轴对称图形练习题
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
轴对称练习题(含答案)
轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
轴对称练习题及答案
轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。
2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。
3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。
三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。
2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。
3. 已知点C(1,-1),求点C关于原点的对称点的坐标。
四、判断题1. 所有矩形都是轴对称图形。
()2. 所有等腰三角形都是轴对称图形。
()3. 所有等边三角形都是轴对称图形。
()4. 所有平行四边形都是轴对称图形。
()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。
2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。
3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。
答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。
轴对称练习题
轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做______。
A. 对称轴B. 中心线C. 垂直线D. 平行线3. 轴对称图形的对称轴具有以下哪个特点?A. 可以是曲线B. 必须是直线C. 可以是任意形状的线D. 必须是垂直线二、填空题4. 轴对称图形的对称轴将图形分成两个完全相同的部分,这两个部分关于对称轴______。
5. 如果一个图形的中心点与对称轴的距离相等,那么这个图形是______对称图形。
6. 请列举至少三个常见的轴对称图形:______、______、______。
三、判断题7. 所有的圆形都是轴对称图形。
()8. 轴对称图形的对称轴可以是图形的边界。
()9. 轴对称图形的对称轴只能有一条。
()四、简答题10. 请简述轴对称图形在日常生活中的应用,并给出至少两个例子。
五、作图题11. 给定一个三角形ABC,请画出三角形ABC关于直线l的轴对称图形。
六、计算题12. 如果一个矩形的长为10cm,宽为5cm,求其轴对称轴的数量,并说明每条对称轴的位置。
七、论述题13. 论述轴对称图形在数学中的重要性,并解释为什么轴对称图形在艺术和建筑设计中也具有重要的地位。
八、综合应用题14. 假设你是一个建筑师,需要设计一个具有轴对称特性的建筑。
请描述你的设计思路,并画出建筑的草图。
九、拓展思考题15. 考虑一个不规则的多边形,它可能是轴对称图形吗?如果可以,请给出一个例子,并解释为什么它是轴对称的。
十、创新设计题16. 设计一个可以变换为轴对称图形的动态装置,并简要说明其工作原理。
请注意,以上练习题需要根据实际教学需求和学生的水平进行适当调整和补充。
第十三章轴对称练习题
第十三章轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 正方形C. 长方形D. 等边三角形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 垂直轴C. 旋转轴D. 反射轴3. 轴对称图形的两个对称部分在对称轴上的距离是相等的,这种说法正确吗?A. 正确B. 错误4. 一个图形经过轴对称变换后,其面积大小会发生变化吗?A. 会B. 不会5. 轴对称图形的对称轴可以是曲线吗?A. 可以B. 不可以二、填空题6. 轴对称图形的对称轴可以是一条直线,也可以是一条________。
7. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形被称为________图形。
8. 在轴对称图形中,对称轴两侧的对应点到对称轴的距离是________的。
9. 一个等腰三角形的底边和两腰相等,那么它的底边中点与顶点的连线是该三角形的________。
10. 轴对称图形在数学中有着广泛的应用,例如在________几何中,轴对称可以帮助简化问题。
三、简答题11. 请简述轴对称图形的基本性质。
12. 举例说明如何判断一个图形是否是轴对称图形。
13. 解释为什么轴对称图形的对称轴两侧的图形可以完全重合。
