有机化学 第三章 立体化学基础
有机化学基础知识点整理立体化学基础概念
有机化学基础知识点整理立体化学基础概念有机化学基础知识点整理——立体化学基础概念引言:有机化学是研究碳元素化合物的构造、性质和变化的一门学科,而立体化学则是有机化学中重要的基础概念之一。
在有机化学中,分子的立体构型对于反应性、性质和生物活性有着重要影响。
本文将着重整理一些有机化学中的立体化学基础概念,以帮助读者更好地理解有机化学中的立体结构,进而对有机化学进行深入学习。
一、手性与手性中心手性是指分子或物体与其镜像体不可重合的性质。
在有机化学中,手性分子是指拥有手性中心或手性轴的分子。
手性中心是指一个碳原子上连接着四个不同基团的碳原子,它使得分子无法与自身的镜像体重合。
手性分子在光学活性、药物作用和化学性质等方面具有独特的特性。
二、立体异构与构象异构1. 立体异构立体异构是指分子的空间排列方式不同而产生的异构体。
常见的立体异构有以下两种类型:(1) 旋转异构:由于单键的自由旋转,骨架构型可以发生一定程度的旋转,产生旋转异构体。
(2) 互变异构:由于键的旋转受到某些限制,使分子无法通过旋转达到立体异构体之间的互变。
2. 构象异构构象异构是指分子在空间中采取不同的构象,但化学键没有发生断裂或形成新的键。
构象异构分为以下几种类型:(1) 键的旋转构象异构:分子在有某些限制的情况下,通过键的旋转而形成的构象异构。
(2) 环的变形构象异构:分子中含有环系统,通过环的弯曲或平面变形产生的构象异构。
(3) 键的翻转构象异构:分子中存在于键的两个端点之间的三个最佳位置,通过在这三个位置间进行翻转形成的构象异构。
三、立体化学的表示方法1. 常用的立体表示方法(1) 空间结构式:通过笛卡尔坐标系中的三维坐标表示分子的立体构型。
(2) 键切式:通过表示分子和化学键之间关系的切面图形来表示立体构型。
(3) 投影式:通过投影方式来表示立体构型,包括斜投影式、哈维利投影式等。
2. 立体异构体的命名方法(1) IUPAC命名法:使用希腊字母(R和S)来表示手性异构体,其中R表示顺时针方向,S表示逆时针方向。
《有机化合物的结构》立体化学基础
《有机化合物的结构》立体化学基础在有机化学的广袤世界里,有机化合物的结构就如同是一座精巧构建的大厦,而立体化学则是其中至关重要的基石。
理解有机化合物的立体结构,对于深入探究其性质、反应以及在各种领域中的应用都具有不可估量的意义。
首先,让我们来认识一下什么是有机化合物的结构。
简单来说,它指的是构成有机分子的原子在空间的排列方式。
这可不仅仅是原子的简单连接,而是有着极其精妙的规律和特点。
原子之间通过化学键相互结合,形成了有机分子的骨架。
常见的化学键包括共价键,比如单键、双键和三键。
这些键的类型和长度,以及它们之间的角度,都对有机化合物的结构和性质产生着深远的影响。
以最简单的有机化合物甲烷为例,它的分子结构是正四面体。
碳原子位于正四面体的中心,四个氢原子分别位于正四面体的四个顶点。
这种空间排列使得甲烷分子具有特定的对称性和稳定性。
当我们谈到有机化合物的立体化学基础时,不得不提到手性这个重要的概念。
手性就好像是我们的左右手,虽然看起来相似,但却不能完全重合。
在有机化学中,存在着许多手性分子,它们具有对映异构体。
对映异构体在物理性质上,如熔点、沸点、溶解度等,往往非常相似,但在生物活性和化学反应性方面却可能有着天壤之别。
比如,某些药物的一种对映异构体可能具有良好的治疗效果,而另一种可能不仅无效,甚至还会产生副作用。
再来看一下碳的四面体构型。
当碳原子与四个不同的原子或基团相连时,就会形成手性中心。
这四个基团在空间上的不同排列,就产生了一对对映异构体。
那么,如何确定一个分子是否具有手性呢?这就需要用到一些方法和规则。
比如,可以通过观察分子是否存在对称面或对称中心来判断。
如果不存在对称面和对称中心,那么这个分子很可能就是手性分子。
除了手性,有机化合物的构象也是立体化学中的一个重要方面。
构象是指由于单键的旋转而导致分子中原子在空间的不同排列方式。
以乙烷为例,它的构象可以有无数种,但最常见的是交叉式和重叠式。
交叉式构象能量较低,比较稳定;而重叠式构象能量较高,相对不稳定。
化学第三章立体化学
C=Y
CY (Y) (C)
Y为C、O、N等常见原子,是几重键就相当于连几 个相同的原子。
H (C) CH CH2 相当于 C C H
(C) H
H(C) H(C)
相当于 (C)
H
( C)
(C)
H
H (C)
(C) (C) C CH 相当于 C C H
