初中二次根式练习题[1]
八年级下册二次根式计算题
八年级下册二次根式计算题一、二次根式计算题20题及解析。
1. 计算:√(12) - √(3)- 解析:- 先将√(12)化简,√(12)=√(4×3)=2√(3)。
- 则原式= 2√(3)-√(3)=√(3)。
2. 计算:√(27)+√(48)- 解析:- 化简√(27)=√(9×3)=3√(3),√(48)=√(16×3)=4√(3)。
- 原式= 3√(3)+4√(3)=7√(3)。
3. 计算:√(18)-√(8)- 解析:- √(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 原式= 3√(2)-2√(2)=√(2)。
4. 计算:√(50)-√(32)- 解析:- √(50)=√(25×2)=5√(2),√(32)=√(16×2)=4√(2)。
- 原式= 5√(2)-4√(2)=√(2)。
5. 计算:√(frac{1){2}}+√(frac{1){8}}- √(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2),√(frac{1){8}}=(√(1))/(√(8))=(√(2))/(4)。
- 原式=(√(2))/(2)+(√(2))/(4)=(2√(2)+ √(2))/(4)=(3√(2))/(4)。
6. 计算:√(12)+√(frac{1){3}}- 解析:- √(12)=2√(3),√(frac{1){3}}=(√(1))/(√(3))=(√(3))/(3)。
- 原式= 2√(3)+(√(3))/(3)=(6√(3)+√(3))/(3)=(7√(3))/(3)。
7. 计算:(√(3)+1)(√(3)-1)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1。
- 原式=(√(3))^2-1^2=3 - 1=2。
8. 计算:(√(5)+√(2))^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=√(5),b=√(2)。
初中二次根式试题及答案
初中二次根式试题及答案一、选择题1. 下列哪个选项中的表达式是二次根式?A. \( \sqrt{2} \)B. \( \sqrt[3]{2} \)C. \( \sqrt[4]{2} \)D. \( \sqrt{0} \)答案:A2. 计算 \( \sqrt{49} \) 的值是多少?A. 7B. -7C. 0D. 49答案:A3. 若 \( \sqrt{a} = 3 \),那么 \( a \) 的值是多少?A. 9B. -9C. 3D. 1答案:A4. 将 \( \sqrt{8} \) 化简为最简二次根式,结果是什么?A. \( 2\sqrt{2} \)B. \( \sqrt{2} \)C. \( 4\sqrt{2} \)D. \( \sqrt{4} \)答案:A5. 计算 \( \sqrt{12} \) 的值是多少?A. \( 2\sqrt{3} \)B. \( 3\sqrt{2} \)C. \( 4\sqrt{3} \)D. \( 6\sqrt{2} \)答案:A二、填空题6. 将 \( \sqrt{18} \) 化简为最简二次根式,结果是 \( \sqrt{9 \times 2} = 3\sqrt{2} \)。
7. 若 \( \sqrt{b} = 5 \),则 \( b \) 的值是 \( 25 \)。
8. 计算 \( \sqrt{25} \) 的值,结果是 \( 5 \)。
9. 将 \( \sqrt{27} \) 化简为最简二次根式,结果是 \( 3\sqrt{3} \)。
10. 若 \( \sqrt{c} = 4 \),则 \( c \) 的值是 \( 16 \)。
三、解答题11. 计算 \( \sqrt{32} \) 的值,并化简为最简二次根式。
解:\( \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2} \)。
12. 若 \( \sqrt{x} = 2 \),求 \( x \) 的值。
初中数学《二次根式》专项练习题(附答案)
初中数学《二次根式》专项练习题第一部分:单选题1.如果 √12 与最简二次根式 √7−2a 是同类二次根式,那么a 的值是( )A. ﹣2B. ﹣1C. 1D. 2 2.下列二次根式中,是最简二次根式的是( )A. √16B. √0.6C. √6D. √60 3.下列运算正确是( )A. 3a 3⋅2a 3=6a 3B. (a +b)2=a 2+b 2C. (−2)−2=4D. √27−√12=√3 4.二次根式 √x −3 中,x 的取值范围是( )A. x ≥3B. x >3C. x ≤3D. x <3 5.下列各式计算正确的是( )A. 3a 3+2a 2=5a 6B. 2√a +√a =3√aC. a 4•a 2=a 8D. (ab 2)3=ab 6 6.二次根式√12、√12、√30、√x +2、√40x 2、√x 2+y 2中,最简二次根式有( )个 A. 1 B. 2 C. 3 D. 4 7.