山东省潍坊市2015届高三上12月阶段性检测数学(理)试题及答案

合集下载

【配套K12】高三数学上学期12月统练试卷 理(含解析)

【配套K12】高三数学上学期12月统练试卷 理(含解析)

2015-2016学年山东省潍坊市临朐县高三(上)12月统练数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(∁U A)∩B=()A.∅B.{x|<x≤1}C.{x|x<1} D.{x|0<x<1}2.下列命题中正确的个数是①若¬p是q的必要而不充分条件,则p是¬q的充分而不必要条件;②命题“对任x∈R,都x2≥0”的否定为“存x0∈R,使x02<0”;③若p∧q为假命题,则p与q均为假命题.()A.0个B.1个C.2个D.3个3.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.4.由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.5.已知变量x,y满足约束条件,则的最大值为()A.B.C.D.6.若α∈(,π),则3cos2α=sin(﹣α),则sin2α的值为()A.B.﹣C.D.﹣7.已知数{a n}满a1=0,a n+1=a n+2n,那a2016的值是()A.2014×2015B.2015×2016C.2014×2016D.2015×20158.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.9.如图,设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=3,AC=6,则•=()A.8 B.10 C.11 D.1210.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则()A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)二、填空题(本大题共5小题,每小题5分,共25分)11.已知与的夹角为120°,若(+)⊥(﹣),且||=2,则在方向上的正射影的数量为.12.若存在x∈[2,3],使不等式≥1成立,则实数a的最小值为.13.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为.14.根据下列5个图形及相应点的个数的变化规律,试猜测第10个图中有个点.15.已知函数f(x)=ax3+ax2﹣3ax+1的图象经过四个象限,则实数a的取值范围为.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)=•,(x∈[0,])(1)求函数f(x)的值域;(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f()=1,b=1,c=,求a 的值.17.已知函数h(x)=x﹣(a+1)lnx﹣,求函数h(x)的单调递减区间.18.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.19.设等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n﹣2b n+3=0,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和P n.20.某旅游景点预计2013年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=x(x+1)•(39﹣2x),(x∈N*,且x≤12).已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=(I)写出2013年第x月的旅游人数f(x)(单位:万人)与x的函数关系式;(II)试问2013年第几月旅游消费总额最大,最大月旅游消费总额为多少元?21.已知函数f(x)=lnx﹣ax2﹣x(a∈R).(1)当a=1时,求函数f(x)在(1,﹣2)处的切线方程;(2)当a≤0时,分析函数f(x)在其定义域内的单调性;(3)若函数y=g(x)的图象上存在一点P(x0,y0),使得以P为切点的切线m将图象分割为c1,c2两部分,且c1,c2分别完全位于切线m的两侧(除了P点外),则称点x0为函数y=g(x)的“切割点“.问:函数f(x)是否存在满足上述条件的切割点.2015-2016学年山东省潍坊市临朐县高三(上)12月统练数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分。

山东省潍坊市高三数学上学期期中试卷理(含解析) (1)

山东省潍坊市高三数学上学期期中试卷理(含解析) (1)

山东省潍坊市2015届高三上学期期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1, 3} C.{﹣1,1} D.{﹣1,1,3}2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.85.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.310.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.C.(﹣∞,﹣3)D.(﹣∞,5]二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥A B,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).山东省潍坊市2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,由A为奇数集,求出A与B的交集即可.解答:解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的充分不必要条件,故选:A.点评:在充要条件判断时,抓住“小能推大,大不能推小”,认真判断,不可出错.4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.8考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和题意求出a5的值,再求出公差d、a n和S n,对S n化简后利用二次函数的性质,求出S n取最小值时对应的n的值.解答:解:由等差数列的性质得,2a5=a3+a7=﹣6,则a5=﹣3,又a1=﹣11,所以d==2,所以a n=a1+(n﹣1)d=2n﹣13,S n==n2﹣12n,所以当n=6时,S n取最小值,故选:B.点评:本题考查等差数列的性质、通项公式,以及利用二次函数的性质求S n最小值的问题.5.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.考点:对数函数的图像与性质;指数函数的图像变换.专题:函数的性质及应用.分析:由图象可知对数的底数满足0<a<1,且0<f(0)<1,再根据指数函数g(x)=a x+b的性质即可推得.解答:解:由图象可知0<a<1且0<f(0)<1,即即解②得log a1<log a b<log a a,∵0<a<1∴由对数函数的单调性可知a<b<1,结合①可得a,b满足的关系为0<a<b<1,由指数函数的图象和性质可知,g(x)=a x+b的图象是单调递减的,且一定在x轴上方.故选:B.点评:本小题主要考查对数函数的图象、指数函数的图象、对数函数的图象的应用、方程组的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由•=()•,再利用向量和的夹角等于45°,两个向量的数量积的定义,求出•的值.解答:解:由题意得 AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选B.点评:本题考查两个向量的数量积的定义,注意向量和的夹角等于45°这一条件的运用.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.考点:二次函数的性质.专题:函数的性质及应用.分析:先求出f(1)的值,通过讨论a的范围,得到不等式,从而求出a的范围.解答:解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.点评:本题考查了二次函数的性质,考查了分类讨论思想,是一道基础题.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.考点:两角和与差的正弦函数;函数的零点.专题:三角函数的图像与性质.分析:由题意可知g(x)=sin2x+cos2x与直线y=m在上两个交点,数形结合可得m 的取值范围.解答:解:由题意可得函数g(x)=2sin(2x+)与直线y=m在上两个交点.由于x∈,故2x+∈,故g(x)∈.令2x+=t,则t∈,函数y=h(t)=2sint 与直线y=m在上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选B.点评:本题主要考查方程根的存在性及个数判断,两角和差的正弦公式,体现了转化与数形结合的数学思想,属于中档题.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.3考点:简单线性规划.专题:不等式的解法及应用.分析:由目标函数z=x﹣2y的最大值为1,确定约束条件中a的值即可.解答:解:约束条件为,由,解得A(2,)是最优解,直线x+2y﹣a=0过点A(2,),∴a=3,故选:D.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.C.(﹣∞,﹣3)D.(﹣∞,5]考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:本题根据二阶导数的定义及函数特征,研究原函数的二阶导数,求出m的取值范围,得到本题结论.解答:解:∵f(x)=x5﹣mx4﹣2x2,∴f′(x)=x4﹣mx3﹣4x,∴f″(x)=x3﹣mx2﹣4.∵f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,∴f″(x)>0.∴x3﹣mx2﹣4>0,x∈(1,3).∴,∵在(1,3)上单调递增,∴在(1,3)上满足:>1﹣4=﹣3.∴m≤﹣3.故答案为:C.点评:本题考查了二阶导数和恒成立问题,本题难度不大,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.考点:数列递推式.专题:等差数列与等比数列.分析:首先利用数列的递推关系求出,然后利用相减法得到,进一步求得数列是等比数列,利用关系式直接求出结果.解答:解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:点评:本题考查的知识要点:数列的递推关系式的应用,等比数列通项公式的求法.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:设与的夹角为θ,则由题意可得 4﹣4+=10,求得cosθ的值,再结合θ∈14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为30m.考点:解三角形的实际应用.专题:计算题;解三角形.分析:先画出示意图,根据题意可求得∠PCB和∠PEC,转化为∠CPB,然后利用正弦定理求得BP,最后在Rt△BOP中求出OP即可.解答:解:如图所示,依题意可知∠PCB=45°,∠PBC=180°﹣60°﹣15°=105°∴∠CPB=180°﹣45°﹣105°=30°由正弦定理可知BP=•sin∠BCP=20米∴在Rt△BOP中,OP=PB•sin∠PBO=20×=30米即旗杆的高度为30米故答案为:30.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用正弦定理以及解三角形解答.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,令x=﹣1,即可得到f(1)=0;②,利用y=f(x)为周期为2的偶函数,即可得到f(﹣2﹣x)=f(2+x)=f(﹣2+x),从而可判断②;③,利用y=f(x)为周期为2的函数,及x∈时,y=f(x)单调递减,可判断函数y=f(x)在是单调递减函数,可判断③;④,由②知y=f(x)关于x=﹣2对称,从而可判断④.解答:解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈时,y=f(x)单调递减,∴函数y=f(x)在是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间上单调递减,∴y=f(x)在区间上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间上单调递增,在区间上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.点评:本题考查考查命题的真假判断与应用,注重考查函数的单调性、周期性、对称性及函数的零点,考查分析与综合应用能力,属于难题.三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取EC中点G,连BG,GF,证明四边形ABGF为平行四边形,可得AF∥BG,利用线面平行的判定定理,即可得出结论;(Ⅱ)证明BG⊥DE,BG⊥CD,可得BG⊥平面CDE,利用面面垂直的判定定理,即可得出结论解答:证明:(Ⅰ)取EC中点G,连BG,GF.∵F是CD的中点,∴FG∥DE,且FG=DE.又∵AB∥DE,且AB=DE.∴四边形ABGF为平行四边形.∴AF∥BG.又BG⊂平面BCE,AF⊄平面BCE.∴AF∥平面BCE.(Ⅱ)∵AB⊥平面ACD,AF⊂平面ACD,∴AB⊥AF.∵AB∥DE,∴AF⊥DE.又∵△ACD为正三角形,∴AF⊥CD.∵BG∥AF,∴BG⊥DE,BG⊥CD.∵CD∩DE=D,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.考点:余弦定理的应用;三角函数中的恒等变换应用.专题:综合题;解三角形.分析:(Ⅰ)先对函数解析式化简,利用三角函数的性质求得函数f(x)的单调递增区间.(Ⅱ)利用f(A)求得A,进而根据余弦定理构建b,c和a的关系,结合三角形的面积公式,即可求b+c的值.解答:解:(Ⅰ)解:f(x)=sinx(cosx+sinx)+cos2x﹣=sinxcosx+cos2x=sin(2x+)+由2x+∈(﹣+2kπ,+2kπ),可得函数f(x)的单调递增区间(﹣+kπ,+kπ)(k∈Z);(Ⅱ)由题意f(A)=sin(2A+)+=,化简得 sin(2A+)=,∵A∈(0,π),∴A=;在△ABC中,根据余弦定理,得a2=b2+c2﹣2bccos =(b+c)2﹣3bc=3,∵S△ABC==bc•,∴bc=2∴b+c=3.点评:本题主要考查三角函数恒等变换的运用,余弦定理及三角形的面积公式的基本知识.18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:先根据对数函数的单调性,二次函数的最值以及二次函数的图象即可求出命题p,q下a的取值范围,而根据p∨q为真名题,p∧q为假命题知p真q假,或p假q真,分别求出这两种情况下的a的取值范围再求并集即可.解答:解:由已知条件知ln(x+1)<恒成立,即:恒成立,即:a在x∈(﹣1,2)上恒成立;函数在(﹣1,2)上的最大值为;∴;即p:a;设f(x)=x2+(1﹣a)x+1,则由命题q:,解得3;即q:3;若p∨q为真命题,p∧q为假命题,则p,q一真一假;①若p真q假,则:,∴;②若p假q真,则:,∴a∈∅;∴实数a的取值范围为.点评:考查对数函数的单调性,对数函数的定义域,以及配方法求二次函数的最值,二次函数的图象的运用,以及p∨q,p∧q真假和p,q真假的关系.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.考点:数列的求和;等比数列的通项公式;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)直接利用前n项和公式及等比中项求出数列的通项公式.(Ⅱ)根据(Ⅰ)的结论及等差数列的通项公式,进一步利用乘公比错位相减法求出新数列的前n项和.解答:解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:点评:本题考查的知识要点:等比数列通项公式和前n项和公式,等差数列的通项公式和前n项和公式,利用乘公比错位相减法求数列的和及相关的运算问题20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?考点:根据实际问题选择函数类型.专题:综合题;导数的综合应用.分析:(Ⅰ)根据生产这批试剂厂家的生产成本有三个方面,可得函数关系P(x),利用配方法求出P(x)的最小值;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),利用导数,可得结论.解答:解:(Ⅰ)P(x)=÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.点评:本题考查根据实际问题选择函数类型,考查配方法,考查导数知识的综合运用,属于中档题.21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(Ⅰ)求函数f(x)=e x﹣x﹣1的单调递减区间,可以先求函数f(x)=e x﹣x﹣1的导函数,然后由导函数式小于零求出x的范围,从而得到函数的减区间.(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=﹣xlnx(x>0),研究函数h(x)的单调性和最值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,要证明f(g(x))<f(x),只要证明g(x)<x即可.解答:解:(Ⅰ)函数的定义域为(﹣∞,+∞),a=1时,f′(x)=(e x﹣x﹣1)′′=e x ﹣1.由f′(x)<0,得e x﹣1<0,e x<1,∴x<0,所以函数的单调减区间为(﹣∞,0),单调增区间是(0,+∞).(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<<e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1或a=时,函数F(x)有且仅有一个零点;当a<e﹣1或a>时,函数F(x)没有零点.(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>x;故对任意x>0,g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0xe x>e x﹣1;所以,只要证:∀x>0xe x﹣e x+1>0;令H(x)=xe x﹣e x+1,则H′(x)=xe x>0;故函数H(x)在(0,+∞)上单调递增;∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f<f(x).点评:本题以函数为载体,主要考查导数的几何意义,考查导数在研究函数的单调性和最值中的应用,考查恒成立问题的解决方法,属于中档题.。

山东省潍坊市某重点中学2015届高三上学期12月阶段性教学质量检测数学(理)试题Word版含答案

山东省潍坊市某重点中学2015届高三上学期12月阶段性教学质量检测数学(理)试题Word版含答案

高三阶段性教学质量检测理科数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,恰有..一项..是符合题目要求的,把正确答案涂在答题卡上. 1.设集合{1}A x x =<,2{log 0}B x x =≤,则A B ⋂=( )A .{}11<<-x x B. {}10<<x x C. {}11≤<-x x D. {}1x x 0<≤ 2.下列说法正确的是( )A .命题“若2x =,则24x =”的否命题为“若24x ≠,则2x ≠”B .命题“2,10x R x x ∀∈+-<”的否定是“2,10x R x x ∃∈+->”C .“x y =”是“sin sin x y =”的充分不必要条件D .命题“若0x =或0y =,则0xy =” 的逆否命题为“若0xy ≠,则0x ≠或0y ≠” 3.如图所示,则阴影部分的面积为( )A .13B .14C .15D .164.已知132a -=,21log 3b =,121log 3c =,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >>5. 函数()x x f 2log 1+=与12)(+-=x x g 在同一直角坐标系下的图象大致是( )A. B. C. D. 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题不正确的是( ) A .若,,m n m n αα⊥⊥⊄,则n ∥α B .若m ∥α,αβ⊥,则m β⊥ C .若m β⊥,αβ⊥,则m ∥α或m α⊂ D .若,,m n m n αβ⊥⊥⊥,则αβ⊥ 7.如图,平行四边形ABCD 中,2,1,60AB AD A ==∠=,点M 在AB边上,且13AM AB DM DB =∙,则等于( ) A .1- B .1C .2D.2-8.若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则21a b+的最小值为( ) AB .3C .5D .99.已知抛物线22(0)y px p =>的焦点F 与双曲线22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A在抛物线上且AK AF =,则A 点的横坐标为( )A..3 C..4 10.已知定义在R 上的奇函数()f x ,设其导函数为()x f ',当(]0,∞-∈x 时,恒有()()0≤+'x f x f x ,令()()x xf x F =,则满足()(3)21F F x >-的实数x 的取值范围是( )A. ()2,+∞B.()1,-+∞C. ()1,2-D. (),2-∞第II 卷二、填空题:(本大题共5小题,每小题5分,共25分,把答案直接填在横线上) 11.等比数列{}n a 的各项均为正数,且154a a =,则2log 1a +2log 2a +2log 3a +2log 4a +2log 5a =________.12.设点P 是双曲线)0,0(12222>>=-b a by a x 与圆2222b a y x +=+在第一象限的交点,21,F F 分别是双曲线的左、右焦点,且213PF PF =,则双曲线的离心率是__________________.13.已知),(y x P 满足约束条件⎪⎩⎪⎨⎧≥-≤--≤-+010103x y x y x ,则y x 2-的最大值是__________.14.定义,(),()a a b a b b a b ≤⎧*=⎨>⎩,则函数()13xf x =*的值域是__________________. 15.定义12142334a a a a a a a a =-,若函数 () cos x x f x x x=,给出下列四个命题:①()f x 在区间⎥⎦⎤⎢⎣⎡85,8ππ上是减函数;②()f x 关于308π(,)中心对称;③)(x f y =的表达式可改写成 )14y x =--π;④由0)()(21==x f x f 可得21x x -必是π的整数倍; 其中正确命题的序号是三、解答题:(本大题6小题,共75分,解答写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)已知ABC ∆1,且sin sin A B C +=(I )求边AB 的长; (Ⅱ)若ABC ∆的面积为sin 6C ,求角C 的度数。