四、计算题14. 已知一个轴对称图形的对称轴是垂直于x轴的直线,该图形在x轴上的投影是一个长为10,宽为5的矩形。
求该图形的面积。
15. 如果一个图形关于y轴对称,并且该图形的上半部分是一个半径为3的半圆,求该图形的周长。
五、应用题16. 在一个平面直角坐标系中,点A(-3,4)和点B(1,-2)关于y轴对称。
求点B关于y轴对称的点B'的坐标。
17. 一个等腰梯形的上底长为6,下底长为10,高为4。
求该等腰梯形的面积。
18. 如果一个矩形的长是宽的两倍,且矩形的面积为48平方厘米,求该矩形的长和宽。
六、证明题19. 证明:如果一个三角形是轴对称的,那么它的对称轴是其中一条中线。
轴对称图形的练习题
轴对称图形的练习题轴对称图形的练习题轴对称图形是数学中一个有趣且常见的概念。
它们在几何形状的研究中起着重要的作用。
通过练习轴对称图形的题目,我们可以更好地理解轴对称性质以及如何判断一个图形是否具有轴对称性。
本文将给出一些有趣的练习题,帮助读者巩固对轴对称图形的理解。
练习题1:判断轴对称图形首先,让我们来判断一些常见的图形是否具有轴对称性。
请仔细观察下面的图形,并在心中判断它们是否具有轴对称性。
然后,将你的答案写下来。
1. 一个圆2. 一个正方形3. 一个长方形4. 一个等边三角形5. 一个五角星答案:1. 一个圆:具有轴对称性。
无论从哪个方向旋转180度,都可以得到与原图形完全相同的图形。
2. 一个正方形:具有轴对称性。
以正方形的中心为轴,将正方形旋转180度,可以得到与原图形完全相同的图形。
3. 一个长方形:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
4. 一个等边三角形:具有轴对称性。
以三角形的中线为轴,将三角形旋转180度,可以得到与原图形完全相同的图形。
5. 一个五角星:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
练习题2:找出轴对称图形的轴线现在,让我们来找出一些具有轴对称性的图形的轴线。
请仔细观察下面的图形,并在心中想象它们的轴线。
然后,将你的答案写下来。
1. 一个心形2. 一个蝴蝶形状3. 一个字母“X”4. 一个字母“H”5. 一个字母“O”答案:1. 一个心形:具有轴对称性。
心形的轴线位于心形的中心,将心形沿轴线旋转180度,可以得到与原图形完全相同的图形。
2. 一个蝴蝶形状:具有轴对称性。
蝴蝶形状的轴线位于蝴蝶的中心,将蝴蝶形状沿轴线旋转180度,可以得到与原图形完全相同的图形。
3. 一个字母“X”:具有轴对称性。
字母“X”的轴线位于字母“X”的中心,将字母“X”沿轴线旋转180度,可以得到与原图形完全相同的图形。
六年级轴对称图形练习题
六年级轴对称图形练习题轴对称图形是六年级数学学科中的重要概念,掌握轴对称图形的性质和特点对于学生的数学发展至关重要。
本文将为同学们提供一些轴对称图形的练习题,帮助学生加深对该概念的理解和应用。
练习题一:轴对称图形判断判断下列图形是否具有轴对称性,并在答题纸上标明对称轴的位置。
1. 正方形2. 矩形3. 正三角形4. 等腰梯形5. 长方形6. 椭圆7. 菱形8. 长方形9. 圆形练习题二:轴对称图形的完善在下列图形中完成对称图形的绘制,并标出对称轴。
1. 给定一条对称轴,画出一个与给定图形关于该对称轴完全对称的图形。
2. 给定一个点作为对称轴的起点,绘制一个与给定图形关于该点对称的图形。
练习题三:轴对称图形的构造1. 已知一张图片,找出该图片中的轴对称图形,并将其标记出来。
2. 给定某个点,利用直尺和画圆工具构造以该点为轴对称轴的图形。
练习题四:轴对称图形的特性回答下列问题,并说明理由。
1. 一个图形是否可以同时具备多个轴对称轴?2. 一个非对称图形是否可能存在对称轴?3. 轴对称图形具有哪些特点?请举例说明。
练习题五:轴对称图形的应用1. 举例说明轴对称图形在日常生活中的应用,并附上相关图片。
2. 利用轴对称图形的性质,设计一个寓教于乐的游戏或者谜题,描述规则并给出解答。
以上是一些针对六年级轴对称图形的练习题,希望能够帮助同学们提高对轴对称性的理解和应用能力。
通过不断练习和思考,相信同学们能够在数学学科中取得更好的成绩,并在日常生活中灵活运用轴对称图形的知识。
加油!。
小学轴对称图形练习题