√3 的倒数是( )A. −√3B. −√33C. ﹣3D. √33 8.下列各式中为最简二次根式的是( )A. √x 2+1B. x y xC. √28D. √112 9.下列哪一个选项中的等式成立( )A. √22 =2B. √33 =3C. √44 =4D. √55 =5 10.下列式子中,属于最简二次根式的是( ) A. √4 B. √5 C. √13 D. √2 11.下列计算正确的是( )A. √2+√3=√5B. 4√3−3√3=1C. √14×√7=7√2D. √24√3=812.与 −√5 是同类二次根式的是( )A. √10B. √15C. √20D. √25 13.下列计算正确的是( )A. √2+√3=√5B. √2⋅√3=√6C. √8=4D. √(−3)2=−3 14.下列计算错误的是( )A. √2 + √3 = √5B. √2 × √3 = √6C. √18 ÷ √2 =3D. (2 √2 )2=8 15.若二次根式 √3x −2 有意义,则x 的取值范围是( )A. x≥ 23B. x≤ 23C. x≥ 32D. x≤ 32 第二部分:填空题16.若式子 √x −2 有意义,则x 的取值范围是________.17.把 √500 化为最简二次根式________.18.要使根式 √x +1 有意义,则字母x 的取值范围是________. 19.计算: 3√5+4√5= ________.20.若二次根式 √x −2019 在实数范围内有意义,则x 的取值范围是________. 21.要使 √4x −5 有意义,则x 的取值范围是________.22.把√45化成最简二次根式为________.23.将二次根式√50化为最简二次根式________.24.计算:√92×√2=________.25.在√8, √12, √27, √18中与√3是同类二次根式的是________.26.最简二次根式√a2+3与√5a−3是同类二次根式,则a=________27.若a<1,化简√(a−1)2﹣1=________ ;28.计算:√3× √5=________.29.若式子√x−5有意义,则x的取值范围为________.30.使式子√3−2x3−4有意义的x取值范围是________第三部分:计算题31.计算:12√12﹣(3 √13+ √2).32.√6× √2+√24÷ √3-√48.33.计算:2cos30∘+√12−(π+2)0+|−3|.34.综合题。
二次根式练习题
二次根式练习题二次根式是数学中一个重要的概念,也是我们在代数学习中经常遇到的一个内容。
它在数学中有着广泛的应用,不仅仅是在解方程、求根等方面,还可以用于几何中的面积、体积计算等。
在这篇文章中,我们将通过一些练习题来巩固和提升我们对二次根式的理解和运用能力。
练习题一:计算下列二次根式的值1. √162. √253. √364. √495. √64解答:1. √16 = 42. √25 = 53. √36 = 64. √49 = 75. √64 = 8这些题目是比较简单的,我们可以直接计算出结果。
但是在实际问题中,我们可能会遇到更复杂的二次根式。
下面我们来看一些稍微复杂一些的练习题。
练习题二:化简下列二次根式1. √122. √183. √204. √275. √32解答:1. √12 = √(4 × 3) = 2√32. √18 = √(9 × 2) = 3√23. √20 = √(4 × 5) = 2√54. √27 = √(9 × 3) = 3√35. √32 = √(16 × 2) = 4√2这些题目需要我们将二次根式化简为最简形式。
我们可以将根号内的数分解为两个因数的乘积,然后将其中的平方数提取出来。
这样可以使得二次根式的形式更简洁,也更容易计算。
练习题三:计算下列二次根式的值1. √(5 + 2√3)2. √(3 + 2√2)3. √(8 + 4√3)4. √(2 + √5)5. √(7 + √10)解答:1. √(5 + 2√3) = √3 + 12. √(3 + 2√2) = 1 + √23. √(8 + 4√3) = 2 + √34. √(2 + √5) ≈ 1.618(约等于黄金分割比例)5. √(7 + √10) ≈ 3.146这些题目需要我们运用二次根式的性质来计算。
我们可以将根号内的式子进行分解,然后运用二次根式的加减乘除法则进行计算。
二次根式20道典型题练习
二次根式20道典型题练习(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式典型题练习1、 在实数范围内分解因式:429__________,2__________x x -=-+=。
2、 2x =,则x 的取值范围是 。
3、 当15x ≤5_____________x -=。
4、 把的根号外的因式移到根号内等于 。
5、 若A =( ) A. 24a + B. 22a + C. ()222a + D. ()224a +6、 若1a ≤ )A. (1a -B. (1a -C. (1a -D. (1a -7、=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥8、 的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a -9、 去掉下列各根式内的分母:())10x ())21x10、 已知2310x x -+=11、 已知,a b 为实数,且(10b -=,求20052006a b -的值。
