第一轮复习函数学案
高三数学一轮复习教学案:三角函数
三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。
高三数学一轮复习第10课时对数函数学案
高三数学一轮复习 第10课时 对数函数学案【学习目标】1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.理解对数函数的概念;理解对数函数的单调性. 【课本导读】1.对数(1)对数的定义 . (2)对数恒等式①Na a log = (a >0且a ≠1,N >0).②log a a b= (a >0,且a ≠1,b ∈R ). (3)对数运算法则(a >0且a ≠1,M >0,N >0)①log a (M ·N )= ;②log a M N= ;③log a M n= . (4)换底公式log b N =log a Nlog a b(a >0且a ≠1,b >0且b ≠1,N >0).推论:①log a b ·log b a = ; ②log a b ·log b c = ;③n a b n log = ; ④na b m log = .2.对数函数(1)对数函数的概念函数y =log a x (a >0且a ≠1)叫做对数函数. (2)对数函数的图像(3)对数函数的性质①定义域为 ,值域为 .②恒过定点(1,0). ③a >1时,y =log a x 在(0,+∞)上为 ;0<a <1时,y =log a x 在(0,+∞)上为 . ④当a >1,x >1时,log a x 0;当a >1,0<x <1时,log a x 0; 当0<a <1,0<x <1时,log a x 0;当0<a <1,x >1时,log a x 0. 【教材回归】1.(课本习题改编)写出下列各式的值:(1)log 26-log 23=____;(2)lg5+lg20=_____;(3)log 53+log 513=____;(4)log 35-log 315=____.2.(1)化简log 89log 23=____________.(2)已知9432=a (a >0),则log 23a =________.(3)若2a =5b=10,则1a +1b =________. 3.对于a >0且a ≠1,下列结论正确的是 ()①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②④4.已知a =21.2,b =(12)-0.8,c =2log 52,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 5.函数y =log a (x -1)+2(a >0,a ≠1)的图像恒过一定点是________. 【授人以渔】题型一 对数式的计算例1 计算下列各式:(1)lg2+lg5-lg8lg50-lg40;(2)log 34273log 5[2log 3210log 21727)33(4--]; (3)已知log 23=a ,3b=7,求212log 73的值.探究1 在对数运算中,要注意以下几个问题:(1)在化简与运算中,一般先用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并.(2)a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中要注意互化.思考题1 (1)|1+lg0.001|+lg 213-4lg3+4+lg6-lg0.02的值为________.(2)(log 32+log 92)·(lo g 43+log 83)= .题型二 对数函数的图像及应用例2 比较下列各组数的大小:(1)log 23.4,log 28.5; (2)log 67,log 76; (3)m =0.95.1,n =5.10.9,p =log 0.95.1;(4)若0<a <b <1,试确定log a b ,log b a ,log 1ba ,log 1ab 的大小关系.探究2 (1)比较两个指数幂或对数值大小的方法:①分清是底数相同还是指数(真数)相同;②利用指数、对数函数的单调性或图像比较大小; ③当底数、指数(真数)均不相同时,可通过中间量过渡处理.(2)多个指数幂或对数值比较大小时,可对它们先进行0,1分类,然后在每一类中比较大小.思考题2 (1)(2011·天津)已知a =log 23.6,b =log 43.2,c =log 43.6,则 ( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b (2)已知x =ln π,y =log 52,x =21e ,则 ( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x (3)(浙江卷改编)比较m >n 时,log m 4与log n 4.题型三 对数函数的性质例3 (1)作出函数y =log 2|x +1|的图像,由图像指出函数的单调区间,并说明它的图像可由函数y =log 2x 的图像经过怎样的变换而得到.(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是 ( )A .(0,1)B .(1,2)C .(1,2]D .(0,12)探究 3 (1)作一些复杂函数的图像,首先应分析它可以从哪一个基本函数的图像变换过来.一般是先作出基本函数的图像,通过平移、对称、翻折等方法,得出所求函数的图像.(2)对于较复杂的不等式有解或恒成立问题,可借助函数图像解决,具体做法是:对不等式变形,不等号两边对应两函数.在同一坐标系下作出两函数图像,比较当x 在某一范围内取值时图像的上下位置及交点的个数,来确定参数的取值或解的情况.思考题3 (1)已知图中曲线C 1、C 2、C 3、C 4是函数y =log a x 的图像,则曲线C 1、C 2、C 3、C 4对应的a 的值依次为 ( )A .3、2、13、12B .2、3、13、12C .2、3、12、13D .3、2、12、13(2)(2013·衡水调研卷)已知函数f (x )=(13)x-log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1) A .恒为负值 B .等于0 C .恒为正值 D .不大于0 ( )题型四 对数函数的综合应用例4 (1)求f (x )=log 12(3-2x -x 2)的单调区间.(2)已知函数f (x )=log a x (a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f (x )|≥1成立,试求a 的取值范围.探究4 关于形如log a f (x )的函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )[f (x )>0]的单调性,当a >1时相同,当0<a <1时相反.思考题4 是否存在实数a ,使得f (x )=log a (ax 2-x )在区间[2,4]上是增函数?若存在,求出a 的范围;若不存在,说明理由.【本课总结】指数函数、对数函数在高中数学中占有重要位置,搞清这部分基础知识相当重要.(1)搞清指数函数与对数函数的关系:即二者互为反函数,因此,图像关于直线y =x 对称,它们在各自的定义域内增减性是一致的.即a >1时都为增函数,0<a <1时都为减函数.(2)比较指数函数、对数函数类型的数值间的大小关系是高考中常见题型.具体做法是:①底数相同指数不同时,要考虑指数函数的单调性;②底、指数都不同时要借助于中间值(如0或1)再不行可考虑商值(或差值)比较法;③对数函数型数值间的大小关系,底相同者考虑对数函数的单调性,底不同时可考虑中间值(如0或1),或用换底公式化为同底.最后可考虑比较法. 【自助餐】1.已知函数xx f ⎪⎭⎫⎝⎛=21)(的图象与函数)(x g y =的图象关于直线x y =对称,令)1()(x g x h -=,则关于)(x h 有下列命题:①)(x h 的图象关于原点对称;②)(x h 为偶函数;③)(x h 的最小值为0;④)(x h 在上为减函数.其中正确命题的序号为 . 2.已知函数)3(log )(ax x f a -=.(1)当[]2,0∈x 时,函数)(x f 恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数)(x f 在区间[]2,1上为减函数,并且最大值为1?如果存在,试求出a 的值.3.已知集合}321≤≤⎩⎨⎧=x x P ,函数)22(log )(22+-=x ax x f 的定义域为Q . (1)若(]3,2,32,21-=⎪⎭⎫⎢⎣⎡=Q P Q P ,求实数a 的值;(2)若φ=Q P ,求实数a 的取值范围。
高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
高考数学一轮复习学案 第9讲 对数函数(原卷版)
第9讲 对数函数(原卷版)考点内容解读要求 常考题型 1.对数函数的图像和性质 理解对数函数的定义图象及性质 Ⅰ 选择题,填空题 2.对数函数的应用 对数函数性质的归纳与运用Ⅱ选择题,填空题1.对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以a 为底N 的对数,记作:Nx a log =(a — 底数,N — 真数,Na log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ; ②xN N a a x =⇔=log ;③ 注意对数的书写格式. 两个重要对数:① 常用对数:以10为底的对数N lg ;② 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 2.对数函数的特征特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log7x 是对数函数,而函数y =-3log4x 和y =logx2均不是对数函数,其原因是不符合对数函数解析式的特点. 3.对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ①Ma (log ·=)N ;②=N M alog ;③ n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b m n b a na m log log =;(2)a b b a log 1log =.2.对数函数及其性质 1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做 。
2.对数函数的性质:(1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为 ,值域为 .(2)图象:由于对数函数是指数函数的 ,所以对数函数的图象只须由相应的指数函数图象作关于 的对称图形,即可获得。
高考数学一轮复习教学案函数及其表示(含解析)
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
2020届数学(理)一轮复习人教A版 第4讲函数的概念及其表示 学案
