD===,故选:A.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.【分析】根据锐角三角形的定义可求出AC的长度,然后根据三角形的面积公式即可求出答案.【解答】解:∵tan∠B=,∴=,∴AC==2+,∴Rt△ABC的面积为:×1×(2+)=,故选:D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm2【分析】在Rt△ABC中,求出BC,AC即可解决问题.【解答】解:在Rt△ACB中,∵∠C=90°,AB=8cm,∴sin A==,∴BC=6(cm),∴AC===2(cm),∴S△ABC=•BC•AC=×6×2=6(cm2).故选:D.15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二.填空题(共5小题)16.比较大小:cos36°>cos37°.【分析】根据余弦值随着角度的增大(或减小)而减小(或增大)求解.【解答】解:cos36°>cos37°.故答案为>.17.已知α为锐角,sin(α﹣15°)=,则α=75 度.【分析】利用特殊角的三角函数值求出α的度数即可.【解答】解:∵α是锐角,且sin(α﹣15°)=,∴α﹣15°=60°,即α=75°,故答案为:7518.若坡度i=,则坡角为α=30°【分析】根据坡度i与坡角α之间的关系计算,得到答案.【解答】解:∵坡度i=,∴tanα=,∴α=30°,故答案为:30°.19.计算;sin30°•tan30°+cos60°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin30°•tan30°+cos60°•tan60°=×+×=.故答案为:.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC= 3【分析】由tan A==3可设BC=3x,则AC=x,依据勾股定理列方程求解可得.【解答】解:∵在Rt△ABC中,tan A==3,∴设BC=3x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=3,故答案为:3.三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)【分析】根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC 坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.【解答】解:作AE⊥BC于点E,作DF⊥BC于点F,如右图所示,由题意可得,tan∠C=,CD=10m,∠B=45°,AD=6m,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,设DF=x,则CF=2x,∴=102,解得,x=2,∴DF=2m,CF=4m,AE=2m,∵∠AEB=90°,∠ABE=45°,AE=2m,∴BE=2m,∴BC=BE+EF+CF=2+6+4=(6+6)m,即BC的长是(6+6)m.22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.【分析】过点C作CD⊥AB于点D,根据直角三角形的性质求出CD,根据余弦的定义求出AD,根据余弦的定义求出BD,计算即可.【解答】解:过点C作CD⊥AB于点D.∵∠A=30°,∴CD=AC=3,AD=AC•cos A=3,∵cos B=,∴设BD=4x,则BC=5x,由勾股定理得,CD=3x,由题意的,3x=3,解得,x=1,∴BD=4,∴AB=AD+BD=3+4,CD=3,∴S△ABC=•AB•CD=×(3+4)×3=6+.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?【分析】(1)根据三角形内角和定理求出∠ACB,根据等腰三角形的判定定理解答;(2)作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,比较得到答案.【解答】解:(1)由题意得,∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣30°﹣120°=30°,∴∠ACB=∠CAB,∴BC=AB=40(海里);(2)作CE⊥AB交AB的延长线于E,在Rt△CBE中,sin∠CBE=,∴CE=BC•sin∠CBE=40×=20,∵20>30,∴轮船继续向东航行,无触礁危险.24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)【分析】在Rt△CBE中,由于∠CBE=45°,所以BE=CE,AE=40+x,在Rt△ACE中,利用30°的锐角三角函数求出x,加上测角仪的高度就是CD.【解答】解:设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=即=,解得,x=20+20≈20×1.732+20=54.64(m)所以CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m.26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D 点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,AB=30×=20(海里),∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=20(海里),解得:CD=10>10,所以不可能.27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.【分析】过P作PC⊥AB交BA的延长线于C,连接PA,PB,于是得到∠PBO=∠CPB=60°,∠CPA=30°,求得∠APB=30°,根据余角的定义得到∠ABP=90°﹣60°=30°,求出∠ABP=∠APB,根据等腰三角形的判定得到AP=AB=200,在Rt△APC中,根据含30°角的直角三角形的性质得到AC=AP=100,即可得到结论.【解答】解:过P作PC⊥AB交BA的延长线于C,连接PA,PB,则∠PBO=∠CPB=60°,∠CPA=30°,∴∠APB=30°,∵∠ABP=90°﹣60°=30°,∴∠ABP=∠APB,∴AP=AB=200,在Rt△APC中,AC=AP=100,∴PO=AC+AB=300米.答:飞机的高度PO为300米.。