12、已知0xy ,化简二次根式 )13、对于所有实数,a b ,下列等式总能成立的是( )A.2a b =+a b =+22a b =+a b =+14、 -和- )A. 32--B. 32--C. -=-不能确定15、 )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为316、 化简:())10,0a b ≥≥ ()2()3a17、 把根号外的因式移到根号内:()1.-()(2.1x -18、计算及化简:⑴. 22- ⑵⑶⑷19、 已知:x y ==32432232x xy x y x y x y -++的值。
20、 已知:11a a +=+221a a+的值。
中考数学总复习《二次根式》练习题附有答案
中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
二次根式计算题 100 道
二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。
(完整版)二次根式专题练习(含答案)
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.= C.=x D.=x 4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为()A.0 B.2 C.﹣2D.26.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x7.下列式子运算正确的是()A.B.C. D.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= ;(2)a1+a2+a3+…+a n= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.= C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣bD.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= =﹣;;(2)a1+a2+a3+…+a n= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:a n==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:a n==﹣;(2)a1+a2+a3+…+a n=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
二次根式测试题及答案
二次根式混合运算21、4、(1一血)2+4,1、•五-可2、龙XTJ53、〔迈我.刁)(.2-2.3)5、.2『5[6(伤+需)-(伍弋+7^)7、〔迈十.了一1)(.2-,空+1)-8、〔2,忑-,可)三&9、10、+(丙+④_彳(.;2-尬;「、(莎甘)十所12、昉+.折_g ;「3、伍_V^i ;、'V125'14、(7+7)2-(7-⑦215、器打4i x 匸鬲一31000;16、丨.了-刃-|1-迈丨-丨迈十飞-5|.17、.爲•左-.莎+,-|-18、(3厅一卫)(Is+2弓)20、可■(一而)三E ;苗-诉)x(価+術)辽丐-3迈)2⑸;訥帯2亠迟1 3莎-9g+3•壬i 乔(3,gx 卫)血让电+(虽一1)HI(33_一2b )(且+b )・(V3-2-(应-岛)(五+屈C-gVzS X V14律礙唸)¥(3^2-1)(L+3伍)-(3近-1)2;22、 23、 24、 25、 26、27、2&29、 30、31、32、33、34、35、 36、 37、 38、 39、 40、 41、 2;12+3-..;_45;Ve 葩圧+1)殛-血壬骨Cflx 而CV3-V2)(_■.帀)2-(-T )V27+2VsV2+1(血+V5)2-(血+価)(伍■近):;(°飞一4g+g.§)十殳E(V5"V3+V2)(V5+V3~V2)(-2)=屆-4运(4-亦)-片-(2-2)2*顶-2巫+(-号-1)243、 44、45、46、47、 4&49、50、 51、 52、53、 54、55、 56、57、58、 59、 60、61、62、63、3.莎-一虧-g+Cs-2)Cs+2)10VE X 弋_V16X V18-9.45■=■3.15x_|「眉_2〔眈(V3+V2+V5)(V3~V2~V5)V1S+2^32CV2_2^3)(V2+2V3)V18-(V12+2V2)73(V27+SV3)_3±_X_JLV3~V2V&(屈+顶)-(V&V125)(V5+V6)(V5~V6)(二+1)2_2..玩(.1+1)(1_2)_C2_1)2+C2+1)2_\5+Q2005_^2004)65、66、67、68、 69、 70、 71、 72、 73、 74、 75、 76、 77、 7& 79、 80、 81、82、 83、 84、85、86、87、Ex 适+左+亏_89、血~^2怖-屈90、•可-汙1皿91、.