小学轴对称图形练习题一、选择题(每题2分,共20分)1. 下列哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 折线D. 虚线3. 一个图形关于某条直线对称,这条直线被称为什么?A. 对称线B. 对称轴C. 对称面D. 对称边4. 下列哪个图形不是轴对称图形?A. 长方形B. 等边三角形C. 等腰梯形D. 等腰三角形5. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条6. 一个轴对称图形的对称轴最多可以有多少条?A. 1条B. 2条C. 3条D. 无数条7. 一个图形关于某条直线对称,这条直线将图形分成两个完全相同的部分,这种说法正确吗?A. 正确B. 错误8. 下列哪个图形是中心对称图形?A. 圆形B. 长方形C. 等边三角形D. 等腰梯形9. 一个图形的中心对称点是什么?A. 对称点B. 对称轴C. 对称线D. 对称面10. 一个图形关于某点对称,这个点被称为什么?A. 对称点B. 对称轴C. 对称线D. 对称面二、填空题(每空1分,共20分)11. 轴对称图形的对称轴是一条________。
12. 如果一个图形关于某条直线对称,那么这条直线是图形的________。
13. 一个轴对称图形的对称轴可以是________或________。
14. 一个图形的对称轴可以有________条。
15. 一个轴对称图形的对称轴将图形分成两个________的部分。
16. 一个图形关于某点对称,这个点是图形的________。
17. 一个轴对称图形的对称轴可以是________或________。
18. 一个图形的对称轴可以是________或________。
19. 一个图形的对称轴可以是________或________。
20. 一个图形的对称轴可以是________或________。
三、判断题(每题1分,共20分)21. 所有的圆形都是轴对称图形。
轴对称图形练习题
轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 圆形B. 正方形C. 三角形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 点D. 面3. 轴对称图形的对称点关于对称轴具有什么性质?A. 距离相等B. 角度相等C. 面积相等D. 形状相同4. 一个轴对称图形沿着对称轴对折后,两部分会如何?A. 完全重合B. 部分重合C. 不重合D. 无法确定5. 轴对称图形的对称轴可以有多少条?A. 一条B. 两条C. 无数条D. 没有二、填空题6. 轴对称图形的对称轴是图形上所有对称点连线的________。
7. 在轴对称图形中,对称点到对称轴的距离________。
8. 如果一个图形关于某直线对称,那么这条直线就是该图形的________。
9. 轴对称图形的对称轴可以是图形内部的一条线,也可以是图形外部的一条线,这取决于图形的________。
10. 对于一个轴对称图形,如果沿着对称轴对折,图形的两部分会________。
三、简答题11. 请简述轴对称图形的定义。
12. 举例说明什么是轴对称图形的对称点。
13. 解释为什么轴对称图形沿着对称轴对折后,两部分会完全重合。
四、判断题14. 所有的圆形都是轴对称图形。
()15. 只有规则的多边形才是轴对称图形。
()16. 轴对称图形的对称轴可以是曲线。
()17. 轴对称图形的对称点一定在对称轴上。
()18. 轴对称图形沿着对称轴对折后,两部分可能会部分重合。
()五、应用题19. 给定一个矩形,其长为10厘米,宽为5厘米。
如果沿着矩形的长边中点画一条直线作为对称轴,这条直线是轴对称图形的对称轴吗?为什么?20. 如果一个等边三角形沿着其中一条中线对折,对折后的图形是什么?请说明理由。
六、绘图题21. 绘制一个轴对称图形,并标出其对称轴。
22. 给定一个轴对称图形,绘制出其对称点,并说明如何确定这些点。
七、探究题23. 研究并解释为什么自然界中的许多生物体,如蝴蝶和树叶,呈现出轴对称的特性。
三年级轴对称练习题
三年级轴对称练习题题一:轴对称的图形在纸上画一个圆,并把圆上的点用线段连接起来,可以得到一条由线段组成的图形。
接下来,找出这个图形中的轴对称线,并填写下面的问题。
1. 这个图形有几条轴对称线?答:_____________2. 写出所有的轴对称线。
答:_____________3. 这个图形是关于哪些点的轴对称?答:_____________题二:线的轴对称连续两个图形都是以直线为轴对称线,请你画出直线,并填写下面的问题。
1. 画出直线。
答:_____________2. 你如何判断这个直线是轴对称线?答:_____________3. 这个直线将图形划分成了哪两部分?答:_____________题三:字母的轴对称下面是一些字母,请你判断每个字母是否具有轴对称性。
1. 字母 A 是否具有轴对称性?答:_____________2. 字母 B 是否具有轴对称性?答:_____________3. 字母 C 是否具有轴对称性?答:_____________4. 字母 D 是否具有轴对称性?答:_____________题四:图形的轴对称观察下面的图形,并回答相关问题。
1. 判断这个图形是否具有轴对称性。
答:_____________2. 如果存在轴对称线,画出轴对称线。