第4讲 函数的概念及其表示1.2.函数的三要素函数由、和对应关系三个要素构成.在函数y=f (x ),x ∈A 中,x 叫作自变量,x 的取值范围A 叫作函数的 .与x 的值相对应的y 值叫作函数值,函数值的集合{f (x )|x ∈A }叫作函数的 . 3.函数的表示法函数的常用表示方法: 、 、 . 4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 ,这样的函数通常叫作分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.常用结论1.常见函数的定义域 (1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)零次幂的底数不能为0.(5)y=a x(a>0且a ≠1),y=sin x ,y=cos x 的定义域均为R .(6)y=log a x (a>0,a ≠1)的定义域为{x|x>0}.(7)y=tan x的定义域为x x≠kπ+,k∈Z.2.抽象函数的定义域(1)若f(x)的定义域为[m,n],则在f[g(x)]中,m≤g(x)≤n,从而解得x的范围,即为f[g(x)]的定义域.(2)若f[g(x)]的定义域为[m,n],则由m≤x≤n确定g(x)的范围,即为f(x)的定义域.3.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为-,+∞;当a<0时,值域为-∞-.(3)y=(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.题组一常识题1.[教材改编]以下属于函数的有.(填序号)①y=±;②y2=x-1;③y=-+-;④y=x2-2(x∈N).2.[教材改编]已知函数f(x)=则f(-2)=,f[f(-2)]=.3.[教材改编]函数f(x)=-的定义域是.4.[教材改编]已知集合A={1,2,3,4},B={a,b,c},f:A→B为从集合A到集合B的一个函数,那么该函数的值域C的不同情况有种.题组二常错题◆索引:求函数定义域时非等价化简解析式致错;分段函数解不等式时忘记范围;换元法求解析式,反解忽视范围;对函数值域理解不透彻致错.5.函数y=-·的定义域是.6.设函数f(x)=--则使得f(x)≥1的自变量x的取值范围为.7.已知f()=x-1,则f(x)=.8.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有个.探究点一函数的定义域角度1求给定函数解析式的定义域例1 (1)函数f(x)=ln(x2-x)的定义域为()A.(0,1]B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0)∪[1,+∞)(2)函数f(x)=-+的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1][总结反思](1)求函数定义域即求使解析式有意义的自变量x的取值集合;(2)若函数是由几个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集;(3)具体求解时一般是列出自变量满足的不等式(组),得出不等式(组)的解集即可;(4)注意不要轻易对解析式化简变形,否则易出现定义域错误.角度2求抽象函数的定义域例2 (1)若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是()A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)(2)若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为()A.[-1,1]B.[1,2]C.[10,100]D.[0,lg 2][总结反思](1)无论抽象函数的形式如何,已知定义域还是求定义域均是指其中的x的取值集合;(2)同一问题中、同一法则下的范围是一致的,如f[g(x)]与f[h(x)],其中g(x)与h(x)的范围(即它们的值域)一致.变式题(1)若函数y=f(x)的定义域为(0,1),则f(x+1)的定义域为()A.(-1,0)B.(0,1)C.(1,2)D.(-1,1)(2)已知函数y=f(x2-1)的定义域为[-],则函数y=f(x)的定义域为.探究点二函数的解析式例3 (1)已知f(x+1)=3x+2,则函数f(x)的解析式是()A.f(x)=3x-1B.f(x)=3x+1C.f(x)=3x+2D.f(x)=3x+4(2)已知二次函数f(x)满足f(x+1)-f(x)=-2x+1,且f(2)=15,则函数f(x)=.(3)设函数f(x)对不为0的一切实数x均有f(x)+2f=3x,则f(x)=.[总结反思]求函数解析式的常用方法:(1)换元法:已知复合函数f[g(x)]的解析式,可用换元法,此时要注意新元的取值范围.(2)待定系数法:已知函数的类型(如一次函数、二次函数),可用待定系数法.(3)配凑法:由已知条件f[g(x)]=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式.(4)解方程组法:已知f(x)与f或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f(x).变式题(1)已知函数f(2x-1)=4x+3,且f(t)=6,则t=()A.B.C.D.(2)若f(x)对于任意实数x恒有3f(x)-2f(-x)=5x+1,则f(x)=()A.x+1B.x-1C.2x+1D.3x+3(3)若f(x)为一次函数,且f[f(x)]=4x+1,则f(x)=.探究点三以分段函数为背景的问题微点1分段函数的求值问题例4 (1)[2018·衡水调研]设函数f(x)=则f[f(-1)]=()A.B.+1C.1D.3则f(log27)=.(2)已知函数f(x)=-[总结反思]求分段函数的函数值时务必要确定自变量所在的区间及其对应关系.对于复合函数的求值问题,应由里到外依次求值.微点2分段函数与方程例5 (1)已知函数f(x)=若f[f(1)]=3,则a=()A.2B.-2(2)函数f(x)=-若f(0)+f(a)=2,则a的值为.[总结反思](1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参;(2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值.微点3分段函数与不等式问题例6 (1)[2018·惠州二模]设函数f(x)=--若f(x0)>1,则x0的取值范围是()A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)(2)[2018·全国卷Ⅰ]设函数f(x)=-则满足f(x+1)<f(2x)的x的取值范围是()A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)[总结反思]涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.应用演练1.【微点1】若函数f(x)=则f(1)+f(-1)=()A.0B.2C.-2D.12.【微点2】设函数f(x)=--若f(a)=4,则实数a的值为()A.B.C.或D.3.【微点3】已知函数f(x)=--则不等式f(x)≤5的解集为() A.[-1,1]C.(-∞,-2]∪(0,4)D.(-∞,-2]∪[0,4]4.【微点3】[2018·湖北咸宁联考]已知函数f(x)=-则不等式f(x)≤x的解集为()A.[-1,3]B.(-∞,-1]∪[3,+∞)C.[-3,1]D.(-∞,-3]∪[1,+∞)5.【微点2】设函数f(x)=-若f=4,则b=.第4讲函数的概念及其表示考试说明 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需求选择恰当的方法(如图像法,列表法,解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【课前双基巩固】知识聚焦1.非空数集非空集合任意唯一确定任意唯一确定f:A→B f:A→B2.定义域值域定义域值域3.解析法图像法列表法4.对应关系对点演练1.④[解析]①②对于定义域内任给的一个数x,可能有两个不同的y值,不满足对应的唯一性,故①②错.③的定义域是空集,而函数的定义域是非空的数集,故③错.只有④表示函数.2.45[解析]因为f(-2)=(-2)2=4,所以f[f(-2)]=f(4)=4+1=5.3.(-∞,-3)∪(-3,8][解析]要使函数有意义,需8-x≥0且x+3≠0,即x≤8且x≠-3,所以其定义域是(-∞,-3)∪(-3,8].4.7[解析]只含有一个元素时有{a},{b},{c};有两个元素时,有{a,b},{a,c},{b,c};有三个元素时,有{a,b,c}.所以值域C共有7种不同情况.5.{x|x≥2}[解析]要使函数有意义,需-解得x≥2,即定义域为{x|x≥2}.6.(-∞,-2]∪[0,10][解析]∵f(x)是分段函数,∴f(x)≥1应分段求解.当x<1时,f(x)≥1⇒(x+1)2≥1⇒x≤-2或x≥0,∴x≤-2或0≤x<1.当x≥1时,f(x)≥1⇒4--≥1,即-≤3,∴1≤x≤10.综上所述,x≤-2或0≤x≤10,即x∈(-∞,-2]∪[0,10].7.x2-1(x≥0)[解析]令t=,则t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).8.9[解析]设函数y=x2的定义域为D,其值域为{1,4},D的所有可能的个数,即是同族函数的个数,D的所有可能为{-1,2},{-1,-2},{1,2},{1,-2},{-1,1,2},{-1,1,-2},{-1,2,-2},{1,2,-2},{-1,1,2,-2},共9个,故答案为9.【课堂考点探究】例1[思路点拨](1)根据对数式的真数大于0求解;(2)根据二次根式的被开方数非负及分母不为0求解.(1)C(2)A[解析](1)由x2-x>0,得x>1或x<0,所以定义域为(-∞,0)∪(1,+∞).故函数的定义域为(-3,0].(2)由题意,自变量x应满足-解得-例2[思路点拨](1)由f(x)的定义域得f(2x)的定义域,再结合ln x≠0求解;(2)由x∈[-1,1],求得x2+1的范围是[1,2],再由1≤lg x≤2即可得函数f(lg x)的定义域.(1)D(2)C[解析](1)∵f(x)的定义域为[0,2],∴要使f(2x)有意义,则有0≤2x≤2,∴0≤x≤1,∴要使g(x)有意义,应有∴0<x<1,故选D.(2)因为f(x2+1)的定义域为[-1,1],所以-1≤x≤1,故0≤x2≤1,所以1≤x2+1≤2.因为f(x2+1)与f(lg x)是同一个对应法则,所以1≤lg x≤2,即10≤x≤100,所以函数f(lg x)的定义域为[10,100].故选C.变式题(1)A(2)[-1,2][解析](1)由题意知0<x+1<1,解得-1<x<0.故选A.(2)因为函数y=f(x2-1)的定义域为[-,],所以-≤x≤,所以-1≤x2-1≤2,所以函数y=f(x)的定义域为[-1,2].例3[思路点拨](1)用配凑法将3x+2配凑成3(x+1)-1;(2)设出二次函数,利用待定系数法,根据等式恒成立求出待定系数即可;(3)构造含f(x)和f的方程组,消去f即可得f(x)的解析式.(1)A(2)-x2+2x+15(3)-x[解析](1)由于f(x+1)=3(x+1)-1,所以f(x)=3x-1.(2)由已知令f(x)=ax2+bx+c(a≠0),则f(x+1)-f(x)=2ax+b+a=-2x+1,∴2a=-2,a+b=1,∴a=-1,b=2,又f(2)=15,∴c=15,∴f(x)=-x2+2x+15.(3)f(x)+2f=3x①,且x≠0,用代替①中的x,得f+2f(x)=3×②,解①②组成的方程组,消去f得f(x)=-x.变式题(1)A(2)A(3)2x+或-2x-1[解析](1)设t=2x-1,则x=,故f(t)=4×+3=2t+5,令2t+5=6,则t=,故选A.(2)因为3f(x)-2f(-x)=5x+1①,所以3f(-x)-2f(x)=-5x+1②,联立①②,解得f(x)=x+1,故选A.(3)设f(x)=ax+b(a≠0),由f[f(x)]=af(x)+b=a2x+ab+b=4x+1,得a2=4,ab+b=1,解得a=2,b=或a=-2,b=-1,∴f(x)=2x+或f(x)=-2x-1.