山东省潍坊市高三数学上学期第一次月考试卷 理(含解析)

山东省潍坊市高三数学上学期第一次月考试卷 理(含解析)

山东省潍坊市2015届高三上学期第一次月考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x﹣2|<1},则(∁U B)∩A=()A.{x|0≤x<1或x>3} B.{x|x=1或x≥3}C.{x|x>3} D.{x|1≤x≤3}2.(5分)下列函数中,与函数定义域相同的函数为()A.B.C.D.y=x3e x3.(5分)已知sin(α+)=,则cos(α+)=()A.B.C.﹣D.﹣4.(5分)“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知函数f(x)=x2+(m2﹣4)x+m是偶函数,g(x)=x m在(﹣∞,0)内单调递增,则实数m=()A.2 B.±2C.0 D.﹣26.(5分)将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为()A.y=sin2x B.y=sin2x+2 C.y=cos2x D.y=cos(2x﹣)7.(5分)设命题p:曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex;命题q:函数y=sinx+(0<x<π)值域为[4,+∞),则下列判断正确的是()A.“p∨q”为真B.“¬p∨q”为真C.“¬p∧q”为真D.“¬p∧¬q”为真8.(5分)函数f(x)=﹣cosxlnx2的部分图象大致是图中的()A.B.C.D.9.(5分)已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3,又函数g(x)=|cos(πx)|,则函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数为()A.8 B.7 C.6 D.5二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题“若ab≤0,则a≤0或b≤0”的逆否命题是.12.(5分)已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边落在射线3x+4y=0(x<0)上,则2sinα+cosα的值为.13.(5分)计算log2sin﹣log cos的值为.14.(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e2x,f′(x)的最小值为.15.(5分)如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=e x+1;④f(x)=.以上函数是“H函数”的所有序号为.三、解答题(共6小题,满分75分)16.(12分)已知m∈R,设命题P:∃x∈{x|﹣2<x<2},使等式x2﹣2x﹣m=0成立;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.17.(12分)已知函数f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x,x∈R.(Ⅰ)求函数f(x)在[0,π]上的单调区间.(Ⅱ)若函数f(x)的图象向右平移m(m>0)个单位后,得到的图象关于原点对称,求实数m的最小值.18.(12分)设函数f(x)=log2(ax2﹣2x+2)定义域为A.(Ⅰ)若A=R,求实数a的取值范围;(Ⅱ是否存在实数a,使f(x)的最大值为2?若存在求出a的值,若不存在,说明理由.19.(12分)已知函数f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)(ω>0.0<φ<)其图象的两个相邻对称中心的距离为,且过点(﹣,2).(Ⅰ)函数f(x)的达式;(Ⅱ)若f(﹣)=,α是第三象限角,求cosα的值.20.(13分)甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?21.(14分)已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.山东省潍坊市2015届高三上学期第一次月考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x﹣2|<1},则(∁U B)∩A=()A.{x|0≤x<1或x>3} B.{x|x=1或x≥3}C.{x|x>3} D.{x|1≤x≤3}考点:交、并、补集的混合运算.专题:集合.分析:求出A中y的范围确定出A,求出B中不等式的解集确定出B,根据全集U=R求出B 的补集,找出B补集与A的交集即可.解答:解:由A中y=lg(x2+10)≥1,得到A={y|y≥1},由B中不等式变形得:﹣1<x﹣2<1,即1<x<3,∴B={x|1<x<3},∵全集U=R∴∁U B={x|x≤1或x≥3},则(∁U B)∩A={x|x≥3或x=1}.故选:B.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)下列函数中,与函数定义域相同的函数为()A.B.C.D.y=x3e x考点:函数的定义域及其求法.专题:计算题;阅读型.分析:原函数的定义域是满足分母不等于0的x的取值集合,然后逐一分析给出的四个选项中函数的定义域,比较后即可得到答案.解答:解:函数定义域是{x|x≠0}.而函数的定义域为{x|x≠kπ,k∈Z},函数的定义域是{x|x>0},函数的定义域是{x|x≠0},函数y=x3e x的定义域是R.所以与函数定义域相同的函数为.故选C.点评:本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量x的取值集合,是基础题.3.(5分)已知sin(α+)=,则cos(α+)=()A.B.C.﹣D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用三角函数间的诱导公式即可求得答案.解答:解:∵sin(α+)=,∴cos(α+)=cos[(α+)+]=﹣sin(α+)=﹣,故选:C.点评:本题考查运用诱导公式化简求值,属于基础题.4.(5分)“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:由恒成立可得a≥4,再由集合{a|a≥4}是集合{a|a≥3}的真子集,可得结论.解答:解:∵“∀x∈[1,2],x2﹣a≤0”为真命题,∴a≥x2,在x∈[1,2]时恒成立,而当x∈[1,2]时,x2的最大值为4,故只需a≥4,因为集合{a|a≥4}是集合{a|a≥3}的真子集,故“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的必要不充分条件,故选B点评:本题考查充要条件的判断,涉及恒成立问题,得出a≥4,并用集合的包含关系是解决问题的关键,属基础题.5.(5分)已知函数f(x)=x2+(m2﹣4)x+m是偶函数,g(x)=x m在(﹣∞,0)内单调递增,则实数m=()A.2 B.±2C.0 D.﹣2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数的奇偶性的性质求出m,结合幂函数的性质即可得到结论.解答:解:∵函数f(x)=x2+(m2﹣4)x+m是偶函数,∴f(﹣x)=f(x),即f(﹣x)=x2﹣(m2﹣4)x+m=x2+(m2﹣4)x+m,则﹣(m2﹣4)=m2﹣4,解得m2﹣4=0,解得m=2或﹣2,∵若m=2,g(x)=x2在(﹣∞,0)内单调递减,不满足条件,若m=﹣2,g(x)=x﹣2在(﹣∞,0)内单调递增,满足条件,故选:D点评:本题主要考查函数奇偶性的应用以及幂函数的性质,比较基础.6.(5分)将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为()A.y=sin2x B.y=sin2x+2 C.y=cos2x D.y=cos(2x﹣)考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:首先把函数解析式中的x变化为,利用诱导公式整理后把函数式右边减1即可得到答案.解答:解:把函数y=cos2x+1的图象向右平移个单位,得=sin2x+1,再向下平移1个单位,得y=sin2x+1﹣1=sin2x.∴将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为:y=sin2x.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减,是基础题.7.(5分)设命题p:曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex;命题q:函数y=sinx+(0<x<π)值域为[4,+∞),则下列判断正确的是()A.“p∨q”为真B.“¬p∨q”为真C.“¬p∧q”为真D.“¬p∧¬q”为真考点:复合命题的真假.专题:函数的性质及应用;三角函数的求值;不等式的解法及应用.分析:本题可以先对命题p、q进行化简转化,从而判断出其真假,再根据复合函数真假判断的规律,得到正确选项.解答:解:∵y=e﹣x,∴y′=﹣e﹣x.∴当x=﹣1时,y=e,k=y′=﹣e.∴曲线y=e﹣x在点(﹣1,e)处的切线方程为y﹣e=﹣e(x+1),∴曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex,∴命题p为真命题∵y=sinx+(0<x<π),∴可设sinx=t,则y=t+,(0<t≤1).∴.∴y=t+在区间(0,1]上单调递减.当t=1时,函数有最小值y=5.∴函数y=sinx+(0<x<π)值域为[5+∞).∴命题q:函数y=sinx+(0<x<π)值域为[4,+∞),不成立.∴命题q为假命题.∴命题p∨q为真命题.故选A.点评:本题考查了利用导函数求切线、由单调性求函数值域以及复合命题真假的判断等知识,有一定的运算量,属于中档题.8.(5分)函数f(x)=﹣cosxlnx2的部分图象大致是图中的()A.B.C.D.考点:函数的图象.专题:图表型.分析:由于函数f(x)=﹣cosxlnx2不是基本初等函数,我们可以用排除法,排除错误答案,最后得到正确的答案,确定函数的奇偶性后,进而排除图象不关于Y轴对称的图象,判断出函数的单调后,排除不满足条件的答案,即可得到正确的结论.解答:解:∵函数f(x)=﹣cosxlnx2为偶函数,∴函数的图象关于Y轴对称,故可以排除C,D答案又∵函数f(x)=﹣cosxlnx2在区间(0,1)上为减函数故可以排除B答案.故选A点评:本题考查的知识点的图象,其中正确分析函数的性质,并根据函数的性质,判断出函数图象的形状是解答本题的关键.9.(5分)已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为()A.1 B.2 C.﹣1 D.﹣2考点:定积分在求面积中的应用.专题:导数的综合应用.分析:根据导数的几何意义以及导数的基本运算,结合积分公式,即可得到结论.解答:解:∵函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,∴函数的导数f′(x)=﹣3x2+2ax+b,且f′(0)=b=0,则f(x)=﹣x3+ax2,∵x轴与函数图象所围区域(图中阴影部分)的面积为,∴由f(x)=﹣x3+ax2=0解得x=0或x=a,由图象可知a<0,则根据积分的几何意义可得﹣=﹣()|=,即a4=1,解得a=﹣1或a=1(舍去),故选:C点评:本题主要考查导数的几何意义的应用以及利用积分求阴影部分的面积的计算,要求熟练掌握导数的应用.10.(5分)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3,又函数g(x)=|cos(πx)|,则函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数为()A.8 B.7 C.6 D.5考点:函数零点的判定定理.专题:计算题;作图题;函数的性质及应用.分析:由题意函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数可化为函数g(x)与函数f(x)的交点个数,作图分析即可.解答:解:函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数可化为函数g(x)与函数f(x)的交点个数,由题意作出函数g(x)与函数f(x)的图象如下:由图可知,有5个交点,故选D.点评:本题考查了函数的零点与函数图象的交点的关系,同时考查了学生的作图能力,属于基础题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题“若ab≤0,则a≤0或b≤0”的逆否命题是若a>0,且b>0,则ab>0.考点:四种命题.分析:根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,直接写出答案即可.解答:解:根据原命题与逆否命题的关系,知:命题“若ab≤0,则a≤0或b≤0”的逆否命题是“若a>0,且b>0,则ab>0”.故答案为:“若a>0,且b>0,则ab>0”.点评:本题考查了原命题与它的逆否命题之间的相互转化问题,解题时应明确四种命题之间的关系,是基础题.12.(5分)已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边落在射线3x+4y=0(x<0)上,则2sinα+cosα的值为.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:在角α的终边上任意取一点P(﹣4a,3a),a>0,由任意角的三角函数的定义求得sinα=和cosα=的值,从而求得2sinα+cosα 的值.解答:解:根据角α的终边落在射线3x+4y=0(x<0)上,在角α的终边上任意取一点P (﹣4a,3a),a>0,则r=|OP|==5a,∴sinα===,cosα===﹣,故2sinα+cosα=﹣=,故答案为:.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.13.(5分)计算log2sin﹣log cos的值为﹣2.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:利用对数的运算性质与二倍角的正弦可将原式化为log2sin﹣log cos=log2sin,即可求得答案.解答:解:log2sin﹣log cos=log2sin+log2cos=log2sin==﹣2,故答案为:﹣2.点评:本题考查同角三角函数基本关系的运用,考查二倍角的正弦与对数函数的性质,属于中档题.14.(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e2x,f′(x)的最小值为.考点:简单复合函数的导数.专题:导数的概念及应用.分析:首先求出f(x)的解析式,再求导,最后利用基本不等式求出最小值.解答:解:∵f(e x)=x+e2x,∴f(e x)=lne x+(e x)2,∴f(x)=lnx+x2,x∈(0,+∞)∴f′(x)=≥2=2,当且仅当x=时取等号.故答案为:点评:本题主要考查了函数解析式的求法,求导的运算法则,以及基本不等式,知识点比较多,属于中档题.15.(5分)如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=e x+1;④f(x)=.以上函数是“H函数”的所有序号为②③.考点:函数单调性的性质.专题:新定义;函数的性质及应用.分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.解答:解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f (x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数.①y=﹣x3+x+1;y'=﹣3x2+1,则函数在定义域上不单调.②y=3x﹣2(sinx﹣cosx);y’=3﹣2(cosx+sinx)=3﹣2sin(x+)>0,函数单调递增,满足条件.③y=e x+1为增函数,满足条件.④f(x)=.当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.点评:本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)已知m∈R,设命题P:∃x∈{x|﹣2<x<2},使等式x2﹣2x﹣m=0成立;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.考点:复合命题的真假.专题:函数的性质及应用.分析:本题先对命题p、q进行化简转化,再将条件“P∨Q”为真命题,“P∧Q”为假命题,转化为命题p、q中一个命题为真,另一个命题为假,得到关于m的不等式,解不等式,得到本题结论.解答:解:命题p等价于方程x2﹣2x﹣m=0在区间(﹣2,2)上有解.记g(x)=x2﹣2x﹣m,则,∴,∴﹣1≤m<8.命题q:由方程的根的判别式△==4m2﹣12m﹣16>0,得m<﹣1或m>4.∵“P∨Q”为真命题,“P∧Q”为假命题,∴命题p、q中,一个为真,另一个为假.∴当命题p真q假时,m<﹣1或m≥8,当命题p假q真时,﹣1≤m≤4.∴m≤4或m≥8.实数m的取值范围是(﹣∞,4]∪[8,+∞).点评:本题考查了一元二次方程的根的存在性、“或”命题和“且”命题的真假判断,本题计算量较大,属于中档题.17.(12分)已知函数f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x,x∈R.(Ⅰ)求函数f(x)在[0,π]上的单调区间.(Ⅱ)若函数f(x)的图象向右平移m(m>0)个单位后,得到的图象关于原点对称,求实数m的最小值.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用诱导公式、二倍角公式、两角差的正弦函数公式化简解析式,(Ⅰ)根据正弦函数的单调减区间得:,求出x的范围,结合定义域求出f(x)在[0,π]上的单调区间;(Ⅱ)根据平移法则求出平移后的函数g(x)的解析式,再由图象关于原点对称得到g(0)=0,列出m的方程并化简,根据m的范围求出m的最小值.解答:解:由题意得,f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x=sin2x﹣cos2x=,(Ⅰ)令得,(k∈Z),又x∈[0,π],所以x∈,则函数f(x)在[0,π]上的单调区间是;(Ⅱ)将函数f(x)=的图象向右平移m(m>0)个单位后,得到函数g(x)==的图象,又其函数图象关于原点对称,则g(0)=0,即,解得m=(k∈Z),因为m>0,令k=﹣1得m=,所以实数m的最小值是.点评:本题考查了诱导公式、二倍角公式、两角差的正弦函数公式,以及正弦函数的性质,三角函数的图象平移变换,属于中档题.18.(12分)设函数f(x)=log2(ax2﹣2x+2)定义域为A.(Ⅰ)若A=R,求实数a的取值范围;(Ⅱ是否存在实数a,使f(x)的最大值为2?若存在求出a的值,若不存在,说明理由.考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:(1)函数f(x)=log2(ax2﹣2x+2)定义域为R则,ax2﹣2x+2>0在x∈R上恒成立,根据二次函数性值判断条件.(2)存在实数a,使f(x)的最大值为2,根据复合函数单调性,可判断即a<0,g(x)max=g ()=4,即+2=4,即可求出a的值.解答:解:(1)因为A=R所以ax2﹣2x+2>0在x∈R上恒成立.①当a=0时,由﹣2x+2>0,得x<1,不成了,舍去.②当a≠0时,由,a,为综上所述,实数a的取值范围:(,+∞)(2)令g(x)=ax2﹣2x+2,有题意知,要使f(x)取最大值为2,则函数g(x)需取得最大值4,抛物线开口向下,即a<0,g(x)max=g()=4,即+2=4,∴a=满足条件.点评:本题考查了对数函数,二次函数的性质,特别是单调性,最值问题,综合考察要求对函数理解很深刻,应用灵活.19.(12分)已知函数f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)(ω>0.0<φ<)其图象的两个相邻对称中心的距离为,且过点(﹣,2).(Ⅰ)函数f(x)的达式;(Ⅱ)若f(﹣)=,α是第三象限角,求cosα的值.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)根据二倍角公式、两角和的余弦函数公式化简解析式,再由条件求出函数的周期,由周期公式求出ω的值,再把点代入结合条件和特殊角的余弦值求出φ的值,代入解析式化简即可;(Ⅱ)根据题意把代入解析式化简可得,再根据角的所在的象限和平方关系求出sin()的值,根据两角差的余弦函数公式求出cosα=cos[()﹣]的值.解答:解:(Ⅰ)由题意得,f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)=cos(ωx+φ)﹣sin(ωx+φ)+1=,由图象的两个相邻对称中心的距离为得,函数的周期T=π,所以,得ω=2,又过点(﹣,2),则=2,化简得,cosφ=,由0<φ<得,φ=,所以;(Ⅱ)由(Ⅰ)得,=,化简得,,因为α是第三象限角,且<0,则角是第三象限,所以sin()=﹣=﹣,所以cosα=cos[()﹣]=cos()cos+sin()sin==.点评:本题考查了二倍角公式、两角和差的余弦函数公式,以及余弦函数的性质,考查变角在求三角函数值中的应用.20.(13分)甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?考点:函数模型的选择与应用.专题:应用题.分析:(1)由已知中赔付价格为s元/吨,所以乙方的实际年利润为.我们利用导数法易求出乙方取得最大年利润的年产量(2)由已知得,若甲方净收入为v元,则v=st﹣0.002t2.再由.我们可以得到甲方净收入v与赔付价格s之间的函数关系式,利用导数法,我们易求出答案.解答:解:(1)因为赔付价格为s元/吨,所以乙方的实际年利润为.由,令w'=0,得.当t<t0时,w'>0;当t>t0时,w'<0,所以t=t0时,w取得最大值.因此乙方取得最大年利润的年产量t0为(吨);(2)设甲方净收入为v元,则v=st﹣0.002t2.将代入上式,得到甲方净收入v与赔付价格s之间的函数关系式.又,令v'=0,得s=20.当s<20时,v'>0;当s>20时,v'<0,所以s=20时,v取得最大值.因此甲方应向乙方要求赔付价格s=20(元/吨)时,获最大净收入.点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.(14分)已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(Ⅰ)f(x)的定义域为(0,+∞),且,当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;当a>0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a.由此能够判断f(x)的单调性.(Ⅱ)由g(x)=ax﹣,定义域为(0,+∞),知﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,由此能够求出正实数a的取值范围.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0当x时,g′(x)<0.所以在(0,1)上,,由此能求出实数m的取值范围.解答:解:(Ⅰ)f(x)的定义域为(0,+∞),且,①当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;②当a<0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a;故f(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增.(Ⅱ)g(x)=ax﹣,g(x)的定义域为(0,+∞),﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,∴ax2﹣5x+a≥0,∴a(x2+1)≥5x,即,∴.∵,当且仅当x=1时取等号,所以a.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0;当x时,g′(x)<0.所以在(0,1)上,,而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于“g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值”而h(x)在[1,2]上的最大值为max{h(1),h(2)},所以有,∴,∴,解得m≥8﹣5ln2,所以实数m的取值范围是[8﹣5ln2,+∞).点评:本题考查在闭区间上求函数最值的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.。