答:_____________3. 这个图形是关于哪些点的轴对称?答:_____________题五:轴对称的图形拼接请你使用下面提供的轴对称图形,将它们拼接成一个整体,并回答相关问题。
(在此给出轴对称图形的具体形状,可以使用方块、三角形等简单图形的轴对称示意图。
)1. 将拼接好的图形绘制在纸上。
答:_____________2. 这个拼接图形是否具有轴对称性?答:_____________3. 如果存在轴对称线,画出轴对称线。
答:_____________以上是关于三年级轴对称的练习题,希望能够帮助到你。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
轴对称图形专题练习含答案
轴对称图形专题练习练习一一、填空题1、如果一个图形沿着一条直线折叠,直线两旁的部分(),这个图形就叫做(),这条直线就是它的()2、把一个图形沿着某一条直线折叠,如果它能够与()重合,那么就说这两个图形关于这条直线对称,这条直线叫做()3、经过线段中点并且()这条线段的直线,叫做这条线段的()二、选择题1、下面所示的交通标志,是轴对称图形的是()A、B、C、D、2、正方形,长方形,三角形,梯形,平行四边形中,一定是轴对称图形的有()A、5个B、4个C、3个D、2个3、下列说法中,不正确的是()A、等边三角形是轴对称图形B、若两个图形的对应点的连线都被同一条直线垂直平分,则这两个图形关于这条直线对称C、直线MN是线段AB的垂直平分线,若点P使PA=PB,则点P在MN上,若PA≠PB,则P不在MN上D、等腰三角形的对称轴是它的中线三、解决问题如图,BD垂直平分线段AC,AE⊥BC,垂足为E,AE交BD于P,PE=3cm,求点P 到AB的距离练习二一、选择题1、下列说法错误的是()A、关于某直线对称的两个图形一定能完全重合B、全等的两个三角形一定关于某直线对称C、轴对称图形的对称轴至少有一条D、线段是轴对称图形2、轴对称图形的对称轴是()A、直线B、线段C、射线D、以上都有可能3、下面各组点关于y轴对称的是()A、(0,10)与(0,-10)B、(-3,-2)与(3,-2)C、(-3,-2)与(3,2)D、(-3,-2)与(-3,2)二、作图题1、如图所示,作出△ABC关于直线l的对称△A'B'C'。
2、如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等AMN参考答案练习一一、填空题1、能够互相重合,轴对称图形,对称轴2、另一个图形,对称轴3、垂直于,垂直平分线二、选择题1、D2、D3、D三、解决问题∵BD垂直平分线段AC∴BD为AC的中垂线∴AB=AC过点P做PF⊥AB,垂足为F。
轴对称图形经典练习题
轴对称图形练习题一、选择题1.下列图形中,只有两条对称轴的是( )A .正六边形B .矩形C .等腰梯形D .圆2.如下左1图Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .43.如下左2图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ).A.8 mB.4 mC.2 mD.6 m4.如下左3图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ). A.90° B. 75° C.70° D. 60°5.把一张长方形的纸沿对角线折叠,则重合部分是( ). A.直角三角形 B.长方形 C.等边三角形 D.等腰三角形 6.已知等腰三角形的两条边长分别为2和5,则它的周长为( ). A . 9 B . 12 C . 9或12 D . 57.如下左1图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).A.4B.5C.6D.78.如下左2图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) . A .20° B . 40° C .50° D . 60°9.如下左3图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ). A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠10.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).B MN P 1AP 2OP M ANCQPBNM D CH EBAFEDCBAA .①②③B .①②④C .①③D .①②③④ 二.填空题11.等腰三角形是轴对称图形,其对称轴是_______________________________. 