重庆市永川双石中学2017-2018学年高一下学期第二周周练数学(理)试题 Word版无答案

合集下载

高一数学下学期周练二理2

高一数学下学期周练二理2

2018-20191.y+1= x-2A.0.5B.-0.5C.-1D.122.8^ =A.」B.-4C.1D.4443.72A.72B.90C.108D.1804. A^xllog j X〉—1}, B={x|2x>72} AU B =21 1 ——A.( —,2)B. (一严)C. (0, FD. 0,22 2x 12e x <25. f(x)={ 2f[f(2)]=[log3(x -1),^2A.0B.1C.2D.36.A(1,-2),B(m,2),AB x+2y-2=0, mA.-2B.-7C.3D.17.y =2x y =gx y=xf (x) =a x1(a 0 a =1)(0,2)y = 0.5x1x R,3x2xA. B. C. D.8.ABC;- AEG:■AB AC AC1, A1B1 EFGH AA1EFGH«BCC1B1:■BCFEA. B. C. D.9.y=x+1(x-3)2y2=1A.1B.2&C..7D.3ii.已知10^ =|ig x|的两根为论兀,则( ) 12. 某几何体的三视图如图所示,则该几何体的所有棱中,最长的棱和最短的棱所在直线所成 角的正切值为()A. .7B. . 6C. . 5D.二.填空题:13. 以(2,0),(0,4 )为直径的圆的标准方程为()214. 已知 f(x)=2g(x)-x 为奇函数,若 g(-1)=-1,则 f(1)=() 15.已知角〉的顶点在原点,始边在 x轴的非负半轴上,终边上一点(-4二,-2二)上,与角:'终边相同的角的弧度数是()16.对于函数f(x)与g(x),设:;三{x | f (x)二0}」':={x | g (x)二0},若对所有的:-,:都有 。

-艸兰1 ,则称f(x)与g(x)互为“零点相邻函数”。

已知函数f(x)=x-1 和 2g(x)= x - ax - a 3互为“零点相邻函数”,则实数a 的取值范围是()10.已知函数 f(x) J2,x<°|2(x —1)2+m,x 3 0的值域为 [_2, •::),则实数m 的取值范围是( A. m _ -2B. m _ -2C.m=-2D.m=2A. 0 ::: x 1x 2 ::: 1B. x ]X 2 = 1C.1 ::: XjX2 ::10p(~■1,、、3),则在区间三.解答题:17.在正方体 ABCD -A 1B 1C 1D 1中,E , F 分别为AD ,和CD ,的中点 (1)求证:EF//面ABCD(2)求异面直线 BD 和 CD 1所成角的余弦值18.已知两条直线 11 : (a-1 ) x+2y+1=0 和 l 2 : x+ay+3=019.已知f(x)是定义在R 上的偶函数,当x_0时,f (x^x 2 2x (1) 求f(x)的解析式(2) 若 g(x) = f (x) -2ax 1,x[1,2],求 g(x)的最小值 h(a)的表达式20. 在直角三角形 ABC 中,/ ABC=90 , AC = 4J 3, AB = 2由,D,E 分别为AC, BD 之中点, 延长AE 交BC 于F 点,将△ ABD 沿着BD 折起,使得面 ABDL 面BCD (1)求证:AE 丄CD( 2)求四棱锥 A-CDEF 的体积21. 奇函数f(x)是定义在(-1,1 )上的减函数 f (1 -a) • f (1 —a 2) ::: 0 (2)对于(1)中的 a,求函数1 x 2F(x) =log a [1 _(_)]的定义域a22如图,在平面直角坐标系 xOy 中,已知圆C:x 2 • y 2 _4x =0及点A(_1,0) , B(1,2).(1)当h 丄12时,求a 的值(2)当11 // 12时,求a 的值(1)解关于a 的不等式(1)若直线l平行于AB,与圆C相交于M , N两点,MN =AB,求直线l的方程;(2)在圆C上是否存在点P,使得PA2PB2=12 ?若存在,求点P的个数;若不存在,说明理由.1-6.DDBCCC 7-12.DCCCAA2 2 10 H13. (x -1) (y-2) =5 14.3 15. 16. 2_a_33117.(1)略(2) 60°18. (1) a=-1 或a=2 (2) a=319.(1)r- 2X2+2X(X M0)f(x)2⑵X —2X(X>0)h(a)= <'-2a, a 兰02-a —2a,0 c a1 -4a(a 31)20.(1)25血221. 10,1 2 0,122. 1x-y=0x_y_4=0 (2)2。

