实际问题一元二次方程的应用(二)
实际问题与一元二次方程(循环问题)
什么是单循环?什么又是双循环?
单循环:每两个队间只进行一场比赛的赛制
例如:甲乙丙三队参加比赛
乙
甲
乙
丙
丙
双循环:每两个队间进行两场比赛的赛制
例如:甲乙丙三队参加比赛 甲
乙 甲
丙
丙 乙
甲 乙
丙
学校要组织一次篮球联赛, 赛制为单循 环形式, 计划安排15 场比赛, 问应邀 请多少个球队参加比赛?
若举办一次足球联赛,赛制为双循环形式, 一共要比赛90场,共有多少个队参加比赛?
变式练习
1、在一个QQ 群里有n 个网友在线,每个 网友都向其他网友发出一条信息,共有20
条信息,则n 为( C )
A 、10 B、6 C、5 D、4
这件事为双循环还是单循环?
双循环
变式练习
2、一个小组有若干人,新年互送贺卡若全 组共送了72 张,则这个小组共有多少人? 这件事为双循环还是单循环?
实际问题与一元二次方程 (二)循环问题
一、列一元二次方程解应用 题的一般步骤
(1)审:找出题中关键信息 (2)设: 设未知数,有直接和间接两种设法,因题而异; (3)找: 找出等量关系; (4)列: 列出一元二次方程; (5)解: 求出所列方程的解; (6)验: 检验方程的解是否正确,是否符合题意; (7)答: 作答。
第一轮传播:
初始传播源+一轮被传播者=新传播源 第二轮传播:
传播总数=初始传播源+一轮被传播数 +二轮被传播数
传播问题计算公式
1. 有一人患了流感,经过两轮传染后 共有121 人患了流感,每轮传染中平均 一个人传染了几个人?
1 x
2 121
学校要组织一次篮球联赛, 赛制为单循 环形式, 计划安排15 场比赛, 问应邀 请多少个球队参加比赛?
一元二次方程的实际应用
一元二次方程的实际应用一元二次方程是高中数学的重要内容之一,通过求解一元二次方程,我们可以得到方程的解,从而解决一些实际生活中的问题。
在本文中,我们将探讨一些实际应用中使用一元二次方程的案例。
一、物体自由下落物体自由下落是我们日常生活中经常遇到的情境之一。
在没有空气阻力的情况下,物体自由下落的运动可以用一元二次方程来描述。
设一个物体从某个高度h0自由下落,下落的时间为t秒,则根据物体自由下落的公式,我们可以得到:h = h0 - 0.5gt^2其中,h为物体下落的高度,g为重力加速度。
通过将h设为0,即可求解出物体自由下落的时间。
此时,我们可以将方程转化为一元二次方程进行求解:-0.5gt^2 + h0 = 0通过求解出这个一元二次方程,我们就可以知道物体自由下落所需的时间。
二、抛物线的轨迹抛物线是一种常见的曲线形态,其运动轨迹可以用一元二次方程来描述。
在很多实际应用中,抛物线的轨迹被广泛应用。
例如,当我们抛出一个物体,以一定的初速度和角度进行抛射时,物体的轨迹就是一个抛物线。
抛物线的方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,x和y分别代表抛物线上的点的坐标。
通过求解一元二次方程,我们可以确定抛物线的方程中的参数a、b、c的值,从而获得抛物线的具体形状和特征。
这对于工程设计、物体抛射等实际问题具有重要的意义。
三、最大值和最小值问题在许多实际应用中,我们常常需要确定一个函数的最大值或最小值。
而求解函数的最大值或最小值问题,可以转化为求解一元二次方程的实根问题。
考虑一个抛物线函数 y = ax^2 + bx + c,其中a不等于0。
当a大于0时,抛物线开口向上,此时函数的最小值为抛物线的顶点坐标。
当a小于0时,抛物线开口向下,此时函数的最大值为抛物线的顶点坐标。
通过将函数求导,我们可以求解出函数的极值点,进而确定函数的最大值或最小值。
而求解函数的极值点的过程,实际上就是求解一元二次方程的实根。
一元二次方程与实际问题
一元二次方程与实际问题一元二次方程是形如ax²+bx+c=0的方程,其中a≠0,x是未知数,a、b、c是已知的实数常数。
它在数学中被广泛应用,尤其在解决实际问题时,具有重要的意义。
一元二次方程与实际问题的关联在于它可以描述许多物理、经济、工程和自然科学现象。
下面将介绍一些常见的实际问题,并用一元二次方程解决它们。
1. 自由落体问题:考虑一个物体从高度h自由落下,并以初速度为0的条件下落。