(C) (C)
(N) (C) C N 相当于 C N
H
H
CC C6H5
CH3 CC
H
H
(顺,顺)
H CC
C6H5
H H
CC
H
CH3
(顺,反)
H
C C6H5
H
CH3
CC
C
H
H
(反,反)
H
H
H
CC
CC
C6H5
H
CH3
(反,顺)
H
CH2CH3 CH3CH2
CH(CH3)2
CC
CC
CH3
CH2CH2CH3 CH3
CH2CH2CH3
(三) Z , E - 命名法
H5 4 H
CC
CH3
3 2H CC 1
H
COOH
(2E,4Z) – 2,4- 己二烯酸
(四)顺反异构体的性质(一般规律的比较)
顺、反-丁烯二酸的物理性质
异构体
熔点/℃ 密度
溶解度( 25℃) /(g/100g·H2
O)
顺-丁烯二酸 130
1.590
78.8
反-丁烯二酸 287
1.625
0.7
1.构造式(结构式)相同(分子的结构相同,构型不同)
2. 比较各种取代原子或原子团的排列顺序时,先比 较直接相连的第一个原子的原子序数。如果是相同 原子,那就再比较第二个、第三个……原子的原子 序数。 C(CH3)3 > CH(CH3)2 > CH2CH3 > CH3
高等有机-3立体化学
CH2CH2CH2Br
H C CH3
CH2CH2Br
H3CH2CH2C
H
C OH
D
12
2.分子中含有一个四个键指向四面体四个顶点 的原子,若 四个基团不同就有旋光性。
16O
CH3
C6H5CH2 S C6H5 18O
C2H5 N C6H5 I CH2CH CH2
3. 棱锥结构的分子中,若中心原子与三个不同的
• 适用范围:外消旋混合物 • 优点:将该法与重结晶等其他方法合用可获
得较好的分离效果
43
实际工作中有时多余的S型还要进行消旋化,使 产物重复回到外消旋混合物状态后再次进行诱导晶种 分离。 例: 合霉素中分离氯霉素。方法经济.
(±)-氯霉素 + D-氯霉素
100g
1g
80℃ 溶于100 ml水中
冷却 至20℃
H
C H3 H
H C H3
18
NO2 NO2
COOH COOH
ac
NO2 NO2 COOHCOOH
bd
(1) No rotation found when a+c or b+d > 0.29 nm (2) rotation difficult when a+c or b+d 0.29 nm (3) rotation easy when a+c or b+d < 0.29 nm
E
H2C
H2 N
F
F
C
Co
H2C
D F
N H2
H2N H2N
CH2
C H2
顺二氟双(乙二胺)钴(III)
17
6.含手性轴的分子
立体化学基础.
丙 丙 异构
二,对映异构体和手性分子 (一)对映异构体和手性分子
下图为一对互为镜像关系的乳酸分子的立体结构式(透视式 : 下图为一对互为镜像关系的乳酸分子的立体结构式 透视式): 透视式
镜子 C2OH C HO H CH3
a
C2OH H C CH3 OH
b
a和b互为镜像的一对乳酸分子 实线代表位于纸平面上的键; 实线代表位于纸平面上的键; 虚线… 代表伸向纸平面后面的键, 虚线… 代表伸向纸平面后面的键, 楔形线代表伸向纸平面前方的键
第三章 立体化学基础
立体化学是现代有机化学的一个重要分支, 立体化学是现代有机化学的一个重要分支,是从三 维空间来研究有机物的结构以及结构与性质之间的关系. 维空间来研究有机物的结构以及结构与性质之间的关系. 一,同分异构现象 碳 链异 构
构 造异 构 异 构现 象 立 丙异 构
位 置异 构 官 能团 异构 互 变异 构 构 丙 异构 构 象 异构
12
可用不同的方法表示同一立体异构体的立体结构 三羟基丁醛: 例:2R, 3S-2, 3, 4-三羟基丁醛: 三羟基丁醛
CHO H OH HO H CH2OH HO H HOH OH CHO H CH2OH OHC CH2OH H OH
Fischer投影式 投影式
锯架式
Newman投影式 投影式
13
-CH3 < -CH2CH3 < -CH2CH2CH3 < -CH(CH3)2
H3C C2H5 H OH
-OH >-CH2CH3 >-CH3 > H
R-2-丁醇 丁醇
18
(3)若手性碳连有含重键的基团时,则可看 若手性碳连有含重键的基团时, 作多次与同一原子相连.例如: 作多次与同一原子相连.例如:
有机化学第三章立体化学
HO Cl COOH H H COOH ( I ) (2R,3R)
2-羟基-3-氯丁二酸总共有几种立体异构体?