2017-2018学年重庆市高一(下)期末考试数学试卷Word版含解析

2017-2018学年重庆市高一(下)期末考试数学试卷Word版含解析

2017-2018学年重庆市高一(下)期末试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.已知等差数列{a n}中,a2+a8=2,a5+a11=8,则其公差是()A.6 B.3 C.2 D.12.学校为了解学生在课外读物方面的支出情况,抽取了n个同学进行调查,结果显示这些同学的支出都在上的运动员人数是()A.3 B.4 C.5 D.64.如图所示的程序的输出结果为S=132,则判断框中应填()A.i≥10?B.i≥11?C.i≤11?D.i≥12?5.已知点P(x,y)在不等式组表示的平面区域上运动,则z=x﹣y的取值范围是()A.B.C.D.6.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.847.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>08.在△ABC中,a=4,b=5,c=6,则=()A.1 B.2 C.3 D.49.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重n2﹣6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为()A.B.C.D.10.某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 2 2 8A.12万元B.16万元C.17万元D.18万元11.若实数a,b满足+=,则ab的最小值为()A.B.2 C.2D.412.锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若B=2A,则的取值范围是()A.B.C.D.二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上. 13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,B=60°.则b=.14.在区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为.15.若变量x,y满足约束条件,则z=2x﹣y的最小值为.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若C=60°,且3ab=25﹣c2,则△ABC的面积最大值为.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).17.在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列.(Ⅰ)求a n;(Ⅱ)令b n=log2a n,求数列{b n}的前n项和S n.18.在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S△ABC.19.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数学为茎,个位数学为叶得到的茎叶图如图所示,已知甲、乙两组数据的平均数都为10.(Ⅰ)求m,n的值;(Ⅱ)别求出甲、乙两组数据的方差S甲2和S乙2,并由此分析两组技工的加工水平;(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:为数据x1,x2,…x n的平均数,方差S2=)20.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.21.已知函数f(x)=(a、b为常数).(1)若b=1,解不等式f(x﹣1)<0;(2)若a=1,当x∈时,f(x)>恒成立,求b的取值范围.22.已知各项均为正数的数列{a n},其前n项和为S n,且满足2S n=a n2+a n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:当n≥3时,T n>+.2017-2018学年重庆市高一(下)期末试数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.已知等差数列{a n}中,a2+a8=2,a5+a11=8,则其公差是()A.6 B.3 C.2 D.1考点:等差数列的通项公式.专题:等差数列与等比数列.分析:利用等差数列的通项公式求解.解答:解:等差数列{a n}中,∵a2+a8=2,a5+a11=8,∴,解得a1=﹣3,d=1.故选:D.点评:本题考查等差数列的公差的求法,解题时要认真审题,是基础题.2.学校为了解学生在课外读物方面的支出情况,抽取了n个同学进行调查,结果显示这些同学的支出都在上的运动员人数是()A.3 B.4 C.5 D.6考点:茎叶图.专题:概率与统计.分析:对各数据分层为三个区间,然后根据系数抽样方法从中抽取7人,得到抽取比例为,然后各层按照此比例抽取.解答:解:由已知,将个数据分为三个层次是,,,根据系数抽样方法从中抽取7人,得到抽取比例为,所以成绩在区间中共有20名运动员,抽取人数为20×=4;故选B.点评:本题考查了茎叶图的认识以及利用系统抽样抽取个体的方法;关键是正确分层,明确抽取比例.4.如图所示的程序的输出结果为S=132,则判断框中应填()A.i≥10?B.i≥11?C.i≤11?D.i≥12?考点:程序框图.专题:操作型.分析:由框图可以得出,循环体中的运算是每执行一次s就变成了s乘以i,i的值变为i﹣2,故S的值是从12开始的逐渐减小的若干个整数的乘积,由此规律解题计算出循环体执行几次,再求出退出循环的条件,对比四个选项得出正确答案.解答:解:由题意,S表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次所以每次执行后i的值依次为11,10由于i的值为10时,就应该退出循环,再考察四个选项,B符合题意故选B点评:本题考查循环结构,解答本题,关键是根据框图得出算法,计算出循环次数,再由i的变化规律得出退出循环的条件.本题是框图考查常见的形式,较多见,题后作好总结.5.已知点P(x,y)在不等式组表示的平面区域上运动,则z=x﹣y的取值范围是()A.B.C.D.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x﹣y对应的直线进行平移,观察x轴上的截距变化,得出目标函数的最大、最小值,即可得到z=x﹣y的取值范围.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,1),C(0,1)设z=F(x,y)=x﹣y,将直线l:z=x﹣y进行平移,观察x轴上的截距变化,可得当l经过点C时,z达到最小值;l经过点A时,z达到最大值∴z最小值=F(0,1)=﹣1,z最大值=F(2,0)=2即z=x﹣y的取值范围是故选:A点评:本题给出二元一次不等式组,求目标函数z=x﹣y的范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.6.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.解答:解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B点评:本题主要考查了等比数列通项公式的应用,属于基础试题.7.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+2d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.8.在△ABC中,a=4,b=5,c=6,则=()A.1 B.2 C.3 D.4考点:余弦定理;正弦定理.专题:三角函数的求值.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==,∴sinC=,sinA=,∴===1.故选:A.点评:本题考查余弦定理,考查学生的计算能力,比较基础.9.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重n2﹣6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为()A.B.C.D.考点:等可能事件的概率.专题:概率与统计.分析:任意取出1球,共有6种等可能的方法,要求其重量大于号码数的概率,根据号码为n的球的重量为n2﹣6n+12克,构造关于n的不等式,解不等式即可得到满足条件的基本事件的个数,代入古典概型公式即可求解.解答:解:由题意,任意取出1球,共有6种等可能的方法.由不等式n2﹣6n+12>n,得n>4或n<3,所以n=1或2,n=5或6,于是所求概率P==故选D.点评:本题考查古典概型概率公式,考查学生的计算能力,属于基础题.10.某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 2 2 8A.12万元B.16万元C.17万元D.18万元考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域由z=3x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即A的坐标为x=4,y=0,∴z max=3x+4y=12.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是12万元,故选:A.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键11.若实数a,b满足+=,则ab的最小值为()A.B.2 C.2D.4考点:基本不等式.专题:计算题;不等式的解法及应用.分析:由+=,可判断a>0,b>0,然后利用基础不等式即可求解ab的最小值解答:解:∵+=,∴a>0,b>0,∵(当且仅当b=2a时取等号),∴,解可得,ab,即ab的最小值为2,故选:C.点评:本题主要考查了基本不等式在求解最值中的简单应用,属于基础试题12.锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若B=2A,则的取值范围是()A.B.C.D.考点:正弦定理;二倍角的正弦.专题:计算题;解三角形.分析:由题意可得0<2A<,且<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得=2cosA,解得所求.解答:解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<.由正弦定理可得==2cosA,∴<2cosA<,故选B.点评:本题考查正弦定理,二倍角的正弦公式,判断<A<,是解题的关键和难点.二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上.13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,B=60°.则b=.考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,c及cosB代入计算即可求出b的值.解答:解:∵a=2,c=3,B=60°,∴由余弦定理得:b2=a2+c2﹣2accosB=4+9﹣6=7,则b=.故答案为:点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.14.在区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为0.3.考点:几何概型.专题:计算题;转化思想.分析:由1∈{x|2x2+ax﹣a2>0}代入得出关于参数a的不等式,解之求得a的范围,再由几何的概率模型的知识求出其概率.解答:解:由题意1∈{x|2x2+ax﹣a2>0},故有2+a﹣a2>0,解得﹣1<a<2由几何概率模型的知识知,总的测度,区间的长度为10,随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}这个事件的测度为3故区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为0.3故答案为0.3点评:本题考查几何概率模型,求解本题的关键是正确理解1∈{x|2x2+ax﹣a2>0}的意义,即得到参数a所满足的不等式,从中解出事件所对应的测度15.若变量x,y满足约束条件,则z=2x﹣y的最小值为﹣1.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(0,1).∴z=2x﹣y的最小值为2×0﹣1=﹣1.故答案为:﹣1.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若C=60°,且3ab=25﹣c2,则△ABC的面积最大值为.考点:基本不等式;余弦定理.专题:计算题;解三角形.分析:根据余弦定理结合C=60°,算出c2=a2+b2﹣ab,结合题中的等式得a2+b2﹣ab=25﹣3ab,整理得(a+b)2=25,解出a+b=5.由基本不等式,得当且仅当a=b=时ab的最大值为,由此结合正弦定理的面积公式,即可算出△ABC的面积的最大值.解答:解:∵△ABC中,C=60°,∴c2=a2+b2﹣2abcosC=a2+b2﹣ab又∵3ab=25﹣c2,得c2=25﹣3ab∴a2+b2﹣ab=25﹣3ab,移项得(a+b)2=25,可得a+b=5∵△ABC的面积S=absinC=ab,且ab≤=∴当且仅当a=b=时,ab的最大值为,此时△ABC的面积的最大值为故答案为:点评:本题给出三角形ABC的角C和边之间的关系式,求三角形面积的最大值.着重考查了用基本不等式求最值、三角形的面积公式和余弦定理等知识,属于中档题.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).17.在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列.(Ⅰ)求a n;(Ⅱ)令b n=log2a n,求数列{b n}的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题;等差数列与等比数列.分析:(I)设{a n}的公比为q,根据等比数列的通项公式与等差中项的定义,建立关于q的等式解出q=2,即可求出{a n}的通项公式.(II)根据(I)中求出的{a n}的通项公式,利用对数的运算法则算出b n=n﹣1,从而证出{b n}是首项为0、公差为1的等差数列,再利用等差数列的前n项和公式加以计算,可得数列{b n}的前n项和S n的表达式.解答:解:(Ⅰ)设{a n}的公比为q,∵4a1,2a2,a3成等差数列,∴4a1+a3=4a2.又∵{a n}的公比为q,首项a1=1,∴4+q2=4q,解之得q=2.∴数列{a n}的通项公式为(n∈N*).(Ⅱ)∵,∴,由此可得b n+1﹣b n=n﹣(n﹣1)=1,b1=0,∴{b n}是首项为0、公差为1的等差数列,因此,数列{b n}的前n项和.点评:本题给出等比数列{a n}满足的条件,求它的通项公式并依此求数列{b n}的前n项和.着重考查了等差、等比数列的通项与性质,等差数列的前n项之积公式与对数的运算法则等知识,属于中档题.18.在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S△ABC.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.解答:解:(1)由正弦定理可设,所以,所以.…(6分)(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0,解得ab=4或ab=﹣1(舍去)所以.…(14分)点评:本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.19.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数学为茎,个位数学为叶得到的茎叶图如图所示,已知甲、乙两组数据的平均数都为10.(Ⅰ)求m,n的值;(Ⅱ)别求出甲、乙两组数据的方差S甲2和S乙2,并由此分析两组技工的加工水平;(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:为数据x1,x2,…x n的平均数,方差S2=)考点:列举法计算基本事件数及事件发生的概率;茎叶图;极差、方差与标准差.专题:概率与统计.分析:(Ⅰ)由题意根据平均数的计算公式分别求出m,n的值.(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差S甲2和S乙2,再根据它们的平均值相等,可得方差较小的发挥更稳定一些.(Ⅲ)用列举法求得所有的基本事件的个数,找出其中满足该车间“待整改”的基本事件的个数,即可求得该车间“待整改”的概率.解答:解:(I)由题意可得=(7+8+10+12+10+m)=10,解得m=3.再由=(n+9+10+11+12)=10,解得n=8.(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差,S甲2==5.2,S乙2==2,并由,S甲2<S乙2,可得两组的整体水平相当,乙组的发挥更稳定一些.(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),则所有的(a,b)有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足a+b≤17的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足a+b>17的基本事件个数为25﹣5=20,即该车间“待整改”的基本事件有20个,故该车间“待整改”的概率为P==.点评:本题主要考查方差的定义和求法,古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于中档题.20.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)由已知数列递推式得到a n=2a n﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{a n}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得T n,结合求解指数不等式得n的最小值.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(Ⅱ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n﹣1|成立的n的最小值为10.点评:本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题.21.已知函数f(x)=(a、b为常数).(1)若b=1,解不等式f(x﹣1)<0;(2)若a=1,当x∈时,f(x)>恒成立,求b的取值范围.考点:函数恒成立问题;其他不等式的解法.专题:综合题;函数的性质及应用;不等式的解法及应用.分析:(1)f(x﹣1)<0即,按照1﹣a与0的大小关系分三种情况讨论可解不等式;(2)a=1时不等式可化为(※),由x≠﹣b可知b∉,分离出参数b后化为函数的最值即可,由基本不等式可求最值;解答:解:(1)f(x﹣1)<0即,①当1﹣a>0,即a<1时,不等式的解集为:(0,1﹣a);②当1﹣a=0,即a=1时,不等式的解集为:x∈ϕ;③当1﹣a<0,即a>1时,不等式的解集为:(1﹣a,0).(2)a=1时,f(x)>即(※)且x≠﹣b,不等式恒成立,则b∉;又当x=﹣1时,不等式(※)显然成立;当﹣1<x≤2时,,故b>﹣1.综上所述,b>﹣1.∵x+b≠0,∴b≠﹣x,又x∈,∴﹣x∈,综上,b∈(1,+∞)为所求.点评:该题考查函数恒成立、分式不等式的解法,考查分类讨论思想,考查学生对问题的转化能力.22.已知各项均为正数的数列{a n},其前n项和为S n,且满足2S n=a n2+a n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:当n≥3时,T n>+.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由已知条件推导出,化简得(a n﹣a n﹣1﹣1)(a n+a n﹣1)=0,由此能求出a n=n.(Ⅱ)当n≥3时,利用放缩法和裂项求和法能证明T n>+.解答:解:(Ⅰ)∵…①,∴,解得a1=1或0(舍),且…②,①﹣②得,化简得(a n﹣a n﹣1﹣1)(a n+a n﹣1)=0,∵数列{a n}各项均为正数,∴a n﹣a n﹣1﹣1=0,即a n=a n﹣1+1,∴{a n}为等差数列,a n=n,经检验,a1=1也符合该式,∴a n=n.…(5分)(Ⅱ)当n≥3时,∴当n≥3时,T n>+.…(12分)点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法和裂项求和法的合理运用.。

重庆市永川双石中学2017-2018学年高一下学期第四周周练数学试题 Word版无答案

重庆市永川双石中学2017-2018学年高一下学期第四周周练数学试题 Word版无答案

2017-2018学年数学周测试题4一、选择题:(每小题5分)1.设等差数列}{n a 中,17,594==a a ,则14a 的值等于( )A 、11B 、22C 、29D 、122.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .3.在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .214.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 35.若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为( )A .12B .18C .22D .446.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .不能确定D .等腰三角形7.设n s 为等比数列{}n a 的前n 项和,已知3432,s a =-2332s a =-,则公比q = ( )(A)3 (B)4 (C)5 (D)6 8.在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m =( ) (A )9 (B )10 (C )11 (D )129.若等比数列{}n a 满足n n n a a 161=+,则公比为( )(A )2 (B )4 (C )8 (D )1610.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A .6 B .7 C .8 D .911.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94B.32C.53 D .4 12.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10 二、填空题:(每小题5分)1.在等比数列{a n }中,若a 4,a 8是函数f(x)=x 2-4x +3的零点,则a 6的值是 。

高一数学下学期第二次双周考试题 理-人教版高一全册数学试题

高一数学下学期第二次双周考试题 理-人教版高一全册数学试题

某某省荆州中学2017-2018学年高一数学下学期第二次双周考试题理一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。