12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.13. (2014•呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为 .14.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .15. (2014•新疆)如下左1图,在△ABC 中,AB =AC ,∠A =40°,点D 在AC 上,BD =BC ,则∠ABD 的度数是 .16.(2014年云南省)如下左2图,在等腰△ABC 中,AB =AC ,∠A =36°,BD ⊥AC 于点D ,则∠CBD = .17.如下左3图,在△ABC 中, AB=AC, D 为BC 上一点,且,AB=BD,AD=DC,则∠C= ____ 度.. 18.如下左4图,在等边ABC △中,D E ,分别是AB AC ,上的点,且AD CE =,则BCD CBE ∠+∠=度.19.如下左5图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ;20.在直角坐标系内,已知A.B 两点的坐标分别为A (-1,1).B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________.三.解答题21.如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等, •且到∠AOB 的两边的距离相等.22.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法);(2)直接写出A B C ''',,三点的坐标:AyABMNBCE DABFE DCAADCB DC E A (_____)(_____)(_____)A B C ''',,.(3)求△ABC 的面积是多少?23.在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.24.如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E .、F ,添加一个条件_____________,使DE = DF ,并说明理由.25.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。
轴对称图形练习题
轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 平行四边形D. 梯形2. 下列哪个字母是轴对称图形?A. AB. BC. CD. DA. 0B. 1C. 3D. 84. 下列哪个图形不是轴对称图形?A. 心形B. 五角星C. 菱形D. 圆二、判断题1. 所有的三角形都是轴对称图形。
()2. 轴对称图形的对称轴可以是直线,也可以是曲线。
()3. 正六边形有6条对称轴。
()4. 任意一条直线都可以作为轴对称图形的对称轴。
()三、填空题1. 轴对称图形的对称轴将图形分成了______部分。
2. 一个正方形有______条对称轴。
3. 轴对称图形的两侧是______的。
4. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是______。
四、作图题1. 请画出下列图形的对称轴:(1)正方形(2)等腰三角形(3)矩形2. 请画出下列图形关于某条直线的轴对称图形:(1)正五边形(2)字母“M”(3)数字“2”五、应用题1. 在平面直角坐标系中,已知点A(1,2)、点B(3,4)和点C(5,6)。
请找出一个点D,使得四边形ABCD是一个轴对称图形。
2. 小明在纸上画了一个不规则图形,他想知道这个图形是否是轴对称图形。
请你帮助小明判断,并说明理由。
3. 下列图形中,哪些是轴对称图形?请分别找出它们的对称轴。
(1)长方形(2)正六边形(3)平行四边形4. 请设计一个轴对称图形,使其包含至少4种不同的几何图形。
六、简答题1. 请解释什么是轴对称图形,并给出一个生活中的实例。
2. 为什么说圆是轴对称图形?圆有多少条对称轴?3. 描述如何判断一个图形是否是轴对称图形。
4. 在一个轴对称图形中,对称轴上的点到图形两侧的距离是否相等?为什么?七、匹配题请将下列图形与其对应的对称轴匹配:A. 正方形 a. 一条对角线B. 等边三角形 b. 经过中心的任意直线C. 半圆 c. 经过顶点的中线D. 椭圆 d. 经过中心的水平线八、分类题1. 正五边形2. 不规则四边形3. 菱形4. S形曲线5. 长方形九、探究题1. 探究轴对称图形在折叠后的性质,并举例说明。
(完整版)轴对称图形练习题
轴对称图形练习题
姓名_________ 家长签字_______________
一、判断下列哪些图形是轴对称图形,在方框内打“√”,不是的在方框内打“×”.