重力以加速度g=9.8m/s²的恒定速度使物体加速下落。
通过运用运动学公式,可以将物体的下落时间t与下落距离h之间的关系表示为:h=gt²/2。
整理得到ht²-2h=0,这是一个一元二次方程。
通过求解该方程,可以得到物体下落的时间和下落的距离。
2. 抛物线轨迹问题:许多物理和运动问题都涉及抛物线轨迹。
例如,一个抛射物体的运动轨迹可以用一元二次方程来描述。
给定抛射角度θ和初速度v,可以得到抛射物体的运动轨迹方程y=x*tanθ - (g*x²) /(2v²*cos²θ)。
这是一个一元二次方程,其中x表示水平方向的距离,y表示竖直方向的高度。
通过解这个方程,可以计算出物体在不同时间和位置的高度。
3. 经济成本问题:一元二次方程也可以用于经济领域的成本分析。
例如,考虑一个企业的总成本函数C(x)=ax²+bx+c,其中x表示生产的数量,a、b、c是已知的实数常数。
通过求解C'(x)=0,即求解一阶导数为零的方程,可以找到企业的最低成本点。
这个点对应的x值就是企业的最优生产数量。
以上只是一些例子,实际应用一元二次方程的问题非常广泛。
通过将实际问题转化为数学模型,应用一元二次方程的解法,可以更好地理解和解决各种现实问题。
一元二次方程的应用(2)
教学过程复习预习1.列一元二次方程解应用题的一般步骤(1)列一元二次方程解决实际问题的关键是由已知条件确定等量关系.(2)列一元二次方程解决应用题的一般步骤:审(审题目,分清已知量、未知量之间的数量关系);设(直接方法或间接方法设未知数,有时会用未知数表示相关的量);列(根据题目中分析的等量关系,列出方程);解(解方程,注意分式方程需检验);验(检验所求方程的解能否保证满足实际问题中的存在意义)答(写出所求问题答案).2.几何面积问题三角形面积=底乘高的一半;正方形面积=边长的平方;矩形的面积=长乘宽;不规则图形面积要转化为规则的图形面积来求。
二知识讲解考点:列方程解实际问题的三个重要环节:一是全方面审题;二是把分析问题中的数量关系,并列出等量关系式;三是正确求解方程并检验方程的根是否符合实际意义。
例题精析【例题1】【题干】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN 最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.【答案】解:设AB=xm,则BC=(50﹣2x)m.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),答:可以围成AB的长为15米,BC为20米的矩形.【解析】考查一元二次方程的几何面积应用问题,已知矩形面积求满足条件的长和宽的优化设计;围墙MN最长可利用25m是解决本题的易错点;矩形周长的长、宽关系是解决本题的关键.【例题2】【题干】某住宅小区在住宅建设时留下一块1798平方米的矩形空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带(1)请你计算出游泳池的长和宽。
(2)已知贴1平方米瓷砖需费用50元,若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,共需要费用多少元?【答案】解:(1)设游泳池的宽为x米,则长为2x米,(2x+2+5+1)(x+2+2+1+1)=1798整理,得:解得:(不合舍去)由得∴游泳池的长为50米,宽为25米。
实际问题与一元二次方程----面积、体积问题
探究3
要设计一本书的封面,封面长27㎝,宽21㎝,正中
央是一个与整个封面长宽比例相同的矩形,如果
ห้องสมุดไป่ตู้
27
要使四周的边衬所占面积是封面面积的四分之
一,上、下边衬等宽,左、右边衬等宽,应如何设
计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题知正中
解法一:设央正的中矩央形的两矩边形之两比边也分为别9:为7 9xcm,7xcm
即
2
x2-10x+30=0
这里a=1,b=-10,c=30,
b2 4ac (10)2 4130 20 0
∴此题无解.
∴用20cm长的铁丝不能折成面积为30cm2的矩形.