第一章 1.1.2 第2课时 正弦定理和余弦定理
第2课时 正弦定理和余弦定理学习目标 1.熟练掌握正弦、余弦定理及其变形形式.2.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.知识点一 正弦定理、余弦定理及常见变形 1.正弦定理及常见变形(1)a sin A =b sin B =c sin C =2R (其中R 是△ABC 外接圆的半径); (2)a =b sin A sin B =c sin A sin C =2R sin A ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R .2.余弦定理及常见变形 (1)a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C ; (2)cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.知识点二 有关三角形的隐含条件 (1)由A +B +C =180°可得sin(A +B )=sin C ,cos(A +B )=-cos C , (2)由大边对大角可得sin A >sin B ⇔A >B .(3)由锐角△ABC 可得任意两内角之和大于π2,进而可得sin A >cos B .1.当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 2.△ABC 中,若cos 2A =cos 2B ,则A =B .( √ ) 3.在△ABC 中,恒有a 2=(b -c )2+2bc (1-cos A ).( √ )4.△ABC 中,若c 2-a 2-b 2>0,则角C 为钝角.( √ )题型一 利用正弦、余弦定理解三角形例1 在△ABC 中,若c cos B =b cos C ,cos A =23,求sin B 的值.解 由c cos B =b cos C ,结合正弦定理, 得sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c .∵cos A =23,∴由余弦定理可知,a 2=b 2+c 2-2bc cos A =2b 2-2b 2·23=23b 2,得3a 2=2b 2,再由余弦定理,得cos B =66,故sin B =306. 引申探究1.对于本例中的条件,c cos B =b cos C ,能否使用余弦定理? 解 由余弦定理,得c ·a 2+c 2-b 22ac =b ·a 2+b 2-c 22ab .化简得a 2+c 2-b 2=a 2+b 2-c 2, ∴c 2=b 2,从而c =b .2.本例中的条件c cos B =b cos C 的几何意义是什么? 解 如图,作AD ⊥BC ,垂足为D . 则c cos B =BD ,b cos C =CD .∴c cos B =b cos C 的几何意义为边AB ,AC 在BC 边上的射影相等. 反思感悟 (1)边、角互化是处理三角形边、角混合条件的常用手段. (2)解题时要画出三角形,将题目条件直观化,根据题目条件,灵活选择公式.跟踪训练1 在△ABC 中,已知b 2=ac ,a 2-c 2=ac -bc . (1)求A 的大小; (2)求b sin B c的值.解 (1)由题意及余弦定理知, cos A =b 2+c 2-a 22bc =ac +bc -ac 2bc =12,∵A ∈(0,π),∴A =π3.(2)由b 2=ac ,得b c =ab ,∴b sin Bc =sin B ·a b =sin B ·sin A sin B =sin A =32. 题型二 判断三角形形状例2 在△ABC 中,已知a ,b ,c 分别是角A ,B ,C 的对边,若a +b a =cos B +cos A cos B ,试判断三角形的形状.解 方法一 由正弦定理知,a =2R sin A ,b =2R sin B ,R 为△ABC 外接圆半径. ∵a +b a =cos B +cos Acos B , ∴sin A +sin B sin A =cos B +cos Acos B,∴sin A cos B +sin B cos B =sin A cos B +sin A cos A , ∴sin B cos B =sin A cos A , ∴sin 2B =sin 2A , ∴2A =2B 或2A +2B =π, 即A =B 或A +B =π2,∴△ABC 为等腰三角形或直角三角形.方法二 由a +b a =cos B +cos A cos B ,得1+b a =1+cos Acos B ,b a =cos Acos B,由余弦定理,得cos A cos B =b 2+c 2-a 22bc a 2+c 2-b 22ac=a b ·b 2+c 2-a2a 2+c 2-b 2,∴b a =a (b 2+c 2-a 2)b (a 2+c 2-b 2). a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), a 2c 2-a 4=b 2c 2-b 4, c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2). ∴a 2=b 2或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.反思感悟 (1)要结合题目特征灵活选择使用正弦定理还是使用余弦定理. (2)变形要注意等价性,如sin 2A =sin 2B ⇏2A =2B . c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2) ⇏c 2=a 2+b 2.跟踪训练2 在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定答案 C解析 由正弦定理知,sin A =a 2R ,sin B =b 2R ,sin C =c2R .∴sin 2A +sin 2B <sin 2C 可化为 a 2+b 2<c 2,a 2+b 2-c 2<0. ∴cos C =a 2+b 2-c 22ab<0.∴角C 为钝角,△ABC 为钝角三角形.题型三 利用正弦、余弦定理进行求值、化简和证明 例3 在△ABC 中,有 (1)a =b cos C +c cos B ; (2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ,这三个关系式也称为射影定理,请给出证明.