COOH H HO Cl H COOH (I) (2R,3R)
COOH H OH H Cl COOH I) (I (2S,3S)
COOH H HO H Cl COOH I I) (I (2R,3S)
COOH C H CH3 镜象
分子式和构造相同:
C3H6O3
CH3CHCOOH OH
Locating a Stereocenter (Chiral Carbon)
标出手性碳
H N
*
CH 2 CH 2
CH 3
毒芹碱
判断下列化合物是否有手性碳? 是否是手性分子?
有两个手性碳却不是手性分子!
含一个手性碳原子的分子一定是个手性分子。 含多个手性碳原子的分子不一定是个手性分子.
标记: H
OH CH3 (a)
C
根据次序规则:OH>COOH>CH3>H
直接从Fischer投影式判断R/S构型
概括地说:“横变竖不变”
补充:各构型式间转换: (1)透视式或纽曼投影式改写成费歇尔投影式时,先把交叉式构象 旋转成重叠式构象,然后按投影要求写出相应的费歇尔投影式。 (2)判断每一个手性碳的R,S构型。
有旋光性的必要条件。
对映异构体
--互为实物与镜象的两个构型异构体.又称对 映体。它们构造相同。互相对映却不能叠合。
COOH H3C OH H 实物 C HO 镜子
COOH C CH3 H 镜象
乳酸分子的一对对映体
不对称碳原子
——与四个不同的原子或原子团相连的碳原子。 用“ * ”号标出。又叫手性碳。 例 手性碳
有机化学基础知识点整理立体化学的基本概念与表示方法
有机化学基础知识点整理立体化学的基本概念与表示方法有机化学基础知识点整理——立体化学的基本概念与表示方法立体化学是有机化学中的重要分支,研究有机化合物中分子空间结构和立体异构体的性质与反应规律。
本文将对立体化学的基本概念与表示方法进行整理与介绍。
一、立体化学的基本概念1. 立体异构体:指在化学式相同、分子式相同的情况下,分子结构排列不同而具有不同性质的化合物,称为立体异构体。
立体异构体分为构象异构体和对映异构体两大类。
2. 立体异构体的原因:分子由于碳原子的四个价键都可以自由旋转,导致构象异构体的产生。
对映异构体则由于分子内部存在不对称碳原子或手性中心,使得它们的镜像体不能重合。
3. 立体异构体的性质:立体异构体在物理性质和化学性质上有所区别,例如物理性质如熔点、沸点、密度等差异明显,化学性质如对外界的反应、催化剂的选择等也有较大差异。
二、立体化学的表示方法1. 立体表示法:主要有盘状投影式、锥面式、楔面式和Fischer式等。
a. 盘状投影式:将分子按水平投影在纸面上,使用实线表示平面内的键,棱柱形状表示键在平面之上,圆圈表示键在平面之下。
b. 锥面式:将分子沿轴线向外投影,用三角形表示键在轴线上方,用带状表示键在轴线下方。
c. 楔面式:将分子通过楔形物理模型或立体图形展示,用楔形箭头表示键在垂直于纸面的方向上,用缺口箭头表示键在纸面下方。
d. Fischer式:以垂直于纸面的轴线为支架,将分子垂直展示,左右的羰基或羟基用垂直于轴线的线条表示。
2. 立体描述法:包括立体描述词、R/S命名法、E/Z命名法和Fukui-Liontelli规则等。
a. 立体描述词:用于描述分子中的任意一个手性中心或不对称碳原子的构型,一般为S、R两个字母的组合。
b. R/S命名法:适用于手性中心为单一物种构成的有机分子,根据规定的优先级顺序(按原子序数决定),通过相互对应的方式命名为R(草莓糖)或S(山梨糖)。
c. E/Z命名法:适用于存在双键的有机分子,根据优先级顺序,通过相互对应命名为E(德恩斯烯)或Z(沙通烯)。
高等有机化学课件3-第三章 立体化学
NO2 CO2H
NO2 CO2H
有对称面(能同镜影分子重选),非手性。
NO2 CO2H
CO2H NO2