例4[思路点拨](1)先求f(-1)的值,再求f[f(-1)]的值;(2)先估算log27的范围,再确定选用哪段解析式求值.(1)D(2)[解析](1)由题意可得f(-1)==2,∴f[f(-1)]=f(2)=3,故选D.-(2)因为2<log27<3,所以1<log27-1<2,所以f(log27)=f(log27-1)=-=÷2=.例5[思路点拨](1)先求得f(1)=0,再据f(0)=3求分段函数中的参数;(2)分a≤0和a>0两种情况讨论求解.(1)D(2)0或1[解析](1)根据题意可知f(1)=log a1=0,所以f[f(1)]=f(0)=(3+a)×0+a=a=3,即a=3,故选D.(2)∵f(x)=∴f(0)=20=1.-当a>0时,f(a)=a-ln a,则有1+a-ln a=2,解得a=1;当a≤0时,f(a)=2a,则有1+2a=2,解得a=0.例6[思路点拨](1)分x0≤0和x0>0两种情况讨论求解;(2)根据题中所给的函数解析式,将函数图像画出来,结合图像可得不等式成立的条件.(1)D(2)D[解析](1)当x0≤0时,由f(x0)=--1>1,即->2,解得x0<-1;当x0>0时,由f(x0)=>1,解得x0>1.∴x0的取值范围是(-∞,-1)∪(1,+∞).(2)f(x)的图像如图所示.当即x≤-1时,若满足f(x+1)<f(2x),则满足x+1>2x,即x<1,此时x≤-1;当即-1<x<0时,f(x+1)<f(2x)恒成立.综上,x的取值范围是x<0.故选D.应用演练1.A[解析]由函数f(x)=得f(1)+f(-1)=+-+1=0.-或-2.B[解析]因为f(a)=4,所以所以或所以a=,故选B.3.B[解析]由于f(x)=--所以当x>0时,3+log2x≤5,即log2x≤2=log24,得0<x≤4;当x≤0时,x2-x-1≤5,即(x-3)(x+2)≤0,得-2≤x≤0.所以不等式f(x)≤5的解集为[-2,4].4.A[解析]当x≥0时,由x2-2x≤x,得0≤x≤3;当x<0时,由≤x,得-1≤x<0.故不等式f(x)≤x的解集为[-1,3].5.[解析]由f=4,可得f-=4.若-b≥1,即b≤,可得-=4,解得b=.若-b<1,即b>,可得3×--b=4,解得b=<(舍去).故答案为.【备选理由】例1考查给定函数解析式,求抽象函数的定义域问题;例2考查分段函数的求值,但涉及三角函数及函数的周期性;例3考查分段函数与方程问题,先分析参数的范围,可以避免分类讨论;例4是对函数值域的考查,依据分段函数的值域求参数,是对已有例题的有效补充,值得探究和思考.例1[配合例2使用][2018·邵阳期末]设函数f(x)=log2(x-1)+-,则函数f的定义域为()A.(1,2]B.(2,4]C.[1,2)D.[2,4)[解析] B要使函数f(x)有意义,则需-⇒1<x≤2,故1<≤2,即2<x≤4,所以选B.-例2[配合例4使用][2018·柳州高级中学三模]已知函数f(x)=则f(-2018)=()-A.-2B.2C.4+D.-4-[解析] A当x<1时,f(x)=-f(x+3),可得f(x+3)=-f(x),则f[(x+3)+3]=-f(x+3)=f(x),可知当x<1时,f(x)是周期为6的周期函数,则f(-2018)=f(-336×6-2)=f(-2)=-f(-2+3)=-f(1).而当x≥1时,f(x)=x2+sin,∴f(1)=2,∴f(-2018)=-f(1)=-2.例3[配合例5使用]已知f(x)=-若f(1-a)=f(1+a)(a>0),则实数a的值为. [答案] 1[解析]∵a>0,∴1-a<1,1+a>1,∴由f(1-a)=f(1+a)得2-a=,即a2-2a+1=0,∴a=1.例4[补充使用][2018·武邑中学模拟]若函数f(x)=的值域为R,则a的取值范围是.[答案]a≥-[解析]∵f(x)=log4x在x>2时的值域为∞,∴f(x)=x+a在x≤2时的最大值必须大于等于,即满足2+a≥,解得a≥-.故答案为a≥-.。
高考数学一轮复习 13 函数的奇偶性学案 理
第十三课时 函数的奇偶性课前预习案1.掌握奇函数、偶函数的定义及其判断方法; 2.掌握奇函数、偶函数的图象与性质; 3.会应用奇函数、偶函数解决问题.1.如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做-------------------------------;如果对于函数f(x)定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)叫做---------------------------;2.如果奇函数f(x)在x=0处有定义,则f(0)=-------------------------. 如果函数f(x)的定义域不关于原点对称,那么f(x)一定是----------------; 如果f(x)既是奇函数又是偶函数,那么f(x)的表达式是----------------3.奇偶函数的性质:(1)具有奇偶性的函数定义域关于--------------------------对称.(2)奇函数的图象关于------------------------------对称, 偶函数的图象关于------------------------------对称. (3)奇函数在对称区间上的单调性--------------------------------,偶函数在对称区间上的单调性--------------------------------.(4)y=f(a+x)是偶函数⇔ f(a+x)= f(a-x) ⇔f(x)= f(2a-x)⇔f(x)关于x=a 对称;(5)y=f(b+x)是奇函数⇔f (b-x)=-f(b+x)⇔f(x)关于(b,0)成中心对称图形.1.下列函数中,既是奇函数又是增函数的为( )A. 1y x =+B. 2y x =- C. 1y =D. ||y x x =3.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()f x )在R 上的表达式是( )A .(2)y x x =-B .(||2)y x x =+C .||(2)y x x =-D .(||2)y x x =- 4.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g 。
一轮复习函数的单调性与最值学案
第三讲 函数的单调性与最值ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测 知识点一 函数的单调性 1.单调函数的定义增函数 减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.知识点二 函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有f (x )≥M ; (2)存在x 0∈I ,使得f (x 0)=M结论M 为最大值 M 为最小值函数y =f (u ),u =φ(x ),在函数y =f [φ(x )]的定义域上,如果y =f (u ),u =φ(x )的单调性相同,则y =f [φ(x )]单调递增;如果y =f (u ),u =φ(x )的单调性相反,则y =f [φ(x )]单调递减.2.单调性定义的等价形式 设任意x 1,x 2∈[a ,b ],x 1≠x 2. (1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或f x 1?-f ?x 2?x 1-x 2>0,则f (x )在闭区间[a ,b ]上是增函数.(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或f ?x 1?-f ?x 2?x 1-x 2<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数单调性的常用结论(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k >0,则kf (x )与f (x )单调性相同,若k <0,则kf (x )与f (x )单调性相反. (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f ?x ?的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f ?x ?的单调性相同. 题组一 走出误区1.(多选题)下列结论不正确的是( ABCD )A .函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)B .函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)C .对于任意两个函数值f (x 1)、f (x 2),当f (x 1)>f (x 2)时都有x 1>x 2,则y =f (x )为增函数D .已知函数y =f (x )是增函数,则函数y =f (-x )与y =1f x ?都是减函数 [解析] 对于A :单调区间是定义域的子区间,如y =x 在[1,+∞)上是增函数,但它的单调递增区间是R ,而不是[1,+∞).对于B .多个单调区间不能用“∪”符号连接,而应用“,”或“和”连接.对于C .设f (x )=⎩⎪⎨⎪⎧x x ∈[0,1],1 x ∈?1,2?,如图.当f (x 1)>f (x 2)时都有x 1>x 2,但y =f (x )不是增函数. 对于D .当f (x )=x 时,y =1f ?x ?=1x ,有两个减区间,但y =1x并不是减函数,而y =f (-x )是由y =f (t )与t =-x 复合而成是减函数.故选A 、B 、C 、D .题组二 走进教材2.(必修1P 44AT9改编)函数y =(2m -1)x +b 在R 上是减函数,则( B ) A .m >12B .m <12C .m >-12D .m <-12[解析] 使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.3.(必修1P 32T5改编)已知f (x )=-2x 2+x ,x ∈[-1,3],则其单调递减区间为[14,3];f (x )min =-15.4.(必修1P 32T3改编)设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )在增区间为[-1,1]和[5,7].题组三 考题再现5.(2019·北京)下列函数中,在区间(0,+∞)上单调递增的是( A ) A .y =x 12 B .y =2-xC .y =log 12xD .y =1x[解析] 对于幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,当α<0时,y =x α在(0,+∞)上单调递减,所以选项A 正确;选项D 中的函数y =1x 可转化为y =x -1,所以函数y =1x在(0,+∞)上单调递减,故选项D 不符合题意;对于指数函数y =a x(a >0,且a ≠1),当0<a <1时,y =a x在(-∞,+∞)上单调递减,当a >1时,y =a x 在(-∞,+∞)上单调递增,而选项B 中的函数y =2-x可转化为y =(12)x ,因此函数y =2-x在(0,+∞)上单调递减,故选项B 不符合题意;对于对数函数y =log a x (a >0,且a ≠1),当0<a <1时,y =log a x 在(0,+∞)上单调递减,当a >1时,y =log a x 在(0,+∞)上单调递增,因此选项C 中的函数y =log 12x 在(0,+∞)上单调递减,故选项C 不符合题意,故选A .6.