)1.23sin 83sin 203cos 263cos +的值为( ) A.21 B. 21- C. 23 D.23-2. 已知(2,1),(1,2)a b ==-,若(9,8)(,)ma nb m n R +=-∈,则m n -的值为( ) A. 2 B. -2 C. 3 D.-33. 为了得到函数x x y 3cos 3sin +=的图象,可以将函数y x =的图象( ) A. 向右平移4π个单位 B. 向右平移12π个单位C. 向左平移4π个单位 D. 向左平移12π个单位4. 在△ABC 中,根据下列条件解三角形,其中有两解的是 ( )A .7,3,30b c C ===︒B .5,4,45b c B ===︒ C.6,60a b B ===︒D .20,30,30a b A ===︒5. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 由增加的长度决定6.数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪=⎨⎪-≤<⎩,若167a =,则2016a =( ) A .67 B .57 C .37 D .177.已知等差数列{}n a 的前n 项和为n S ,111a =- ,564a a +=-,n S 取得最小值时n =( )A .6B .7C .8D .98.ABC 的内角A B C 、、所对的边分别为a b c 、、,若ABC 的面积22S=[()]a b c --,则AAsin cos 1-等于( )A .21 B .31C .41D .61 9.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的71是较小的两份之和,问最小一份为( ) A .35 B .310 C .65 D .611 10.设)30cos(cos )(x xx f -=,根据课本中推导等差数列前n 项和的方法可以求得)59()2()1( f f f +++的值是( )A.2359 B.0 C.59 D.259 11.已知函数f (x )=sin(2x +θ)+3cos(2x +θ)(x ∈R )满足)()(201512015x f x f =-,且)(x f 在⎥⎦⎤⎢⎣⎡4,0π上是减函数,则θ的一个可能值是( )A.3πB .32π C.34πD .35π 12. 已知向量,a b 满足1,a a =与b 的夹角为3π,若对一切实数x ,2xa b a b +≥+恒成立,则b 的取值X 围是( )A.1,2⎡⎫+∞⎪⎢⎣⎭B.1,2⎛⎫+∞ ⎪⎝⎭C.[)1,+∞D.()1,+∞二、填空题:(本大题共4个小题,每题5分,满分20分)。

重庆市2017-2018学年高一下学期期末考试试题数学含答案

重庆市2017-2018学年高一下学期期末考试试题数学含答案

秘密★启用前2018年重庆一中咼2018级咼一下期期末考试数学试题卷 2018.7数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1. 答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如 需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定 的位置上。

4. 所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只 有一项是符合题目要求的.(1)已知集合 A 二{x|(x 2)(x-3) "},B 二{-1,0,1,2,3},则 A" B 二(B) {0,1,2} (D ) {-1,0,1,2}b = (3,1),若a_b ,贝U 实数k 的值等于 5 5 3(B) - 3 (C ) 3( D )2(3)设等差数列{a n }的前n 项和为S,若a 5 + a i4= 10,则$8等于(A) 20( B ) 60 ( C )90( D )100(4)圆(x 2)2 y 2 =4与圆(x-2)2 • (y -1)2 =9的位置关系为(A )内切(B )相交 (C) 外切 (D) 相离(A ) {0,1} (C ) {-1,0,1}(5)已知变量x , y 满足约束条件x - y _1 , x - y _1 (B ) 11 则z=3x+y 的最大值为 (A) 12 (C ) 3 (D)-1 (6)已知等比数列{a n }中,a 1 = 1, q = 2,则 1 1 1 1' +…+ 的结果 a n a n +1可化为 (B) 1-2 (C )3(1—》) (D )彳(1 —寺) (7)“m=1 ”是“直线mx y — 2 = 0与直线x my 1 — m = 0平行” (A )充分不必要条件 (B) 必要不充分条件 (C )充要条件(D) 既不充分也不必要条件(8) 阅读右面的程序框图,运行相应的程序,输出S 的值为15 (9) (B ) 105 (C ) (D ) 245945 现有两组卡片,第一组卡片上分别写有数字“2 3, 4”, 第二组卡片上分别写有数字“34, 5”,现从每组卡片中各随机 抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上 的数字,差为负数的概率为 (B)書(D)(10)在平行四边形 ABCD 中,AD = 2, / BAD = 60° E 为 CD 的中点, =1,则AB 的长为 (A ) .6(B) 4(C ) 5若 AD BE(D) 6(11)(原创)已知函数f(x)= ^x,且对于任意实数a,(0,1)厂x2+2mx —2m +1,x >1关于x的方程f (x) 一a= 0都有四个不相等的实根石,x, x3 x,则X1+X2 • x^ x的取值范围是(A)(2,4] (B)(-::,0山[4,::)(C)[4,+::) ( D)(2,+::)(12 )(原仓U )已知集合M ={(x,y)|2x • y—4=0},N = {(x, y) | x2 y2 2mx 2ny = 0},若M 门N =,则m2n2的最小值4 3 l 5(A) 5 ( B) 4 ( C)(6- 2,5) (D) -4第II卷二、填空题:本大题共4小题,每小题5分(13)某学校高一、高二、高三年级的学生人数之比为3: 3: 4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取名学生.(14 )(原创)在ABC中,角A,B,C所对边长分别为a,b,c,若兀47a=3,B ,cAs —6 4则b= ___________ .(15)已知点P,Q为圆C: x2+ y2= 25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M上的概率为(16) (原创)点C 是线段AB 上任意一点,0是直线AB 外一点,OC = xOA+yOB , 不等式x 2(y 1) - y 2(x 2) k(x 2)(y 1)对满足条件的x , y 恒成立, 则实数k 的取值范围—三、解答题:解答应写出文字说明,证明过程或演算步骤(17) (本小题满分10分) 已知厶ABC 的面积是3,角代B,C 所对边长分别为a,b,c ,(I )求 A ^U AC ;(n )若b =2,求a 的值.(18) (本小题满分12分)已知圆 C :(X -3)2 • (y 一4)2 =4,直线 I 过定点 A(1,0).(I)若I 与圆C 相切,求直线I 的方程;(n)若I 与圆c 相交于p 、Q 两点,且PQ = 22,求直线I 的方程.(19) (本小题满分12分)某校从高一年级学生中随机抽取 40名学生,将他们的期中考试数学成绩(满 分100分,成绩均为不低于40分的整数)分成六段:[40,50), [50,60),…,[90,100] 后得到如图所示的频率分布直方图.(I)若该校高一年级共有学生 640名,试估计 该校高一年级期中考试数学成绩不低于 60分的人数;(n)若从数学成绩在[40,50)与[90,100]两个分数 段内的学生中随机选取2名学生,求这2名学生的数学 成绩之差的绝对值不大于10的概率.cosA = ?5频率(20) (本小题满分12分)已知数列{a n }满足a =1,耳-a nA = n (其中n _ 2且n N ).(I)求数列{a n }的通项公式;2a7(U)设b n 二一-,其前n 项和是T n ,求证:T n <9.n x 49(21) (原创)(本小题满分12分)已知动点P(x, y)满足方程xy =d (x 0).(I)求动点P 到直线丨:x • 2y 一2二0距离的最小值;(U)设定点A(a,a),若点P, A 之间的最短距离为2 2,求满足条件的实数a 的取值.(22) (本小题满分12分)已知函数f(x)= ax 〒b 为奇函数,且f(1) = 1 .x(I)求实数a 与b 的值; (U)若函数g(x) J _f (x),设{a n }为正项数列,且当n_2时,x[g(a n ) g(a n4)+ * 2*2 21] a n 2 =q ,(其中 q=2016 ),{a .}的前 n 项和为 S n ,a n anJb n 二' ,若bn _2017n 恒成立,求q 的最小值.i 二 S命题人:付彦审题人:邹发明2018年重庆一中高2018级高一下期期末考试数学答案 2018.7一、选择题:1— 5 DACBB 6—10 CCBDD 11—12 CA、填空题:15,解答题:4 3(17)解:由cos A 二一,得sin A = 一又2bcsinA^30,2bCSin A(i)A B A C = bccosA = 8(U) ;b=2,. c = 5, a2二b2c2-2bccosA =13 二a -、13(18)解:(i)当斜率不存在时,方程x=1满足条件;3k _ 一_ kl 3当L1斜率存在时,设其方程是y=k(x-1),则’ k =2,解得,Jk2+1 4 所以所求方程是x=1和3x-4y-3=0;(U)由题意,直线斜率存在且不为0,设其方程是y=k(x-1),则圆心到直线的距.k 1:2.4-d2=2 2, d=、2,此时k=1 或k=7,所以所求直线方程是x-y-1=0或7x-y-7=0.(19)解:(I)根据频率分布直方图,成绩不低于60分的频率为1 —10 X0.005+ 0.01) = 0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640X).85= 544.(U)成绩在[40,50)分数段内的人数为40X0.05= 2,成绩在[90,100]分数段内的人数为40X0.1= 4,则记在[40,50)分数段的两名同学为A1, A2,在[90,100]分数段内的同学为B1, B2, B3, B4.若从这6名学生中随机抽取2人,则总的取法共有15种.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50) 分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的d =、_(t — a)2 a 2 -2 ,设 f(t) =(t — a)2 a 2 —2(t 一2)绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于 10的取法有(A i , A 2), (B I , B 2), (B i , B 3),(B i ,B 4),(B 2, B 3),(B 2, B 4), (B 3, B 4)共 7 种取法,所以所求概(20)解:(I)解:an- a 1(a2- a 1)(a 3 -a2) 1 H (an-an八…宀1)("正明:0=罟=即, 2 3 n +1n 项和T n = 4+孑+…+ _4^,123 n n +14&=42+ 43+^+ 羊+4nT T , T 1 2 1 1 1 n +1 二 T n — 4T n = 4 + 孑 + 戸+…+ 4n _ 厂1 丄1 4(1—4n)n +17 3n + 74+r —盯 二 12— 3^4^,1—4T_7— 3n + 7 7 T n= 9— 9X 4n<9.当且仅当X —2时距离取得最小值』51( n ) 设 点 P(x-)( x 0),Xd =J(x _a)2 +(丄—a)2 =i ;(x 2 十4) _2玄&十丄)+2a 2* x \ x x1 1设 x _ =t (t _ 2),则 x 2-2 =t 2 _2xx其前 (21)解:(I) d 二|xT 幕|x 2y - .2 |对称轴为t 二a 分两种情况:(1)a 乞2时,f(t)在区间上是单调增函数,故t=2时,f(t)取最小值 ••• d min 二」(2二a)2—a 2二2 二2.-2 ,二 a 2 _2a _3 二0 ,二 a =_1(a =3舍) ⑵a >2时,■/ f(t)在区间2,a 上是单调减,在区间la, •::上是单调增,••• t =a 时,f(t)取最小值••• d min=.(a —a) a 一2=2、. 2,二 a = . 10 (a = -10 舍)综上所述,a = -1或• 10(22)解:(I)因为f (x)为奇函数,b一巴),x得 b =0,又 f(1)=1,得 a =1 1 X —1 (U)由 f (x)二一,得 g(x) = —2~ X X q(1-q n ) 1-q ' a q(n 一 2) . Sn = a n J.n S 由:曽I 1-q 2 J-q 3■/ b n -2017n 恒成立,即: 当 q _2016 时, n 1 + * 1 _q n 1-q n 1 {1 ^―}为单调递减数列, 1-q _2017 时a + a — 1,且[g(a n ) g(a n 」)—a n 2 二 q ,a n an」1-S n 1 1 _ q。