证明 方法一 (1)由正弦定理,得 b =2R sin B ,c =2R sin C ,∴b cos C +c cos B =2R sin B cos C +2R sin C cos B =2R (sin B cos C +cos B sin C ) =2R sin(B +C ) =2R sin A =a . 即a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A . 方法二 (1)由余弦定理,得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a =a .∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A .反思感悟 证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.跟踪训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2Asin C = . 答案 1解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos A c =4cos A 3=1.求三角形一角的值典例 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6 答案 B解析 ∵cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B ,代入已知等式得2ac ·cos B tan B =3ac , 即sin B =32,则B =π3或2π3. [素养评析] 选择运算方法是数学运算素养的内涵之一.运算从一点出发可以有无限个方向.一个式子也可以有无限个变形,逐个试探肯定不现实.那么如何选择运算方向才能算得出,算得快?要点有3个:①公式要熟,如本例至少应知道cos B =a 2+c 2-b 22ac ,tan B =sin Bcos B .②观察联想,如看到a 2+c 2-b 2应联想到a 2+c 2-b 2=2ac cos B .③权衡选择,如本例也可把所有的边都化为相应角的正弦,但权衡运算繁简,不如整体把a 2+c 2-b 2化为2ac cos B 简单.1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( ) A .60° B .45°或135° C .120° D .30°答案 C解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2+ac , ∴ac =-2ac cos B ,cos B =-12,又0°<B <180°, ∴B =120°.2.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,△ABC 是钝角三角形.3.已知在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos B 等于( ) A.1116 B.79 C.2116 D.2916 答案 A解析 依题意设a =4k ,b =3k ,c =2k (k >0),则cos B =a 2+c 2-b 22ac =16k 2+4k 2-9k 22×4k ×2k =1116.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c cos A +a cos C =2c ,若a =b ,则sin B 等于( ) A.154 B.14 C.34D.32答案 A解析 ∵c cos A +a cos C =2c ,∴由正弦定理可得sin C cos A +sin A cos C =2sin C , ∴sin(A +C )=2sin C , ∴sin B =2sin C ,∴b =2c , 又a =b ,∴a =2c .∴cos B =a 2+c 2-b 22ac =4c 2+c 2-4c 22×2c 2=14,∵B ∈(0,π),∴sin B =1-cos 2B =154.1.熟悉正弦、余弦定理的各种变形,注意观察题目条件的结构特征,根据这些特征尽量使用正弦、余弦定理各种变形整体代换,可以有效减少计算量. 2.对所给条件进行变形,主要有两种方向 (1)化边为角. (2)化角为边.一、选择题1.若三条线段的长分别为5,6,7,则用这三条线段( ) A .能组成直角三角形 B .能组成锐角三角形 C .能组成钝角三角形 D .不能组成三角形答案 B解析 设最大角为θ,则最大边对应的角的余弦值为 cos θ=52+62-722×5×6=15>0,所以能组成锐角三角形.2.已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b 2-2a 2=ac +2c 2,则sin B 等于( ) A.154 B.14 C.32 D.12答案 A解析 由2b 2-2a 2=ac +2c 2,得2(a 2+c 2-b 2)+ac =0. 由余弦定理,得a 2+c 2-b 2=2ac cos B , ∴4ac cos B +ac =0.∵ac ≠0,∴4cos B +1=0,cos B =-14,又B ∈(0,π),∴sin B =1-cos 2B =154. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( )A .1B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).4.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23 答案 A解析 由余弦定理c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C , ∴(a +b )2-c 2=2ab (1+cos C ) =2ab (1+cos 60°)=3ab =4, ∴ab =43.5.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c 2-b 2=ab ,C =π3,则sin Asin B 的值为( )A.12 B .1 C .2 D .3 答案 C解析 由余弦定理得c 2-b 2=a 2-2ab cos C =a 2-ab =ab ,所以a =2b ,所以由正弦定理得sin Asin B =a b=2. 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C 等于( )A.π3B.3π4C.2π3D.5π6 答案 C解析 由正弦定理a sin A =b sin B 和3sin A =5sin B ,得3a =5b ,即b =35a ,又b +c =2a ,∴c =75a ,由余弦定理得cos C =a 2+b 2-c 22ab =-12,∴C =2π3.7.