(2015·浙江卷,10)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg?x 2+1?,x <1,则f [f (-3)]=0,f (x )的最小值是22-3.[解析] 由题意知,f (-3)=1,f (1)=0,即f [f (-3)]=0.易得f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 函数的单调性考向1 函数单调性的判断与证明——自主练透例1 (1)(多选题)(2020·广东省名校联考改编)设函数f (x )在R 上为增函数,则下列结论中不正确的是( ACD )A .y =|f (x )|在R 上为增函数B .y =2-f (x )在R 上为减函数C .y =-[f (x )]3在R 上为增函数 D .y =log 12f (x )在R 上为减函数(2)已知a >0,函数f (x )=x +a x(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.[解析] (1)A 错,比如f (x )=x 在R 上为增函数,但y =|f (x )|=|x |在(0,+∞)上为增函数,在(-∞,0)上为减函数;C 错,比如f (x )=x 在R 上为增函数,但y =-[f (x )]3=-x 3在R 上为减函数;D 错,比如f (x )=x 在R 上为增函数,但log 12 x 在(0,+∞)上为减函数,而在(-∞,0]上没意义.故选A 、C 、D .(2)证明:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+a x 2)=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以函数f (x )在[a ,+∞)上是增函数. 考向2 求函数的单调区间——师生共研例2 求下列函数的单调区间. (1)f (x )=-x 2+2|x |+3; (2)f (x )=log 12 (-x 2+4x +5);(3)f (x )=x -ln x .[分析] (1)可用图象法或化为分段函数或用化为复合函数求解; (2)复合函数求解; (3)导数法.[解析] (1)解法一:(图象法)∵f (x )=⎩⎪⎨⎪⎧-x 2+2x +3?x ≥0?,-x 2-2x +3?x <0?,其图象如图所示,所以函数y =f (x )的单调递增区间为(-∞,-1]和[0,1];单调递减区间为[-1,0]和[1,+∞).解法二:(化为分段函数求解)f (x )=⎩⎪⎨⎪⎧-x 2+2x +3?x ≥0?-x 2-2x +3?x <0?=⎩⎪⎨⎪⎧-?x -1?2+4?x ≥0?-?x +1?2+4?x <0?y =-(x -1)2+4(x ≥0)图象开口向下,对称轴为x =1,∴增区间为(0,1),减区间为(1,+∞); y =-(x +1)2+4(x <0)图象开口向下,对称轴为x =-1,∴增区间为(-∞,-1),减区间为(-1,0);∴f (x )的增区间为(0,1)、(-∞,-1),减区间为(1,+∞)、(-1,0).解法三:(复合函数法)函数由y =-u 2+2u +3(u ≥0)和u =|x |复合而成,y =-u 2+2u +3(u ≥0)的对称轴为u =1,由|x |=1得x =±1.x (-∞,-1) (-1,0) (0,1) (1,+∞) u (1,+∞)(0,1)(0,1)(1,+∞)u =|x | y =-u 2+2u +3f (x )∴f (x )在增区间为(-∞,-1),(0,1),减区间为(-1,0),(1,+∞).(2)由-x 2+4x +5>0得-1<x <5.令u =-x 2+4x +5,x ∈(-1,5),则f (x )=log 12 u .∵x ∈(-1,2],u 为增函数;x ∈(2,5)时,u 为减函数.又y =log 12 u 在(0,+∞)上为减函数,据复合函数“同增异减”的性质知f (x )的单调递增区间为(2,5);单调递减区间为(-1,2].(3)由题意,得x 0.y0.y ′=1-1x =x -1x.x (0,1) 1 (1,+∞)y ′ -0 + y极小值由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1). [引申1]本例(1)f (x )=|-x 2+2x +3|的增区间为(-1,1)和(3,+∞).[解析] 作出f (x )=|-x 2+2x +3|的图象,由图可知所示增区间为(-1,1)和(3,+∞).[引申2]本例(2)f (x )=log a (-x 2+4x +5)(a >1)的增区间为(-1,2].名师点拨 ?求函数的单调区间(确定函数单调性)的方法(1)利用已知函数的单调性,即转化为已知单调性的函数的和、差或复合函数,再求单调区间. (2)定义法:先求定义域,再利用单调性定义求解.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象直接写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.(5)求复合函数的单调区间的一般步骤是:①求函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,依据是“同增异减”.注意:(1)求函数单调区间,定义域优先.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”连接,也不能用“或”连接.〔变式训练1〕(1)f (x )=x1-x在( C )A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数(2)下列函数中,满足“?x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( C ) A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)(3)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是(-∞,2].(4)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是( B )A .[0,12]B .[a ,1]C .(-∞,0)∪[12,+∞)D .[a ,a +1][解析] (1)f (x )=x -1+11-x =11-x -1=-1x -1-1,f (x )在(-∞,1)和(1,+∞)上都为增函数,故选C .(2)由已知得f (x )在(0,+∞)上为减函数的是f (x )=1x-x ,故选C .(3)由已知得a -1>0,∴a >1,∴g (x )=a|x -2|减区间为g =|x -2|减区间,(-∞,2],故填(-∞,2].(4)设g (x )=f (t ),t =log a x (0<a <1),由图象知,y =f (t )的增区间为[0,12],即0≤log a x ≤12,∴a≤x ≤1.故选B .考向3 函数单调性的应用——多维探究 角度1 利用函数的单调性比较大小例3 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (e),则a ,b ,c 的大小关系为( D )A .c >a >bB .c >b >aC .a >c >bD .b >a >c[解析] 由已知得f (x )在(1,+∞)上单调递减,又f (-12)=f (52),∵e>52>2,∴f (e)<f (52)<f (2),即c <a <b .故选D .角度2 利用单调性求参数的取值范围例4 (1)(2020·江西赣州南康中学高三上第三次月考)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( A )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)(2)(2020·广东汕头湖南区第一次模拟)如果函数g (x )=⎩⎪⎨⎪⎧2m -1?x +34,x ≥1,m x ,x <1在R 上单调递减,那么实数m 的取值范围为(0,14].[解析] (1)令u =x 2-2ax +1+a ,则f (u )=lg u ,配方得u =x 2-2ax +1+a =(x -a )2-a 2+a +1,故对称轴为直线x =a ,如图.由图象可知,当a ≥1时,u =x 2-2ax +1+a 在区间(-∞,1]上单调递减.又真数x 2-2ax +1+a >0,二次函数u =x 2-2ax +1+a 在(-∞,1]上单调递减,故只需当x =1时,x 2-2ax +1+a >0,代入x =1解得a <2,所以a 的取值范围是[1,2).故选A .(2)若g (x )为减函数,必有⎩⎪⎨⎪⎧2m -1<0,0<m <1,2m -1?+34≤m ,解得0<m ≤14,即m 的取值范围为(0,14].角度3 利用单调性解不等式例5 (2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( D )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3][解析] 因为f (1)=-1,且f (x )为奇函数,所以f (-1)=-f (1)=1,因为-1≤f (x -2)≤1,所以f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减,所以-1≤x -2≤1,解得1≤x ≤3,故选D .名师点拨 ?函数单调性应用问题的常见类型及解题策略(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)利用单调性求参数时,通常要把参数视为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较,利用区间端点间关系求参数.求解时注意函数定义域的限制,遇分段函数注意分点处左、右端点函数值的大小关系.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.〔变式训练2〕(1)(角度1)e 416,e 525,e636(其中e 为自然常数)的大小关系是( A )A .e 416<e 525<e 636 B .e 636<e 525<e 416 C .e 525<e 416<e 636D .e 636<e 416<e 525(2)(角度2)(2020·云南曲靖一中高三质量监测)已知函数f (x )对?x 1,x 2∈R ,且x 1≠x 2,满足f ?x 2?-f ?x 1?x 1-x 2<0,并且f (x )的图象经过A (3,7),B (-1,1)两点,则不等式|f (x )-4|<3的解集是(-1,3).(3)(角度3)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( D )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[解析] (1)构造函数f (x )=exx2.因为e 416=e 442,e 525=e 552,e 636=e 662,所以f (4)=e 416,f (5)=e 525,f (6)=e636.而f ′(x )=(e xx 2)′=e x·x 2-e x ·2x x 4=e x ?x 2-2x ?x4, 令f ′(x )>0,得x <0或x >2, 即函数f (x )在(2,+∞)内单调递增, 因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.(2)∵对?x 1,x 2∈R ,且x 1≠x 2,函数f (x )满足f ?x 2?-f ?x 1?x 1-x 2<0,∴f (x )在R 上为增函数.由|f (x )-4|<3得-3<f (x )-4<3,∴1<f (x )<7.