重庆市2017-2018学年高一下学期期中考试数学(理)试题Word版含答案

重庆市2017-2018学年高一下学期期中考试数学(理)试题Word版含答案

重庆市2017-2018学年高一下学期期中考试数学(理)试题总分:150分 考试时间:120分钟注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

第I 卷(选择题60分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知{}n a 为等比数列,若1log 531-=a ,则=82a a ( )A . 6B .9C . 10D .162.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A.45O或135OB .60OC .120OD .30O3.已知a ,b ∈R ,且a >b ,则下列不等式中恒成立的是( ) A. a 2>b 2B. lg (a -b)>0C. (21)a <(21)bD.ba>14. 已知向量(0 ,a =-, ()1 ,3b =,则向量a 在b 上的投影为( ) A.3-B.3-C.3D.35.已知关于x 的一元二次不等式02>++c bx ax 的解集为{}32<<-x x ,则不等式02<+-a bx cx 的解集是( )A. ⎭⎬⎫⎩⎨⎧>-<3121x x x 或 B. ⎭⎬⎫⎩⎨⎧>-<2131x x x 或 C. ⎭⎬⎫⎩⎨⎧<<-3121x x D. ⎭⎬⎫⎩⎨⎧<<-2131x x6.由下面的条件能得出△ABC 为锐角三角形的是( )A .51cos sin =+A A B .0<⋅ C .0)cos(cos cos <+B A B A D .o 30,33,3===B c b7.设,24,0,0=++>>ab b a b a 则 ( )A .b a +有最大值8B .b a +有最小值8C .ab 有最大值8D .ab 有最小值88. 已知数列{}n a 中,a 1=1,a 2=3,a n+2 +n a = a n+1 ,则=2014a ( )A .1-B .1C .2D .39.在△ABC 中,AB=3,AC=2,BC=4,则CA AB ⋅=( ) A .32 B .23 C .23- D .32-10.已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)......则第60个整数对是( )A . (5,11)B .(11,5)C . (7,5)D .(5,7)11.锐角三角形ABC 中,内角C B A ,,的对边分别为c b a ,,,若2B A =,则ba的取值范围是( )A. B.(1 C D. 12.已知正项等比数列,满足,则的最小值为( )A.9B.18C. 27D.36第II 卷(主观题90分)二、填空题(本大题共4小题,每小题5分,共20分.) 13.设全集,集合,则_______.14. 若平面向量a 与b 满足:||2,||1a b ==,||7a b +=,则a 与b 的夹角为 .15.实数,x y 满足1002x y x y -+≤⎧⎪>⎨⎪≤⎩,则4y z x =-的最小值为_________.16.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a b c B A+=,则A ∠的大小是_______.三、解答题(本大题共6小题,共70分.17-21题每题12分,22题10分) 17.(本小题12分.)已知等差数列{}n a 满足:3577,26.{}n a a a a =+=的前n 项和为.n S (Ⅰ)求n a 及n S ;(Ⅱ)令()nn S b n N n+=∈,求证:数列{}n b 为等差数列.18.(本小题满分12分.)已知平面内三个向量:(3,2),(1,2),(4,1).a b c ==-= (Ⅰ)若()//(2)a kc b a +-,求实数k 的值;(Ⅱ)设(,)d x y =,且满足()()a b d c +⊥-,||5d c -=,求d .19.(本小题12分.)设三角形ABC 的内角A B C ,,的对边分别为a b c ,,,且B a b sin 332=,A 为锐角 (1)若a =3,6=b ,求角B ;(2)若c b c b c b S ABC ,,,,求323>=+=∆.20.(本小题12分.)设等差数列{}n a 的公差为1>d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式; (2)记nn na cb =,求数列{}nc 的前n 项和n T .21.(本小题满分12分.)如图,,A B是海面上位于东西方向相距5(3海里的两个观测点,现位于A 点北偏东045,B 点北偏西060的D 点有一艘轮船发出求救信号,位于B 点南偏西060且与B点相距C 点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船达到D 点需要多长时间?22.(本小题满分10分.) 已知函数()23kxf x x k=+()0k >(1)若()f x m >的解集为{|3,2}x x x <->-或,求不等式25302kmx x ++>的解集; (2)若存在03,x >使得()01f x >成立,求k 的取值范围.题21图重庆市2017-2018学年高一下学期期中考试数学(理)试题答案一、选择题:1.B2.B3.C4.A5.D6.C7.B8.A9.A 10.D 11.D 12.D 二、填空题13.14. 06015. 32-16.4π三.解答题17.解:(1)由题意有,112721026a d a d +=⎧⎨+=⎩132a d =⎧⇒⎨=⎩21,(2)n n a n S n n ⇒=+=+...................5分(2)(2)2n n S n n b n n n+===+,又12(1)1(n 2)n n b b n n --=+-+=≥,所以,数列{}n b 为等差数列...10分18.解:(1)因为(3,2)k(4,1)(34k,2k)a kc +=+=++,2(5,2)b a -=-,又()//(2)a kc b a +-,所以162(34k)5(2k)0k .13+++=⇒=-. ..................6分 (2)因为(2,4),(4,1)a b d c x y +=-=--,所以222(4)4(1)06202(4)(1)5x y x x y y x y -+-===⎧⎧⎧⇒⎨⎨⎨==-+-=⎩⎩⎩或. ...................11分 故(6,0)(2,2).d =或 ...................12分19.(本小题12分,第1小题6分,第2小题6分) 解:(1)由题得:B A B sin sin sin 332=,所以 23=A sin 3π=A再由正弦定理得:,sin 22=B 所以43或4ππ=B (舍) 6分注:本题也 可以直接得出,sin 22=B 又因为b a >,所以4π=B(2)由(1)得:3π=A ,分)9(234321===∆bc A bc S ABC sin所以2=bc ,又因为c b c b >=+,3分)12(12所以==c b ,20.(本小题12分,第1小题6分,第2小题6分)⎩⎨⎧==⎪⎩⎪⎨⎧==⎩⎨⎧==-21(舍)929解得:21004510)由题得:1解:(1111d a d a d a d a ,)(分6212故:1⎩⎨⎧=-=-n n n b n a )(,12122725231212)2(1321---+++++=-=n nn n n T n c 2345113579212222222n nn T -=++++++.②① -②可得221111212323222222n n nn n n T --+=++++-=-,故nT 12362n n -+=-.(12分)21.解:在ABD ∆中,0006045105ADB ∠=+=,由正弦定理可得:sin sin 45AB BDADB =∠,sin 45BDBD =⇒= ...................5分在BCD ∆中,060CBD ∠=,由余弦定理可知:2222cos CD BD CB BD CB CBD =+-⋅⋅⋅∠,即22202cos60900CD =+-⋅=,故30CD =....................10分所以130CDt ==(小时),救援船到达D 点需要1小时时间. ...........12分22. 解:解:⑴220()303kx k f x m m mx kx km x k>∴>⇔>⇔-+<+不等式230mx kx km -+<的解集为{|3,2}x x x <->-或∴3,2--是方程230mx kx km -+=的根,且m<0252365k k m m k =⎧⎧=-⎪⎪∴⇒⎨⎨=-⎪⎪=⎩⎩∴223530230122k mx x x x x ++>⇔--<⇔-<< ∴不等式25302k mx x ++>的解集为31,2⎛⎫- ⎪⎝⎭ ⑵法一:()()222()1103033kxf x k x kx k x k x x k>⇔>>⇔-+<⇔->+ 存在03,x >使得()01f x >成立,即存在03,x >使得成立2003x k x >-.令()()2,3,3x g x x x =∈+∞-,则()min k g x >令3x t -=,则()0,t ∈+∞,2(3)96612t y t t t +==++≥= 当且仅当9t t=即3t =6x =即时等号成立.()min 12g x ∴= ()12,k ∴∈+∞ 法二:()22()110303kx f x k x kx k x k>⇔>>⇔-+<+.令()()23,3,g x x kx k x =-+∈+∞ 存在03,x >使得()01f x >成立,即存在()00g x <成立,即()min 0g x <成立当06k <≤时,()g x 在()3,+∞上单调递增,∴()()39g x g >=,显然不存在()0g x <当6k >时,()g x 在3,2k ⎛⎫ ⎪⎝⎭上单调递减,在,2k ⎛⎫+∞ ⎪⎝⎭上单调递增,()2m i n 324k k g x g k ⎛⎫==-+ ⎪⎝⎭,由2120k k -+<可得12k >综上,()12,k ∈+∞。

【全国百强校】重庆市2017-2018学年高一下学期期末考试数学(理)试题

【全国百强校】重庆市2017-2018学年高一下学期期末考试数学(理)试题

2017—2018学年度(下)期末考试高一年级数学试题(理科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,且,则下列说法正确的是()A. B. C. D.2.设集合,,则()A. [-1,4 )B. [-1,3 )C. (0,3 ]D. ( 0,4 )3.已知是椭圆的两个焦点,过的直线与椭圆交于两点,则的周长为()A. 16B. 8C. 25D. 324.已知,若直线与直线平行,则的值为()A. 6B. 7C. 8D. 95.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?()A. 6B. 5C. 4D. 36.下列函数中,既是偶函数,又在内单调递增的为()A.B.C.D.7.已知平面向量的夹角为且,则()A. B. C. D.8.已知实数满足约束条件,则的最大值为()A. 2B. 3C. 4D. 59.若正数a,b满足,则的最小值为A. 1B. 6C. 9D. 1610.已知函数的部分图象如图所示,下面结论错误的是()A. 函数的最小正周期为B. 函数的图象关于直线对称C. 函数在区间上单调递增D. 函数的图象可由的图象向右平移个单位得到11.在平面直角坐标系中,记为点到直线的距离,当变化时,的最大值为()A. 1B. 2C. 3D. 412.已知正项数列的前项和为,首项且,则以下说法中正确的个数是()①;②当为奇数时,;③A. 0B. 1C. 2D. 3二、填空题(每题5分,满分20分,将答案填在答题卷上)13.已知向量,若,则__________14.直线与圆相交于两点,则弦的长度等于________15.在中,角的对边分别为,且,若的面积,则的最小值为___________16.设点是椭圆上的点,以点为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于不同的两点,且满足,则椭圆的离心率为________。