例2:某校为了美化校园,准备在一块长32米, 宽20米的长方形场地上修筑若干条道路,余 下部分作草坪,并请全校同学参与设计,现在 有两位学生各设计了一种方案(如图),根据两 种设计方案各列出方程,求图中道路的宽分 别是多少?使图(1),(2)的草坪面积为540米2.
2)与直角三角形有关的问题:直角三角形两直角 边的平方和等于斜边的平方是
这类问题的等量关系,即用勾股定理列方程。
巩固练习: 如图,一块长方形铁板,长是宽的2倍,
如果在4个角上截去边长为5cm的小正方形, 然后把四边折起来,做成一个没有盖的盒子, 盒子的容积是3000cm,求铁板的长和宽。
问题 2、如图,在长为 10cm,宽为 8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形 (图中阴影部分)面积是原矩形面积的 80%,求所截去小正 方形的边长?
实际问题与一元二次方程 (二)
实际问题与一元二次方程(二)
面积、体积问题
复习:列方程解应用题有哪些步骤
§17.4一元二次方程的应用 (2)
一、分析:审题找等量关系
二、步骤①设元,②列方程,
③解方程并检验,④写答句.
预设:
生答1:已知量是120米长的铁栅栏米围长方形的临时仓库,铁栅栏只围三边.未知量是求长方形的两条邻边的长.
生答2:长×宽=面积
预设:
与第一问类似地解决.
(2)根据题意,得方程
=1800.
整理得 .
解得: .
经检验, 都符合实际意义.
一块长方方形绿地的面积为1200平方米,并且长比宽多10米,那么长和宽各为多少米?
问1:我们通过什么步骤列出方程的?
解:设这块长方形绿地的宽为 米,则长为( +10)米.
根据题意,得方程
.
整理,得 +10 -1200=0.
即( -30)( +40)=0.
解得 1=30, 2=-40.
问2:可以直接写答句吗?
当 =30时, =60.
答:长方形的两条邻边的长分别是30米和60米.
预设:
根据题意列出的方程无实数解.
预设:
1800平方米.
同学板演,其他同学独立完成.
师生共同对板演问题进行评价.
预设:
本月产值=上月产值+上月产值×月增长率.
万元
万元
预设:
降低1次后的值是 (1- ),
降低2次后的值是 (1- )2,……
学生由一元一次方程的应用题知识较易理解应用题还要检验实际意义.
学生如果回答不够完整互相补充完成.
感受列方程解应用题的步骤.
强调方程的根是否符合实际意义.
学生口答完成.
若过程不完整学生互相纠正.
也可分小组进行讨论.
这个问题在课堂上可以点到为止,留给学生一个悬念.
一元二次方程的应用2
一元二次方程复习课(二)复习目标:1.能熟练列一元二次方程解增长率问题、面积问题和利润问题;2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
3.体会数学来源于实践,又反过来作用于实践,增强用数学的意识。
重点难点:重点:根据实际问题,寻找相等关系,从而列出方程,解决实际问题;难点:等量关系的寻找;复习过程:一、课前预习:解一元二次方程应用题的一般步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式相等关系中的各个量,即方程;(4)解:求出所列方程的解;(5)检验:检验方程的解是否正确,是否符合题意;(6)答:写出答案。
二、课上探究:环节一:自主整理1.某工厂1月份的产值是5万元,3月份的产值达到7.2万元,这两个月的产值的平均增长率是多少?2.学校准备在图书馆后面的场地边建一个面积为50平方米的自行车棚。
一边利用图书馆的后墙(墙长18米),并利用已有总长为25米的铁围栏。
问自行车棚的长和宽各为多少?环节二:交流提升:某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件。
后来经过市场调查,发现这种商品单价每降低1元,其销售量可增加10件。
要获得2160元的利润每件应降价多少元?分析:本题中的等量关系是:一天获得的总利润=___________________________。
若设每件降价x元,那么每件的利润是____________,每天可售出__________件,每天的利润为______________。
可列方程并求解。
环节三:经验交流:针对上面题目出现的问题,小组内交流一下,解相关类型的题目时应注意些什么?还存在什么疑惑?三、达标测验:1.某工厂1月份生产零件2万个,第一季度共生产零件7.98万个,若每月的增长率都是x,依题意可列方程_________________________________。
《用一元二次方程解决问题(2)》参考课件
学习目标:
会根据具体问题中的数量关系列出一元二次 方程解决有关实际问题中的利润问题,能检验所 得的结果是否符合实际意义。
一、预习尝试:
某商场从厂家以每件80元的价格购进一批衬衫, 若每件的售价为120元,则可卖出200件, 商若场每全件卖部衬一售衫件出售衬这价衫批 降的衬1利元衫润,,是则则多每总少件利?衬润衫是的多利少润?为多少? 若每件衬衫售价降2元,则每件衬衫的利润为多少? 若每件衬衫售价降3元,则每件衬衫的利润为多少?