又f (x )的图象经过A (3,7),B (-1,1)两点,∴f (-1)<f (x )<f (3),∴-1<x <3,故不等式的解集为(-1,3).(3)画出函数f (x )的图象如图,由函数f (x )的图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,解得a ≤1或a ≥4,即a 的取值范围为(-∞,1]∪[4,+∞).故选D .考点二 函数的最值——自主练透例6 (1)(2020·厦门质检)函数f (x )=(13)x-log 2(x +2)在区间[-1,1]上有最大值为3.(2)(2020·广东广州执信中学高三上测试)已知函数f (x )=log a (x 2+x -1)在区间[1,2]上的最大值比最小值大2,则a 的值为( D )A .2B . 5C .55D .5或55[解析] (1)∵y =(13)x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴y =(13)x-log 2(x +2)是在区间[-1,1]上的减函数,∴最大值为f (-1)=3.(2)因为y =x 2+x -1在[1,2]上单调递增,所以函数f (x )=log a (x 2+x -1)在区间[1,2]上的最大值与最小值分别是f (1),f (2)或f (2),f (1).因为函数f (x )=log a (x 2+x -1)在区间[1,2]上的最大值比最小值大2,所以|f (1)-f (2)|=2,即|log a 5|=2,得a =5或a =55.故选D . 名师点拨 ?利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).若函数f (x )在闭区间[a ,b ]上是减函数,则f (x )在[a ,b ]上的最大值为f (a ),最小值为f (b ).MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛·素养提升抽象函数的单调性问题例7 已知定义在R 上的函数f (x )对任意实数x ,y ,恒有f (x )+f (y )=f (x +y ),f (1)=-23,且当x >0时,f (x )<0.(1)求证:f (x )为奇函数; (2)求证:f (x )在R 上是减函数;(3)求f (x )在[-3,6]上的最大值与最小值.[解析] (1)证明:令x =y =0,可得f (0)+f (0)=f (0+0)=f (0),从而f (0)=0. 令y =-x ,可得f (x )+f (-x )=f (x -x )=f (0)=0, 即f (-x )=-f (x ),故f (x )为奇函数.(2)证明:对任意x 1,x 2∈R ,不妨设x 1>x 2,则x 1-x 2>0,于是f (x 1-x 2)<0,从而f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2)<0, 所以f (x )在R 上是减函数.(3)由(2)知,所求函数在[-3,6]上的最大值为f (-3),最小值为f (6). 因为f (-3)=-f (3)=-[f (2)+f (1)]=-[2f (1)+f (1)]=-3f (1)=2,f (6)=-f (-6)=-[f (-3)+f (-3)]=-4.所以f (x )在[-3,6]上的最大值为2,最小值为-4. 名师点拨 ?对于抽象函数单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f ?x 1?f ?x 2?与1的大小.有时根据需要,需作适当的变形,如x 1=x 2+x 1-x 2或x 1=x 2·x 1x 2等.深挖已知条件,是求解此类题的关键.在客观题的求解中,解这类题目也可考虑用特殊化方法,如本题可依题目条件取f (x )=-23x .〔变式训练3〕f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f (x y)=f (x )-f (y ),当x >1时,有f (x )>0. (1)求f (1)的值;(2)判断f (x )的单调性并证明;11/11 (3)若f (6)=1,解不等式f (x +5)-f (1x)<2. [解析] (1)f (1)=f (x x )=f (x )-f (x )=0.(2)f (x )在(0,+∞)上是增函数.证明:设0<x 1<x 2,则由f (x y )=f (x )-f (y ),得f (x 2)-f (x 1)=f (x 2x 1),因为x 2x 1>1,所以f (x 2x 1)>0.所以f (x 2)-f (x 1)>0,即f (x )在(0,+∞)上是增函数.(3)因为f (6)=f (366)=f (36)-f (6),又f (6)=1,所以f (36)=2,原不等式化为:f (x 2+5x )<f (36),又因为f (x )在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ x +5>0,1x >0,x 2+5x <36,解得0<x <4.∴不等式的解集为{x |0<x <4}.。
高三数学一轮复习 7.函数的奇偶性与周期性学案
【学习目标】1.了解奇函数、偶函数的定义,并能运用奇偶性的定义判断一些简单函数的奇偶性.,并熟练地利用对称性解决函数的综合问题.预习案1.奇函数、偶函数、奇偶性对于函数f(x),其定义域关于原点对称:(1)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是奇函数;(2)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是偶函数;(3)如果一个函数是奇函数(或偶函数),那么称这个函数在其定义域内具有奇偶性.2.证明函数奇偶性的方法步骤(1)确定函数定义域关于对称;(2)判定f(-x)=-f(x)(或f(-x)=f(x)),从而证得函数是奇(偶)函数.3.奇偶函数的性质(1)奇函数图像关于对称,偶函数图像关于对称;(2)若奇函数f(x)在x=0处有意义,则f(0)=;(3)若奇函数在关于原点对称的两个区间上分别单调,则其单调性;若偶函数在关于原点对称的两个区间上分别单调,则其单调性.(4)若函数f(x)为偶函数,则f(x)=f(|x|),反之也成立.4.一些重要类型的奇偶函数(1)函数f(x)=a x+a-x为函数,函数f(x)=a x-a-x为函数;(2)函数f(x)=a x-a-xa x+a-x=a2x-1a2x+1(a>0且a≠1)为函数;(3)函数f(x)=log a 1-x1+x为函数;(4)函数f(x)=log a(x+x2+1)为函数.5.周期函数若f(x)对于定义域中任意x均有(T为不等于0的常数),则f(x)为周期函数.6.函数的对称性若f(x)对于定义域中任意x,均有f(x)=f(2a-x),或f(a+x)=f(a-x),则函数f(x)关于对称.【预习自测】1.(课本改编题)下列函数中,所有奇函数的序号是_______.①f(x)=2x4+3x2;②f(x)=x3-2x;③f(x)=x2+1x;④f(x)=x3+1.2.下列函数为偶函数的是( )A.y=sin x B.y=x3C.y=e x D.y=ln x2+13.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.4.若函数y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在函数y=f(x)图像上的()A.(a,-f(a)) B.(-a,-f(a))C.(-a,-f(-a)) D.(a,f(-a))5.(2013·某某调研卷)设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(99)=________.探究案题型一判断函数的奇偶性例1.判断下列函数的奇偶性,并说明理由.(1)f(x)=x2-|x|+1 x∈[-1,4];(2)f(x)=(x-1)1+x1-xx∈(-1,1);(3)f(x)=1a x-1+12(a>0,a≠1).探究1.判断下列函数的奇偶性.(1)f(x)=ln 2-x2+x;(2)g(x)=x2+|x-a|;(3)f(x)=⎩⎪⎨⎪⎧x2-2x x≥0,x2+2x x<0.题型二奇偶性的应用例2.(1)已知函数f(x)为奇函数且定义域为R,x>0时,f(x)=x+1,f(x)的解析式为.(2)f(x)是定义在(-1,1)上的奇函数,且x∈[0,1]时f(x)为增函数,则不等式f(x)+f(x-1)<0的解集为.2(3)函数f(x+1)为偶函数,则函数f(x)的图像的对称轴方程为.探究2.(1)若函数f(x)是R上的偶函数,且在[0,+∞)上是减函数,满足f(π)<f(a)的实数a的取值X围是________.(2)函数y=f(x-2)为奇函数,则函数y=f(x)的图像的对称中心为__________.题型三函数的周期性例3.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)证明:函数f(x)为周期函数;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.探究3.(1)f(x)的定义域为R的奇函数,且图像关于直线x=1对称,试判断f(x)的周期性.(2)f(x)是定义在R上的函数,对任意x∈R均满足f(x)=-1f x+1,试判断函数f(x)的周期性.例4.已知f(x)为偶函数,且f(-1-x)=f(1-x),当x∈[0,1]时,f(x)=-x+1,求x∈[5,7]时,f(x)的解析式.探究4.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).我的学习总结:(1)我对知识的总结.(2)我对数学思想及方法的总结。
初中数学_中考一轮复习一次函数教学设计学情分析教材分析课后反思
中考一轮复习一次函数教学设计一、教学内容分析一次函数是初中数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,它的研究方法具有一般性和代表性,是进一步研究反比例函数及二次函数的基本工具,也是学习高中代数、解析几何及其他数学分支的重要基础。
这部分的难点是构建一次函数模型解决实际问题的能力以及综合运用所学知识解决、分析问题的能力,学好这部分知识对发展学生的数学应用意识和建模能力起着至关重要的作用。
一次函数在中考中常常考察一次函数关系式的确定、图像和性质、一次函数的实际应用、一次函数与反比例函数、二次函数的综合题等.,二、学情分析大部分学生都感觉函数比较难,有些学生对一次函数的性质与图像遗忘了,还有些同学上新课时对这部分知识没有理解,学好这部分知识很重要一点就是会用数形结合思想去解决问题、构建一次函数模型解决实际问题,目前这两部分都是学生的难点,综合复习时与其他知识联系也较多,所以对于解决综合题学生感觉难度也较大。
鉴于以上分析本节课分三个模块来进行复习,第一模块复习一次函数的定义、图像及性质,第二模块复习确定一次函数的表达式,第三模块复习用一次函数解决实际问题。
三、教学目标、重难点分析新课标指出,三维目标是紧密联系的一个有机整体,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
因此确定本节课的教学目标为:知识目标:1、掌握一次函数的系统知识,提高学生解题能力。
2、利用数形结合思想,解决函数问题,破解中考难点。
过程与方法:通过问题的解决体会用数形结合解题的优越性,培养学生的观察能力。
情感目标:体会数学来源于生活,增强用数学的意识教学重点:一次函数的图像、性质,确定一次函数的表达式以及实际应用。
教学难点:一次函数的实际应用,数形结合的灵活运用。
四、教学媒体:电子白板、几何画板、课件五、教学过程分析一次函数复习学习目标:(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