五X(帀+垃1_药).92、空193、93工一F十2&崇38K;94、(升43(「_引2+(2+弓(2-引;95、-几$+3弓〔3-衣弓)一!^冷;97、2a[98、丨.亏一角丨+.可一.伍;101、(刁+.可2008(一了-迈)2009. 102、3亍一218+5馬;103、-跖弓4-|「J;104、容105、(3•.左+書)1亏106、(巧-1)(,孕1)-(,住-24)三飞107、;108、—宀(〒-可(3+可;109、一晋+一五7_.弓?1_1 Vs (.电-一〒)(一E+一〒)+2 〔茁可0+1_3|_2_1⑷(飞_2「可)x .亏_6.1■1(2.卫帀);CV5+V2)(亦_(73~V2)2 〔血一1)2+^-Q2010+2010)° VoTsWii~(書_雇) ■-y^2712■^/48) +6o ; 3 M 4Vs110、111、114、 115、 116、117、118、119、120、121、122、 123、124、125、 Word ⑵(7+4了)(7_4七) +(2+二) 飞3V 2参考合案1、原式=2二-3予-亏;2、原式=.^jx£j=丽=30;3、原式=2-12=-10.4、原式=1-2迈+2+2迈4〔迈-1)-迈=2.5、原式=2,5才(u+2,5“5n)=2,5勺-6u-2,5a=-6a.7、原式=(二)2-(.亏-1)2=2-(3-231)=2亏-28、原式U严W飞二_*二二一乎9、.原式=(布—2肩+")x疼(羽+3^)x逅=1+^[^3310、原式=—+』2P44丁‘彳乙11、原式=(12、原式=2j+33-=;13、原式==-2;33祈514、原式=(7+〒+「了)(7+〒-升了)=14x2斤=23.了15、原式=号心冷X12-10=3+6-10=-1;16、原式=2-計1一戈+2+3一5=-2.17、原式=_恳•.花-2.書+=3書—2爲+.=55518、原式=(3.^-2亏)(3.亍2二)=18-12=6;19、原式=長(2迈-迈+二!)=亏(「◎+£)=E+1__3320、原式=-3g・52宁.&=-15一6宁一&=-15;21、原式=3.予;-2〔+T尾22、原式=3a+-2b23、原式=3-2运+1-(2-3)=5-2二.24、原式专律14一為屈X14=7厂”乙原式=(2号+号)X 1 V -2=3-2=1 原式=,+予X 63ir -m .3ir=2m 3ir +3m .3ir -m .3ir=°;原式=咼犬壬F¥+1Y -1+¥+1『原式=12•方-〉弓+6•込=(12-3-+6).手15.亏;X2迁)=6.㊁+6=迈+3-2孑3很+3-2孑3+_2-原式=.6X.&+&x_&X 1=6+1+6=7+&•原式普X3工+6X !_^-2x ・J=2Q+3.Q -24; 原式=2飞- 言夂弓+3-2=2-&-23+1 =(63-+E-2可+2長-3=3-3+辽--3=-2+二- 3323323原式=,©+(迈+刀(迈-1)+1-迈=3+殳-迈-2+1-公4 原式=2.号+3飞-7号=-2疋;原式=2」牛21xg=Z 討沪14-原式=10-7+=3+!;22 原式=1X (22-刁+仝)=山咒2+lx =£+1;_33 原式=.1-1;__原式=2+3+2,.'3X2-(2-3)=5+2&+1=6+2&原式=2+1-(•厉-込)=3-1=2^ 原式=17-(19-)=-2+£迈; 原式=2.兰-3兰-2迁-3_K - 原式=4.3+12込=1@帀; 原式=¥+2..〒-10‘万=—罟〒; 原式=4:-+迄卫 244'三 原式=6-5=1; 原式=12+18-12乞=賀-1殳飞;25、26、27、2&29、30、31、 32、33、34、35、36、37、 38、 39、 40、41、42、43、44、45、 46、47、 4& 49、 50、原式=-4=(6—3—丄)疋+1=+1 55原式=[.*-(.亏-一劝][上+(二-二)】=5—(.£-一可2=5-(5-2电)=2g. 原式=4x2§-16,+12-16-8了=-4-16兀;原式=2-(4-42+2)=2p-6+42=6至-6.V 23 原式=2x2号—2x3号+5—2号+1=上—6号—2号+6=6—7g. ■ila原式=0+2^-3=^-. 原式=一技斤; 原式=-+6=-■&+"6=0- V 57 *X 打和.疋一卫-互x 卫=2-了+方-2去左 (18-莎三2p=g 亟W-号莎巨=壬_斗1原式=9.乜-14.矛4了=-了;原式=:曲*-4只3.去.㊁-12二=-11_瓦原式=2.3x =12.6;原式=X3gx.=-些;V57V105原式=12乜-2亍6了=16‘方;原式=(4乞-2左+6•迈)x.=2亍2241原式=27*+(3x 亏X¥)x.—&迈=3亏x.-&W=-8㊁;93原式=Cl )2-('E+;E )2=3-(2+2[75+5)=-4-2I 'T5 原式=3立+8立=11迈; 原式=2-12=-10; 原式=^23^23-61石=0; 51、52、 53、54、55、56、57、58、 59、 60、 61、62、63、64、65、66、 67、 68、 69、 70、 71、 72、 73、74、75、76、 原式=(4飞-2.