山东省潍坊一中高三数学上学期12月月考试卷理(含解析)

山东省潍坊一中高三数学上学期12月月考试卷理(含解析)

山东省潍坊一中2015届高三上学期12月月考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x+1|<1},B={x|()x﹣2≥0},则A∩∁R B=()A.(﹣2,﹣1)B.(﹣2,﹣1] C.(﹣1,0)D.[﹣1,0)2.(5分)下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x33.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.若命题p:“∃x0∈R使x02+x0+1<0”,则¬p为假命题4.(5分)如果a>b>0,那么下列不等式一定不成立的是()A.log3a>log3b B.()a<()bC.a2+b2<2a+2b﹣2 D.a﹣>b﹣5.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3 B.2 C.D.16.(5分)过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为()A.5 B.C.D.7.(5分)将函数y=cos(x﹣)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得图象的一条对称轴方程为()A . x=B . x=C . x=D . x=π8.(5分)已知f (x )=x 2+sin,f′(x )为f (x )的导函数,则f′(x )的图象是()A .B .C .D .9.(5分)过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为原点,则△OAB 的外接圆方程是()A . (x ﹣2)2+(y ﹣1)2=5B . (x ﹣4)2+(y ﹣2)2=20C . (x+2)2+(y+1)2=5 D . (x+4)2+(y+2)2=2010.(5分)已知M (x ,y )落在双曲线﹣=1的两条渐近线与抛物线y 2=﹣2px (p >0)的准线所围成的封闭区域(包括边界)内,且点M 的坐标(x ,y )满足x+2y+a=0.若a 的最大值为2﹣2,则p 为()A . 2B . 4C . 8D . 16二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为.12.(5分)设f (x )=,若f (f (1))=1,则a=.13.(5分)已知向量与的夹角为120°,且||=||=1,=+,则与的夹角大小为.14.(5分)一人在海面某处测得某山顶C 的仰角为α(0°<α<45°),在海面上向山顶的方向行进m 米后,测得山顶C 的仰角为90°﹣α,则该山的高度为米.(结果化简)15.(5分)设函数f (x )的定义域为D ,若存在非零实数h 使得对于任意x ∈M (M ⊆D ),有x+h ∈M ,且f (x+h )≥f(x ),则称f (x )为M 上的h 高调函数.现给出下列命题: ①函数f (x )=()x为R 上的1高调函数;②函数f (x )=sin2x 为R 上的π高调函数;③若函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).④函数f(x)=1g(|x﹣2|+1)上的2高调函数.其中正确命题的序号是(写出所有正确命题的序号).三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知向量=(sinx,sinx),=(sinx,﹣cosx),设函数f(x)=•,(Ⅰ)求函数f(x)的最小正周期和单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=0,b+c=7,△ABC的面积为2,求边a的长.17.(12分)如图,简单组合体ABCDPE,其底面ABCD是边长为2的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.(1)在线段PB上找一点M,使得ME⊥平面PBD;(2)求平面PBE与平面PAB的夹角.18.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.19.(12分)某市环保部门对市中心每天环境污染情况进行调查研究,发现一天中环境污染指数f(x)与时刻x(时)的关系为f(x)=a|﹣a|+a+,x∈[0,24],其中a是与气象有关的参数,且a∈(0,],用每天f(x)的最大值作为当天的污染指数,记作M(a).(Ⅰ)令t=,x∈[0,24],求t的取值范围;(Ⅱ)按规定,每天的污染指数不得超过2,问目前市中心的污染指数是否超标?20.(13分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.21.(14分)已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)设斜率为k的直线l与C相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.山东省潍坊一中2015届高三上学期12月月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x+1|<1},B={x|()x﹣2≥0},则A∩∁R B=()A.(﹣2,﹣1)B.(﹣2,﹣1] C.(﹣1,0)D.[﹣1,0)考点:交、并、补集的混合运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,根据全集R求出B的补集,找出A与B补集的交集即可.解答:解:由A中的不等式解得:﹣1<x+1<1,即﹣2<x<0,∴A=(﹣2,0),由B中的不等式变形得:()x≥2=()﹣1,解得:x≤﹣1,即B=(﹣∞,﹣1],∵全集为R,∴∁R B=(﹣1,+∞),则A∩(∁R B)=(﹣1,0).故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.解答:解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.点评:考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.3.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.若命题p:“∃x0∈R使x02+x0+1<0”,则¬p为假命题考点:命题的真假判断与应用;四种命题.专题:简易逻辑.分析:写出原命题的否命题,可判断A;根据充要条件的定义可判断B;根据原命题与逆否命题真假性相同可判断C;根据命题的否定与原命题真假性相反可判断D.解答:解:命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,故A错误;当“x=﹣1”时,“x2﹣5x﹣6=0”成立,当“x2﹣5x﹣6=0”时,“x=﹣1或x=6”,即“x=﹣1”不一定成立,故“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件,故B错误;命题“若x=y,则sinx=siny”为真命题,故命题“若x=y,则sinx=siny”的逆否命题为真命题,故C正确;若命题p:“∃x0∈R使x02+x0+1<0”为假命题,故¬p为真命题,故D错误;故选:C点评:本题以命题的真假判断为载体,考查了四种命题,充要条件,复合命题等知识点,难度不大,属于基础题.4.(5分)如果a>b>0,那么下列不等式一定不成立的是()A.log3a>log3b B.()a<()bC.a2+b2<2a+2b﹣2 D.a﹣>b﹣考点:不等式的基本性质.专题:不等式的解法及应用.分析:利用指数函数与对数函数、不等式的性质即可得出.解答:解:∵a>b>0,∴log3a>log3b,,(a﹣1)2+(b﹣1)2≥0,,因此a2+b2<2a+2b﹣2不成立,故选:C.点评:本题考查了指数函数与对数函数、不等式的性质,属于基础题.5.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式: V=Sh,其中S为底面面积,h为高)A.3 B.2 C.D.1考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.解答:解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.点评:本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.6.(5分)过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为()A.5 B.C.D.考点:直线与圆锥曲线的综合问题;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设A(x1,y1)、B(x2,y2),算出抛物线的焦点坐标,从而可设直线AB的方程为y=k (x﹣1),与抛物线方程联解消去x可得y2﹣y﹣4=0,利用根与系数的关系算出y1y2=﹣4.根据|AF|=5利用抛物线的抛物线的定义算出x1=4,可得y1=±4,进而算出|y1﹣y2|=5,最后利用三角形的面积公式加以计算,即可得到△AOB的面积.解答:解:根据题意,抛物线y2=4x的焦点为F(1,0).设直线AB的斜率为k,可得直线AB的方程为y=k(x﹣1),由消去x,得y2﹣y﹣4=0,设A(x1,y1)、B(x2,y2),由根与系数的关系可得y1y2=﹣4.根据抛物线的定义,得|AF|=x1+=x1+1=5,解得x1=4,代入抛物线方程得:y12=4×4=16,解得y1=±4,∵当y1=4时,由y1y2=﹣4得y2=﹣1;当y1=﹣4时,由y1y2=﹣4得y2=1,∴|y1﹣y2|=5,即AB两点纵坐标差的绝对值等于5.因此△AOB的面积为:S=△AOB=S△AOF+S△BOF=|OF|•|y1|+|OF|•|y2|=|OF|•|y1﹣y2|=×1×5=.故选:B点评:本题给出抛物线经过焦点F的弦AB,在已知AF长的情况下求△AOB的面积.着重考查了抛物线定义与标准方程、直线与圆锥曲线位置关系等知识,属于中档题.7.(5分)将函数y=cos(x﹣)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得图象的一条对称轴方程为()A.x=B.x=C.x=D.x=π考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.解答:解:将函数y=cos(x﹣)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=cos(x﹣)的图象;再向左平移个单位,可得函数y=cos[(x+)﹣]=cos(x﹣)图象,令x﹣=kπ,k∈z,求得x=2kπ+,故所得函数的图象的一条对称轴方程为x=,故选:C.点评:本题主要考查函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.8.(5分)已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.考点:函数的单调性与导数的关系;函数的图象.专题:导数的概念及应用.分析:先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.解答:解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x﹣sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cosx,当﹣<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.故选:A.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.9.(5分)过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为原点,则△OAB的外接圆方程是()A.(x﹣2)2+(y﹣1)2=5 B.(x﹣4)2+(y﹣2)2=20 C.(x+2)2+(y+1)2=5 D.(x+4)2+(y+2)2=20考点:直线与圆的位置关系.专题:直线与圆.分析:由题意知OA⊥PA,BO⊥PB,四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,△AOB外接圆就是四边形AOBP的外接圆.解答:解:由题意知,OA⊥PA,BO⊥PB,∴四边形AOBP有一组对角都等于90°,∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,∵OP的中点为(2,1),OP=2,∴四边形AOBP的外接圆的方程为(x﹣2)2+(y﹣1)2=5,∴△AOB外接圆的方程为(x﹣2)2+(y﹣1)2=5.故选:A点评:本题考查圆的标准方程的求法,把求△AOB外接圆方程转化为求四边形AOBP的外接圆方程,体现了转化的数学思想.10.(5分)已知M(x,y)落在双曲线﹣=1的两条渐近线与抛物线y2=﹣2px(p>0)的准线所围成的封闭区域(包括边界)内,且点M的坐标(x,y)满足x+2y+a=0.若a的最大值为2﹣2,则p为()A.2 B.4 C.8 D.16考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据双曲线的渐近线公式和抛物线准线的公式,求出三条直线方程,从而得到可行域是图中△ABO及其内部,然后利用直线平移法,即可求得结论.解答:解:双曲线﹣=1的渐近线方程为y=±x,抛物线y2=﹣2px的准线为x=,∴抛物线y2=﹣8x的准线为x=2,因此作出三条直线,得可行域是△ABO及其内部(如图)将直线l:y=﹣x﹣进行平移,可得当直线y=﹣x﹣过点(,﹣p)时,目标函数a=﹣x﹣2y有最大值∴a max=﹣+p=2﹣2,∴p=4故选:B.点评:本题以简单的线性规划为载体,求目标函数的最大值,着重考查了双曲线、抛物线的标准方程和基本概念和简单的线性规划等知识,属于基础题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为.考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:将双曲线的方程化为标准方程,求出焦点,以及一条渐近线方程,再由点到直线的距离公式,计算即可得到.解答:解:双曲线C:x2﹣my2=3m即为﹣=1,则设F(,0),一条渐近线方程为y=x,则F到渐近线的距离为d==.故答案为:.点评:本题考查双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离的公式,考查运算能力,属于基础题.12.(5分)设f(x)=,若f(f(1))=1,则a=1.考点:函数的值.专题:计算题.分析:先根据分段函数求出f(1)的值,然后将0代入x≤0的解析式,最后根据定积分的定义建立等式关系,解之即可.解答:解:∵f(x)=∴f(1)=0,则f(f(1))=f(0)=1即∫0a3t2dt=1=t3|0a=a3解得:a=1故答案为:1.点评:本题主要考查了分段函数的应用,以及定积分的求解,同时考查了计算能力,属于基础题.13.(5分)已知向量与的夹角为120°,且||=||=1,=+,则与的夹角大小为30°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:向量与的夹角为120°,且||=||=1,可得=﹣.==.=.利用=即可得出.解答:解:∵向量与的夹角为120°,且||=||=1,∴=cos120°=﹣.===.===.∴===.∴与的夹角大小为30°.故答案为:30°.点评:本题考查了向量数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于基础题.14.(5分)一人在海面某处测得某山顶C的仰角为α(0°<α<45°),在海面上向山顶的方向行进m米后,测得山顶C的仰角为90°﹣α,则该山的高度为米.(结果化简)考点:正弦定理.专题:计算题;解三角形.分析:由题可知,在图中直角三角形,在Rt△OBC中,利用α角的正切求出BC;在△AC D 中,利用正弦定理,求出山高h.解答:解:令OC=h,在Rt△OBC中,由sin(90°﹣α)=,得BC=,在△ACB中,由正弦定理可知=,h=.即山高为:.故答案为:.点评:本题要求学生借助仰角关系构造直角三角形,并结合图形利用正弦定理解三角形.15.(5分)设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h∈M,且f(x+h)≥f(x),则称f(x)为M上的h高调函数.现给出下列命题:①函数f(x)=()x为R上的1高调函数;②函数f(x)=sin2x为R上的π高调函数;③若函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).④函数f(x)=1g(|x﹣2|+1)上的2高调函数.其中正确命题的序号是②③④(写出所有正确命题的序号).考点:抽象函数及其应用.专题:函数的性质及应用.分析:①函数f(x)=2﹣x为R上的递减函数,可判断①的正误;②由正弦函数的性质知函数f(x)=sin2x为R上的π高调函数,从而可判断②的正误;③函数f(x)=x2为[﹣1,+∞)上m高调函数,只有[﹣1,1]上至少需要加2,从而可求实数m 的取值范围;④f(x+2)=lg(|x|+1)≥f(x),知函数f(x)=lg(|x﹣2|+1)为[1,+∞)上的2高调函数,从而可知④的正误.解答:解:①∵函数f(x)=()x为R上的递减函数,故不存在x+l∈D,使得f(x+l)≥f(x),故①不正确;②∵sin2(x+π)≥sin2x,∴函数f(x)=sin2x为R上的π高调函数,故②正确;③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,只有[﹣1,1]上至少需要加2,∴实数m的取值范围是[2,+∞),故③正确;④∵f(x)=lg(|x﹣2|+1),x∈[1,+∞),∴f(x+2)=lg(|x|+1)≥f(x),∴函数f(x)=lg(|x﹣2|+1)为[1,+∞)上的2高调函数,故④正确;综上可知,真命题为②③④.故答案为:②③④点评:本题考查了函数单调性的判断与说明,以及基本初等函数的性质,对于一个新定义的概念,解题时要注意理解与把握.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知向量=(sinx,sinx),=(sinx,﹣cosx),设函数f(x)=•,(Ⅰ)求函数f(x)的最小正周期和单调递减区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=0,b+c=7,△ABC的面积为2,求边a的长.考点:三角函数中的恒等变换应用;平面向量数量积的运算;余弦定理.专题:三角函数的求值;三角函数的图像与性质;解三角形.分析:(Ⅰ)首先通过三角函数的恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的周期和单调区间.(Ⅱ)利用上步求得的函数关系式,利用定义域和三角形的面积求出角A的大小,进一步利用余弦定理求出边a的值.解答:解:(Ⅰ)已知向量=(sinx,sinx),=(sinx,﹣cosx),设函数f(x)=•==﹣=所以函数的最小正周期为:,令:(k∈Z)解得:所以函数的单调递减区间为:[](k∈Z)(Ⅱ)由f(x)=又因为:f(A)=0,0<A<π所以:所以:解得:又△ABC的面积为2所以:解得:bc=8b+c=7利用余弦定理:a2=b2+c2﹣2bccosA解得:a=5点评:本题考查的知识要点:三角函数关系式的恒等变形,正弦型函数的周期和单调区间的确定,利用三角形的角的范围求出角的大小,余弦定理的应用,属于基础题型.17.(12分)如图,简单组合体ABCDPE,其底面ABCD是边长为2的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.(1)在线段PB上找一点M,使得ME⊥平面PBD;(2)求平面PBE与平面PAB的夹角.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:综合题;空间位置关系与距离;空间角.分析:(1)M为线段PB的中点,连接AC与BD交于点F,连接MF,由F为BD的中点,知MF∥PD且MF=PD.由EC∥PD,且EC=PD,知四边形MFCE为平行四边形,由此能证明ME⊥面PDB;(2)求出E到平面PAB的距离、ME,即可求出平面PBE与平面PAB的夹角.解答:(1)证明:M为线段PB的中点,连接AC与BD交于点F,连接MF,∵F为BD的中点,∴MF∥PD且MF=PD.又EC∥PD,且EC=PD,∴MF∥EC,且MF=EC,∴四边形MFCE为平行四边形,∴ME∥FC.∵DB⊥AC,PD⊥平面ABCD,AC⊂面ABCD,∴AC⊥PD.又PD∩BD=D,∴AC⊥面PBD,∴ME⊥面PDB;(2)解:△PBE中,BE=PE=,PB=2,∴ME=,∵E到平面PAB的距离等于PD中点到PA的距离,∴E到平面PAB的距离等于,∴平面PBE与平面PAB的夹角的补角的余弦值为,∴平面PBE与平面PAB的夹角为.点评:本题考查直线与平面垂直的证明,考查平面与平面所成的二面角大小的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.18.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.考点:数列与不等式的综合;等差数列的通项公式;等比数列的通项公式;数列的求和.专题:综合题.分析:(Ⅰ)设d、q分别为数列{a n}、数列{b n}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{b n}的前三项,从而可得(2+d)2=2(4+2d),根据an+1>a n,可确定公差的值,从而可求数列{a n}的通项,进而可得公比q,故可求{b n}的通项公式(Ⅱ)表示出,利用错位相减法求和,即可求得c的最小值.解答:解:(Ⅰ)设d、q分别为数列{a n}、数列{b n}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{b n}的前三项,∴(2+d)2=2(4+2d)⇒d=±2.∵a n+1>a n,∴d>0.∴d=2,∴a n=2n﹣1(n∈N*).由此可得b1=2,b2=4,q=2,∴b n=2n(n∈N*).(Ⅱ),①∴.②①﹣②,得=+2(++…+)﹣,∴T n=3﹣.∴T n+﹣=3﹣≤2,∴满足条件恒成立的最小整数值为c=2.点评:本题以等差数列与等比数列为载体,考查数列通项公式的求解,考查数列与不等式的综合,考查错位相减法求数列的和,综合性强19.(12分)某市环保部门对市中心每天环境污染情况进行调查研究,发现一天中环境污染指数f(x)与时刻x(时)的关系为f(x)=a|﹣a|+a+,x∈[0,24],其中a是与气象有关的参数,且a∈(0,],用每天f(x)的最大值作为当天的污染指数,记作M(a).(Ⅰ)令t=,x∈[0,24],求t的取值范围;(Ⅱ)按规定,每天的污染指数不得超过2,问目前市中心的污染指数是否超标?考点:函数模型的选择与应用.专题:应用题;函数的性质及应用.分析:(Ⅰ)利用取倒数,求导数,确定函数的单调性,可得t的取值范围;(Ⅱ)分段求出每天的综合放射性污染指数不超过2时a的范围,即可得到结论.解答:解:(Ⅰ)当x=0时,t=0;当0<x≤24时,=x+.对于函数y=x+,∵y′=1﹣,∴当0<x<1时,y′<0,函数y=x+单调递减,当1<x≤24时,y′>0,函数y=x+单调递增,∴y∈[2,+∞).综上,t的取值范围是[0,];(Ⅱ)由(Ⅰ)知t的取值范围是[0,];当a∈(0,]时,记g(t)=|t﹣a|+a+,则g(t)=∵g(t)在[0,a]上单调递减,在(a,]上单调递增,∴g(t)的最大值只可能在t=0或t=时取得.从而M(a)=g()=﹣a2+a+.由,解得0<a≤,∴a∈(0,]时,污染指数不超标;a∈(,]时,污染指数超标.点评:本题主要考查了函数模型的选择与应用及分类讨论的思想,考查学生分析解决问题的能力,属于中档题.20.(13分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f (x)的单调区间与极值.解答:解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.点评:本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档.21.(14分)已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)设斜率为k的直线l与C相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由离心率及椭圆的短半轴长为半径的圆与直线x﹣y+=0相切求出a,b,从而得到椭圆的方程;(Ⅱ)设出直线方程,与椭圆方程联立,求出|AB|的距离,表示出△OAB的面积,利用基本不等式求最值.解答:解:(Ⅰ)由题意,e2=()2===,则a2=2b2;又∵原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切,则b==1,∴b2=1,a2=2;∴椭圆C的方程为+y2=1;(Ⅱ)证明:设直线l的方程为y=kx+m,k=1或2,A(x1,y1),B(x2,y2),由可得(1+2k2)x2+4kmx+2m2﹣2=0,所以△=16k2﹣8m2+8>0(*)x1+x2=,x1x2=,|AB|=•=•,由原点O到直线y=kx+m的距离d=,S△AOB=|AB|•d=,当k=1时,由S△AOB=,当m2=时,S△AOB的面积的最大值为S1=,验证(*)成立;当k=2时,由S△AOB=,当m2=时,S△AOB的面积的最大值为S2=,验证(*)成立.即有S1=S2.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,联立直线方程,运用韦达定理和弦长公式,以及基本不等式求最值,属于中档题.。