(2)根据:“如果人数多于30人,那么每增加1人,人均旅游 费用降低10元,但人均旅游费用不得低于500元”
a.设的x人,比30人多了多少人?(x-30)人 b.降了多少元? 10(x-30)元 c.实际人均费用是多少? [800-10(x-30)]元 5.本题实际意义是:人均旅游费用不得低于500元.
3.这个问题的等量关系是什么?: 首先知道总费用是28000元 即有等量关系“人均费用×人数=28000元”
4.人数可设未知数x人,人均费用呢? (1)根据:“如果人数不超过30人,人均旅游费用为800元”
则总费用不超过30×800=24000<28000;而现用 28000元,所以人数应超过30人
课堂练习:
1、某种服装,每件利润为30元时,平均每 天可销售20件,若每件降价1元,则每天可 多售6件。如果每天要盈利1600元,每件 应降价多少元?
2、某商店经销一批小家电,每个小家电成本 40元,经市场预测,定价为50元时,可销售200 个,定价每增加1元,销售量将减少10个,如果 商店进货后全部销售完,赚了2000元,问该小 家电定价是多少?
解: 设这次旅游可以安排x人参加,根据题意得: [800-10(x-30)]·x = 28000
一元二次方程的实际应用题
一元二次方程的实际应用题(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
利用一元二次方程解决实际问题
(利用一元二次方程解决实际问题) 一元二次方程是一个形式如ax^2+bx+c=0的方程,其中a、b、c为实数且a≠0。
它的解可以通过使用求根公式x=(-b±√(b^2-4ac))/(2a)来求得。
利用一元二次方程,我们可以解决许多实际问题,如求解物体的运动轨迹、解决几何问题等等。
下面将通过几个实际问题的例子来说明如何利用一元二次方程解决实际问题。
例1:一个石头从100米高的地方自由落下,求石头落地时的速度和落地时间。
解:根据物体自由落体运动的规律,石头落地时的速度可以通过一元二次方程求解。
设石头落地时的速度为v,落地时间为t,则有以下等式:100 = 0.5 * g * t^2 (物体自由落体的位移公式)v = g * t (物体自由落体的速度公式)其中,g为重力加速度,取9.8 m/s^2。
将第二个等式代入第一个等式中,得到:100 = 0.5 * (v/t) * t^2200 = v * t将上述方程组代入一元二次方程的标准形式ax^2+bx+c=0中,得到:t^2 - (200/v) * t + 0 = 0根据一元二次方程的求根公式,可以解得:t = (200/v)/2 = 100/v将t代入第二个等式中,得到:v = g * (100/v)v^2 = 100 * gv = √(100 * g) ≈ 31.3 m/s所以,石头落地时的速度约为31.3 m/s,落地时间为t = 100/v ≈ 3.2 s。
例2:一个花瓶从楼顶上掉下来,从花瓶掉到地面的时间为5秒,求楼顶的高度。
解:根据物体自由落体运动的规律,花瓶掉到地面的时间可以通过一元二次方程求解。
设楼顶的高度为h,则有以下等式:h = 0.5 * g * t^2其中,g为重力加速度,取9.8 m/s^2,t为花瓶掉到地面的时间,取5秒。
将上述方程代入一元二次方程的标准形式ax^2+bx+c=0中,得到:0.5 * g * t^2 - h = 0根据一元二次方程的求根公式,可以解得:h = 0.5 * g * t^2 = 0.5 * 9.8 * 5^2 = 122.5 m所以,楼顶的高度为122.5米。
用一元二次方程解决问题(2)教案
一元二次方程的应用(2)【知识梳理】1、列一元二次方程解应用题的一般步骤:和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;(4)“解”就是求出所列方程的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.2、列方程解应用题的关键:(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.3、列方程解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的题型:销售、利润问题【例题精讲】例1.曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.4元,请问哪种方案更优惠?