若△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为( )A.922B.924C.928 D .9 2答案 B解析 设另一条边为x ,则x 2=22+32-2×2×3×13=9,∴x =3.设cos θ=13,θ为长度为2,3的两边的夹角,则sin θ=1-cos 2θ=223.∴2R =3sin θ=3223=924.8.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010 B.105 C.31010 D.55答案 C解析 在△ABC 中,由余弦定理,得 AC 2=BA 2+BC 2-2BA ·BC ·cos ∠ABC =(2)2+32-2×2×3×cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC ,得sin ∠BAC =BC ·sin ∠ABCAC =3×sinπ45=3×225=31010.二、填空题9.在△ABC 中,B =60°,a =1,c =2,则csin C = .答案 2解析 ∵由余弦定理得,b 2=a 2+c 2-2ac cos B =3,∴b =3,∴由正弦定理得,c sin C =b sin B =332=2. 10.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B ,则B = .答案 45°解析 由正弦定理,得a 2+c 2-2ac =b 2,由余弦定理,得b 2=a 2+c 2-2ac cos B ,故cos B =22. 又因为B 为三角形的内角,所以B =45°.11.在△ABC 中,a 2-b 2=3bc ,sin C =23sin B ,则A = .答案 30°解析 由sin C =23sin B 及正弦定理,得c =23b ,把它代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32, 又0°<A <180°,所以A =30°.三、解答题12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a 2+c 2-b 2=65ac . 求2sin 2A +C 2+sin 2B 的值. 考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与三角变换的综合解 由已知得a 2+c 2-b 22ac =35, 所以cos B =35, 又因为角B 为△ABC 的内角,所以sin B >0,所以sin B =1-cos 2B =45,所以2sin 2A +C 2+sin 2B =2cos 2B 2+sin 2B =1+cos B +2sin B cos B=1+35+2×45×35=6425. 13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,∴2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12. ∵0°<A <180°,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°,由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B =3,∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,∴30°<B +30°<150°,∴B +30°=90°,即B =60°,∴A =B =C =60°,∴△ABC 为正三角形.14.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .不确定答案 A解析 ∵cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=⎝⎛⎭⎫b -c 22+3c 242bc >0,∴0°<A <90°,即角A 是锐角.15.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos C c. (1)求C 的大小;(2)如果a +b =6,CA →·CB →=4,求c 的值.考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与平面向量的综合解 (1)由正弦定理,sin A a =3cos C c 可化为sin A 2R sin A =3cos C 2R sin C,即tan C = 3.又∵C ∈(0,π),∴C =π3. (2)CA →·CB →=|C A →||CB →|cos C =ab cos C =4, 且cos C =cos π3=12.∴ab =8. 由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab -2ab cos π3=(a +b )2-3ab =62-3×8=12.∴c =2 3.。
九年级数学下册第一章直角三角形的边角关系1.1锐角三角函数第2课时正弦与余弦教学
sinAA斜 的边 对边=ac tanAaacsinA
b c b cosA
cosBB斜 的边 邻边=ac
sinA=cosB
tan A sin A cos A
第十九页,共三十一页。
针对(zhēnduì) 训练
1.在Rt△ABC中,∠C=90°,则下列(xiàliè)式子一定成立
的是( ) D
A.sinA=sinB
5
∴BH=3,OH=4,
B
H
A
∴点B的坐标为(4,3).
第二十八页,共三十一页。
8.如图,在平面直角坐标(zhí jiǎo zuò biāo)系内,O为原点,点A的 坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA= 3
5
(2)求cos∠BAO的值.
(2)∵OA=10,OH=4, ∴AH=6. ∵在Rt△AHB中,BH=3,
B'
A
C
A'
C'
这就是说,在直角三角形中,当锐角A的度数一定时,
不管三角形的大小(dàxiǎo)如何,∠A的邻边与斜边的比也是一
个固定值.
第十一页,共三十一页。
概念学习
∠A的邻边与斜边的比叫做(jiàozuò)∠A的余弦(cosine),
记作cosA,即
cosAA斜 的边 邻边bc
斜边 B
c
对边
a
第二页,共三十一页。
导入新课
复习(fùxí)引 入
1.分别(fēnbié)求出图中∠A,∠B的正切值.