山东省潍坊市2015届高三数学上学期期中试卷理(含解析)

山东省潍坊市2015届高三数学上学期期中试卷理(含解析)

2014-2015学年山东省潍坊市高三(上)期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A. B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}2.(5分)(2015•眉山模拟)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.85.若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.6.△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.7.已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A. C. D.8.已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B. D.9.若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.310.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B. C.(﹣∞,﹣3] D.(﹣∞,5]二、填空题(本大题共5小题,每小题5分,共25分)11.已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n= .12.已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为.14.某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.17.已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.18.已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.19.已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).2014-2015学年山东省潍坊市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A. B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,由A为奇数集,求出A与B的交集即可.解答:解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=A.B.1 C.2 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由•=()•,再利用向量和的夹角等于45°,两个向量的数量积的定义,求出•的值.解答:解:由题意得 AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选B.点评:本题考查两个向量的数量积的定义,注意向量和的夹角等于45°这一条件的运用.7.已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A. C. D.考点:二次函数的性质.专题:函数的性质及应用.分析:先求出f(1)的值,通过讨论a的范围,得到不等式,从而求出a的范围.解答:解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.点评:本题考查了二次函数的性质,考查了分类讨论思想,是一道基础题.8.已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B. D.考点:两角和与差的正弦函数;函数的零点.专题:三角函数的图像与性质.分析:由题意可知g(x)=sin2x+cos2x与直线y=m在上两个交点,数形结合可得m的取值范围.解答:解:由题意可得函数g(x)=2sin(2x+)与直线y=m在上两个交点.由于x∈,故2x+∈,故g(x)∈.令2x+=t,则t∈,函数y=h(t)=2sint 与直线y=m在上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选B.点评:本题主要考查方程根的存在性及个数判断,两角和差的正弦公式,体现了转化与数形结合的数学思想,属于中档题.9.若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.3考点:简单线性规划.专题:不等式的解法及应用.分析:由目标函数z=x﹣2y的最大值为1,确定约束条件中a的值即可.解答:解:约束条件为,由,解得A(2,)是最优解,直线x+2y﹣a=0过点A(2,),∴a=3,故选:D.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B. C.(﹣∞,﹣3] D.(﹣∞,5]考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:本题根据二阶导数的定义及函数特征,研究原函数的二阶导数,求出m的取值范围,得到本题结论.解答:解:∵f(x)=x5﹣mx4﹣2x2,∴f′(x)=x4﹣mx3﹣4x,∴f″(x)=x3﹣mx2﹣4.∵f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,∴f″(x)>0.∴x3﹣mx2﹣4>0,x∈(1,3).∴,∵在(1,3)上单调递增,∴在(1,3)上满足:>1﹣4=﹣3.∴m≤﹣3.故答案为:C.点评:本题考查了二阶导数和恒成立问题,本题难度不大,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分)11.已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n= .考点:数列递推式.专题:等差数列与等比数列.分析:首先利用数列的递推关系求出,然后利用相减法得到,进一步求得数列是等比数列,利用关系式直接求出结果.解答:解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:点评:本题考查的知识要点:数列的递推关系式的应用,等比数列通项公式的求法.12.已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:设与的夹角为θ,则由题意可得 4﹣4+=10,求得cosθ的值,再结合θ∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,令x=﹣1,即可得到f(1)=0;②,利用y=f(x)为周期为2的偶函数,即可得到f(﹣2﹣x)=f(2+x)=f(﹣2+x),从而可判断②;③,利用y=f(x)为周期为2的函数,及x∈时,y=f(x)单调递减,可判断函数y=f(x)在是单调递减函数,可判断③;④,由②知y=f(x)关于x=﹣2对称,从而可判断④.解答:解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈时,y=f(x)单调递减,∴函数y=f(x)在是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间上单调递减,∴y=f(x)在区间上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间上单调递增,在区间上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.点评:本题考查考查命题的真假判断与应用,注重考查函数的单调性、周期性、对称性及函数的零点,考查分析与综合应用能力,属于难题.三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取EC中点G,连BG,GF,证明四边形ABGF为平行四边形,可得AF∥BG,利用线面平行的判定定理,即可得出结论;(Ⅱ)证明BG⊥DE,BG⊥CD,可得BG⊥平面CDE,利用面面垂直的判定定理,即可得出结论解答:证明:(Ⅰ)取EC中点G,连BG,GF.∵F是CD的中点,∴FG∥DE,且FG=DE.又∵AB∥DE,且AB=DE.∴四边形ABGF为平行四边形.∴AF∥BG.又BG⊂平面BCE,AF⊄平面BCE.∴AF∥平面BCE.(Ⅱ)∵AB⊥平面ACD,AF⊂平面ACD,∴AB⊥AF.∵AB∥DE,∴AF⊥DE.又∵△ACD为正三角形,∴AF⊥CD.∵BG∥AF,∴BG⊥DE,BG⊥CD.∵CD∩DE=D,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.17.已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.考点:余弦定理的应用;三角函数中的恒等变换应用.专题:综合题;解三角形.分析:(Ⅰ)先对函数解析式化简,利用三角函数的性质求得函数f(x)的单调递增区间.(Ⅱ)利用f(A)求得A,进而根据余弦定理构建b,c和a的关系,结合三角形的面积公式,即可求b+c的值.解答:解:(Ⅰ)解:f(x)=sinx(cosx+sinx)+cos2x﹣=sinxcosx+cos2x=sin(2x+)+由2x+∈(﹣+2kπ,+2kπ),可得函数f(x)的单调递增区间(﹣+kπ,+k π)(k∈Z);(Ⅱ)由题意f(A)=sin(2A+)+=,化简得 sin(2A+)=,∵A∈(0,π),∴A=;在△ABC中,根据余弦定理,得a2=b2+c2﹣2bccos =(b+c)2﹣3bc=3,∵S△ABC==bc•,∴bc=2∴b+c=3.点评:本题主要考查三角函数恒等变换的运用,余弦定理及三角形的面积公式的基本知识.18.已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:先根据对数函数的单调性,二次函数的最值以及二次函数的图象即可求出命题p,q 下a的取值范围,而根据p∨q为真名题,p∧q为假命题知p真q假,或p假q真,分别求出这两种情况下的a的取值范围再求并集即可.解答:解:由已知条件知ln(x+1)<恒成立,即:恒成立,即:a在x∈(﹣1,2)上恒成立;函数在(﹣1,2)上的最大值为;∴;即p:a;设f(x)=x2+(1﹣a)x+1,则由命题q:,解得3;即q:3;若p∨q为真命题,p∧q为假命题,则p,q一真一假;①若p真q假,则:,∴;②若p假q真,则:,∴a∈∅;∴实数a的取值范围为.点评:考查对数函数的单调性,对数函数的定义域,以及配方法求二次函数的最值,二次函数的图象的运用,以及p∨q,p∧q真假和p,q真假的关系.19.已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.考点:数列的求和;等比数列的通项公式;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)直接利用前n项和公式及等比中项求出数列的通项公式.(Ⅱ)根据(Ⅰ)的结论及等差数列的通项公式,进一步利用乘公比错位相减法求出新数列的前n项和.解答:解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:点评:本题考查的知识要点:等比数列通项公式和前n项和公式,等差数列的通项公式和前n项和公式,利用乘公比错位相减法求数列的和及相关的运算问题20.某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?考点:根据实际问题选择函数类型.专题:综合题;导数的综合应用.分析:(Ⅰ)根据生产这批试剂厂家的生产成本有三个方面,可得函数关系P(x),利用配方法求出P(x)的最小值;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),利用导数,可得结论.解答:解:(Ⅰ)P(x)=÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.点评:本题考查根据实际问题选择函数类型,考查配方法,考查导数知识的综合运用,属于中档题.21.已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(Ⅰ)求函数f(x)=e x﹣x﹣1的单调递减区间,可以先求函数f(x)=e x﹣x﹣1的导函数,然后由导函数式小于零求出x的范围,从而得到函数的减区间.(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=﹣xlnx(x>0),研究函数h(x)的单调性和最值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,要证明f(g(x))<f(x),只要证明g(x)<x即可.解答:解:(Ⅰ)函数的定义域为(﹣∞,+∞),a=1时,f′(x)=(e x﹣x﹣1)′′=e x﹣1.由f′(x)<0,得e x﹣1<0,e x<1,∴x<0,所以函数的单调减区间为(﹣∞,0),单调增区间是(0,+∞).(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<<e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1或a=时,函数F(x)有且仅有一个零点;当a<e﹣1或a>时,函数F(x)没有零点.(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>x;故对任意x>0,g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0xe x>e x﹣1;所以,只要证:∀x>0xe x﹣e x+1>0;令H(x)=xe x﹣e x+1,则H′(x)=xe x>0;故函数H(x)在(0,+∞)上单调递增;∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f<f(x).点评:本题以函数为载体,主要考查导数的几何意义,考查导数在研究函数的单调性和最值中的应用,考查恒成立问题的解决方法,属于中档题.。