【考点】一元二次方程的应用.【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)分别计算两种方案的优惠价格,比较后发现方案②更优惠.【解答】解:(1)设平均每次下调的百分率是x,依题意得,4000(1﹣x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)所以,平均每次下调的百分率是10%.(2)方案①优惠=100×3240×(1﹣99%)=3240元方案②优惠=100×1.4×12×2=3360元故选择方案②更优惠.【教法】讲授法【学法】学练结合法例2:“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降低促销的方式,试建立每吨的销售利润y(元)与每吨降低x(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.【考点】一元二次方程的应用;根据实际问题列一次函数关系式.【分析】(1)未采取降低促销方式前每吨水泥的利润为290﹣250=40元,代销点采取降低促销的方式后每吨水泥的利润为(40﹣x)元;(2)先求出降价后每天售出水泥的吨数,再乘以每天的利润正好等于720元,解方程即可求出降低的价钱,从而求得每吨水泥的实际售价.【教法】讲授法【学法】学练结合法例3.某服装店专营一批进价为每件200元的品牌衬衫,每件售价为300元,每天可售出40件,若每件降价10元,则每天多售出10件,请根据以上信息解答下列问题:(1)为了使销售该品牌衬衫每天获利4500元,并且让利于顾客,每件售价应为多少元;(2)该服装店将该品牌的衬衫销售完,在补货时厂家只剩100件库存,经协商每件降价a 元,全部拿回.按(1)中的价格售出80件后,剩余的按八折销售,售完这100件衬衫获利50%,求a的值.【考点】一元二次方程的应用.【分析】(1)表示出每件商品的利润和销量进而得出等式求出答案;(2)分别表示出100件商品的利润进而得出等式求出答案.(2)根据题意可得:250×80+250×80%×(100﹣80)=(200﹣a)×100(1+50%),解得:a=40,答:a的值为40.【教法】讲授演示法【学法】学练结合法【变式练习】1.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【考点】一元二次方程的应用.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【教学】讲授法【学法】自主探究学习2.某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部旅行包的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过550个.(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价﹣成本)【考点】一元二次方程的应用.【分析】(1)可根据关键语“当一次订购量超过100个时,每多订一个,订购的全部旅行包的出厂单价就降低0.02元.”来列函数式.(2)根据(1)中得到的关系式和“利润=实际出厂单价﹣成本”进行求解.【解答】解:(1)y=60﹣(x﹣100)×0.02=62﹣0.02x(100<x≤550);(2)根据题意可列方程为:6000=[60﹣(x﹣100)0.02]x﹣40x,整理可得:x2﹣1100x+300000=0.(x﹣500)(x﹣600)=0x1=500,x2=600(舍去)销售商订购500个时,该厂可获利润6000元.【教法】练习法与讲授法结合【学法】学练结合法。
一元二次方程在实际问题中的应用
一元二次方程在实际问题中的应用一元二次方程是一种常见的数学方程,其形式为ax² + bx + c = 0,其中a、b、c为已知数,x为未知数。
在实际问题中,利用一元二次方程可以解决许多与现实生活相关的数学计算和建模问题。
本文将探讨一元二次方程在实际问题中的应用。
一、物体自由落体问题在物理学中,物体自由落体问题是应用一元二次方程的经典案例之一。
当一个物体自由下落时,根据重力作用,其运动可以用一元二次方程来描述。
假设一个物体从高度h自由落下,并且忽略了空气阻力。
根据运动学公式,可得到物体在t秒时的下落距离s为s = -gt²/2 + vt + h,其中g 为重力加速度,约为9.8 m/s²,v为物体的初始速度。