高三数学一轮复习 1.2 函数、基本初等函数的图象与性质学案
专题一:集合、常用逻辑用语、不等式、函数与导数第二讲函数、基本初等函数的图象与性质【最新考纲透析】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
(3)了解简单的分段函数,并能简单应用。
(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
(5)会运用函数图象理解和研究函数的性质。
2.指数函数(1)了解指数函数模型的实际背景。
(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
(4)知道指数函数是一类重要的函数模型。
3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数xy a=与对数函数log ay x=互为反函数(0,1a a>≠且)。
4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y xx=====的图象了解它们的变化情况。
【核心要点突破】要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。
2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。
考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。
2.熟记幂和对数的运算性质并能灵活运用。
例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln(x-1)(x>1)的反函数是(A)y=1xe+-1(x>0) (B) )y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D)y=1x e-+1 (x ∈R)【命题立意】本题考查了反函数的概念及其求法。
数学一轮复习第二章函数2.7函数的图像学案理
2.7函数的图像必备知识预案自诊知识梳理1.利用描点法作函数图像的流程2。
函数图像间的变换(1)平移变换对于平移,往往容易出错,在实际判断中可熟记口诀:左加右减,上加下减。
(2)对称变换(3)伸缩变换y=f(x)y=f(ax),y=f(x)y=Af(x)。
1.函数图像自身的轴对称(1)f(—x)=f(x)⇔函数y=f(x)的图像关于y轴对称;(2)函数y=f(x)的图像关于x=a对称⇔f(a+x)=f(a—x)⇔f(x)=f(2a—x)⇔f(—x)=f(2a+x);(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=a+a2对称.2.函数图像自身的中心对称(1)f(—x)=—f(x)⇔函数y=f(x)的图像关于原点对称;(2)函数y=f(x)的图像关于(a,0)对称⇔f(a+x)=—f(a-x)⇔f(x)=-f(2a—x)⇔f(-x)=-f(2a+x);(3)函数y=f(x)的图像关于点(a,b)成中心对称⇔f(a+x)=2b—f(a-x)⇔f(x)=2b-f(2a—x);(4)若函数y=f(x)的定义域为R,且满足条件f(a+x)+f(b—x)=c(a,b,c为常数),则函数y=f(x)的图像关于点(a+a2,a2)对称。
3。
两个函数图像之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图像关于直线x=a-a2对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a—x)的图像关于直线x=a对称;(3)函数y=f(x)与y=2b—f(-x)的图像关于点(0,b)对称;(4)函数y=f(x)与y=2b-f(2a-x)的图像关于点(a,b)对称。
考点自诊1。
判断下列结论是否正确,正确的画“√",错误的画“×”.(1)将函数y=f(x)的图像先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图像.()(2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图像相同.()(3)函数y=f(x)与y=-f(—x)的图像关于原点对称。
一次函数复习课教案
中考第一轮复习课一次函数复习课 教案一、教学目标:1、一次函数的代数与几何意义。
一次函数的定义、图象和性质。
2、一次函数解析式的确定。
3、体会一次方程、一次不等式与一次函数的内在联系。
4、在具体问题中培养学生分析解决问题的能力。
二、重难点重点:一次函数的图象与性质;一次函数解析式的确定。
难点:一次函数与方程、不等式的联系;一次函数在实际问题中的应用。
三、教学方法:以题带概念进行重点知识复习,渗透待定系数法、数形结合、分类讨论等数学思想方法。
四、教学过程点明主题,分类复习。
本节课我们对一次函数的基础知识进行复习。
(一)一次函数的定义例1、已知y 是x 的一次函数,且满足,请求出k 的值。
312+=+-k k kxy 分析解决问题:由一次函数的定义可得,解得k =1。
0112≠=+-k k k 且通过例1回顾总结一次函数的定义:一般的,如果,)是常数,、(0≠+=k b k b kx y 那么y 叫做x 的一次函数,特别的,当b =0时,y 叫做x 的正比例函数。
(二)一次函数的图象和性质例2、请在给定的平面直角坐标系中作出一次函数与的图象,331-=x y 332+-=x y 并回答问题(1)一次函数的图象是一条______________。
(2)由图象可知,随x 的增大而___________,直线经过_________象限;1y 331-=x y 随x 的增大而______________,直线经过__________象限。
2y 332+-=x y (3)直线与y 轴的交点坐标为(__________),直线与y 轴交331-=x y 332+-=x y点坐标为(_________)。
(4)直线与x 轴的交点坐标为(__________),直线与x 轴交331-=x y 332+-=x y 点坐标为(_________)。
(5)直线与直线的交点坐标为(__________),根据图象回答,331-=x y 332+-=x y 当x_____________时,。
数学一轮复习第二章函数2.9函数模型及其应用学案理
2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。
2。
指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×"。
(1)幂函数增长比一次函数增长更快。
() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。
()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。
()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。
()2。
(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
数学一轮复习第二章函数导数及其应用第3讲函数的奇偶性与周期性学案含解析
第3讲函数的奇偶性与周期性[考纲解读] 1.了解函数奇偶性的含义.2.会运用基本初等函数的图象分析函数的奇偶性.(重点)3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.(重点)[考向预测]从近三年高考情况来看,函数的奇偶性与周期性是高考的一个热点.预测2021年高考会侧重以下三点:①函数奇偶性的判断及应用;②函数周期性的判断及应用;③综合利用函数奇偶性、周期性和单调性求参数的值或解不等式.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有错误!f(-x)=f(x),那么函数f(x)就叫做偶函数关于错误!y轴对称奇函一般地,如果对于函数f关于错误!原点数(x)的定义域内任意一个对称x,都有错误!f(-x)=-f(x),那么函数f(x)就叫做奇函数2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有错误!f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个错误!最小的正数,那么这个错误!最小正数就叫做f(x)的最小正周期.1.概念辨析(1)“a+b=0”是“函数f(x)在区间[a,b](a≠b)上具有奇偶性”的必要条件.()(2)若函数f(x)是奇函数,则必有f(0)=0。
()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.()(5)已知函数y=f(x)是定义在R上的偶函数,若在(-∞,0)上是减函数,则在(0,+∞)上是增函数.()(6)若T为y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期.()答案(1)√(2)×(3)√(4)√(5)√(6)×2.小题热身(1)下列函数中为奇函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案A解析A是奇函数,B是偶函数,C,D是非奇非偶函数.(2)若f(x)是R上周期为2的函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________。
高考数学一轮复习 专题10 函数的图象教学案 文-人教版高三全册数学教学案
专题10 函数的图象1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ); ②y =f (x )――→关于y 轴对称y =f (-x ); ③y =f (x )――→关于原点对称y =-f (-x );④y =a x(a >0且a ≠1)――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换12①y =f (x ) ――→a >1,横坐标缩短为原来的f(1, a )倍,纵坐标不变0<a <1,横坐标伸长为原来的f(1, a )倍,纵坐标不变 y =f (ax ).②y =f (x )――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).高频考点一 作函数的图象 例1、作出下列函数的图象:(1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =2x -1x -1; (4)y =x 2-2|x |-1.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④. 【方法规律】画函数图象的一般方法(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【变式探究】分别画出下列函数的图象:(1)y=|lg x|;(2)y=sin |x|.高频考点二识图与辨图例2、(1)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为( )(2)(2015·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B. 【答案】 (1)D (2)B【方法规律】(1)抓住函数的性质,定性分析①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复.④从函数的奇偶性,判断图象的对称性.