山东省潍坊市2015届高三第一次模拟考试_数学理_Word版含答案

山东省潍坊市2015届高三第一次模拟考试_数学理_Word版含答案

潍坊市高三一模理科数学试卷一、选择题1.集合{}1()1,lg(2)2x M x N x y x ⎧⎫=≥==+⎨⎬⎩⎭,则M N ⋂等于A [0,)+∞B (2,0]-C (2,)-+∞D (,2)[0,)-∞-⋃+∞ 2.设复数12Z Z ⋅在复平面内的对应点关于虚轴对称,若112Z i =-,则21Z Z 的虚部为 A35 B 35- C 45 D 45- 3.如果双曲线22221(0,0)x y a b a b-=>>0y -=平行,则双曲线的离心率为ABC 2D 34.已知函数()y f x =的定义域为{},0x x R x ∈≠,且满足()()0f x f x +-=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为5.则可以说其亲属的饮食习惯与年龄有关的把握为A 90%B 95%C 99%D 99.9%附:参考公式和临界值表22112212211212()n n n n n n n n n χ++++-=6.下列结论中正确的是:①命题:3(0,2),3xx x ∀∈>的否定是3(0,2),3xx x ∃∈≤; ②若直线l 上有无数个点不在平面α内,则//l α;③若随机变量ξ服从正态分布2(1,)N δ,且(2)0.8P ξ<=,则(01)0.2P ξ<<=; ④等差数列{}n a 的前n 项和为n S ,若43a =,则721S =.A ①②B ②③C ③④D ①④ 7.如图,在ABC ∆中,点D 在AC 上,,5,sin 5AB BD BC BD ABC ⊥==∠=,则CD 的长为 AB 4 CD 58.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是 A3B 2π C3 D π 9.已知抛物线方程为28y x =,直线l 的方程为20x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,点P 到l 的距离为2d ,则12d d +的最小值为 A2 BC2 D210.对于实数,m n ,定义运算“⊕”,2221()()m mn m n m n n mn m n ⎧-+-≤⎪⊕=⎨->⎪⎩,设()(21)(1)f x x x =-⊕-,且关于x 的方程()f x a =恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是 A 1(,0)32- B 1(,0)16- C 1(0,)32 D 1(0,)16二、填空题11.不等式316x x ++-≥的解集是_________________________. 12.运行右边的程序框图,如果输入的x 的值在区间[2,3]-内,那么 输出的()f x 的取值范围是________________13.若变量,x y 满足约束条件203260x y x y y k +-≥⎧⎪--≤⎨⎪≥⎩,且3z x y =+的最小值为4,则k =________14.对于实数x ,[]x 表示不超过x 的最大整数,观察下列等式:3++=10++++=21++++++=按此规律第n 个等式的等号右边的结果是____________15.如图,正方形ABCD 中,E 为AB 上一点,P 为以点A 为圆心,以AB 为半径的圆弧上一点,若(0)AC xDE yAP xy =+≠,则以下说法正确的是_______________①若点E 和A 重合,点P 和B 重合,则1,1x y =-=; ②若点E 是线段AB 的中点,则点P 是圆弧DB 的中点;③若点E 和B 重合,且点P 为靠近D 点的圆弧的三等分点,则3x y +=;④若点E 和B 重合,点P 为圆弧DB 上任一点,则动点(,)x y 的轨迹为双曲线的一部分. 三、解答题16.已知函数2()sin(2)4sin 2(0)6f x x x πωωω=--+>,其图象与x 轴相邻两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将函数()f x 的图象向左平移(0)m m >个长度单位得到函数()g x 的图象恰好经过点(,0)3π-,求当m 取最小值时,()g x 在区间7[,]612ππ-上的单调递增区间.17.如图,已知平行四边形ABCD 与直角梯形ABEF 所在平面互相垂直,其中//,BE AF AB AF ⊥,1,,24AB BE AF BC CBA π===∠=,P 为DF 的中点. (1)求证://PE 平面ABCD ;(2)求平面DEF 与平面ABCD 所成角(锐角)的余弦值.18.某校从参加某次数学能力测试的学生中抽出36名学生,统计了他们 的成绩(成绩均为整数且满分为120分),成绩的频率分布直方图如图所 示,其中成绩分组区间是:[80,90),[90,100),[100,110),[110,120].(1)在这36名学生中随机抽取3名学生,求同时满足下列两个条件的事件的概率:①有且仅有1名学生的 成绩不低于110分;②成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变 量X ,求X 的分布列及其数学期望.19.已知各项都为正数的等比数列{}n a 的前n 项和为n S ,数列{}n b 的通项公式()1()n n n b n n ⎧=⎨+⎩为偶数为奇数,若354=1,S b b +是2a 与4a 的等比中项. (1)求数列{}n a 的通项公式; (2)求数列{}n n a b 的前n 项和n T .20.已知点M 是圆心为1C 的圆22(1)8x y ++=上的动点,点2(1,0)C ,若线段2MC 的中垂线交1MC 于点N . (1)求动点N 的轨迹方程;(2)若直线:l y kx t =+是圆221x y +=的切线,且l 与N 点轨迹交于不同的两点,,P Q O 为坐标原点,若OP OQ μ⋅=,且2435μ≤≤,求OPQ ∆面积的取值范围.21.已知函数1()ln f x x a x x=--.(1)若函数()f x 无极值点,求a 的取值范围; (2)设21()(ln )g x x x x=+-。

【真题】15年山东省潍坊市高三(上)数学期中试卷含答案(理科)

【真题】15年山东省潍坊市高三(上)数学期中试卷含答案(理科)

2014-2015学年山东省潍坊市高三(上)期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.[﹣1,3]B.{﹣1,3}C.{﹣1,1}D.{﹣1,1,3}2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.85.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.[1,+∞)B.(﹣∞,1]C.[﹣1,1]D.[﹣2,2]8.(5分)已知函数f(x)=sin2x+cos2x﹣m在[0,]上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.[1,2) C.(﹣1,2]D.[1,2]9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.310.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.[,5]C.(﹣∞,﹣3]D.(﹣∞,5]二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈[0,1]时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[4,5]是单调递递增;④若方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD 的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S=,求b+c的值.△ABC18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f[g(x)]<f(x).2014-2015学年山东省潍坊市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.[﹣1,3]B.{﹣1,3}C.{﹣1,1}D.{﹣1,1,3}【解答】解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=[﹣1,3),∵A为奇数集合,∴A∩B={﹣1,1},故选:C.2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>【解答】解:A.c=0时不成立;B.∵a<b<0,∴a2>ab>b2,正确;C.取a=﹣1,b=﹣2时,=﹣1,=﹣,则>不成立;D.若a>b>0,则<,因此不正确.故选:B.3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:f(x)=2sin(x+)=2cosx,其图象对称轴是x=kπ,k∈Z,“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的充分不必要条件,故选:A.4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.8【解答】解:由等差数列的性质得,2a5=a3+a7=﹣6,则a5=﹣3,又a1=﹣11,所以d==2,所以a n=a1+(n﹣1)d=2n﹣13,S n==n2﹣12n,所以当n=6时,S n取最小值,故选:B.5.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.【解答】解:由图象可知0<a<1且0<f(0)<1,即即解②得log a1<log a b<log a a,∵0<a<1∴由对数函数的单调性可知a<b<1,结合①可得a,b满足的关系为0<a<b<1,由指数函数的图象和性质可知,g(x)=a x+b的图象是单调递减的,且一定在x轴上方.故选:B.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.【解答】解:由题意得AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选:B.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.[1,+∞)B.(﹣∞,1]C.[﹣1,1]D.[﹣2,2]【解答】解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣[(﹣a)2+2a]≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣[﹣(﹣a)2+2a]≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在[0,]上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.[1,2) C.(﹣1,2]D.[1,2]【解答】解:由题意可得函数g(x)=2sin(2x+)与直线y=m在[0,]上两个交点.由于x∈[0,],故2x+∈[,],故g(x)∈[﹣1,2].令2x+=t,则t∈[,],函数y=h(t)=2sint 与直线y=m在[,]上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选:B.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.3【解答】解:约束条件为,由,解得A(2,)是最优解,直线x+2y﹣a=0过点A(2,),∴a=3,故选:D.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.[,5]C.(﹣∞,﹣3]D.(﹣∞,5]【解答】解:∵f(x)=x5﹣mx4﹣2x2,∴f′(x)=x4﹣mx3﹣4x,∴f″(x)=x3﹣mx2﹣4.∵f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,∴f″(x)>0.∴x3﹣mx2﹣4>0,x∈(1,3).∴,∵在(1,3)上单调递增,∴在(1,3)上满足:>1﹣4=﹣3.∴m≤﹣3.故选:C.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.【解答】解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.【解答】解:设与的夹角为θ,则由题意可得4﹣4+=10,即4﹣4×1×3×cosθ+18=10,求得cosθ=,再结合θ∈[0,π),可得θ=,故答案为:.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为3.【解答】解:设幂函数解析式为y=x a,∵曲线经过点B(,2),∴a=3,y=x3,∴长方形部分面积S==4,=4﹣=4﹣x4|=3;阴影部分面积S阴影故答案为:3.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为30m.【解答】解:如图所示,依题意可知∠PCB=45°,∠PBC=180°﹣60°﹣15°=105°∴∠CPB=180°﹣45°﹣105°=30°由正弦定理可知BP=•sin∠BCP=20米∴在Rt△BOP中,OP=PB•sin∠PBO=20×=30米即旗杆的高度为30米故答案为:30.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈[0,1]时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[4,5]是单调递递增;④若方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)【解答】解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈[0,1]时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈[0,1]时,y=f(x)单调递减,∴函数y=f(x)在[4,5]是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间[0,1]上单调递减,∴y=f(x)在区间[﹣1,0]上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间[﹣3,﹣2]上单调递增,在区间[﹣2,﹣1]上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在[﹣3,﹣1]上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD 的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.【解答】证明:(Ⅰ)取EC中点G,连BG,GF.∵F是CD的中点,∴FG∥DE,且FG=DE.又∵AB∥DE,且AB=DE.∴四边形ABGF为平行四边形.∴AF∥BG.又BG⊂平面BCE,AF⊄平面BCE.∴AF∥平面BCE.(Ⅱ)∵AB⊥平面ACD,AF⊂平面ACD,∵AB∥DE,∴AF⊥DE.又∵AC=AD,∴AF⊥CD.∵BG∥AF,∴BG⊥DE,BG⊥CD.∵CD∩DE=D,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S=,求b+c的值.△ABC【解答】解:(Ⅰ)解:f(x)=sinx(cosx+sinx)+cos2x﹣=sinxcosx+cos2x=sin(2x+)+由2x+∈(﹣+2kπ,+2kπ),可得函数f(x)的单调递增区间(﹣+kπ,+kπ)(k∈Z);(Ⅱ)由题意f(A)=sin(2A+)+=,化简得sin(2A+)=,∵A∈(0,π),∴A=;在△ABC中,根据余弦定理,得a2=b2+c2﹣2bccos =(b+c)2﹣3bc=3,∵S==bc•,∴bc=2△ABC18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.【解答】解:由已知条件知ln(x+1)<恒成立,即:恒成立,即:a在x∈(﹣1,2)上恒成立;函数在(﹣1,2)上的最大值为;∴;即p:a;设f(x)=x2+(1﹣a)x+1,则由命题q:,解得3;即q:3;若p∨q为真命题,p∧q为假命题,则p,q一真一假;①若p真q假,则:,∴;②若p假q真,则:,∴a∈∅;∴实数a的取值范围为.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?【解答】解:(Ⅰ)P(x)=[50x+7500+20x+x(x+﹣30)]÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f[g(x)]<f(x).【解答】解:(Ⅰ)函数的定义域为(﹣∞,+∞),a=1时,f′(x)=(e x﹣x﹣1)′′=e x ﹣1.由f′(x)<0,得e x﹣1<0,e x<1,∴x<0,所以函数的单调减区间为(﹣∞,0),单调增区间是(0,+∞).(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<<e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1或a=时,函数F(x)有且仅有一个零点;当a<e﹣1或a>时,函数F(x)没有零点.(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>x;故对任意x>0,g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f[g(x)]<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0xe x>e x﹣1;所以,只要证:∀x>0xe x﹣e x+1>0;令H(x)=xe x﹣e x+1,则H′(x)=xe x>0;故函数H(x)在(0,+∞)上单调递增;∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f[g(x)]<f(x).赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y fu =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的yxo最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。

山东省潍坊市2015届高三上学期期中考试数学(理)试题word版含答案

山东省潍坊市2015届高三上学期期中考试数学(理)试题word版含答案

高三数学(理)2014.11第Ⅰ卷一、选择题(本大题共10 个小题,每题 5 分,共50 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1、已知会合A{ x | x2k1,k Z}, B x10},则A B ( ){ x |3xA.1,3 B .1,3C. 1,1 D .1,1,32、若a,b,c 为实数,则以下命题正确的选项是()A.若a b ,则ac2bc 2B.若 a b 0 ,则a2ab b2C.若 a b 0 ,则11D.若a ba b0 ,则b aa b3、“直线x2k (k Z ) ”是“函数 f x 2sin( x) 图象的对称轴”的()2A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件4、设等差数列a n的前n项和为S n,已知a11, a3a7 6 ,当 S n获得最小值是,n ()A.5B.6C.7D.85、若函数f x log a ( x b)(a 0,a 1) 的大概图象如右图所示,则函数g x a x b 的大概图象为()、ABC 中,C 90 ,CA CB2,点在边AB上,且知足 BM3MB ,则 CM CB6M ()A.1B.1C.2D.123x2 2 x x0,若 f a f a 2 f 1 ,则a的取值范围是()7、已知函数f x2x x0x2A . 1,B .,1C .1,1 D.2,28、已知函数 fx3sin 2x cos2 x m 在 [0,] 上有两个零点,则实数 m 的取值范围是2()A .1,2B. 1,2C .1,2D .1,2x 2 09、若实数 x, y 知足不等式 y1 0 ,且目标函数 z x2 y 的最大值为 1,则 a ()x 2 y aA .1B .1C .2D .33210、设函数 yf x在区间a,b 上的导函数为 f x , f x 在区间 a, b 上的导函数为f x ,若区间 a,b 上 fx0 ,则称函数 f x 在区间 a,b 上为“凹函数” ,已知f x1 x 5 1 x 420122x 2 在 1,3 上为“凹函数” ,则实数 m 的取值范围是()A . (,31) B . [31,5]C .,3 D.,599第Ⅱ卷(非选择题 共 100 分)二、填空题:本大题共 5 小题,每题 5 分,共 25 分,把答案填在答题卷的横线上。

山东省潍坊市高三数学上学期期中试卷 理(含解析)

山东省潍坊市高三数学上学期期中试卷 理(含解析)