二、画出下列轴对称图形的对称轴。
三、填空。
1、如果把一个图形沿着一条虚线对折,两侧的图形能够___________,这个图形就是_________________。
这条虚线叫做____________.
2、蝴蝶左右两边的形状____________,所以是__________图形。
3、五角星是_________图形,它有______条对称轴。
4、等边三角形有_____条对称轴,长方形有_____条对称轴,正方形有_____条对称轴,圆形有____条对称轴。
四、判断正误,正确的在括号内打“√”,错误的在括号内打“×”。
1、圆形和三角形都是轴对称图形。
﹙﹚2、树叶都是轴对称图形,有一条对称轴。
﹙﹚3、长方形和正方形都有四条对称轴。
﹙﹚
五、在方格纸上画出轴对称图形的另一半,并把图形涂上你喜欢的颜色。
轴对称图形练习题
轴对称图形练习题(一)1、如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.2、在一些缩写符号SOS,CCTV,BBC,WWW,TNT中,成轴对称图形的是______3、将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.等.(2)用三角尺作图在如图的方格纸中,①作△ABC关于直线l1对称的△A1B1C1;再作△A1B1C1关于直线l2对称的△A2B2C2;再作△A2B2C2关于直线l3对称的△A3B3C3.②△ABC与△A3B3C3成轴对称吗?如果成,请画出对称轴;如果不成,把△A3B3C3怎样平移可以与△ABC成轴对称?5、下列四个图案中,不是轴对称图形的是()A.B.C.D.6、在字母A、B、C、D、E、F、G、H、I、J中不是轴对称图形的是______7、将写有字“E”的纸条正对镜面,则镜中出现的会是()A.E B.ヨC.ΜD.Ш8、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有______.9、线段是轴对称图形,它有______条对称轴,正三角形的对称轴有______条.10、如图,已知△ABC和直线l.(1)请你作出与△ABC关于直线l对称的△A′B′C′.(保留作图痕迹,不写作法)(2)请你在直线l上找到一点P,使得AP+BP最短.11、下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形一定是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有A.4个B.3个C.2个D.1个12、一牧童在A处牧马,牧童的家在B处,A、B处距河岸的距离分别是AC=500m,BD=700m,且C、D两地间距离也为500m,天黑前牧童从A点将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)请你求出他至少要走______路程.13、如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED的最小值为______..14、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个15、已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有()A.1个B.2个C.3个D.4个16、如图,这是由三个正方形构成的图形.请你在这个图形中再添加一个正方形,使得添加完之后的图形是一个轴对称图形.参考下图:17、观察如图所示的图案,轴对称图形的个数有()A.1个B.2个C.3个D.4个。
轴对称图形-练习题
A . 3个B . 4个C . 5个D . 6个A . △ABC 的三条中线的交点中线的交点B . △ABC 三边的中垂线的交点中垂线的交点C . △ABC 三条角平分线的交点平分线的交点D . △ABC 三条高所在直线的交点接AH ,则与∠BEG 相等的角的个数为(相等的角的个数为( A . 4 B . 3 C . 2 D . 1A . 60°B . 67.5°C . 72°D .75°5.(3分)如图,已知AD=AB=BC ,若设∠1=x ,∠2=y ,那么x 与y 的关系是(的关系是( ))A . 3x ﹣y=180°B . 3x+y=180°C . 2x+y=180°D .x +3y=180°二、填空题(共10小题,每小题3分,满分30分)6.(3分)下列语句中分)下列语句中①关于一条直线对称的两个图形一定能重合;①关于一条直线对称的两个图形一定能重合; ②一个轴对称图形不一定只有一条对称轴;②一个轴对称图形不一定只有一条对称轴;③两个能重合的图形一定关于某条直线对称;③两个能重合的图形一定关于某条直线对称;④两个轴对称图形的对应点一定在对称轴的两侧.