(2)抓住函数的特征,定量计算从函数的特征点,利用特征点、特殊值的计算分析解决问题. 【训练2】(1)函数y =log 2(|x |+1)的图象大致是( )(2)已知a 是常数,函数f (x )=13x 3+12(1-a )x 2-ax +2的导函数y =f ′(x )的图象如图所示,则函数g (x )=|a x-2|的图象可能是( )方得到的,故选D. 【答案】 (1)B (2)D 高频考点三 函数图象的应用例3、(1)若方程x2-|x|+a =1有四个不同的实数解,则a 的取值X 围是.(2)已知函数f(x)=⎩⎪⎨⎪⎧sinπx,0≤x≤1,log2015x ,x>1.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则a +b +c 的取值X 围是( ) A .(1,2015) B .(1,2016) C .[2,2 016]D .(2,2016)【答案】 (1)(1,54) (2)D【解析】 (1)方程解的个数可转化为函数y =x2-|x|的图象与直线y =1-a 交点的个数,如图:易知-14<1-a<0,∴1<a<54.(2)作出函数的图象,直线y =m 交函数图象如图,不妨设a<b<c ,由正弦曲线的对称性,可得A(a ,m)与B(b ,m)关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log2015x =1,解得x =2015.若满足f(a)=f(b)=f(c),且a ,b ,c 互不相等,由a<b<c 可得1<c<2015,因此可得2<a +b +c<2016,即a +b +c∈(2,2016).故选D.【感悟提升】(1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【变式探究】 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【解析】【答案】 51.【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D2.【2016年高考理数】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值X 围是________. 【答案】2,(,1)-∞-.【解析】如图,作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由2'()33g x x =-,知1x =是函数()g x 的极小值点, ①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,由图象可知()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值(1)2f -=;只有当1a <-时,332a a a -<-,()f x 无最大值,所以所求的取值X 围是(,1)-∞-.3.【2016高考某某理数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值X 围是________________. 【答案】()3,+∞【解析】画出函数图象如下图所示:【2015高考某某,理9】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C【2015高考新课标2,理10】如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )(D)(C)(B)(A)xy424ππ424yxxy424ππ424y【答案】B【解析】由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x+=;当点P 在CD 边上运动时,即3,442x x πππ≤≤≠时,PA PB +=,当2x π=时,PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,tan PA PB x +=,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .(2014·某某卷)若函数y =log a x (a >0,且a ≠1)的图像如图所示,则下列函数图像正确的是()D P COAxA BC D【答案】B(2014·某某卷)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R,f (x -1)≤f (x ),则实数a 的取值X 围为( ) A.⎣⎢⎡⎦⎥⎤-16,16 B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-33,33 【答案】B【解析】 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ; 当a 2<x <2a 2时,因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B.(2014·某某卷)已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值X 围是( )A. ⎝ ⎛⎭⎪⎫0,12B. ⎝ ⎛⎭⎪⎫12,1 C. (1,2) D. (2,+∞)【答案】B 【解析】 画出函数f (x )的图像,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.(2014·某某卷)在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D图12【答案】D(2013·某某卷)如图1-3所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧FG的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图像大致是( )图1-3图1-4【答案】D 【解析】设l,l2距离为t,cos x=2t2-1,得t=cos x+12.△ABC的边长为23,BE23=1-t1,得BE=23(1-t),则y=2BE+BC=2×23(1-t)+23=23-433cos x+12,当x∈(0,π)时,非线性单调递增,排除A,B,求证x=π2的情况可知选D.(2013·新课标全国卷Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ) A.x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】C1.为了得到函数y =2x -2的图象,可以把函数y =2x 图象上所有的点( ) A .向右平行移动2个单位长度 B .向右平行移动1个单位长度 C .向左平行移动2个单位长度 D .向左平行移动1个单位长度【解析】 因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度即可得到y =2(x -1)=2x -2的图象. 【答案】 B2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )【解析】 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A.因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.【答案】 C3.函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )【答案】 D4.函数y=(x3-x)2|x|的图象大致是( )【解析】由于函数y=(x3-x)2|x|为奇函数,故它的图象关于原点对称.当0<x<1时,y<0;当x>1时,y>0.排除选项A,C,D,选B.【答案】 B5.使log2(-x)<x+1成立的x的取值X围是( )A.(-1,0) B.[-1,0) C.(-2,0) D.[-2,0)【解析】在同一坐标系内作出y=log2(-x),y=x+1的图象,知满足条件的x∈(-1,0),故选A.【答案】 A6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0【答案】 D7.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0【解析】 函数定义域为{x |x ≠-c },结合图象知-c >0, ∴c <0.令x =0,得f (0)=b c2,又由图象知f (0)>0,∴b >0. 令f (x )=0,得x =-b a ,结合图象知-b a>0,∴a <0. 【答案】 C8.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k的取值X 围为________.【解析】 对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.【答案】 ⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞9.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.【解析】 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 【答案】 (2,8]10.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.【答案】 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 11.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值X 围是________.【解析】 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值X 围是[-1,+∞).【答案】 [-1,+∞)12.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. 解 (1)函数f (x )的图象如图所示.13.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. 解 (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}. 14.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.令q(x)=-x2+6x-1,x∈(0,2],q(x)=-x2+6x-1=-(x-3)2+8,∴当x∈(0,2]时,q(x)是增函数,q(x)max=q(2)=7. 故实数a的取值X围是[7,+∞).。
数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析
第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。
函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。
(3)函数的表示法:__解析法、图象法、列表法__。
(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1映射与函数的概念【复习目标】了解映射的概念,理解函数的概念。