山东省潍坊市2015届高三上学期期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1, 3} C.{﹣1,1} D.{﹣1,1,3}2.(5分)若a、b、c为实数,则下列命题正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>ab>b2C.若a<b,则>D.若a>b>0,则>3.(5分)“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.85.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.310.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.C.(﹣∞,﹣3)D.(﹣∞,5]二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.13.(5分)如图,长方形四个顶点为O(0,0),A(,0),B(,2),C(0,2),若幂函数y=f(x)图象经过点B,则图中阴影部分的面积为.14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为m.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是.(请把所有正确命题的序号都填上)三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥A B,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).山东省潍坊市2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x=2k﹣1,k∈Z},B={x|≤0},则A∩B=()A.B.{﹣1,3} C.{﹣1,1} D.{﹣1,1,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,由A为奇数集,求出A与B的交集即可.解答:解:由B中不等式变形得:(x+1)(x﹣3)≤0,且x﹣3≠0,解得:﹣1≤x<3,即B=“直线x=2kπ(k∈Z)”是“函数f(x)=2sin(x+)图象的对称轴”的充分不必要条件,故选:A.点评:在充要条件判断时,抓住“小能推大,大不能推小”,认真判断,不可出错.4.(5分)设等差数列{a n}的前n项为S n,已知a1=﹣11,a3+a7=﹣6,当S n取最小值时,n=()A.5 B.6 C.7 D.8考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和题意求出a5的值,再求出公差d、a n和S n,对S n化简后利用二次函数的性质,求出S n取最小值时对应的n的值.解答:解:由等差数列的性质得,2a5=a3+a7=﹣6,则a5=﹣3,又a1=﹣11,所以d==2,所以a n=a1+(n﹣1)d=2n﹣13,S n==n2﹣12n,所以当n=6时,S n取最小值,故选:B.点评:本题考查等差数列的性质、通项公式,以及利用二次函数的性质求S n最小值的问题.5.(5分)若函数f(x)=log a(x+b)(a>0,a≠1)的大致图象如图所示,则函数g(x)=a x+b的大致图象为()A.B.C.D.考点:对数函数的图像与性质;指数函数的图像变换.专题:函数的性质及应用.分析:由图象可知对数的底数满足0<a<1,且0<f(0)<1,再根据指数函数g(x)=a x+b的性质即可推得.解答:解:由图象可知0<a<1且0<f(0)<1,即即解②得log a1<log a b<log a a,∵0<a<1∴由对数函数的单调性可知a<b<1,结合①可得a,b满足的关系为0<a<b<1,由指数函数的图象和性质可知,g(x)=a x+b的图象是单调递减的,且一定在x轴上方.故选:B.点评:本小题主要考查对数函数的图象、指数函数的图象、对数函数的图象的应用、方程组的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.6.(5分)△ABC中,∠C=90°,CA=CB=2,点M在边AB上,且满足=3,则•=()A.B.1 C.2 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由•=()•,再利用向量和的夹角等于45°,两个向量的数量积的定义,求出•的值.解答:解:由题意得 AB=2,△ABC是等腰直角三角形,•=()•=0+=×=1.故选B.点评:本题考查两个向量的数量积的定义,注意向量和的夹角等于45°这一条件的运用.7.(5分)已知函数f(x)=,若f(a)﹣f(﹣a)≤2f(1),则a的取值范围是()A.C.D.考点:二次函数的性质.专题:函数的性质及应用.分析:先求出f(1)的值,通过讨论a的范围,得到不等式,从而求出a的范围.解答:解:∵f(1)=﹣3,∴f(a)﹣f(﹣a)≤﹣6,a≥0时,﹣a2﹣2a﹣≤﹣6,整理得:a2+2a﹣3≥0,解得:a≥1,a<0时,a2﹣2a﹣≤﹣6,整理得:a2﹣2a+3≤0,无解,故选:A.点评:本题考查了二次函数的性质,考查了分类讨论思想,是一道基础题.8.(5分)已知函数f(x)=sin2x+cos2x﹣m在上有两个零点,则实数m的取值范围是()A.(﹣1,2)B.D.考点:两角和与差的正弦函数;函数的零点.专题:三角函数的图像与性质.分析:由题意可知g(x)=sin2x+cos2x与直线y=m在上两个交点,数形结合可得m 的取值范围.解答:解:由题意可得函数g(x)=2sin(2x+)与直线y=m在上两个交点.由于x∈,故2x+∈,故g(x)∈.令2x+=t,则t∈,函数y=h(t)=2sint 与直线y=m在上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤m<2,故选B.点评:本题主要考查方程根的存在性及个数判断,两角和差的正弦公式,体现了转化与数形结合的数学思想,属于中档题.9.(5分)若实数x,y满足不等式组,且目标函数z=x﹣2y的最大值为1,则a=()A.B.C.2 D.3考点:简单线性规划.专题:不等式的解法及应用.分析:由目标函数z=x﹣2y的最大值为1,确定约束条件中a的值即可.解答:解:约束条件为,由,解得A(2,)是最优解,直线x+2y﹣a=0过点A(2,),∴a=3,故选:D.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.(5分)设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0,则称函数f(x)在区间(a,b)上为“凹函数”,已知f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,则实数m的取值范围为()A.(﹣∞,)B.C.(﹣∞,﹣3)D.(﹣∞,5]考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:本题根据二阶导数的定义及函数特征,研究原函数的二阶导数,求出m的取值范围,得到本题结论.解答:解:∵f(x)=x5﹣mx4﹣2x2,∴f′(x)=x4﹣mx3﹣4x,∴f″(x)=x3﹣mx2﹣4.∵f(x)=x5﹣mx4﹣2x2在区间(1,3)上为“凹函数”,∴f″(x)>0.∴x3﹣mx2﹣4>0,x∈(1,3).∴,∵在(1,3)上单调递增,∴在(1,3)上满足:>1﹣4=﹣3.∴m≤﹣3.故答案为:C.点评:本题考查了二阶导数和恒成立问题,本题难度不大,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)已知数列{a n}的前n项和S n=a n+,则{a n}的通项公式a n=.考点:数列递推式.专题:等差数列与等比数列.分析:首先利用数列的递推关系求出,然后利用相减法得到,进一步求得数列是等比数列,利用关系式直接求出结果.解答:解:已知数列{a n}的前n项和S n=a n+,①根据递推关系式:(n≥2)②所以:①﹣②得:整理得:数列{a n}是以a1为首项,公比为的等比数列.当n=1时,解得:a1=1所以:=故答案为:点评:本题考查的知识要点:数列的递推关系式的应用,等比数列通项公式的求法.12.(5分)已知向量,满足||=1,||=3,|2﹣|=,则与的夹角为.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:设与的夹角为θ,则由题意可得 4﹣4+=10,求得cosθ 的值,再结合θ∈14.(5分)某中学举行升旗仪式,如图所示,在坡度为15°的看台上,从正对旗杆的一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离AB=10m,则旗杆CD的高度为30m.考点:解三角形的实际应用.专题:计算题;解三角形.分析:先画出示意图,根据题意可求得∠PCB和∠PEC,转化为∠CPB,然后利用正弦定理求得BP,最后在Rt△BOP中求出OP即可.解答:解:如图所示,依题意可知∠PCB=45°,∠PBC=180°﹣60°﹣15°=105°∴∠CPB=180°﹣45°﹣105°=30°由正弦定理可知BP=•sin∠BCP=20米∴在Rt△BOP中,OP=PB•sin∠PBO=20×=30米即旗杆的高度为30米故答案为:30.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用正弦定理以及解三角形解答.15.(5分)已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1),且当x∈时,y=f(x)单调递减,给出以下四个命题:①f(1)=0;②直线x=﹣2为函数y=f(x)图象的一条对称轴;③函数y=f(x)在是单调递递增;④若方程f(x)=m在上的两根为x1,x2,则x1+x2=﹣4.以上命题正确的是①②④.(请把所有正确命题的序号都填上)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,令x=﹣1,即可得到f(1)=0;②,利用y=f(x)为周期为2的偶函数,即可得到f(﹣2﹣x)=f(2+x)=f(﹣2+x),从而可判断②;③,利用y=f(x)为周期为2的函数,及x∈时,y=f(x)单调递减,可判断函数y=f(x)在是单调递减函数,可判断③;④,由②知y=f(x)关于x=﹣2对称,从而可判断④.解答:解:对于①,∵f(x+2)=f(x)+f(1),∴f(﹣1+2)=f(﹣1)+f(1),∴f(﹣1)=0,又f(x)为偶函数,∴f(﹣1)=f(1)=0,故①正确;且当x∈时,y=f(x)单调递减,对于②,由①知f(1)=0,∴f(x+2)=f(x),∴y=f(x)为周期为2的偶函数,∴f(﹣2﹣x)=f(2+x)=f(﹣2+x),∴y=f(x)关于x=﹣2对称,故②正确;对于③,∵f(x+2)=f(x),∴y=f(x)为周期为2的函数,又x∈时,y=f(x)单调递减,∴函数y=f(x)在是单调递减函数,故③错误;对于④,∵偶函数y=f(x)在区间上单调递减,∴y=f(x)在区间上单调递增,又y=f(x)为周期为2的函数,∴y=f(x)在区间上单调递增,在区间上单调递减,又y=f(x)关于x=﹣2对称,∴当方程f(x)=m在上的两根为x1,x2时,x1+x2=﹣4,故④正确.综上所述,①②④正确.故答案为:①②④.点评:本题考查考查命题的真假判断与应用,注重考查函数的单调性、周期性、对称性及函数的零点,考查分析与综合应用能力,属于难题.三、解答题(本大题共6小题,共75分,解答时写出文字说明,证明过程或演算步骤)16.(12分)如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取EC中点G,连BG,GF,证明四边形ABGF为平行四边形,可得AF∥BG,利用线面平行的判定定理,即可得出结论;(Ⅱ)证明BG⊥DE,BG⊥CD,可得BG⊥平面CDE,利用面面垂直的判定定理,即可得出结论解答:证明:(Ⅰ)取EC中点G,连BG,GF.∵F是CD的中点,∴FG∥DE,且FG=DE.又∵AB∥DE,且AB=DE.∴四边形ABGF为平行四边形.∴AF∥BG.又BG⊂平面BCE,AF⊄平面BCE.∴AF∥平面BCE.(Ⅱ)∵AB⊥平面ACD,AF⊂平面ACD,∴AB⊥AF.∵AB∥DE,∴AF⊥DE.又∵△ACD为正三角形,∴AF⊥CD.∵BG∥AF,∴BG⊥DE,BG⊥CD.∵CD∩DE=D,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.17.(12分)已知函数f(x)=sinx•cos(x﹣)+cos2x﹣.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若f(A)=,a=,S△ABC=,求b+c的值.考点:余弦定理的应用;三角函数中的恒等变换应用.专题:综合题;解三角形.分析:(Ⅰ)先对函数解析式化简,利用三角函数的性质求得函数f(x)的单调递增区间.(Ⅱ)利用f(A)求得A,进而根据余弦定理构建b,c和a的关系,结合三角形的面积公式,即可求b+c的值.解答:解:(Ⅰ)解:f(x)=sinx(cosx+sinx)+cos2x﹣=sinxcosx+cos2x=sin(2x+)+由2x+∈(﹣+2kπ,+2kπ),可得函数f(x)的单调递增区间(﹣+kπ,+kπ)(k∈Z);(Ⅱ)由题意f(A)=sin(2A+)+=,化简得 sin(2A+)=,∵A∈(0,π),∴A=;在△ABC中,根据余弦定理,得a2=b2+c2﹣2bccos =(b+c)2﹣3bc=3,∵S△ABC==bc•,∴bc=2∴b+c=3.点评:本题主要考查三角函数恒等变换的运用,余弦定理及三角形的面积公式的基本知识.18.(12分)已知a>0,给出下列两个命题:p:函数f(x)=ln(x+1)﹣ln小于零恒成立;q:关于x的方程x2+(1﹣a)x+1=0,一个根在(0,1)上,另一个根在(1,2)上,若p∨q 为真命题,p∧q为假命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:先根据对数函数的单调性,二次函数的最值以及二次函数的图象即可求出命题p,q下a的取值范围,而根据p∨q为真名题,p∧q为假命题知p真q假,或p假q真,分别求出这两种情况下的a的取值范围再求并集即可.解答:解:由已知条件知ln(x+1)<恒成立,即:恒成立,即:a在x∈(﹣1,2)上恒成立;函数在(﹣1,2)上的最大值为;∴;即p:a;设f(x)=x2+(1﹣a)x+1,则由命题q:,解得3;即q:3;若p∨q为真命题,p∧q为假命题,则p,q一真一假;①若p真q假,则:,∴;②若p假q真,则:,∴a∈∅;∴实数a的取值范围为.点评:考查对数函数的单调性,对数函数的定义域,以及配方法求二次函数的最值,二次函数的图象的运用,以及p∨q,p∧q真假和p,q真假的关系.19.(12分)已知S n是等比数列{a n}的前n项和,a1>0,S1,S2,S3成等差数列,16是a2和a8的等比中项.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等差数列{b n}中,b1=1,前9项和等于27,令c n=2a n•b n,求数列{c n}的前n项和T n.考点:数列的求和;等比数列的通项公式;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)直接利用前n项和公式及等比中项求出数列的通项公式.(Ⅱ)根据(Ⅰ)的结论及等差数列的通项公式,进一步利用乘公比错位相减法求出新数列的前n项和.解答:解:(Ⅰ)设数列{a n}的公比为q,已知S n是等比数列{a n}的前n项和,a1>0,S4,S2,S3成等差数列,则:2S2=S3+S4解得:q=﹣2或1(舍去)由于:16是a2和a8的等比中项解得:a1=1所以:(Ⅱ)等差数列{b n}中,设公差为d,b1=1,前9项和等于27.则:解得:d=所以:令c n=2a n b n==(n+1)(﹣2)n﹣1T n=c1+c2+…+c n﹣1+c n=2•(﹣2)0+3•(﹣2)1+…+(n+1)(﹣2)n﹣1①﹣2T n=2•(﹣2)1+3•(﹣2)2+…+(n+1)(﹣2)n②①﹣②得:3]﹣(n+1)(﹣2)n解得:点评:本题考查的知识要点:等比数列通项公式和前n项和公式,等差数列的通项公式和前n项和公式,利用乘公比错位相减法求数列的和及相关的运算问题20.(13分)某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q(x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?考点:根据实际问题选择函数类型.专题:综合题;导数的综合应用.分析:(Ⅰ)根据生产这批试剂厂家的生产成本有三个方面,可得函数关系P(x),利用配方法求出P(x)的最小值;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),利用导数,可得结论.解答:解:(Ⅰ)P(x)=÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.点评:本题考查根据实际问题选择函数类型,考查配方法,考查导数知识的综合运用,属于中档题.21.(14分)已知函数f(x)=e x﹣1﹣ax(a∈R).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)﹣xlnx零点的个数;(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,当a=1时,求证:f<f(x).考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(Ⅰ)求函数f(x)=e x﹣x﹣1的单调递减区间,可以先求函数f(x)=e x﹣x﹣1的导函数,然后由导函数式小于零求出x的范围,从而得到函数的减区间.(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=﹣xlnx(x>0),研究函数h(x)的单调性和最值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,要证明f(g(x))<f(x),只要证明g(x)<x即可.解答:解:(Ⅰ)函数的定义域为(﹣∞,+∞),a=1时,f′(x)=(e x﹣x﹣1)′′=e x ﹣1.由f′(x)<0,得e x﹣1<0,e x<1,∴x<0,所以函数的单调减区间为(﹣∞,0),单调增区间是(0,+∞).(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得a=﹣lnx(x>0),令h(x)=﹣lnx(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,2]上单调递增,故h(x)≥h(1)=e﹣1.又h(2)=当a=1时,对∀x>0,有f(x)>f(lna)=0,即e x﹣1>x,即>1,当e﹣1<a<<e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1或a=时,函数F(x)有且仅有一个零点;当a<e﹣1或a>时,函数F(x)没有零点.(Ⅲ)由(Ⅰ)知,当a=1时f(x)在(0,+∞)上单调递增,且f(0)=0;∴对x>0时,有f(x)>0,则e x﹣1>x;故对任意x>0,g(x)=ln(e x﹣1)﹣lnx>0;所以,要证f<f(x),只需证:∀x>0,g(x)<x;只需证:∀x>0,ln(e x﹣1)﹣lnx<x;即证:ln(e x﹣1)<lnx+lne x;即证:∀x>0xe x>e x﹣1;所以,只要证:∀x>0xe x﹣e x+1>0;令H(x)=xe x﹣e x+1,则H′(x)=xe x>0;故函数H(x)在(0,+∞)上单调递增;∴H(x)>H(0)=0;∴对∀x>0,xe x﹣e x+1>0成立,即g(x)<x,∴f<f(x).点评:本题以函数为载体,主要考查导数的几何意义,考查导数在研究函数的单调性和最值中的应用,考查恒成立问题的解决方法,属于中档题.。