重庆市永川双石中学2017-2018学年高一下学期第二周周练数学(文)试题 Word版无答案

重庆市永川双石中学2017-2018学年高一下学期第二周周练数学(文)试题 Word版无答案

2017-2018学年文科数学周测试题2一、选择题:(每小题6分)1.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( ) A.23 2 B. 2 C.23 D.432 3.已知圆柱的底面直径与高都等于球的直径,则圆柱的体积与球体积之比为( )A .1∶2B .2∶1C .2∶3D .3∶24.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .π6B .C .4 π6D .5.将正方体(如图a 所示)截去两个三棱锥,得到图b 所示的几何体,则该几何体的侧视图为( )6.已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( ) A.2π3+12 B.4π3+16 C.2π6+16 D.2π3+127.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )A .6 3B .9 3C .12 3D .18 3 8.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2 B .6 2 C.13 D .2 29.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A.23B.33C.43D.32二、填空题:(每小题6分)10.长方体AB CD­A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则球面面积为________.11.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为____________.12.如图所示,球面上有四个点S,A,B,C,如果SA,S B,SC两两互相垂直,且SA=SB=SC=2,则这个球的表面积.13.如图所示,ABCD是一平面图形水平放置的斜二测直观图.在斜二测直观图中,ABCD是一直角梯形,AB∥CD,AD⊥CD,且BC与y轴平行.若AB=6,AD=2,则这个平面图形的实际面积是______.14.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.三、解答题:(16分)15.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切。

重庆市2017-2018学年高一(下)期末考试数学试卷(理科)Word版含解析

重庆市2017-2018学年高一(下)期末考试数学试卷(理科)Word版含解析

重庆市2017-2018学年高一(下)期末考试数学试卷(理科)一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5} B.{1,2,3,4,5,6} C.{7} D.{1,4,7}2.已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣C.2 D.﹣23.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣14.已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)5.要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度6.在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.647.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.118.已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.9.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且,则=()A.﹣B.﹣C.0 D.410.设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.11.等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.1312.已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知变量x,y满足,则x+y的最大值是.14.已知sin(α+)=,α∈(﹣,0),则tanα=.15.若非零向量f(x)满足||=||,且,则与的夹角为.16.若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围.三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.19.已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.20.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.21.已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.22.△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.重庆市2017-2018学年高一(下)期末数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5} B.{1,2,3,4,5,6} C.{7} D.{1,4,7}考点:交集及其运算.专题:集合.分析:由A与B,找出两集合的交集即可.解答:解:∵A={1,3,5,6},B={2,3,4,5},∴A∩B={3,5}.故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣C.2 D.﹣2考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由已知条件推导出,由此能求出m的值.解答:解:∵直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,∴,解得m=.故选:A.点评:本题考查实数m的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.3.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣1考点:线性回归方程.专题:计算题.分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.解答:解:∵=3.5,∴这组数据的样本中心点是(2.5,3.5)把样本中心点代入四个选项中,只有y=x+1成立,故选A点评:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.4.已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)考点:函数零点的判定定理.专题:函数的性质及应用.分析:构造函数g(x)=e x,h(x)=x2﹣8x,画出图象判断,交点个数,运用特殊函数值判断区间.解答:解:∵函数f(x)=e x﹣x2+8x,令g(x)=e x,h(x)=x2﹣8x,画出图象判断交点1个数.∵g(0)=1,h(0)=0,g(﹣1)=e﹣1,h(﹣1)=9,∴g(0)>h(0),g(﹣1)<h(﹣1),∴交点在(﹣1,0)内,即函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是(﹣1,0)故选:B点评:本题考查了构造函数,运用图象的交点问题求解有关的函数的零点,画出图象判断,利用特殊函数值判断即可.5.要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:由于将函数y=sin2x的图象上所有点向左平移个单位长度,即可得函数的图象,从而得出结论.解答:解:将函数y=sin2x的图象上所有点向左平移个单位长度,即可得函数的图象,故选C.点评:本题主要考查函数y=Asin(ωx+∅)的图象变换规律,属于基础题.6.在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.64考点:等比数列的性质;等比数列的通项公式.专题:等差数列与等比数列.分析:利用可知q4=4(q为公比),通过a5=a4•q2计算即得结论.解答:解:∵a3=4,a7=16,∴q4===4(q为公比),∴a5=a4•q2=a4•=4•2=8,故选:C.点评:本题考查等比数列,注意解题方法的积累,属于基础题.7.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.11考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=0+lg+lg+lg+…+lg的值,根据条件确定跳出循环的i值.解答:解:由程序框图知:算法的功能是求S=0+lg+lg+lg+…+lg的值,∵S=lg+lg+…+lg=lg>﹣1,而S=lg+lg+…+lg=lg<﹣1,∴跳出循环的i值为9,∴输出i=9.故选:B.点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.8.已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:首先解三角形求出BC,然后利用几何概型求概率.解答:解:在△ABC中,∠A=,AB=3,AC=3,所以BC2=AB2+AC2﹣2AB×AC×cos∠A=27+9﹣18=9,所以BC=3,在线段BC上任取一点P,则线段PB的长大于2的点P在距离C的一端BC的内,由几何概型线段PB的长大于2的概率为;故选:A点评:本题考查了余弦定理的运用,几何概型的概率求法;正确运用余弦定理求出BC长度是关键.9.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且,则=()A.﹣B.﹣C.0 D.4考点:平面向量数量积的运算.专题:平面向量及应用.分析:以CB,CA两直线分别为x,y轴,建立坐标系,根据条件可求出C,A,B,D几点的坐标,设P (x,y),而根据即可求出点P的坐标,从而得出向量的坐标,然后进行数量积的坐标运算即可.解答:解:如图,分别以边CB,CA所在直线为x,y轴,建立平面直角坐标系,则:C(0,0),A(0,2),B(2,0),D(1,1);设P(x,y),∵;(x,y)=(1﹣x,1﹣y);∴;解得;∴,,;∴.故选B.点评:考查建立平面直角坐标系,利用向量坐标求数量积的方法,由点的坐标可求向量的坐标,向量坐标的数乘、数量积的运算.10.设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵设a>0,b>1,a+b=2,∴=(a+b﹣1)=4+=4+2,当且仅当a=(b﹣1)=时取等号,∴的最小值为4+2.故选:D.点评:本题考查了基本不等式的性质,属于基础题.11.等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.13考点:等比数列的前n项和.专题:等差数列与等比数列.分析:先判断|T n+1|与|T n|的大小关系,结合等比数列的性质进行比较即可.解答:解:∵=||=|a n+1|=2015•()n,∵210=1024,211=2048∴当n≤10时,|T n+1|>|T n|,当n≥11时,|T n+1|<|T n|,故|T n|max=|T11|,又T10<0,T11<0,T9>0,T12>0,∴T n的最大值是T9和T12中的较大者,∵=a10a11a12=[2015()10]3>1,∴T12>T9因此当n=12时,T n最大.故选:C点评:本题主要考查等比数列的应用,根据等比数列的通项公式是解决本题的关键.12.已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.考点:函数零点的判定定理.专题:函数的性质及应用.分析:由偶函数f(x)=有唯一的零点.可得:f(0)=0,进而求出m=1;进而令a=cosθ,b=sinθ,,根据三角函数的图象和性质及常数分离法和反比例函数的和性质,可得t的最小值.解答:解:∵f(x)是偶函数,且f(x)=有唯一的零点.∴f(0)=0,解得,m=1或﹣3,又∵m>0,∴m=1,∴a2+b2=1,令a=cosθ,b=sinθ,,则由a3+b3+1=t(a+b+1)3得:.令x=cosθ+sinθ,则,且.于是.因为函数在上单调递减,因此,t的最小值为.故选:A点评:本题考查的知识点是函数零点的判定定理,偶函数的图象和性质,三角函数的图象和性质,常数分离法和反比例函数的和性质,是函数图象和性质的综合应用,难度较大.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知变量x,y满足,则x+y的最大值是4.考点:简单线性规划.专题:不等式的解法及应用.分析:画出不等式组表示的平面区域.设z=x+y,则y=﹣x+z,此方程可看作是斜率为﹣1的直线系方程,z为直线的纵截距,只需找到直线y=﹣x+z经过此区域,且纵截距最大的位置即可得到x+y的最大值.解答:解:作出直线x=1,y=2,x﹣y=0,从而得到不等式组表示的平面区域,如右图所示的阴影部分.设z=x+y,则y=﹣x+z,此方程可表示一系列斜率为﹣1的平行直线,当直线经过点A时,直线在y轴上的截距z最大,此时,由,得,即A(2,2),从而z max=x+y=2+2=4,即x+y的最大值是4.故答案为:4.点评:本题主要考查了数形结合思想及转化与化归思想的运用,考查了利用不等式组表示的平面区域解决最值问题.求解此类问题的一般步骤是:1.正确画出不等式组表示的平面区域;2.根据目标函数的几何意义进行处理.14.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.考点:运用诱导公式化简求值;同角三角函数间的基本关系.专题:计算题;三角函数的求值.分析:由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.解答:解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.点评:本题考查运用诱导公式化简求值,考查同角三角函数间的基本关系,属于中档题.15.若非零向量f(x)满足||=||,且,则与的夹角为.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由,便得到,进行数量积的运算,并带入即可得到,从而得出.解答:解:根据条件,=;∴;∴;∴与的夹角为.故答案为:.点评:考查数量积的运算及其计算公式,向量夹角的概念及范围,以及已知三角函数值求角.16.若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围(2+2,6].考点:余弦定理.专题:计算题;解三角形.分析:通过角的范围,利用正弦定理推出a+b的关系,利用两角和的正弦函数,化简函数的表达式,求出a+b的取值范围,从而可求周长的取值范围.解答:解:由∠C=且三角形是锐角三角形可得,由正弦定理得,∴a=×sinA=sinA,b=sinB=sin(﹣A),∴a+b=[sinA+sin(﹣A)]=(sinA+cosA)=4sin(A+),∴<A+<,∴<sin(A+)≤1,即2<a+b≤4∴△ABC周长l=a+b+c∈(2+2,6].故答案为:(2+2,6].点评:本题考查两角和的正弦函数、正切函数以及正弦定理的应用,考查计算能力,属于基本知识的考查.三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n+1=3a n+4计算即得结论;(Ⅱ)通过a1=1可知a1+2=3,进而a n=3n﹣2,利用等比数列的求和公式计算即得结论.解答:(Ⅰ)证明:∵a n+1=3a n+4,∴,∴{a n+2}是公比为3等比数列;(Ⅱ)解:∵a1=1,∴a1+2=1+2=3,∴a n+2=3•3n﹣1=3n,∴a n=3n﹣2,∴.点评:本题考查等比数列的判定、数列的通项及前n项和,注意解题方法的积累,属于中档题.18.某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图的各小长方形的面积之和为1,求出分数在[120,130)内的频率;(Ⅱ)计算出[110,120)与[120,130)分数段的人数,用分层抽样的方法在各分数段内抽取的人数组成样本,求出“从样本中任取2人,至多有1人在分数段[120,130)内”概率即可.解答:解:(Ⅰ)[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3;…(5分)(Ⅱ)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).…(7分)∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m、n;…(8分)在[120,130)分数段内抽取4人,并分别记为a、b、c、d;…(9分)设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.…(10分)则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.…(11分)∴.…(12分)点评:本题考查了频率分布直方图的应用以及分层抽样和古典概型的计算问题,解题时应用列举法求出基本事件的个数,从而求出概率问题,是综合题.19.已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的图像与性质;平面向量及应用.分析:(Ⅰ)先进行数量积的坐标运算,并应用二倍角的正余弦公式及两角和的正弦公式便可求得,从而得出f(x)=2sin(2x)+2m,根据函数y=sinx的对称轴为x=,令2x+=,解出x即得f(x)的对称轴方程;(Ⅱ)由x的范围便可求出2x+的范围:,从而得到f(x)的最小值﹣1+2m=5,解出m即可.解答:解:(Ⅰ)==;∴;令2x=,k∈Z;∴f(x)的对称轴方程为:x=,k∈Z;(Ⅱ)x∈;∴;∴2x=时,f(x)min=2+2m=5;∴m=3.点评:考查数量积的坐标运算,二倍角的正余弦公式,两角和的正弦公式,以及正弦函数的对称轴,正弦函数在闭区间上的最.20.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.考点:函数恒成立问题;函数奇偶性的性质.专题:函数的性质及应用.分析:(Ⅰ)根据函数的奇偶性求出k的值,根据f(1)>0求出a的值,根据函数的单调性将不等式进行转化即可,(Ⅱ)由f(1)=,求出a的值,利用换元法结合一元二次函数的最值性质进行求解.解答:解:(Ⅰ)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1﹣(k﹣1)=0,∴k=2.∵函数f(x)=a x﹣a﹣x(a>0且a≠1),∵f(1)>0,∴a﹣>0,又a>0,∴a>1.由于y=a x单调递增,y=a﹣x单调递减,故f(x)在R上单调递增.不等式化为:f(x2+tx)>f(﹣2x﹣1).∴x2+tx>﹣2x﹣1,即x2+(t+2)x+1>0 恒成立,∴△=(t+2)2﹣4<0,解得﹣4<t<0.(Ⅱ)∵f(1)=,,即3a2﹣8a﹣3=0,∴a=3,或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2.令t=f(x)=3x﹣3﹣x,由(1)可知k=2,故f(x)=3x﹣3﹣x,显然是增函数.∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(),若,当t=m时,,∴m=2(舍去)若,当t=时,,解得m=<,综上可知m=.点评:本题主要考查指数函数的性质,利用函数的奇偶性和单调性求出参数,利用换元法转化为一元二次函数是解决本题的关键.21.已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)利用递推关系、等比数列的通项公式即可得出;(II)由已知得:当n=1时,,结论成立,当n≥2时,,化简利用“放缩法”即可证明.解答:(Ⅰ)解:∵S n=1﹣a n(n∈N*),∴S n+1=1﹣a n+1,作差得:,又当n=1时,,故.(Ⅱ)证明:由已知得:当n=1时,,结论成立,当n≥2时,==,结论也成立,综上知,对∀n∈N*,都成立.点评:本题考查了递推关系、等比数列的通项公式、“分组求和”、“放缩法”不等式的性质,考查了推理能力与计算能力,属于中档题.22.△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.考点:余弦定理.专题:计算题;解三角形.分析:(1)设△ABC的三边a、b、c的长度分别为n﹣1、n、n+1(n∈N*且n>1),根据两边之和大于第三边和C为钝角,建立不等式并解之可得2<n<4,因此n=3可得△ABC三边长分别为2,3,4.最后根据余弦定理即可算出最大角的余弦值;(2)由(1)得最大角是角C,利用同角三角函数的关系算出sinC=,设平行四边形两边分别为m、n,可得它的面积为S=mnsinC=mn,再根据m+n=4用基本不等式求最值,即可得到当且仅当m=n=2时平行四边形面积最大值为.解答:解:(1)设△ABC的三边a、b、c的长度分别为n﹣1、n、n+1(n∈N*且n>1),∵(n﹣1)+n>n+1,∴n>2,得n是大于3的整数∵△ABC是钝角三角形,可得∠C为钝角,有cosC<0,由余弦定理得:(n+1)2=(n﹣1)2+n2﹣2n(n﹣1)•cosC>(n﹣1)2+n2,即(n﹣1)2+n2<(n+1)2⇒n2﹣4n<0⇒0<n<4,因此,整数n的值为3,可得△ABC三边长分别为2,3,4.∵cosC===﹣∴最大角的余弦值为﹣(2)由(1)得,最大角C的正弦为sinC==,设夹角C的平行四边形两边分别为m、n,∵m+n=4,∴mn≤=4,当且仅当m=n=2时,mn的最大值为4因此,平行四边形的面积S=mnsinC=mn≤×4=∴当平行四边形两边都等于2时,夹角C的平行四边形面积最大值为.点评:本题给出三边长为连续整数的三角形,且最大角为钝角时求最大角的余弦之值,并依此求一个平行四边形的面积最大值,着重考查了利用正余弦定理解三角形、用基本不等式求最值和平行四边形面积公式等知识,属于中档题.。