④两个轴对称图形的对应点一定在对称轴的两侧.正确的序号有正确的序号有 _________ .7.(3分)已知∠AOB=45°,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是三点构成的三角形是 _________ .8.(3分)△ABC 中,AB=AC ,∠ABC=36°,D ,E 是BC 上的点,∠BAD=∠DAE=∠EAC ,则图中等腰三角形有则图中等腰三角形有 _________ 个.个.9.(3分)已知,在△ABC 中,AB=AC=12cm ,DE 垂直平分AB 交AC 于E . (1)若BC=5cm ,则△BCE 的周长是的周长是 _________ ;(2)∠C=70°,则∠EBC= _________ °;(3)∠EBC=20°,则∠A= _________ °.10.(3分)如图,已知等边△ABC,AC=AD,且AC⊥AD,垂足为点A,则∠BEC的度数为 _________.数为11.(3分)若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为,则其顶角的度数为_________.,则其顶角的度数为 _________.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为12.(3分)等腰三角形一腰上的中线把其周长分成两部分的差为3cm,底边长为5cm,腰长为 _________.长为13.(3分)(2009•朝阳)如图,△ABC是等边三角形,点D是BC边上任意一点,DE⊥AB 于点E,DF⊥AC于点F.若BC=2,则DE+DF= _________.14.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有_________个.三、解答题15.(1)尺规作图(不写作法,保留作图痕迹):如图1,已知∠AOB和C、D两点,求两边的距离相等;作一点P,使PC=PD,且P到∠AOB两边的距离相等;(2)若点A、B分别表示2个居民小区,直线l表示公交通道,欲在其旁建1个公交车站,中画出来.且使从该站到2个小区的总路程最短,应如何确定车站的位置?请在图2中画出来.16.如图,点D、E在BC上,AB=AC,AD=AE.BD和CE有怎样的关系?请说明理由.17.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.的度数.。
轴对称练习题含答案
轴对称练习题13.1.1 轴对称下列图形中,是轴对称图形的是( )3 .如图,△ ABC和4A'B。
关于直线I对称,下列结论中正确的有()①^ABC/△ A'B'C;②/BAC =Z B'A'C;③直线l垂直平分C C;④直线BC和B'C 的交点不一定在直线l上.A. 4个B. 3个C 2个D. 1个第3题图第4题图4 .如图,△ ABC与^A'B。
关于直线l对称,且N A = 105°, Z C = 30°,则N B的度数为()A.25°B.45°C.30°D.20°5 .如图,A ABC关于直线MN对称的三角形的顶点分别为A', B’, C,其中Z A = 90°, A =8cm, A'B=6cm.(1)求AB, A'C的长;(2)求4 A‘B。
的面积.2下列轴对称图形中,对称轴条数是四条的图形是()13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在八^。
中,AB的垂直平分线交AC于点P, PA = 5,则线段PB的长度为()A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD, BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC AB垂直平分CD D. CD平分/ACB3.如图,在A ABC中,D为BC上一点,且BC=BD+AD,则点D在线段的垂直平分线上.第3题图第4题图4.如图,在Rt A ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且N CBD =Z ABD,则N A =°.5.如图,在^ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm, △ ADC的周长为11cm,求BC的长.第2课时线段垂直平分线的有关作图1.如图,已知线段/'分别以点A,点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案在数学学科中,轴对称图形是一种非常重要的概念。