山东省潍坊市重点2015届高三上学期期中考试数学(理)试题 Word版含解析

山东省潍坊市重点2015届高三上学期期中考试数学(理)试题 Word版含解析

高三阶段性教学质量检测数学(科学)试题第Ⅰ卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

【题文】1.集合A={0,2,a},B={1,2, 2a },若A ∪B={-4,0,1,2,16},则a 的值为( )A .1B .2C .-4D .4 【知识点】集合及其运算A1【答案解析】C ∵集合A={0,2,a},B={1,2,a 2},A ∪B={-4,0,1,2,16}, ∴a ∈{-4,16},a 2∈{-4,16},故a=-4,或a 2=-4(舍去),故a=-4,故选C【思路点拨】由A={0,2,a},B={1,2,a 2},若A ∪B={-4,0,1,2,16},可得:a=-4,或a 2=-4,讨论后,可得答案.【题文】2.53,(3)2,(3)bx cx f f -+-=已知函数f(x)=ax 则的值为A ..2B .-2C .6D .-6 【知识点】函数的奇偶性与周期性B4【答案解析】B ∵函数f (x )=ax 5-bx 3+cx ,∴f (-x )=-f (x )∵f (-3)=2,∴f (3)=-2,故选B 【思路点拨】函数f (x )=ax 5-bx 3+cx ,可判断奇函数,运用奇函数定义式求解即可. 【题文】31,5x ααα=设是第二象限角,p(x,4)为其终边上的一点,且cos =则tan2 24.7A 24.7B - 12.7C 12.7D - 【知识点】两角和与差的正弦、余弦、正切C5 【答案解析】A 由三角函数的定义可得cosα=224x x +,又∵cosα=15x ,∴224xx +=15x , 又α是第二象限角,∴x <0,故可解得x=-3∴cosα=-35,sinα=21cos -∂=45, ∴tanα=sin cos ∂∂=-43∴tan2α=22tan 1tan ∂-∂=247故选A 【思路点拨】由三角函数的定义可得x 的方程,解方程可得cosα,再由同角三角函数的基本关系可得tanα,由二倍角的正切公式可得.【题文】4.(2,3),(1,2),42a b ma b a b m ==-+-已知向量若与共线,则的值为1.2A .2B 1.2C - .2D - 【知识点】平面向量基本定理及向量坐标运算F2【答案解析】D ∵a =(2, 3),b =(-1, 2)∴m a +4b =(2m-4,3m+8);a -2b =(4,-1)∵(m a +4b )∥(a -2b )∴4-2m=4(3m+8)解得m=-2故答案为D【思路点拨】利用向量的坐标运算求出两个向量的坐标;利用向量共线的充要条件列出方程求出m 的值. 【题文】5.若定义在R 上的函数y=f(x)满足55()(),22f x f x +=-且5()()02x f x '-<则对于任意的12x x <,都有1212()5f x x x +)>f(是x >的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】函数的单调性与最值B3【答案解析】C ∵55()()22f x f x +=-∴f (x )=f (5-x ),即函数y=f (x )的图象关于直线x=52对称.又因(x-52)f′(x )>0, 故函数y=f (x )在(52,+∞)上是增函数.再由对称性可得,函数y=f (x )在(-∞,52)上是减函数. ∵任意的x 1<x 2,都有f (x 1)>f (x 2),故x 1和x 2在区间(-∞,52)上,∴x 1+x 2<5.反之,若 x 1+x 2<5,则有x 2 -52<52-x 1,故x 1离对称轴较远,x 2 离对称轴较近,由函数的图象的对称性和单调性,可得f (x 1)>f (x 2).综上可得,“任意的x 1<x 2,都有f (x 1)>f (x 2)”是“x 1+x 2<5”的充要条件,故选C .【思路点拨】由已知中55()()22f x f x +=-可得函数y=f (x )的图象关于直线x=52对称, 由(x-52)f′(x )<0可得函数y=f (x )在( 52,+∞)上是增函数,在(-∞,52)上是减函数,结合函数的图象和性质和充要条件的定义,可判断f (x 1)>f (x 2)和x 1+x 2>5的充要关系,得到答案.【题文】6.如图,阴影区域的边界是直线y=0,x=2,x=0及曲线23y x =,则这个区域的面积是A 4B 8 C13 D 12【知识点】定积分与微积分基本定理B13 【答案解析】B 这个区域的面积是20⎰3x 2dx= 32x=23-0=8,故选B .【思路点拨】将阴影部分的面积是函数在[0,2]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.【题文】7.2120ABC b A ==在中,若,,三角形的面积3S =,则三角形外接圆的半径为.3A .2B .23C .4D【知识点】解三角形C8【答案解析】B △ABC 中,∵b=2,A=120°,三角形的面积S=3=12bc•sinA=c•32,∴c=2=b ,故B=12(180°-A )=30°.再由正弦定理可得 02sin sin 30b cR B ===4,∴三角形外接圆的半径R=2,故选B .【思路点拨】由条件求得 c=2=b ,可得B 的值,再由正弦定理求得三角形外接圆的半径R 的值.【题文】8.已知222,0()1,0x tx t x f x x t x x ⎧-+⎪=⎨++⎪⎩≤>,若(0)f 是()f x 的最小值,则t 的取值范围为A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【知识点】函数的单调性与最值B3【答案解析】D 法一:排除法.当t=0时,结论成立,排除C ;当t=-1时,f (0)不是最小值,排除A 、B ,选D . 法二:直接法.由于当x >0时,f (x )=x+1x+t 在x=1时取得最小值为2+t ,由题意当x≤0时,f (x )=(x-t )2,若t≥0,此时最小值为f (0)=t 2,故t 2≤t+2,即t 2-t-2≤0,解得-1≤t≤2,此时0≤t≤2,若t <0,则f (t )<f (0),条件不成立,选D .【思路点拨】法1利用排除法进行判断,法2根据二次函数的图象以及基本不等式的性质即可得到结论. 【题文】9.已知2//1()cos ,()()()4f x x x f x f x f x =+为的导函数,则的图像是【知识点】导数的应用B12【答案解析】A 由题意得1()sin 2f x x x '=-为奇函数,所以排除B D ,当x= 6π, ()0f x '<,所以排除D ,故选A【思路点拨】求出导数判断奇偶性,然后利用特殊值求出结果。

山东省潍坊市临朐一中2015届高三阶段性教学质量检测数学(理)word版含答案

山东省潍坊市临朐一中2015届高三阶段性教学质量检测数学(理)word版含答案

高三阶段性教学质量检测数学(科学)试题本试卷分第I 卷(选择题)和第II 卷(非选择题),满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必先将自己的姓名,准考证号填涂在答题卷或答题卡上。

2.所有答案使用0.5毫米黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效...............................。

第I 卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}{}20,2,=12,4,0,1,2,16A a B a A B =⋃=-,,,若,则a 的值为A.1B.2C.4-D.4 2.已知函数()()()532,363f x ax bx cx f f =-++-=,则的值为A.2B.2-C.6D.6-3.设α是第二象限角,(),4P x 为其终边上的一点,且1cos tan 25x αα=,则= A.247 B. 247- C. 127 D. 127- 4.已知向量()()2,3,1,2a b ==-,若42ma b a b +-与共线,则m 的值为 A.12 B.2 C.12- D.2-5.若定义在R 上的函数()()5550222y f x f x f x x f x ⎛⎫⎛⎫⎛⎫'=+=--< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭满足且,则对于任意的12x x <,都有()()12125f x f x x x >+>是的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.如图,阴影区域的边界是直线0,2,0y x x ===及曲线23y x =,则这个区域的面积是A.4B.8C.13D.127.在ABC ∆中,若b=2,A=120°,三角形的面积S =,则三角形外接圆的半径为B.2C.D.48.已知()222,01,0x tx t x f x x t x x ⎧-+≤⎪=⎨++>⎪⎩,若()()0f f x 是的最小值,则t 的取值范围为 A.[]1,2- B.[]1,0- C.[]1,2 D.[]0,29.已知()()()21cos ,4f x x x f x f x '=+为的导函数,则()f x '的图象是10.已知x R ∈,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x =-≠有且仅有3个零点,则a 的取值范围是 A.3443,,4532⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦B. 3443,,4532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ C.1253,,2342⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭D. 1253,,2342⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题纸的相应位置上. 11.将函数3sin 33y x π⎛⎫=+ ⎪⎝⎭的图象向右平移9π个单位后得到函数________的图象.12.已知()(),2,3,5a b a b λ==-r r r r ,且与的夹角为锐角,则λ的取值范围是________.13.已知函数()33f x x ax =-,若直线0x y m ++=对任意的m R ∈都不是曲线()y f x =的切线,则a 的取值范围为____________.14.已知()x x f x e=,定义()()()()()()1211,,,,n n f x f x f x f x f x f x n N *+'''==⋅⋅⋅=∈⎡⎤⎡⎤⎣⎦⎣⎦.经计算()()()123123,x x x x x x f x f x f x e e e ---===,,……,照此规律,则()n f x =_____. 15.下展展示了一个由区间()0,1到实数集R 的映射过程:区间()0,1中的实数m 对应数轴上的点m ,如图①;将线段AB 围成一个圆,使两端点A ,B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为()0,1,如图③.图③中直线AM 与x 轴交于点(),0N n ,则m 的象就是n ,记作()f m n =.下列说法中正确命题的序号是__________.(填出所有正确命题的序号) ①114f ⎛⎫= ⎪⎝⎭; ②()f x 是奇函数; ③()f x 在定义域上单调递增;④()f x 的图象关于点1,02⎛⎫ ⎪⎝⎭的对称. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知集合{}2320A x x x =-+≤,集合{}22B y y x x a ==-+,集合{}240C x x ax =--≤.命题:p A B ⋂=∅,命题:q A C ⊆,(I )若命题p 为假命题,求实数a 的取值范围;(II )若命题p q ∧为假命题,求实数a 的取值范围.17.(本小题满分12分)已知函数()()()4f x x f x f x π⎛⎫'=- ⎪⎝⎭,是的导函数. (I )求函数()()()()2F x f x f x f x ''=-⎡⎤⎣⎦的最小值和相应的x 值;(II )若()()23cos 22cos sin cos x f x f x x x x -'=-,求的值.18.(本小题满分12分)已知()f x 为定义在[]1,1-上的奇函数,当[]1,0x ∈-时,函数解析式为()()142x xb f x b R =-∈. (I )求b 的值,并求出()[]01f x 在,上的解析式; (II )求()[]11f x -在,上的值域.19.(本小题满分12分)设函数()()2sin 2sin 1062f x x x πωωω⎛⎫+-+> ⎪⎝⎭,直线y =与函数()f x 图像相邻两交点的距离为π.(I )求ω的值;(II )在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若点(B ,0)是函数()y f x =图像的一个对称中心,且b=3,求ABC ∆面积的最大值.20.(本小题满分13分)5A 级景区沂山为提高经济效益,现对某一景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入()10x x ≥万元之间满足:()2101ln ,5010x y f x ax x b a b ==+-,为常数.当10x =万元,19.2y =万元;当50x =万元时,74.4y =万元. (参考数据:ln 20.7,ln 3 1.1,ln 5 1.6===)(I )求()f x 的解析式;(II )求该景点改造升级后旅游利润()T x 的最大值.(利润=旅游增加值-投入)21.(本小题满分14分)已知函数()2x f x e x a x R =-+∈,的图象在点0x =处的切线为(). 2.71828y bx e =≈. (I )求函数()f x 的解析式;(II )当x R ∈时,求证:()2f x x x ≥-+; (III )若()()2135202k Z f x x x k ∈+--≥,且对任意x R ∈恒成立,求k 的最大值.。

山东省潍坊市临朐一中2015届高三阶段性教学质量检测数学(理)试题及答案

山东省潍坊市临朐一中2015届高三阶段性教学质量检测数学(理)试题及答案

高三阶段性教学质量检测数学(科学)试题本试卷分第I 卷(选择题)和第II 卷(非选择题),满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必先将自己的姓名,准考证号填涂在答题卷或答题卡上。

2.所有答案使用0.5毫米黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效...............................。

第I 卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}{}20,2,=12,4,0,1,2,16A a B a A B =⋃=-,,,若,则a 的值为 A.1 B.2 C.4- D.4 2.已知函数()()()532,363f x ax bx cx f f =-++-=,则的值为A.2B.2-C.6D.6-3.设α是第二象限角,(),4P x 为其终边上的一点,且1cos tan 25x αα=,则= A.247 B. 247- C. 127 D. 127- 4.已知向量()()2,3,1,2a b ==-,若42ma b a b +-与共线,则m 的值为 A.12 B.2 C.12- D.2-5.若定义在R 上的函数()()5550222y f x f x f x x f x ⎛⎫⎛⎫⎛⎫'=+=--< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭满足且,则对于任意的12x x <,都有()()12125f x f x x x >+>是的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.如图,阴影区域的边界是直线0,2,0y x x ===及曲线23y x =,则这个区域的面积是A.4B.8C.13D.127.在ABC ∆中,若b=2,A=120°,三角形的面积S =B.2C.D.48.已知()222,01,0x tx t x f x x t x x ⎧-+≤⎪=⎨++>⎪⎩,若()()0f f x 是的最小值,则t 的取值范围为 A.[]1,2- B.[]1,0- C.[]1,2 D.[]0,29.已知()()()21cos ,4f x x x f x f x '=+为的导函数,则()f x '的图象是10.已知x R ∈,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x =-≠有且仅有3个零点,则a 的取值范围是 A.3443,,4532⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦B. 3443,,4532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ C.1253,,2342⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭D. 1253,,2342⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦ 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题纸的相应位置上.11.将函数3sin 33y x π⎛⎫=+ ⎪⎝⎭的图象向右平移9π个单位后得到函数________的图象. 12.已知()(),2,3,5a b a b λ==-r r r r ,且与的夹角为锐角,则λ的取值范围是________.13.已知函数()33f x x ax =-,若直线0x y m ++=对任意的m R ∈都不是曲线()y f x =的切线,则a 的取值范围为____________.14.已知()x x f x e=,定义()()()()()()1211,,,,n n f x f x f x f x f x f x n N *+'''==⋅⋅⋅=∈⎡⎤⎡⎤⎣⎦⎣⎦.经计算()()()123123,x x x x x x f x f x f x e e e ---===,,……,照此规律,则()n f x =_____. 15.下展展示了一个由区间()0,1到实数集R 的映射过程:区间()0,1中的实数m 对应数轴上的点m ,如图①;将线段AB 围成一个圆,使两端点A ,B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为()0,1,如图③.图③中直线AM与x 轴交于点(),0N n ,则m 的象就是n ,记作()f m n =.下列说法中正确命题的序号是__________.(填出所有正确命题的序号) ①114f ⎛⎫= ⎪⎝⎭; ②()f x 是奇函数; ③()f x 在定义域上单调递增;④()f x 的图象关于点1,02⎛⎫ ⎪⎝⎭的对称. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知集合{}2320A x x x =-+≤,集合{}22B y y x x a ==-+,集合{}240C x x ax =--≤.命题:p A B ⋂=∅,命题:q A C ⊆,(I )若命题p 为假命题,求实数a 的取值范围;(II )若命题p q ∧为假命题,求实数a 的取值范围.17.(本小题满分12分)已知函数()()()4f x x f x f x π⎛⎫'=- ⎪⎝⎭,是的导函数. (I )求函数()()()()2F x f x f x f x ''=-⎡⎤⎣⎦的最小值和相应的x 值;(II )若()()23cos 22cos sin cos x f x f x x x x -'=-,求的值.18.(本小题满分12分)已知()f x 为定义在[]1,1-上的奇函数,当[]1,0x ∈-时,函数解析式为()()142x xb f x b R =-∈. (I )求b 的值,并求出()[]01f x 在,上的解析式;(II )求()[]11f x -在,上的值域.19.(本小题满分12分)设函数()()2sin 2sin 1062f x x x πωωω⎛⎫+-+> ⎪⎝⎭,直线y =()f x 图像相邻两交点的距离为π.(I )求ω的值;(II )在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,若点(B ,0)是函数()y f x =图像的一个对称中心,且b=3,求ABC ∆面积的最大值.20.(本小题满分13分)5A 级景区沂山为提高经济效益,现对某一景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入()10x x ≥万元之间满足:()2101ln ,5010x y f x ax x b a b ==+-,为常数.当10x =万元,19.2y =万元;当50x =万元时,74.4y =万元. (参考数据:ln 20.7,ln3 1.1,ln5 1.6===)(I )求()f x 的解析式;(II )求该景点改造升级后旅游利润()T x 的最大值.(利润=旅游增加值-投入)21.(本小题满分14分)已知函数()2x f x e x a x R =-+∈,的图象在点0x =处的切线为(). 2.71828y bx e =≈. (I )求函数()f x 的解析式;(II )当x R ∈时,求证:()2f x x x ≥-+; (III )若()()2135202k Z f x x x k ∈+--≥,且对任意x R ∈恒成立,求k 的最大值.。