根据题目中的条件,可以列出一元二次方程来求解。
例如,一个物体从高度20m自由落下,求它落地时所需的时间。
根据以上所述的公式,可得到方程-4.9t² + 20 = 0,将该方程转化为一元二次方程的标准形式,即4.9t² - 20 = 0。
通过求解该方程,可以确定物体落地所需的时间。
二、几何问题一元二次方程也常用于解决几何问题。
例如,在平面几何中,我们常常需要求解关于长度、面积和体积的问题。
假设一个矩形的长度比宽度多6厘米,并且其面积为56平方厘米。
我们可以设矩形的宽度为x厘米,那么矩形的长度就是(x + 6)厘米。
根据矩形的面积公式,面积等于长度乘以宽度,可得到方程x(x + 6) = 56。
将该方程转化为一元二次方程的标准形式,即x² + 6x - 56 = 0。
通过求解该方程,可以确定矩形的宽度和长度。
类似地,一元二次方程也可以用来解决其他几何问题,如圆的面积、三角形的面积等。
三、投射问题投射问题是应用一元二次方程的另一个实际问题。
当物体沿着一个曲线进行投射运动时,我们可以利用一元二次方程来描述其运动轨迹和求解问题。
例如,一个投射物体以初速度v沿着角度θ的轨迹进行抛射,求解其到达地面所需的时间。
人教版九年级上册 第21章《一元二次方程》 实际应用题专项练习(二)
《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x 元/件,则乙商品的出厂单价是x 元/件, 根据题意得:3x ﹣2×x =150, 解得:x =90, ∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:,解得:a 1=0(舍去),a 2=15. 答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210, 整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得 10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去), 答:该快递公司投递总件数的月平均增长率为20%. (2)由(1)得,14.4×1.2=17.28(万件), 29×0.5=14.5, 14.5<17.28, 故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56, 所以还需要至少增加6名业务员. 答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。
一元二次方程的实际应用问题
一元二次方程的实际应用问题
一元二次方程是一种重要的数学工具,它可以用来解决许多实际应用问题。
以下是一些常见的一元二次方程实际应用问题的例子:
1.几何问题:例如,已知一个矩形的周长为 20 厘米,长比宽多
2 厘米,求这个矩形的长和宽。
设矩形的宽为 x 厘米,则长为 x+2 厘米。
根据矩形的周长公式2\times(长+宽),可列出方程:
所以,矩形的宽为 4 厘米,长为 6 厘米。
2.经济问题:例如,某商品的进价为每件 20 元,售价为每件 30 元。
如果每天能卖出 200 件,问每天的利润是多少?
设每天的销售量为 x 件,则每天的利润为(30-20)x 元。
根据每天的销售量为 200 件,可列出方程:
3.物理问题:例如,一个物体从高处自由落体,经过时间 t 落地。
已知物体下落的高度为 h,重力加速度为 g,求物体下落的时间t。
根据自由落体公式 h=gt^2/2,可列出方程:
以上只是一些简单的例子,实际上,一元二次方程可以应用于各种各样的实际问题中,例如物理学、工程学、经济学、生物学等等。
初中数学一元二次方程在实际生活中的应用案例
初中数学一元二次方程在实际生活中的应用案例初中数学一元二次方程在实际生活中的应用案例一元二次方程是初中数学中的重要内容之一,学习和掌握它对于解决实际生活中的问题具有重要意义。
以下将介绍几个一元二次方程在实际应用中的案例。
例一:抛物线的应用 - 抛物线喷泉在公园中,常常可以看到美丽的喷泉景观。
这些喷泉往往呈现出一个高高上升的水柱然后再逐渐下落,形成一个美丽的抛物线形状。
喷泉的高度和时间之间的关系可以由一元二次方程来表示。
设喷泉的高度为h(单位:米),时间为t(单位:秒)。
研究显示,喷泉的高度随时间的变化关系可以用以下一元二次方程表示:h = -5t^2 + 20t在这个方程中,-5t^2代表了喷泉高度随时间的递减,并且t^2项的系数-5表示了递减的速率。