轴对称图形是指可以通过某条直线将图形分成两个完全相同的部分的图形。
轴对称图形不仅在几何学中有广泛的应用,也常常出现在生活中的各个方面。
下面,我们来看一些轴对称图形的练习题及答案。
练习题一:请画出下列图形的轴对称线,并判断图形是否具有轴对称性。
1. 正方形2. 长方形3. 五角星4. 圆形5. 三角形答案一:1. 正方形:具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。
因此,正方形具有轴对称性。
2. 长方形:具有两条轴对称线,分别是连接对角线的线。
因此,长方形具有轴对称性。
3. 五角星:具有五条轴对称线,分别是连接对角线的线。
因此,五角星具有轴对称性。
4. 圆形:具有无数条轴对称线,因为圆形的任意直径都可以作为轴对称线。
因此,圆形具有轴对称性。
5. 三角形:具有零条或一条轴对称线。
如果三角形的三条边相等,则具有三条轴对称线,分别是连接各边中点的线。
如果三角形的三条边不相等,则没有轴对称线。
因此,三角形可能具有轴对称性,也可能不具有轴对称性。
练习题二:请找出下列图形的轴对称图形,并画出轴对称线。
1. 矩形2. 正五边形3. 椭圆4. 等腰梯形5. 菱形答案二:1. 矩形的轴对称图形是自身,因为矩形具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。
2. 正五边形的轴对称图形是自身,因为正五边形具有五条轴对称线,分别是连接对角线的线。
3. 椭圆的轴对称图形是自身,因为椭圆具有无数条轴对称线,因为椭圆的任意直径都可以作为轴对称线。
4. 等腰梯形的轴对称图形是自身,因为等腰梯形具有一条轴对称线,即连接两个底边中点的线。
5. 菱形的轴对称图形是自身,因为菱形具有两条轴对称线,分别是连接对角线的两条线。
通过以上练习题,我们可以更好地理解和掌握轴对称图形的概念和性质。
轴对称图形在几何学中有着广泛的应用,例如在设计中常常使用轴对称图形来增加美感和平衡感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《轴对称图形与成轴对称》练习题
姓名:班别: 学号:
一.填空。
1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。
2.在对称图形中,对称轴两侧相对的点到对称轴的()。
二.判断。
1.通过一个圆的圆心的直线是这个圆的对称轴。
( )
2.圆是轴对称图形,每一条直径都是它的对称轴。
()
3.等腰梯形是对称图形。
( )
4.正方形只有一条对称轴。
( )
三.选择。
1.4、下列图形中对称轴条数最多的是( )
A.正方形
B.长方形
C.等腰三角形
D.等腰梯形
E.等边三角形
F.角
G.线段
H.圆
I.正五角星
2.下面不是轴对称图形的是()。
①长方形②平行四边形③圆④半圆
3.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( ) 4.(2004·安徽)如图14-18所示,下列图案中,是轴对称图形的是( )
A.(1)(2)
B.(1)(3)
C.(1)(4)
D.(2)(3)
5.(2004·厦门)如图14-19所示,下列图案中,是轴对称图形的是( )
图14-19
A.(1)(2)
B.(1)(3)(4)
C.(2)(3)
D.(1)(4)
6、下列英文字母属于轴对称图形的是()
A、N
B、S
C、L
D、E
7、下列各时刻是轴对称图形的为()
A、B、C、D、
8、将写有字“B”的字条正对镜面,则镜中出现的会是()
A、B、
C
、D、
9、和点P(-3,2)关于y轴对称的点是(
)
A.(3,2)
B.(-3,2)
C. (3,-2)
D.(-3,-2)
10.小强从镜子中看到的电子表的读数如图所示,则电子表的实际读数是 . 四.作图题。
画下面图形的对称轴.
B第10题图
五.解答题。
1. 判断下列图形(如图14-6所示)是不是轴对称图形.
2、判断下面每组图形(如图14-7所示)是否关于某条直线成轴对称
.
3、如图14-8所示,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.
4、两个大小不同的圆可以组成如图14-12中的五种图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么共同的特点
.
5、(2003·吉林)在图14-17中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由
.
答:图形 ;理由是: . 6、求右图阴影部分的面积。
(单位:厘米)。