重庆市永川双石中学高一数学下学期第八周周练试题(无

重庆市永川双石中学高一数学下学期第八周周练试题(无

2014-2015学年双石中学校高2017级数学周测试题8第I 卷(选择题)一、选择题(5分)1.下列程序语言中,哪一个是输入语句( ) A. PRINT B. INPUT C. THEN D. END2.某市有大型超市200家、中型超市400家、小型超市1400家,为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市( ) A. 70家 B.50家 C.20家 D.10家3.下图是根据变量x ,y 的观测数据(,)(1,2,,10)iix y i =L 得到的散点图,由这些散点图可以判断变量x ,y 具有相关关系的图是( )A .①②B .①④C .②③D .③④ 4.已知ABC ∆中,30A =o,105C=o ,8b =,则a 等于( )A .4B .42C .43D .45 5.已知等比数列{}n a 中,121a a +=, 458a a +=-,则公比q =( )(A )2- (B )2 (C )12- (D )126.对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图如图,则估计此样本的众数、中位数分别为( )A.2.25, 2.5 B .2.25,2.02 C .2,2.5 D .2.5, 2.257.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生总人数是( ) A.12 B.24 C.48 D.568.某学校从高三甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图所示,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y 的值为A.6B.7C.8D.99.某单位为了了解用电量y (千瓦时)与气温x (C ︒)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表: 气温x (C ︒)1813101-用电量y (千瓦时)24 34 3864由表中数据得线性回归方程y bx a =+中2b ≈-,预测当气温为4C -︒时,用电量约为( ) A .58千瓦时 B .66千瓦时 C .68千瓦时 D .70千瓦时 10.执行如图所示的程序框图,输出的S 值为( ) A .2 B .4 C .8 D .1611.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )A .3πB .23πC .34πD .56π12.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则公差为第II 卷(非选择题)二、填空题(5)13.已知实数x 、y 满足不等式组52600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则34z x y =+的最大值是____________.14.已知数列{}n a 满足条件1111,n n n n a a a a a --=-=, 则10a = . 15.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 .16.将正奇数排成如下图所示的三角形数阵(第k 行有k 个奇数),其中第i 行第j 个数表示为ij a (i,j ∈N *).例如4215a =,若ij a =2013,则i-j=______. 三、解答题17.已知关于x 的不等式0232>+-x ax 的解集为{x ∣x<1或x>b }(1)求b a ,的值 (2)解关于x 的不等式0)(2>++-b x b a ax18.对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.(1)图中纵坐标0y 处刻度不清,根据图表所提供的数据还原0y ;(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.19.已知{}n a 是公差不为零的等差数列,11a =,且139 , a a a ,成等比数列. (1)求数列{}n a 的通项公式; (2)求数列{}2na 的前n 项和nS .20.设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且.cos 3cos )32(C a A c b =- (1)求角A 的大小;(2)若角BC B ,6π=边上的中线AM 的长为7,求△ABC 的面积.21.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为x米,钢筋网的总长度为y米.(1)列出y与x的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?(3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?22.已知数列错误!未找到引用源。

重庆市2017-2018学年高一下学期期中考试数学(理)试题Word版含答案

重庆市2017-2018学年高一下学期期中考试数学(理)试题Word版含答案

重庆市南开2017-2018学年高一下学期期中考试数学(理)试题第Ⅰ卷(选择题,共60分)一、选择题:本道题共12小题,每小题5分,共60分,每小题只有一项符合题目要求。

1、已知单位向量,a b 满足:3a b +=,则2a b +=( )A B C D 2、已知1,a ,b ,c ,5五个数成等比数列,则b 的值为( )A 、3BC 、D 、523、直线sin 20x θ+=的倾斜角的取值范围是( )A 、5,66ππ⎡⎤⎢⎥⎣⎦B 、2,33ππ⎡⎤⎢⎥⎣⎦C 、50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ D 、20,,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭4、在△ABC 中,a ,b,c 分别是三内角A ,B ,C 的对边,且22sin sin (sin sin )sin A C A B B -=-,则角C 等于( ) A 、6π B 、3π C 、56π D 、23π5、在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若sin cos 0b A B =,且a ,b ,c 成等比数列,则a cb+的值为( )A B C 、2 D 、4 6、在△ABC 中,a ,b ,c 分别是内三角A ,B ,C 的对边,若sin cos cos A B Ca b c==,则△ABC 是( )A 、等边三角形B 、有一内角30°的三角形C 、等腰直角三角形D 、有一内角30°的等腰三角形7、设等差数列{a n }的前n 项为S n ,且满足201620170,0S S ><,对任意正整数n,都有n k a a ≥, 则k 的值为( )A 、1006B 、1007C 、1008D 、10098、给出下来四个命题,其中正确..的是命题是( ) ①若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC 是等边三角形 ②若sinA=cosB ,则△ABC 是直角三角形; ③若cosAcosBcosC <0,则△ABC 是钝角三角形; ④若sin2A=sin2B ,则△ABC 是等腰三角形.A 、①②B 、③④C 、①③D 、②④ 9、已知O 是三角形ABC 所在的平面内一定点,动点P 满足()sin sin AB ACOP OA AB B AC Cλ=++(0)λ≥,则P 点轨迹一定通过三角形ABC 的( ) A 、重心 B 、外心 C 、垂心 D 、内心 10、设正数x ,y 满足:x ﹥y ,x +2y =3,则195x y x y+-+的最小值为( ) A 、83 B 、114C 、4D 、211、设数列{a n }满足a 1=1,a 2=4,a 3=9,a n =a n-1+a n-2-a n-3,n =4,5…,则a 2017=( ) A 、8064 B 、8065 C 、8067 D 、806812、已知实数x 、y 、z 满足x 2+2y 2+3z 2=4,设T =x y+yz ,则T 的取值范围是( )A 、⎡⎢⎣⎦B 、⎡⎢⎣⎦C 、⎡⎢⎣⎦D 、⎡⎢⎣⎦第Ⅱ卷(非选择题,共90分)二、填空题,本大题共4小题,每小题5分,共20分13、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=30°,b=2,如果这样的三角形有且只有一个,则a 的取值范围为 。