第三页,共三十一页。
2.如图,在Rt△ABC中,∠C=90°,当锐角(ruìjiǎo)A确定 时,∠A的对边与邻边的比就随之确定.想一想,此时,其
九年级数学下第一章---直角三角形的边角关系复习与训练
九年级数学下第一章---直角三角形的边角关系复习与训练一 、锐角三角函数的定义1.在Rt △ABC 中,∠C=900,直角三角形边角之间的关系: (1)三边关系:_________________(即_______定理)(2)三角关系:_____________________(即_______________定理)____________________(性质:直角三角形两锐角______)(3)边角关系(即tanA ,sinA,cosA 与边的关系)锐角∠A 的正弦: ∠A 的( )边 ( ) ( )sinA= = =( )边 ( ) ( )锐角∠A 的余弦: ∠A 的( )边 ( ) ( )cosA= = =( )边 ( ) ( )锐角∠A 的正切: ∠A 的( )边 ( ) ( )tanA= = =∠A 的( )边 ( ) ( )注:① 锐角A 的______、______、______都是∠A 的三角函数....。
② 三角函数值是一个比值,没有.............单位....2.练习:1. 在Rt △ABC 中,∠C=900,AC=3,BC=4,求tanA 、sinA 和cosA 的值。
2. 在Rt △ABC 中,∠C=900, cosA=1312,AC=10, 求AB 、BC 的值。
3. 在Rt △ABC 中,∠C=900, cosA=0.6,BC=8, 求AB 、BC 的值。
4. 在Rt △ABC 中,∠C=900,sinA=43,求tanA 和cosA 的值。
5.如图,△ABC 是等腰三角形,AB=AC=5,BC=8,求tanB 、sinB 和cosB 。
AB C6. 在Rt △ABC 中,∠BCA=900,CD 是AB 边上的中线,BC=6,CD=5, 求sin ∠ACD,cos ∠ACD, tan ∠ACD ;BDA C7:坡度(坡比)与坡角:⑴坡面与水平面的夹角叫做________,⑵坡面的____________与____________的比称为坡度(或______)(用字母....i .表示)... ⑶坡度与坡角有什么关系?⑷正切在日常生活中的应用很广泛,例如建筑、工程技术等.正切经常用来描述山坡的_______、堤坝的_______.例:如图,有一山坡在水平方向上每前进100m 就升高60m,那么山坡的坡度是:( ) ( ) i=_______α= =( ) ( ) 60米二、特殊角的锐角三角函数值 100米1.⑴在Rt △ABC 中,∠C=900, 若∠A=300,设BC=a,则AB=______ AC=________ ⑵在Rt △DEF 中,∠F=900, 若∠D=450,设DF=a,则EF=______ DE=________ B EA C D F 2.利用上图,可求出下列特殊角的锐角三角函数值.3.锐角三角函数的大小比较(1) 正弦、正切的锐角三角函数值随角度的增大而_____ ,随角度的减小而____ _. (2)余弦的锐角三角函数值随角度的增大而_____ ,随角度的减小而____ _。
北师大版九年级数学下全册详细教案(含答案)
第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。
九年级数学下册第一章直角三角形的边角关系1从梯子的倾斜程度谈起 习题课件
3
4
3
2
【解析】选C.如图,作AM⊥l4于点M,作CN⊥l4于点N, 则AM=h,CN=2h,∠ABM+∠BAM=90°, ∵四边形ABCD是矩形,∴∠ABC=90°, ∴∠ABM+∠α=90°,∴∠BAM=∠α, ∴△ABM∽△BCN, ∴BM=AM·tan α=htan α, ∴
BM CN . AB BC
题组一:求锐角的正切值 1.如图,在8×4的矩形网格中,每个小正方形的边长都是1, 若△ABC的三个顶点在图中相应的格点上,则tan ∠ACB的值 为( )
A.1B.1C. 2 D.3
3
2
2
【解析】选A.如图,在网格中构造含有∠ACB的Rt△ACD, 在该三角形中
AD 2,DC 6,tan ACB AD 2 1. DC 6 3
【自主解答】过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为 点H,F. ∵AB=AC,AH⊥BC,
在Rt△ABH中,
∵AH∥DF,且BD是AC边上的中线,
BH 1 BC 1 10 5.
2
2
∴在Rt△DBF中A,H AB2-BH2 132-52 12.
DF 1 AH 6,CF FH, 2
htan 4 2h,tan 4 .
6
3
4.在△ABC中,∠C=90°,AB=5,BC=4,则tan A=______.
【解析】由勾股定理,得
AC AB2 BC2 52 42 3,
答 t案an:A
BC AC
4 3
.
4
3
5.如图,在△ABC中,AC=4,BC=3,CD⊥AB于点D,BD=2, 求tan A,tan B的值.
如果梯子与地面的夹角为∠A,那么sin A的值_____,梯子