山东省潍坊市2015届高三上学期期中考试数学(理)试卷

山东省潍坊市2015届高三上学期期中考试数学(理)试卷

山东省潍坊市2015届高三上学期期中考试数学(理)试卷2014.11第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合1{|21,},{|0}3x A x x k k Z B x x +==-∈=≤-,则A B =( ) A .[]1,3- B .{}1,3- C .{}1,1- D .{}1,1,3-2、若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b <D .若0a b <<,则b a a b> 3、“直线2()x k k Z π=∈”是“函数()2sin()2f x x π=+图象的对称轴”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4、设等差数列{}n a 的前n 项和为n S ,已知1371,6a a a =-+=-,当n S 取得最小值是,n =( )A .5B .6C .7D .85、若函数()log ()(0,1)a f x x b a a =+>≠的大致图象如右图所示,则函数()xg x a b =+的大致图象为( )6、ABC ∆中,90,2C CA CB ∠===,点M 在边AB 上,且满足3BM MB =,则CM CB ⋅=( )A .12B .1C .2D .137、已知函数()222020x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩,若()()()21f a f a f --≤,则a 的取值范围是( ) A .[)1,+∞ B .(],1-∞ C .[]1,1- D .[]2,2-8、已知函数()2cos 2f x x x m =+-在[0,]2π上有两个零点,则实数m 的取值范围是( )A .()1,2-B .[)1,2C .(]1,2-D .[]1,2 9、若实数,x y 满足不等式201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,且目标函数2z x y =-的最大值为1,则a =( )A .13B .12C .2D .3 10、设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()54112012f x x x =- 22x +在()1,3上为“凹函数”,则实数m 的取值范围是( )A .31(,)9-∞ B .31[,5]9C .(),3-∞D .(),5-∞ 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

山东省潍坊市某重点中学2015届高三上学期12月阶段性教

山东省潍坊市某重点中学2015届高三上学期12月阶段性教

高三理科数学参考答案2014.12一、选择题11. 5 12.213. 1 14. (]0,1 15.①③ 三、解答题:(本大题6小题,共75分,解答写出文字说明,证明过程或演算步骤) 16.解:(I )由题意及正弦定理,得1,AB BC AC BC AC ++=+ 两式相减,得1AB =……………………………………………………………6分(Ⅱ)由ABC ∆的面积111sin sin ,263BC AC C C BC AC ⋅⋅=⋅=得,…………9分 由余弦定理,有22222()21cos 222AC BC AB AC BC AC BC AB C AC BC AC BC +-+-⋅-===⋅⋅, 所以60C ︒= ……………………………………………………………………12分17. 解:(I )若命题为p 真,即21016ax x a -+>恒成立 ①当0a =时,0x ->不合题意 ………………………………………………2分②当0a ≠时,可得00a >⎧⎨∆<⎩,即201104a a >⎧⎪⎨-<⎪⎩ 2a ∴> …………………6分(II )令21139(3)24xxxy =-=--+由0x >得31x> 若命题q 为真,则0a ≥……………………………………………………8分由命题“p 或q ”为真且“p 且q ”为假,得命题p 、q 一真一假……………10分 ① 当p 真q 假时,a 不存在② 当p 假q 真时,02a ≤≤………………………………………………………12分18. 解: (I )由该四棱锥的三视图可知,该四棱锥P ABCD -的底面是边长为1的正方形,侧棱PC ⊥ 底面ABCD ,且2PC = .1233P ABCD ABCD V S PC -∴==……………………3分(II )不论点E 在何位置,都有BD ⊥AE . ………………………………………4分 证明:连接AC ,ABCD 是正方形,∴BD ⊥AC .PC ⊥ 底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC . ……………5分 又AC ⋂PC C =, ∴BD ⊥平面PAC . 不论点E 在何位置,都有AE ⊂平面PAC .∴不论点E 在何位置,都有BD ⊥AE . ………………………………………8分设二面角D AE B --的平面角为θ,则1cos .2m nm nθ==-……………………………………………………………11分2,3πθ∴=∴二面角D AE B --的大小为23π.………………………………12分19.解:(I )当1=n ,21=a ;…………………………………………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=.…………………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a =.…………………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………………4分又首项11=b ,∴ 21n b n =-. ………………………………………………6分(II )2(21)n n c n ⎧=⎨--⎩ ,,n n 为奇数为偶数………………………………………8分3212222[37(41)]n n T n -=+++-+++- ………………………10分2122223n n n +-=--.…………………………………………………… 12分20.解: (I )∵直线l 的倾斜角为60︒∴直线l 的斜率为k =又∵直线l 过点(0,-∴直线l 的方程为y += …………………3分 ∵a b >,∴椭圆的焦点为直线l 与x 轴的交点∴椭圆的焦点为(2,0)∴2c =,又∵c e a ==a =,∴2222b a c =-=∴椭圆方程为22162x y += …………………………………………………… 5分 (II )设直线MN 的方程为3,x ay =+ 由221623x y x my ⎧+=⎪⎨⎪=+⎩,得22(3)630m y my +++=…………………………7分 设,M N 坐标分别为1122(,),(,)x y x y 则1226,3m y y m +=-+ ① 12233y y m =+ ② ……………………………8分 2223612(3)2436m m m ∆=-+=->0 ∴232m >,…………………………9分 ∵1122(3,),(3,),DM x y DN x y DM DN λ=-=-=,显然0λ>,且1λ≠∴()11223,(3,)x y x y λ-=-∴12y y λ=代入①②,得2221123621033m m m λλ+=-=-++………………………11分 ∵232m >,得1210λλ<+<,即222101010λλλλ⎧-+>⎨-+<⎩解得55λ-<<+1λ≠.………………………………………13分21.解:(I )因为 1()ln x f x x ax -=+,所以21'()(0)ax f x a ax-=>…………1分 依题意可得,对21[1,).'()0ax x f x ax -∀∈+∞=≥恒成立, 所以 对[1,),10x ax ∀∈+∞-≥恒成立,所以 对1[1,),x a x∀∈+∞≥恒成立,max 1()a x ≥,即1a ≥…………………4分 (Ⅱ)函数()()g x f x m =-在1[,2]2上有两个零点,即()f x m =在1[,2]2上有两个不同的实数根,即函数()y f x =的图像与直线y m =在1[,2]2上有两个零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东潍坊高三阶段性教学质量检测理科数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 一、选择题:本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,恰有一项....是符合题目要求的,把正确答案涂在答题卡上. 1.设集合{1}A x x =<,2{log 0}B x x =≤,则A B ⋂=( )A .{}11<<-x x B. {}10<<x x C. {}11≤<-x x D. {}1x x 0<≤ 2.下列说法正确的是( )A .命题“若2x =,则24x =”的否命题为“若24x ≠,则2x ≠”B .命题“2,10x R x x ∀∈+-<”的否定是“2,10x R x x ∃∈+->”C .“x y =”是“sin sin x y =”的充分不必要条件D .命题“若0x =或0y =,则0xy =” 的逆否命题为“若0xy ≠,则0x ≠或0y ≠”3.如图所示,则阴影部分的面积为( )A .13B .14C .15D .164.已知132a -=,21log 3b =,121log 3c =,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >> 5. 函数()x x f 2log 1+=与12)(+-=x x g 在同一直角坐标系下的图象大致是( )A. B. C. D.6.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题不正确的是( ) A .若,,m n m n αα⊥⊥⊄,则n ∥α B .若m ∥α,αβ⊥,则m β⊥ C .若m β⊥,αβ⊥,则m ∥α或m α⊂ D .若,,m n m n αβ⊥⊥⊥,则αβ⊥ 7.如图,平行四边形ABCD 中,2,1,60AB AD A ==∠=,点M 在AB 边上,且13AM AB DM DB =∙,则等于( )A .1-B .1C .2D .2-8.若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则21a b+的最小值为( )AB .3C .5D .99.已知抛物线22(0)y px p =>的焦点F 与双曲线22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则A 点的横坐标为( )A ..3 C ..4 10.已知定义在R 上的奇函数()f x ,设其导函数为()x f ',当(]0,∞-∈x 时,恒有()()0≤+'x f x f x ,令()()x xf x F =,则满足()(3)21F F x >-的实数x 的取值范围是( )A. ()2,+∞B.()1,-+∞C. ()1,2-D. (),2-∞第II 卷二、填空题:(本大题共5小题,每小题5分,共25分,把答案直接填在横线上) 11.等比数列{}n a 的各项均为正数,且154a a =,则2log 1a +2log 2a +2log 3a +2log 4a +2log 5a =________.12.设点P 是双曲线)0,0(12222>>=-b a by a x 与圆2222b a y x +=+在第一象限的交点,21,F F 分别是双曲线的左、右焦点,且213PF PF =,则双曲线的离心率是__________________.13.已知),(y x P 满足约束条件⎪⎩⎪⎨⎧≥-≤--≤-+010103x y x y x ,则y x 2-的最大值是__________.14.定义,(),()a ab a b b a b ≤⎧*=⎨>⎩,则函数()13x f x =*的值域是__________________. 15.定义12142334a a a a a a a a =-,若函数 () cos x x f x x x=,给出下列四个命题:①()f x 在区间⎥⎦⎤⎢⎣⎡85,8ππ上是减函数;②()f x 关于308π(,)中心对称; ③)(x f y =的表达式可改写成)14y x =--π;④由0)()(21==x f x f 可得21x x -必是π的整数倍; 其中正确命题的序号是三、解答题:(本大题6小题,共75分,解答写出文字说明,证明过程或演算步骤) 16.(本小题满分12分) 已知ABC ∆1,且sin sin A B C += (I )求边AB 的长; (Ⅱ)若ABC ∆的面积为1sin 6C ,求角C 的度数。

17. (本小题满分12分)设命题p :函数21()lg()16f x ax x a =-+的定义域为R ;命题q :不等式a x x <-93对一切正实数x 均成立。

(I )如果p 是真命题,求实数a 的取值范围;(Ⅱ)如果命题“p 或q ”为真命题,且“p 且q ”为假命题,求实数a 的取值范围; 18.(本小题满分12分)已知四棱锥P ABCD -的三视图如下,E 是侧棱PC 上的动点. (I )求四棱锥P ABCD -的体积;(Ⅱ)不论点E 在何位置,是否都有BD AE ⊥? 证明你的结论 (Ⅲ)若E 点为PC 的中点,求二面角D AE B --的大小.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+.(I )求数列{}a ,{}b 的通项公式;20.(本小题满分13分)已知倾斜角为60︒的直线l 过点(0,-和椭圆2222:1(0)x y C a b a b+=>>的右焦点,且(I )求椭圆C 的方程; (II )若已知点(3,0)D ,点,M N 是椭圆C 上不重合的两点,且DM DN λ=,求实数λ的取值范围.21.(本小题满分14分)已知函数1()ln xf x x ax-=+. (I )若函数()f x 在[1,)+∞上为增函数,求正实数a 的取值范围;(Ⅱ)当1a =时,函数()()g x f x m =-在1[,2]2上有两个零点,求实数m 的取值范围; (Ⅲ)当1a =时,求证:对大于1的任意正整数,n 1111ln 234n n++++<…恒成立.高三理科数学参考答案2014.12一、选择题11. 5 12.213. 1 14. (]0,1 15.①③ 三、解答题:(本大题6小题,共75分,解答写出文字说明,证明过程或演算步骤) 16.解:(I )由题意及正弦定理,得1,AB BC AC BC AC ++=+ 两式相减,得1AB =……………………………………………………………6分(Ⅱ)由ABC ∆的面积111sin sin ,263BC AC C C BC AC ⋅⋅=⋅=得,…………9分 由余弦定理,有22222()21cos 222AC BC AB AC BC AC BC AB C AC BC AC BC +-+-⋅-===⋅⋅, 所以60C ︒= ……………………………………………………………………12分17. 解:(I )若命题为p 真,即21016ax x a -+>恒成立 ①当0a =时,0x ->不合题意 ………………………………………………2分②当0a ≠时,可得00a >⎧⎨∆<⎩,即201104a a >⎧⎪⎨-<⎪⎩ 2a ∴> …………………6分(II )令21139(3)24xxxy =-=--+由0x >得31x> 若命题q 为真,则0a ≥……………………………………………………8分由命题“p 或q ”为真且“p 且q ”为假,得命题p 、q 一真一假……………10分 ① 当p 真q 假时,a 不存在② 当p 假q 真时,02a ≤≤………………………………………………………12分 18. 解: (I )由该四棱锥的三视图可知,该四棱锥P ABCD -的底面是边长为1的正方形,侧棱PC ⊥ 底面ABCD ,且2PC = .1233P ABCD ABCD V S PC -∴==……………………3分(II )不论点E 在何位置,都有BD ⊥AE . ………………………………………4分 证明:连接AC ,ABCD 是正方形,∴BD ⊥AC .PC ⊥ 底面ABCD ,且BD ⊂平面ABCD ,∴BD ⊥PC . ……………5分 又AC ⋂PC C =, ∴BD ⊥平面PAC . 不论点E 在何位置,都有AE ⊂平面PAC .∴不论点E 在何位置,都有BD ⊥AE . ………………………………………8分设二面角D AE B --的平面角为θ,则1cos .2m nm nθ==-……………………………………………………………11分2,3πθ∴=∴二面角D AE B --的大小为23π.………………………………12分 19.解:(I )当1=n ,21=a ;…………………………………………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=.…………………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a =.…………………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………………4分又首项11=b ,∴ 21n b n =-. ………………………………………………6分(II )2(21)n n c n ⎧=⎨--⎩ ,,n n 为奇数为偶数………………………………………8分3212222[37(41)]n n T n -=+++-+++- ………………………10分2122223n n n +-=--.…………………………………………………… 12分20.解: (I )∵直线l 的倾斜角为60︒∴直线l 的斜率为k =又∵直线l 过点(0,-∴直线l 的方程为y += …………………3分 ∵a b >,∴椭圆的焦点为直线l 与x 轴的交点∴椭圆的焦点为(2,0)∴2c =,又∵c e a ==a = ,∴2222b a c =-=∴椭圆方程为22162x y += …………………………………………………… 5分 (II )设直线MN 的方程为3,x ay =+由221623x y x my ⎧+=⎪⎨⎪=+⎩,得22(3)630m y my +++=…………………………7分 设,M N 坐标分别为1122(,),(,)x y x y 则1226,3m y y m +=-+ ① 12233y y m =+ ② ……………………………8分2223612(3)2436m m m ∆=-+=->0 ∴232m >,…………………………9分 ∵1122(3,),(3,),DM x y DN x y DM DN λ=-=-=,显然0λ>,且1λ≠ ∴()11223,(3,)x y x y λ-=-∴12y y λ=代入①②,得2221123621033m m m λλ+=-=-++………………………11分∵232m >,得1210λλ<+<,即222101010λλλλ⎧-+>⎨-+<⎩解得55λ-<<+且1λ≠.………………………………………13分21.解:(I )因为 1()ln x f x x ax -=+,所以21'()(0)ax f x a ax -=>…………1分 依题意可得,对21[1,).'()0ax x f x ax -∀∈+∞=≥恒成立, 所以 对[1,),10x ax ∀∈+∞-≥恒成立,所以 对1[1,),x a x ∀∈+∞≥恒成立,max 1()a x≥,即1a ≥…………………4分(Ⅱ)函数()()g x f x m =-在1[,2]2上有两个零点,即()f x m =在1[,2]2上有两个不同的实数根,即函数()y f x =的图像与直线y m =在1[,2]2上有两个零点。

相关文档
最新文档