重庆市永川中学校2018学年高一下学期期末考试数学试题

重庆市永川中学校2018学年高一下学期期末考试数学试题

高一年下学期期末考数学科试卷(2018.18)考试时间:120分钟 试卷总分:150分 本试卷分第I 卷和第II 卷两部分 第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。

1.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( ) A.103=a ,92=b B. 101=a ,91=b C. 103=a ,103=b D. 101=a ,101=b 2.下列事件为随机事件的是( )A.平时的百分制考试中,小强的考试成绩为118分B.边长为a ,b 的长方形面积为abC.100个零件中2个次品,98个正品,从中取出2个,2个都是次品D.抛一个硬币,落地后正面朝上或反面朝上3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A.抽样方法是一种分层抽样B.该班级男生成绩的平均数必小于该班级女生成绩的平均数C.抽样方法是一种系统抽样D.这五名女生成绩的标准差必小于这五名男生成绩的标准差 4.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米5319石,验得米内夹谷,抽样取米一把,数得252粒内夹谷28粒,则这批米内夹谷约为 ( ) A.490石B. 540石C.590石D. 640石5.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =118°后,就可以计算出A ,B 两点的距离为( ). A. 50 3 mB. 50 2 mC. 25 2 mD. 2522m6.在样本的频率分布直方图中,共有8个小长方形,若最后一个小长方形的面积等于其它7个小长方形的面积和的41,且样本容量为200,则第8组的频数为( ) A. 40B. 50C. 0.2D. 0.257.对某同学的6次数学测试成绩(满分100分)进行统计,作出如图所示茎叶图,给出关于该同学数学成绩的以下说法:①极差是12;②众数是85;③中位数是84;④平均数是85, 正确的是( ) A. ③④B.②④C.①③D. ①②8.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为 0.8155y x =-,后因某未知原因第5组数据的y 值模糊不清,此位置数据记为m (如下表所示),则利用回归方程可求得实数m 的值为( )A 、8B 、8.1C 、8.2D 、8.39.在Excel 中产生区间上均匀随机数的函数为“rand( )”,在用计算机模拟估计函数x y cos =的图象和x 轴在区间[]ππ,-上部分围成的图形面积时,随机点),(11b a 与该区域内的点),(b a 的坐标变换公式为( ) A.112),1(b b a a =-=πB. )1(2),1(211-=-=b b a a πC. 12,211+=-=b b a a ππD. 12,211-=+-=b b a a ππ10.阅读如图所示的语句:当输入的m=168,n=72时,输出的结果用5进制表示是( ) A.)5(143 B.)5(44 C.)5(22D.)5(6第10题11.在以原点O 为圆心,1为半径的单位圆上有两点B A 、,︒=∠120AOB ,点C 是劣弧 AB(较短的弧)上一点,射线OC 与线段AB 交于点M ,则OM B ∆为钝角三角形的概率( )A.21B.32 C.43 D.65 12.设函数()f x 的定义域为R , ()()()(),2f x f x f x f x -==-, 当[]0,1x ∈时,()3f x x =, 则函数()()()cos g x x f x π=-在区间(]1,3-上的所有零点的和为( ).A . 11B .12C . 7D .8第II 卷(非选择题,共90分)二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。

2017-2018学年高一下学期期末考试数学(理)试卷

2017-2018学年高一下学期期末考试数学(理)试卷

2017—2018学年度第二学期期末考试高一数学试题(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上. 4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的。

1.若0>>b a ,则下列不等式成立的是( )A .2211ba> B .33b a >C .bc ac >D .22bc ac >2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ) A . 至多有一次中靶 B . 只有一次中靶C . 两次都中靶D . 两次都不中靶3.某班一学习小组8位同学化学测试成绩用茎叶图表示(如图), 其中茎为十位数,叶为个位数,则这组数据的中位数是( )A .5.90B . 5.91C .92D .5.924.已知点()2,a 到直线012:=--y x l 的距离为5,则a 的值为( )A .1-或4B .1或4C .4D .1-5.执行如图所示的程序框图,若输入n 的值为5,则输出 的s 的值为( ) A . 15B . 11C . 7D . 46.由12,111+==+n n a a a 给出的数列{}n a 的第7项为( ) A .511 B .255 C .127D .637.某高中学校三个年级共有学生6000名,需要用分层抽样的方法抽取一个容量为40的样本,已知高一年级有学生1800名,高二年级抽出的样本人数占样本总数的103,则抽出的样本中高三年级学生人数为( ) A .14B .15C .16D .178.等差数列{}n a 中,0>n a 且前 10 项和2010=S ,则65a a ⋅的最大值是( ) A .2B .4C .9D .169.在ABC ∆中,三个内角C B A ,,所对的边分别为c b a ,,,若内角C B A ,,依次成等差数列,且不等式0652>-+-x x 的解集为{}c x a x <<,则b 等于( ) A .3B .5C .7D .310.在等比数列{}n a 中,5,254==a a ,则数列{}n a lg 的前8项和等于( )A .4B .5C .6D .711.设变量y x ,满足⎪⎩⎪⎨⎧≤+≤≥110y y x x ,则()122++y x 的最大值是( )A .4B .5C .16D .1712.实数y x ,满足0,0≥≥y x ,且2=+y x ,则1222+++y y x x 的最小值为( )A .54B .56C .53D .1第Ⅱ卷(选择题,共90分)二、填空题:(每小题5分,共20分)13.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了30株该植物的高度(单位:厘米),并画出样本频率分布直方图如下,则高度不低于25厘米的有 株.14.若向正ABC ∆内任意投入一点,则点恰好落在ABC ∆的内切圆内的概率为________.15.秦九韶算法是中国古代求多项式0111)(a x a x a x a x f n n n n ++++=-- 的值的优秀算法,直到今天仍很先进,若7030010002026)(2345++-+-=x x x x x x f则利用秦九韶算法易求得)7(f =__________. 16.给出以下四个结论:①若等比数列{n a }满足132,6a S 且==,则公比2q =-; ②数列{}n a 的通项公式12cos+=πn n a n ,前n 项和为n S 则1812=S ;③若数列)(22+∈+=N n n n a n λ为单调递增数列,则λ取值范围是6->λ;④若数列{}n a 的通项1123-=n a n ,其前n 项和为n S ,则使0>n S 的n 的最小值为12;其中正确结论的序号为_____________.(写出所有正确的序号).三 解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题12分)设ABC ∆中,三个内角C B A ,,所对的边分别为c b a ,,,且222a bc c b =-+(1)求角A 的大小;(2)若ABC S c b a ∆=+=求,4,3.18.(本小题12分)已知直线082:1=++y x l ,R m m y m x m l ∈=--+++,085)2()1(:2(1)若两直线平行,求实数m 的值;(2)设1l 与x 轴交于点A ,2l 经过定点B ,求线段AB 的垂直平分线的一般式方程.19.(本小题12分)某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如表所示:(1)试根据最小二乘法原理,求出y 关于x 的线性回归方程a x b yˆˆˆ+=; (2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力.参考公式:线性回归方程系数公式:x b y a x n x yx n y x bnii nii i ˆˆ,ˆ1221-=-⋅-=∑∑==20.(本小题12分)设R m ∈,函数]33)14(lg[)(2+++-=m x m mx x f 的定义域记为集合P(1)若2-=m ,求集合P ;(2)当0>m 时,求集合P .21.(本小题12分)设数列{}n a 的前n 项和为n S ,),1(,22N n n a S n n ∈≥-=, 数列{}n b 中,),1(,2,3,12121N n n b b b b b n n n ∈≥+===++ (1)求n a 和n b ; (2) 令nn n a ba b a b T +++=2211,是否存在正整数M 使得M T n <对一切正整数n 都成立?若存在,求出M 的最小值;若不存在,请说明理由. (3)令111--=+n n n a a c ,证明:),1(,231221N n n nc c c nn ∈≥<+++<-22.(本小题10分)在最强大脑的舞台上,为了与国际x 战队PK ,假设某季Dr.魏要从三名擅长速算的选手321,,A A A ,三名擅长数独的选手321,,B B B ,两名擅长魔方的选手21,C C 中各选一名组成中国战队.假定每名选手入选的可能性相等,则(1)求1A 被选中而2B 不被选中的概率; (2)求11,C A 不全被选中的概率.高一数学(理科)答案一、选择题1—6 BDBACC 7—12 CBCADA 二、填空题 13.15 14.93π15.56070 16.(2)(3)三、解答题 17.解:(1)由题可知,2122cos 222==-+=bc bc bc a c b A ……3分 3π=∴A ……5分(2)93)(93222=-+⇒=-+⇒=bc c b bc c b a ……7分37=∴bc ……9分 1237sin 21==∴∆A bc S ABC ……12分 18.解: (1)由题可知30)1(8)85(20)1()2(2-=⇒⎩⎨⎧≠+---=+-+m m m m m ……5分(2)由方程可得:)0,4(-A ……6分而2l 可变为0)5()82(=-++-+y x m y x)3,2(05082B y x y x ⇒⎩⎨⎧=-+=-+∴……8分 AB ∴的中点为)23,1(-而其中垂线的斜率为21-=-AB k ……10分 AB ∴的中垂线方程为)1(223+-=-x y ,即0124=++y x ……12分 19.解:(1)由题知:446532,94121086=+++==+++=y x ……2分344,15841412==∑∑==ii i i i x y x ……4分7.09434449415844ˆ2412241=⨯-⨯⨯-=-⋅-=∴∑∑==ii ii i x x yx y x b……7分 3.27.0ˆ-=-=∴x y a 故线性回归方程为3.27.0ˆ-=x y ……9分(2)当9=x 时,43.297.0ˆ=-⨯=y ……11分即该同学的记忆力为9时,预测他的判断力为4……12分 20.解:(1)0372*******<+-⇒>-+-⇒-=x x x xm⎭⎬⎫⎩⎨⎧<<=⇒=+-3213,21的根为0372而2x x P x x ……4分 (2)不等式变形为[]0而0)3()1(>>-+-m x m mx ……6分⎭⎬⎫⎩⎨⎧+><=<<>+∴m x x x P m m11或3时,210即311当……8分 {}3且时,21即311当≠∈===+x R x x P m m……10分 ⎭⎬⎫⎩⎨⎧>+<=><+3或11时,21即311当x m x x P m m ……12分21.解:(1)22222111=⇒+=⇒+=a S a S a n n而n n n n n n a a a S a S 222,22111=⇒-=-=+++n n n a 2221=⋅=∴-……2分又 ),1(,2,3b ,12121N n n b b b b n n n ∈≥+===++则数列{}n b 是以2为公差、首项为1的等差数列,即12-=n b n ……3分 (2)nn n n n a b a b a b T 212252321322211-++++=++=132212232121+-+++=∴n n n T 32122132<---=∴-nn n n T ……6分 3≥⇒M即存在正整数M 的最小值为3,使得原结论成立……7分 (3)由(1)可知121221--=⇒=+n n nnn c a 212212121211=--<--++k k k k221212121n c c c n =+++<+++∴ ……9分 又2223121)12(21211221)12(2112121111-+⋅-=--=---=--++++kk k k k k k)2121(31)2121(231211212211nnk k k c c c ++-++≥+++⇒⋅-≥--∴+ 312231312211)211(21312->⋅+-=--⋅-=n n n nn 综上,),1(,231221N n n nc c c nn ∈≥<+++<-成立。