【基础知识复习】 1、映射(1)映射的定义:设 A,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的 , 在集合B 中都有 和它对应,那么这样的对应(包括集合A,B,以及集合A 到集合B 的对应关系f )叫做 ,记作 (2)象与原象:给定一个集合A 到集合B 的映射,且a ∈ ,且b ∈ ,如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的 , 元素a 叫做元素b 的 , 2、函数(1)函数的定义:设,A B 是非空的数集,如果按某个确定的对应法则f ,使对于集合A 中的 ,在集合B 中 ,则称:f A B →为从集合A 到集合B 的一个函数. 叫做函数的定义域, 叫做函数的值域. (2)函数的三要素: ; 和 (3)函数的表示方法: ; 和 【基础训练题】1、设B A f →:是集合A 到B 的映射,下列说法正确的是 ( ) A 、A 中每一个元素在B 中必有象 B 、B 中每一个元素在A 中必有原象 C 、B 中每一个元素在A 中的原象是唯一的 D 、B 是A 中所在元素的象的集合2、下列各对函数中,相同的是 ( )A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,11lg)(--+=-+=x x x g x x x f C 、 vvv g u u u f -+=-+=11)(,11)( D 、f (x )=x ,2)(x x f =3、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个4. 函数221()1x f x x -=+, 则(2)()2f f =( )A .1B .-1C .35 D .35- 5. 已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;当[()]2g f x =时,x = . 【巩固与提升训练】1.从集合A 到B 的映射中,下列说法正确的是 (A )B 中某一元素b 的原象可能不只一个 (B )A 中某一元素a 的象可能不只一个 (C )A 中两个不同元素的象必不相同 (D )B 中两个不同元素的原象可能相同2.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫ ⎪⎝⎭的值为( )A .1516B .2716-C .89D .183、下列四组中的),(),(x g x f 表示同一个函数的是 ( )(A )0)(,1)(x x g x f == (B) 1)(,1)(2-=-=xx x g x x f (C) 42)()(,)(x x g x x f == (D) 393)(,)(x x g x x f ==4.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( )A .2B .3C .6D .95、给出函数⎪⎩⎪⎨⎧<+≥=)4(),1()4(,)21()(x x f x x f x,则=)3(log 2f ( )(A )823- (B) 111 (C) 191 (D) 2416.已知函数2()|2|f x x x =+-,则(1)f =__________7.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =_________; 函数()f x 在1x =处的导数(1)f '=_________. 8、点),(b a 在映射f 的作用下的象是),(b a b a +-,则f 的作用下点)1,3(的原象为点 __9. 设函数()f x 的定义域为N ,且满足()()()f x y f x f y xy +=++,(1)1f =,则(5)f = 10.若函数2743kx y kx kx +=++的定义域为R ,则k 的取值范围是 。
2.2函数的解析式和定义域【复习目标】会求函数的解析式和定义域 【方法与例题分析】 一. 函数解析式的求法1.待定系数法(已知函数类型如:一次、二次函数、反比例函数等) 例1、已知a ,b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++ 则5a b -= .2. 换元法( 注意新元的取值范围)例2.(04年湖北卷.理3)已知221111xxx x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为( ) (A )21x x + (B )212x x +- (C )212x x + (D )-21x x+3、整体代换(配凑法)例3.若221)1(xx x x f +=-,则函数)1(-x f =_____________.4. 构造方程组法(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数) 例4.已知函数)(x f 满足)(,||1)1()(2x f x x f x f 则=-=二. 求函数定义域的常见类型 1.已知函数解析式求定义域例1.(08湖北8).函数1()1f x n x=+ ( ) A.(,4][2,)-∞-+∞ B. (4,0)(0,1)-⋃ C.[4,0)(0,1]- D.[4,0)(0,1]-⋃例2.与复合函数有关的函数定义域(1)(08江西3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)(2)若函数2(2)f x -的定义域是[1,1]-,求函数()f x 的定义域3.在实际问题中的函数定义域例3.用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为x 2,求此框架围成的面积y 与x 的函数关系式,并指出其定义域【巩固训练】1.函数22-=x y log 的定义域是 ( )A.),(∞+3B.),[∞+3C.),(∞+4D.),[∞+4 2.函数)lg()(13132++-=x xx x f 的定义域是( )A. ⎪⎭⎫ ⎝⎛-∞-31,B. ⎪⎭⎫⎝⎛-3131, C. ⎪⎭⎫⎝⎛-131, D. ⎪⎭⎫ ⎝⎛∞+-,313.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=⋂N M ( )A.{}1>x xB.{}1<x xC.{}11<<-x xD.φ4.若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x 6.已 ==)(,log )(826f x x f 那么( )A.34 B.8 C.18 D.21 6.设的定义域为则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+=x f x f x x x f 22,22lg)( ( )A.),(),(4004 -B.),(),(4114 --C.),(),(2114 --D.),(),(4224 --7.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 2 8、图中的图象所表示的函数的解析式为( )(A)|1|23-=x y (0≤x ≤2) (B) |1|2323--=x y (0≤x ≤2) (C) |1|23--=x y (0≤x ≤2) (D) |1|1--=x y (0≤x ≤2)二、选择题8、若函数()y f x =的定义域是[0,2],则函数(21)(21)y f x f x =-++的定义域是 9.若1)f x =+则()f x =BC10..若函数()1222-=--aax xx f 的定义域为R ,则实数a 的取值范围 。
2.3 反 函 数【复习目标】了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
【基础知识复习】 1、反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出来,得到x =ϕ(y). 如果对于y 在C 中的 ,通过x=ϕ(y),x 在A 中都有 和它对应,那么,x =ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x =ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的 ,记作 ,习惯上改写成 。
2、 函数()y f x =存在反函数的充要条件是__________________________.3、 求反函数的步骤: ①. ② . ③.4、 互为反函数的函数图像间的关系:【基础训练题】1、(08湖南4)函数)0()(2≤=x x x f 的反函数是 ( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x f B)0()(.1≤--=-x x x f C )0()(.21≤-=-x x x f D2、设)43(3412)(-≠∈++=x R x x x x f 且,则1(2)f -= ( ) (A ) 65- (B ) 115 (C ) 52 (D)52-3、若函数f (x )的反函数为12()log f x x -=,则()f x = .4. 函数21()x y e x +=-<<+∞∞的反函数是 .5、已知函数b a x f x +=)(的图象过点(1,7),又其反函数的图象经过点(4,0),则)(x f 的表达式为_____________. 【例题分析】例1、 求下列函数的反函数:(1)R x x f xx∈+=,212)( ; (2) 2log (1)1x y x x =>- ); (3))21( 22≤≤-=x x x y ; (4)⎪⎩⎪⎨⎧<<-≤≤-=)01()10(122x xx x y例2.(1)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ) (A )3 (B )4 (C )5 (D )6 (2)已知函数)(x f 的图象过点(0,1),则函数)4(-x f 的反函数的图象必过定点( ) A 、(1,-4) B 、(1,4)C 、(1,0)D 、(4,1)(3)已知函数⎪⎭⎫⎝⎛≠-≠++=31,13a a xa x x y 的反函数就是它本身,那么=a【巩固与提升训练】1..(08北京5)函数2()(1)1(1)f x x x =-+<的反函数为( ) A .1()11)f x x -=>B .1()11)f x x -=>C .1()11)f x x -=≥D .1()11)f x x -=≥2.(08全国)若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex - B .2e xC .21ex + D .2+2ex3. (08天津3 ) 函数14)y x =≤≤的反函数是( ) A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤4.函数y=1+a x (0<a <1)的反函数的图象大致是 ( )A B C D 5. (08陕西7) 已知函数3()2x f x +=,1()fx -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( )A .10B .4C .1D .2-6.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( )A .,020x x y x ⎧≥⎪=<B .2,00x x y x ≥⎧⎪=<C .,020x x y x ⎧≥⎪=⎨⎪<⎩D .2,00x x y x ≥⎧⎪=⎨<⎪⎩7.(08重庆6)函数2110(01)xy x -=<≤的反函数是 ( )(A)1)10y x =>(B)y =x >110) (C) y =110<x ≤)1 (D) y =110<x ≤)18、函数223y x ax =--在区间[1, 2]上存在反函数的充要条件是 ( )A 、(],1a ∈-∞B 、[)2,a ∈+∞C 、[1,2]a ∈D 、(],1a ∈-∞[)2,+∞2.4函数的单调性【复习目标】了解函数单调性的概念,掌握判断一些简单函数的单调性的方法。