空+6込)+2迁=2.审2原式=6.号-3飞-£<+577、原式=十=一=1.4从22278、原式之页":环-爭而£-寺戶+匸送戶+乎79、原式=3飞-锂了+2至)=3迈-殳,了-殳迈=迈-殳,了;80、原式=,3(3,3+2,3)=9+6=1581、原式=(一了+込)2-^=3+2+2乞-乙=5+E82、原式=4;5+315—2,2+4'.■2=F.「5+Z/2;83、原式=北电+孔迈-10.15;84、原式=5-6=-1;85、原式=4+2二_呂飞=4_&飞86、(1+_劝(1-3-(.㊁-1)2+(迈+1)2=1-C2)2-(2-2_卫+1)+2+2空+1=1-2—2+2•.龙-1+2+2・「戈+1=4・「2-1.87、原式=亏+4x.—亏+1=亏+门-,亏+1=1+2488、原式=(40了-诣了+8^)十飞=30上十主=15卫;89、原式=2迈-迈+2=2+p.90、原式=3飞-锂+.引+1=3弓+1=2了-1;91、原式=2弓况(5弓+3-4弓)=2.茅X2.亏=12.92、原式=2+2•迈+4+2:=姑93、原式=9I'3X-14:+24l3H=;94、原式=(7+4二)(7-4手)+4-3=49-48+1=2;95、原式=-4x殳匕+9.空-12-O-D=-8七+9匕-12-㊁+1=-11;96、原式=.-:+'•=2x工-工+=空j X可*4zz97、原式=2a(b爲-2x3b一:爲+)=2ob書-+ab£=512222v0398、原式=电—+3-5戈=2二-4上;99、原式=12-4二+1=13-4手;100、原式=22+—护2SS101、原式=()=迓一乜102、原式=3x2迈-2x3-「^5x4力=6迈-6「020迈=20•力;103、原式=7-..&-3':Q|+2=6|;e原式¥・(-舟)乂=-暑扣=春%忑原式=3飞+.电+右上=3込+孑普-亏; 原式=3-1-=2-3+ 原式仝2+1—;x2亏=2+1-2=1; V55_ 原式=3-2二+1-1=3-2j 原式=+4•二-3工=丄 22 五二亏—空二飞_1^3-1=0;V3V3V3' (.号一刁(■角+万)+2=(可'-行)2+2=5-7+2=0;(飞_2.可)x .亏-6g=玉-4玉-号三=-9.◎-号亍-普原式=4-5=-1; 原式Px 巴=1;ba原式=5-2-5+2乞=2飞一戈; 原式=- 原式=2,了(5〒+了-4引=2jj-2.1=12;原式=49-48+2+,「&=3+&.原式==弓一方-殳了+3卫=-飞 •L105、106、107、108、109、110、111、 112、 113、 114、115、116、117、118、119、120、 121、 122、 123、 124、125、-3|-2-1=1+3-2=32; 22 原式=4-2了+一了-1=3-込原式==3-2=1. V5 原式=_2.&+1+6J 3=4飞+1。
二次根式练习10套(附答案)讲解学习
精品文档二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题 13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )精品文档A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式练习题及答案
二次根式练习题及答案二次根式练题及答案(一)一、选择题(每小题2分,共24分)1.若在实数范围内有意义,则 $\sqrt{x-3}$ 的取值范围是()A。
$x\geq 3$ B。
$x>3$ C。
$x\leq 3$ D。
$x<3$2.在下列二次根式中。
$\sqrt{x-2}$ 的取值范围是 $x\geq2$ 的是() A。
$\sqrt{x-2}$ B。
$\sqrt{2-x}$ C。
$\sqrt{2+x}$ D。
$\sqrt{4-x^2}$3.如果 $x\geq 1$,那么 $\sqrt{x^2-2x+1}$ 的值是()A。
$1$ D。
无法确定4.下列二次根式,不能与$\sqrt{2}+\sqrt{3}$ 合并的是()A。
$\sqrt{2}+\sqrt{3}$ B。
$\sqrt{2}-\sqrt{3}$ C。
$\sqrt{3}-\sqrt{2}$ D。
$\sqrt{3}+\sqrt{2}$5.如果最简二次根式 $\sqrt{a}+\sqrt{b}$ 与 $\sqrt{a}-\sqrt{b}$ 能够合并,那么 $a$ 的值为()A。
2 B。
3 C。
4 D。
56.已知 $\sqrt{a}+\sqrt{b}=\sqrt{3}+\sqrt{2}$,则 $\sqrt{a}-\sqrt{b}$ 的值为()A。
$\sqrt{3}-\sqrt{2}$ B。
$\sqrt{2}-\sqrt{3}$ C。
$\sqrt{3}+\sqrt{2}$ D。
$\sqrt{2}+\sqrt{3}$7.下列各式计算正确的是()A。
$\sqrt{8}+\sqrt{12}=4\sqrt{2}+2\sqrt{3}$ B。
$\sqrt{5}+\sqrt{20}=3\sqrt{5}$ C。