喷泉的初始高度是20米,因为方程的常数项20表示了t=0时的高度。
通过对这个方程进行求解,我们可以得到喷泉的高度在不同时间点的具体数值,以及它在不同时间点的高低变化趋势。
这样的分析有助于公园管理者进行喷泉景观的设计和维护。
例二:运动轨迹的预测 - 投掷运动一元二次方程也可以在物体的投掷运动中应用。
当我们投掷物体时,它的运动轨迹往往呈现出一个抛物线形状。
通过建立一元二次方程,我们可以预测物体的运动轨迹和到达目标所需的时间。
假设有个人以初速度v(单位:米/秒)将一个物体投掷出去,物体的运动轨迹可以由方程h = -5t^2 + vt + h0表示,其中h代表物体的高度,t代表时间,h0代表投掷时的高度。
通过解方程,我们可以计算出物体到达地面时所需的时间以及它的落点坐标等信息。
这对于进行远程投掷比赛、预测投掷物下落位置等都非常有用。
例三:经济学中的应用 - 成本与利润一元二次方程在经济学中也有应用,特别是在成本、利润等方面的分析中。
假设某公司的生产成本与产量之间的关系可以用一元二次方程进行表示。
设生产成本为C(单位:元),产量为x(单位:个),则可以用方程C = 2x^2 - 10x + 100来表示。
一元二次方程的实际应用
一元二次方程的实际应用一元二次方程是指只有一个未知数的二次方程,通常形式为ax^2 + bx + c = 0,其中a、b、c都是已知数且a ≠ 0。
这种方程在数学中具有广泛的应用,能够模拟和解决现实世界中许多实际问题。
本文将介绍一些常见的实际应用场景,并讨论如何利用一元二次方程进行求解。
1. 物体自由落体物体在重力作用下自由下落时,其位置与时间之间存在一元二次关系。
根据运动学公式,物体的下落距离S与下落时间t的关系可表示为S = gt^2 / 2,其中g为重力加速度。
将这个关系式改写为标准的一元二次方程形式,可以得到:gt^2 / 2 - S = 0。
通过解这个方程,我们可以计算出物体的下落时间或下落距离。
2. 抛物线轨迹抛体的运动轨迹往往是抛物线形状,而抛物线方程正是一元二次方程的典型形式。
例如,如果我们知道抛体的初始速度v0和抛射角度θ,那么在水平方向上的速度恒定,可以表示为v0 * cosθ。
在竖直方向上,速度随时间的变化受到重力的影响,可以表示为v0 * sinθ - gt。
通过将水平和竖直方向上的速度组合起来,可以推导出抛物线运动的方程。
3. 面积问题一些几何图形的面积计算也可以归结为一元二次方程的求解。
例如,一个长方形的面积S可以表示为S = x(2a - x),其中x为长方形的宽度,2a为长方形的长度。
通过对方程进行展开,可以得到一个一元二次方程形式,通过求解方程可以获得长方形的最大面积。
4. 电子设备充电时间设备的充电时间通常与电池容量、充电电流和初始电量有关。
假设设备充电的时间为t,电池容量为C,充电电流为I,初始电量为E0。
根据充电定律,充电电量Q与时间的关系可以表示为Q = It。
同时,电池的容量可以表示为C = Q + E0。
将这两个关系组合起来,可以得到一个一元二次方程,通过求解可以计算出设备充电的时间。
在实际应用中,通过一元二次方程解题的过程通常如下:1. 确定问题中涉及的未知量和已知量。
17.4一元二次方程的应用(2)
谈一谈: 通过本课的学习,你学到了什么?
谈谈你的收获!
布置作业:
答:该厂产值的月增长率为 20% 。
小结
类似地 这种增长率的问题在实际 生活普遍存在,有一定的模式
a (1 x) b
n
其中增长取+,降低取-
例4 三个连续偶数,已知最大数与最小数的平方
和比中间一个数的平方大332,求这三个连续偶数.
解:设中间一个偶数为x,则其余两个偶数分 别为(x2)和 (x2), 由题意,得(x2)2+(x2)2 x2 332 整理,得 x2 324 x18 当x18时,x2 16, x2 20; 当x= 18时,x2= 20, x2 16. 答:这三个连续偶数分别为16、18和20,或 20、 18和16.
一块长方形绿地的面积为1200平方米,并 且长比宽多10米,那么长和宽各为多少米?
解:设这块长方形绿地的宽为x米,则长为(x+10)米。 根据题意,得方程 x(x+10)=1200
整理,得 解得 x 2 10 x 1200 0 x1 30, x2 40
负数根不符合实际意义,应舍去。所以 x=30. x+10=40. 答:绿地得长和宽分别是40米和30米.