2017—2018学年度第二学期高一数学期末考试(含答案)

2017—2018学年度第二学期高一数学期末考试(含答案)

2017—2018学年度第二学期教学质量检查高一数学考生注意:本卷共三大题,22小题,满分150分,时间120分钟.不准使用计算器.参考公式:用最小二乘法求线性回归方程a x b yˆˆˆ+=的系数公式: ()()()∑∑∑∑====-⋅⋅-=---=n i i ni ii ni i ni i ixn x yx n yx x x y y x xb1221121ˆ,x b y aˆˆ-=. 一、选择题:本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号在答题卡中的相应位置涂黑. 1.︒135sin 的值是( ) A.22B.22-C.23-D.23 2.已知向量),4(),1,(x b x a ==ρρ,若5=⋅b a ρρ,则x 的值为( )A.1B.2C.1±D.53.若圆22240x y x y ++-=关于直线20x y a -+=对称,则a 的值为( ) A.3- B. 1- C. 0 D. 44.为了调查某班级的作业完成情况,将该班级的52名同学随机编号01~52,用系统抽样....的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是( ) A.29 B.30 C.31 D.325.已知α是第四象限角,且tan 2α=-,则sin 2α=( ) A.25-B. 25C.45-D. 456.要得到曲线3sin(2)5y x π=-,只需把函数3sin 2y x =的图象( )A .向左平移5π个单位 B .向右平移5π个单位 C .向左平移10π个单位 D .向右平移10π个单位7.运行如右图所示的程序框图,则输出的结果S 为( ) A .1- B .0 C .21 D .23-7第题图否2019?n <8.从集合{2,3,4,5}中随机抽取一个数a ,从集合{4,6,8}中随机抽取一个数b ,则向量(,)m a b =u r与 向量(1,2)n =r平行的概率为( )A.16B.14C.13D.129.过原点的直线l 与圆4)2()1(22=-+-y x 相交所得的弦长为32,则直线l 的斜率为( )A. 2B. 1C.43 D.1210.如图,圆C 内切于扇形AOB ,3AOB π∠=,若在扇形AOB 内任取一点,则该点在圆C 外的概率为( ) A .14B.13C.23D.3411.已知0ω>,函数()sin()4f x x πω=+在42ππ(,)上单调递减,则ω的取值范围是( ) A . (0,2] B .1(0,]2 C .13[]22, D .5[1]2, 12.设2,1OA OB ==u u u r u u u r ,0OA OB ⋅=u u u v u u u v ,OP OA OB λμ=+u u u v u u u v u u u v,且1=+μλ,则向量OA 在OP u u u v 上的投影的取值范围( ) A.]2,552(-B.]2,552(C. ]2,554(-D. ]2,554( 二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.在空间直角坐标系中,点)4,3,2(P 到y 轴的距离为________.14.已知,a b r u r 为单位向量,且,a b r r 所成角为3π,则2a b +r r 为_________.15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某天阅读时间及人数的数据,结果用条形图表示(如右图),根据条形图可知 这50名学生在这天平均每人的课外阅读时间为 小时.16.已知sin 2cos y θθ=+,且θπ∈(0,),则当y 取得最大值时sin θ= .0.511.5220151050小时人数第15题图第10题图三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. 17.(本小题10分)已知平面向量)2,1(=a ,),1(k -=.(1)当k 为何值时,向量a 与b a ρρ+2垂直;(2)当1=k 时,设向量与的夹角为θ,求θtan 及θ2cos 的值.18.(本小题12分)近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n 名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有70人.)(1)求该组织中志愿者人数;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.19.(本小题12分)某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据()(),1,2,6i i x y i =⋯,如表所示:已知80y =.(1)求表格中q 的值;(2)已知变量,x y 具有线性相关关系,试利用最小二乘法原理,求产品销量y 关于试销单价x 的线性回归方程ˆˆˆybx a =+ ( 参考数据:662113050,271i i i i i x y x ====∑∑);(3)用(2)中的回归方程得到与i x 对应的产品销量的估计值记为i yˆ)6,...,2,1(=i , 当ˆ1i i y y -≤时,称(),i i x y 为一个“理想数据”.试确定销售单价分别为6,5,4时有哪些是“理想数据”.20.(本小题12分)设函数()2π2sin 24f x x x ⎛⎫=+⎪⎝⎭.(1)请把函数)(x f 的表达式化成)2||,0,0()sin()(πϕωϕω<>>++=A b x A x f 的形式,并求)(x f 的最小正周期;(2)求函数)(x f 在]2,4[ππ∈x 时的值域.21.(本小题12分)在平面内,已知点(1,1)A ,圆C :22(3)(5)4x y -+-=,点P 是圆C 上的一个动点,记线段PA 的中点为Q . (1)求点Q 的轨迹方程;(2)若直线:2l y kx =+与Q 的轨迹交于M N ,两点,是否存在直线l ,使得10OM ON •=u u u u r u u u r(O为坐标原点),若存在,求出k 的值;若不存在,请说明理由.22.(本小题12分)已知1≥a ,1)cos (sin cos sin )(-++-=x x a x x x f . (1)求当1=a 时,)(x f 的值域; (2)若函数)(x f 在3[0,]4π内有且只有一个零点,求a 的取值范围.2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1)Θ与2+a b r r 垂直,得2+0a a b ⋅=r r r() 即22+=0a a b r r rg……………………2分 即10120k -+= ……………………3分解得92k =-. ……………………4分(2)依题意,10102521||||cos =⨯+-==b a θ, ……………………6分因为[0,]θπ∈ sin 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为124155P ==. ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y Θ,又80y =Q ,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+Q1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”; 3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分) 解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2) ππ,42x ⎡⎤∈⎢⎥⎣⎦Q∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分 ∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .Q 点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又Q PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩………………… 3分可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=•OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k ++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+•++=+u u u u r u u u r222424(1)24=1011k k k k k+=+⨯+⨯+++ …………………… 9分∴2410k k +-= 解得2k =-± …………………… 10分因为2k =--②, …………………… 11分所以存在直线l :(22y x =-++,使得=10OM ON •u u u u r u u u r……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分)(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1)I 内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分 ②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年数学周测试题(2)
一、选择题
1. 在中,若,则的值为( )
A .
B .
C .
D . 2.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A 090 B 060 C 0120 D 0
150 3.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A 12 B 221 C 28 D 36 4.边长为5,7,8的三角形的最大角与最小角的和是( )
A .090
B .0120
C .0135
D .0
150 5.已知A 、B 、C 是三角形的三个顶点,AB 2=AB ·AC +AB ·CB +BC ·CA ,则△ABC 为( )
A.等腰三角形
B.等腰直角三角形
C.直角三角形
D.既非等腰三角形又非直角三角形
6.在△ABC 中,若cos cos cos a b c A B C
==,则三角形是 ( ). A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形 7.在锐角∆ABC 中,若C=2B ,则
b c 的范围是( )
A 、(0,2)
B 、)2,2(
C 、)3,2(
D 、)3,1(
二、填空题
1.在ABC ∆中, 若2
1cos ,3-==A a ,则ABC ∆的外接圆的半径为 . 2.在△ABC 中,s in A : sin B : sin C =2:3:4,则cos C 的值为_____________。

3.ABC ∆中,若b=2a , B=A+60°,则A= .
4.在△ABC 中,已知BC=3,AB=10,AB 边上的中线为7,则△ABC 的面积等于___________.
5.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C
处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 为______.
6.已知锐角三角形的边长分别是2,3,x ,则x 的取值范围是___________________.
三、解答题
1.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边长,已知ac= b 2,且a 2-c 2=ac-bc,求A 的大小及
c
B b sin 的值.
2.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程02322
=+-x x 的两根,()1cos 2=+B A ,(1)求角C 的度数;(2)求AB 的长;(3)求△ABC 的面积.
3.已知△ABC 的周长为2+1,且sinA+sinB=2sinC
(1)求边AB 的长; (2)若△ABC 的面积为
61sinC ,求角C 的度数。

4.在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件 222a bc c b =-+和
32
1+=b c ,求A ∠和B tan 的值。

5.已知向量()sin ,1cos m B B =-,且与向量()2,0n =所成角为3π
,其中A ,B ,C 是ABC
∆的内角.(1) 求角B 的大小; (2) 求sin sin A C +的取值范围。

相关文档
最新文档