$\sqrt{3}+\sqrt{2}=\sqrt{5}$ D。
$\sqrt{6}+\sqrt{3}=\sqrt{18}$8.等式 $\sqrt{x+3}-\sqrt{x-1}=2$ 成立的条件是()A。
中考数学复习《二次根式》专项练习题-带含有答案
中考数学复习《二次根式》专项练习题-带含有答案一、选择题1.下列二次根式属于最简二次根式的是()A.√12B.√a2b C.√0.5D.√x2+1 2.若二次根式√x−3有意义,则x的取值范围是()A.x≥3 B.x≤3 C.x>3 D.x<3 3.下列计算正确的是()A.√12÷3=2B.√3+√3=3C.√13−√3=√10D.(√3+1)(√3−1)=24.已知√(2a−1)2=1−2a,那么a的取值范围是()A.a>12B.a<12C.a≥12D.a≤125.下列各式计算结果正确的是()A.6√3−2√3=4B.5√3+5√2=10√5C.4√2÷2√2=2√2D.4√3×2√2=8√66.已知x=√2+1,则代数式x+1x−1的值为()A.√2+1B.√2+2C.3D.√2−17.设x,y为实数,且y=4+√5−x+√x−5,则|y﹣x|的值是()A.1 B.9 C.4 D.58.如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积为()A.36 B.27√3C.72 D.48√3二、填空题9.分母有理化:√5=.10.化简二次根式:√18x3=.11.式子√3x−2有意义,则x的取值范围是.12.计算(√2−√6)×√18−3√13=.13.如果a=√5−2,则1a +√1a2+a2−2=.14.计算:(1)(√6−√2)0+(−1)2023+12×√32(2)(√18−√92)×(−√8)+√643 (3)(√5+1)2√15−√12√315.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知a =√3−√2,b =√3+√2.求:(1)a 2b −ab 2 的值;(2)a 2+ab +b 2 的值.17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元? 18.阅读材料:像(√3+1)(√3−1)=2,√a ×√a =a(a ≥0)…这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号. 例如:2√2=√22√2×√2=√24;√3+1√3−1=√3+1)(√3−1)(√3+1)=2+√3.解答下列问题:(1)√6的有理化因式是 ,√3+2的有理化因式是 .(2)观察下面的变形规律,请你猜想:√n+1+√n = .√2+1=√2−1 √3+√2=√3−√2 √4+√3=√4−√3…(3)利用上面的方法,请化简:1+√2+√2+√3√3+√4⋯⋯+√2022+√2023.1.D2.A3.D4.D5.D6.A7.A8.C9.2√5510.3x √2x11.x ≥2312.6−7√313.√5+614.(1)解:原式=1+(−1)+12×4√2=0+2√2=2√2. (√6−√2)0=1 (−1)2023=−1 12√32=2√2(2)解:原式=√18×(−√8)+√92×√8+4=−√144+√36+4=−12+6+4=−2. (3)解:原式=(√5)2+2√5+1√15√3√12√3=5+2√5+1+√5−2=4+3√5. 15.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3=x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2. 16.(1)解: ∵a =√3−√2 b =√3+√2∴ab =(√3−√2)(√3+√2)=3−2=1 a −b =(√3−√2)−(√3+√2)=−2√2 则 a 2b −ab 2=ab(a−b)=1×(−2√2)=−2√2;(2)解:a2+ab+b2=a2−2ab+b2+3ab=(a−b)2+3ab=(−2√2)2+3×1=8+3=11.17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.(1)√6;√3−2或2−√3(2)√n+1−√n(3)解:利用(2)中的规律,可得:1+√2+√2+√3√3+√4⋯⋯+√2022+√2023=√2−1+√3−√2+√4−√3+⋯+√2023−√2022 =√2023−1。
二次根式练习题50道(含答案)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
(完整版)二次根式混合运算125题(含答案)