(1) 由题意得
整理,得
则平行于墙的
解得
50
整理,得
(2)由题意得
解得
x 48, x 12
1 2
50不符合实际意义,舍去
经检验 : x2 12不符合实际意义, 舍去
48米和24米
(3)由题意得
整理,得
这里要特别注意:在列一元二次方
程解应用题时,由于所得的根一 般有两个,所以要检验这两个根 是否符合实际问题的要求.
一元二次方程的应用(2)
典例精讲
例1 如图甲,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四 个小正方形之后,折成如图乙的无盖纸盒.若纸盒的底面积是450cm2 ,则纸盒的高是多少?
单位:cm
40
25
甲
乙
思考回答下列问题: (1)若设纸盒的高为x,那么裁去的四个正方形的边长为多少? (2)底面的长和宽能否用含x的代数式表示? (3)你能找出题中的等量关系吗?你怎样列方程? (4)请每位同学自己检验两根,发现什么?
解方程:(400-30t)2+(300-20t)2=2002
整理方程得:13t2-360×t+2100=0 利用公式法b2-4ac=3602-4×13×2100=20400>0 ∴方程有解,故轮船会进入台风影响区.
解方程:(400-30t)2+(300-20t)2=2002
整理方程得:13t2-360×t+2100=0
2.2一元二次方程(1)
回顾思考
【想一想】列一元二次方程解应用题的基本步骤是什么? (1)审题; (2)设元(未知数); (3)寻找相等关系,列方程; (4)解方程; (5)检验根的准确性及是否符合实际意义; (6)作答.
【思考】 (1)如何把一张长方形硬纸片折成一个无盖的长方体纸盒? (2)无盖长方体纸盒的高与裁去的四个小正方形的边长有什么关系?
【合作学习】一轮船(C)以30 km/h的速度由西向东航行在途中接到台风
警报,台风中心正以20 km/h的速度由南向北移动,已知距台风中心200 km
的区域(包括边界)都属于受台风影响区,当轮船接到台风警报时,测
BC=500km,BA=300km.
北
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题一元二次方程的应用(二)
教学目标:掌握利润类、数字类、几何动态类一元二次方程,并嫩根据题意解决这类问题
教学重、难点:能找到等量关系,准确列出方程
典型例题分析:
类型一:利润问题:总利润=单件利润*销量
例1:某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
练习:商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
练习:
1、爱家超市将进货单价为40元的商品,按50元销售时,能卖出500个,已知该商品每涨1元钱就少卖10个。
为了赚8000元的利润,售价应定为多少元?
2、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,经量减少库存,商场决定适当的降低售价,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?
例3:某商户以2元/千克的价格,购进一批小西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该商户决定降价出售,经调查发现,这种小西瓜每降价0.1元/千克,每天可多售出40千克,另外每天的房租等固定成本共24元,该商户要想每天盈利200元,应该将每千克的小西瓜的售价降低多少元?
类型二:数字问题
例1:有两个连续整数,它们的平方和为25,求这两个数。
练习:两个相邻偶数的积为168,则这两个偶数是多少?
例2:一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,求原两位数。
练习:
1、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数。
求这个两位数。
2、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
3、有一个两位数,它十位上的数字与个位上的数字的和是8。
如把十位上的数字和个位上的数字调换后,所得的两位数乘以原来的两位数,就得到1855。
求原来的两位数。
类型三:几何动态问题
例1:已知:如图3-9-3所示,在△ABC 中,cm 7cm,5,90==︒=∠BC AB B .点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果Q P ,分别从B A ,同时出发,那么几秒后,△PBQ 的面积等于4cm 2
?(2)如果Q P ,分别从B A ,同时出发,那么
几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.
练习:如图(a )、(b )所示,在△ABC 中∠B=90°,AB=6cm ,BC=8cm ,点P 从点A•开始沿AB 边向点B 以1cm/s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度运动.
(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使S △PBQ =8cm 2.
(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C•后又继续在CA
边上前进,经过几秒钟,使△PCQ 的面积等于12.6cm 2.(友情提示:过点Q•作DQ ⊥CB ,垂足为D ,则:DQ CQ AB AC
=) (a)B A
C
Q
P (b)B A C
Q D
P
课后作业:
1、(永州)我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.
(1)问该县要求完成这项工程规定的时间是多少天?
(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?
2、(广州)为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字。