二次根式混合运算125题(含答案)1、2、3、4、5、6、7、.8、9、.11、.12、;13、;14、.15、;16、.17、.19、20、;21、22、.23、24、25、26、;.27、28、;;29、;30、31、;(5);32、33、;34、;35、36、3﹣9+337、÷(3×)38、39、40、;.41、43、44、45、;46、.47、(﹣)2﹣;48、;49、;51、;52、.53、3﹣﹣+(﹣2)(+2)54、55、56、57、59、2÷﹣(2﹣)260、﹣2+(﹣1)261、(+2)﹣.62、63、64、65、.66、69、70、3﹣(﹣)71、72、﹣273、74、75、76、78、×+÷﹣79、80、81、﹣.82、83、84、85、(+1)2﹣286、(+1)(1﹣)﹣(﹣1)2+(+1)287、88、89、90、;91、.92、;93、;;94、95、;96、;97、98、|﹣|+﹣;99、;;100、101、(+)2008(﹣)2009.102、;103、;104、.105、(3+)÷;106、107、;108、;109、.110、﹣1111、(﹣)(+)+2+|﹣3|﹣2﹣1(4)(﹣2)×﹣6 114、115、(2﹣);116、;117、118、.119、.120、121、122、+6a;﹣×.123、124、(2)(7+4)(7﹣4)+(2+)125、参考答案1、原式=2﹣3=﹣;2、原式=×==30;3、原式=2﹣12=﹣10.4、原式==2.5、原式===﹣6a.6、原式=;7、原式=()2﹣(﹣1)2=2﹣(3﹣2+1)=8、原式=.9、.原式=(3﹣2+3)×=(+3)×=1+10、原式=﹣+=;11、原式=(4+)÷3=12、原式=2+3﹣=;13、原式==;14、原式=(7+)(7+)=14×2=15、原式==3+6﹣10=﹣1;16、原式=2﹣=﹣2.17、原式=﹣2+=3﹣2+=18、原式=(3﹣2)(3+2)=18﹣12=6;19、原式=(2﹣+)=(+)=+120、原式=﹣3•5÷=﹣15÷=﹣15;21、原式=3+﹣2+﹣3=;22、原式=3a+﹣2b23、原式=3﹣2+1﹣(2﹣3)=5﹣2.24、原式==25、原式=2+1﹣(﹣)=3﹣1=2.26、原式=17﹣(19﹣)=﹣2+;27、原式=2﹣3﹣2=﹣3.28、原式=4+12=;29、原式=+2﹣10=;30、原式=4﹣+=;31、原式=6﹣5=1;32、原式=12+18﹣12=;33、原式=(2+)×﹣2=3﹣2=1;34、原式=+×6﹣m=2m+3m﹣m=0;35、原式=++1=﹣1++1=36、原式=12=(12﹣3﹣+6)=;37、原式=6÷(×)=6÷6=38、原式=+3﹣2=3+3﹣2=3+.39、原式=++×1=6+1+=7+.40、原式=×3+6×﹣2x•=2+3﹣2=3;41、原式=2﹣+3﹣2=2﹣2+142、原式=(6﹣+﹣2)÷2﹣3=3﹣+﹣﹣3=﹣+﹣;43、原式===444、=(4÷2)=45、原式=2+3﹣7=﹣2;46、原式===14.47、原式=10﹣7+=3+;48、原式=×(2﹣+)=+×=+1;49、原式=﹣1;50、原式=2+3+2﹣(2﹣3)=5+2+1=6+251、原式=4+﹣4=;52、原式=(4﹣2+6)÷=2+253、原式=6﹣3﹣+5﹣4=(6﹣3﹣)+1=+154、原式==;55、原式==.56、原式=[﹣(﹣)][+(﹣)]=5﹣(﹣)2=5﹣(5﹣2)=2.57、原式=4×2﹣16+12﹣16﹣8=﹣4﹣16;58、原式=+﹣+3=59、原式=2﹣(4﹣4+2)=2﹣6+4=6﹣6.60、原式=×2﹣2×3+5﹣2+1=﹣6﹣2+6=6﹣7.61、原式=a+2=2.62、原式=;63、原式=﹣+=﹣+=0.64、=2+﹣2=.65、=﹣=66、原式=9﹣14+4=﹣;67、原式=﹣43=﹣12=﹣11.68、原式=2×=12;69、原式=×3×=﹣;70、原式=12﹣2+6=16;71、原式=(4﹣2+6)×=2+272、原式=27÷(3×)×﹣8=3×﹣8=﹣8;73、原式=()2﹣()2=3﹣(2+2+5)=﹣4﹣274、原式=3+8=11;75、原式=2﹣12=﹣10;76、原式=5+﹣6=0;77、原式=÷=÷=1.78、原式=﹣==4+=4+.79、原式===;80、原式==9+6=1581、原式=(+)2﹣=3+2+2﹣=5+82、原式==;83、原式=;84、原式=5﹣6=﹣1;85、原式=4+=86、(1+)(1﹣)﹣(﹣1)2+(+1)2=1﹣()2﹣(2﹣2+1)+2+2+1=1﹣2﹣2+2﹣1+2+2+1=4﹣1.87、原式=+4×﹣+1=++1=1+.88、原式=(40)=30=15;89、原式=2+2=2+.90、原式===;91、原式===12.92、原式=2+2+4+2=;93、原式=9﹣14+24=;94、原式=(7+4)(7﹣4)+4﹣3=49﹣48+1=2;95、原式=﹣4×+9﹣12﹣()=﹣8+9﹣12﹣+1=﹣11;96、原式=﹣+=2x+=;97、原式=2a(b﹣×+)=2ab﹣+ab=98、原式=﹣+3﹣5=2﹣4;99、原式=12﹣4+1=13﹣4;100、原式=2+﹣=;101、原式=()=102、原式=3×2﹣2×3+5×4=6﹣6+20=20;103、原式=7﹣3+2=6;104、原式=•(﹣)×=﹣=﹣105、原式=3÷+÷=3+=;106、原式=3﹣1﹣=2﹣107、原式=+1﹣×2=2+1﹣2=1;108、原式=3﹣2+1﹣1=3﹣2;109、原式=+4﹣3=110、﹣1=﹣1=﹣1=0;111、()()+2=﹣+2=5﹣7+2=0;112、+|﹣3|﹣2﹣1=1+3﹣=3;113、(﹣2)×﹣6=﹣4﹣=﹣9﹣=﹣114、原式=4﹣5=﹣1;115、原式=×=1;116、原式=5﹣2﹣5+2=;117、原式=4﹣2+﹣1=3﹣118、原式==3﹣2=1.119、原式==120、原式=+1=121、原式=3+6a=2a+3a=5a;122、原式=﹣=﹣=3﹣2=1.123、原式==12;124、原式=49﹣48+2+=3+.125、原式===.。
初中二次根式练习题
二次根式练习题(1)一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2 D.a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅ba ab 182____________;=-222425__________. 15.计算:=⋅b a 10253___________. 16.计算:2216ac b =_________________. 17.当a=3时,则=+215a ___________. 18.若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ; ⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵ba c abc 4322-. 23.(6分)已知:2420-=x ,求221x x +的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式练习题(1)
一、选择题(每小题3分,共30分)
1.若m -3为二次根式,则m 的取值为 ( )
A .m≤3 B.m <3 C .m≥3 D.m >3
2.下列式子中二次根式的个数有 ( )
⑴3
1;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个
3.当22
-+a a 有意义时,a 的取值范围是 ( )
A .a≥2
B .a >2
C .a≠2 D.a≠-2
4.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;
A .1个
B .2个
C .3个
D .4个
5.化简二次根式352⨯-)(得 ( )
A .35-
B .35
C .35±
D .30
6.对于二次根式92+x ,以下说法不正确的是 ( )
A .它是一个正数
B .是一个无理数
C .最简二次根式
D .它的最小值是3
7.把ab a
123分母有理化后得 ( )
A .b 4
B .b 2
C .b 2
1 D . b b
2 8.y b x a +的有理化因式是 ( )
A .y x +
B .y x -
C .y b x a -
D .y b x a +
9.下列二次根式中,最简二次根式是 ( )
A .23a
B .3
1 C .153 D .143 10.计算:ab
ab b a 1⋅÷等于 ( ) A .ab ab 21
B .ab ab 1
C .ab b
1 D .ab b
二、填空题(每小题3分,共分)
11.当x___________时,x 31-是二次根式.
12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.
14.=⋅b
a a
b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________. 16.计算:2216a
c b =_________________. 17.当a=3时,则=+215a ___________. 18.若x
x x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)
19.(8分)把下列各式写成平方差的形式,再分解因式:
⑴52-x ; ⑵742-a ; ⑶15162-y ; ⑷2223y x -.
20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅
;
⑶)(102132531
-⋅⋅; ⑷z y x 10010101⋅⋅-.
21.(12分)计算: ⑴20245
-; ⑵144
25081010⨯⨯..; ⑶521312321⨯÷; ⑷)(b
a b b a 1223÷⋅.
22.(8分)把下列各式化成最简二次根式: ⑴2712135272
2-; ⑵b
a c abc 4322-. 23.(6分)已知:2420-=x ,求221x
x +的值.
参考答案:
一、选择题
1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .
二、填空题
11.≤31;12.≤43;13.<;14.3
1,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题
19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;
21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.。