CO2H NO2
NO2 CO2H
手性分子
6
Br Br 6'
Br
Br
2' 2 Cl Cl
Cl
Cl
(R)-2,2’-二氯-6,6’-二溴联苯
(R)-2,2’-dibromo-6,6’-dichlorobiphenyl
构型异构: 顺反异构: H
Cl CH3 Cl H
COOH H OH CH3 HO
CH3 H
COOH H CH3
H
对映异构:
D-(-)-乳酸 mp: 52.8° 非对映异构: H
H COOH OH OH CH3
L-(+)-乳酸
COOH H HO OH H CH3
构象异构:
H H
CH3 H H CH3
V U X
R R
V W Z W Z
S S
V
V W X W X
S R
U X
U Z
R S
U Z
Y (A)
Y ( B)
Y (C)
Y ( D)
A和B(C和D)为对映异构体,A和C或者D(B和 C或者D)为非对映异构体。
• 对映异构体之间有相同的性质(除了对偏 振光和手性环境),然而非对映异构体具 有不同的熔点、沸点、溶解度、反应性等 物理、化学及光谱性质。 • 多手性中心的分子最多具有2n个异构体(n =分子中手性中心数),但有时分子内存 在着对称面,这时异构体数减少。
今有两试管分别置入(-)乳酸和(+)乳酸,我 们如何知道它们的构型?
第三章 立体化学讲解
优势构象
叔丁基是一个很大的基团,一般占据e键。
某些取代环己烷,张力特别大时,环 己烷的椅式构象会发生变形,甚至会 转变为船式构象
CH3
H
H3C
CH3
C
H
C(CH3)3 C(CH3)3
C(CH3)3 H
椅式
船式 优势构象
一般对优势构象的讨论,只是从取代 基的体积影响进行分析,对于烷基这类基 团来说是正确的。但有时非键合原子间的 其它作用力 如偶极-偶极间的电效应也会 影响分子的构象稳定性。
109o28'
60o
105o
3.3.1Baeyer张力学说
当碳原子的键角偏离109°28′时,便会产生一种 恢复正常键角的力量。这种力就称为张力。键角偏离 正常键角越多,张力就越大。
偏转角度=
109°28′内角
2
N=3 4 5 6 7
偏转角度
24o44’ 9o44’ 44’ -5o16’ -9o33’
…… n个C*
…………
AB+ B-
C+ C- C+ C-
D+D- D+D-D+D-D+D-
…………
2 4
8 16 …… 2n
例如: 一个C* 二个C* 三个C*
R\S RR\SS RS\SR RRR\SSS RRS\SRR RSR\SRS RSS\RRS
(2)非对映体
不呈镜影关系的旋光异构体为非对映异构体。非对映体具有不 同的旋光性,不同的物理性质和不同的化学性质。
立体异构体的定义:分子中的原子或原子团互相连接的 次序相同,但在空 间的排列方向不同而引起的异构体。
3.1 轨道的杂化和碳原子价键的方向性
高等有机化学第三章立体化学
contents
目录
• 立体化学基本概念 • 碳原子立体化学 • 手性分子结构与性质 • 立体化学在有机合成中应用 • 立体化学在药物设计中的应用 • 实验方法与技巧
01
立体化学基本概念
立体异构现象
立体异构体
分子式相同,但空间排列不同的化合 物,具有不同的物理和化学性质。
碳原子手性判断
对称面与对称中心
若一个分子中存在一个对称面或对称中心,则该分子不具有旋光性。对称面是指能将分子分为两个互为镜像的部 分的平面;对称中心是指能将分子中任意一点与另一点重合的点。
潜手性与非对映异构体
潜手性是指分子中某些基团可以围绕单键旋转而产生手性的现象。非对映异构体是指具有相同分子式、不同结构 且不能通过旋转操作相互转化的立体异构体。
感谢观看
。
化学性质差异
手性分子在化学反应中可能表 现出不同的反应速率和选择性
。
生物活性差异
许多生物活性物质都是手性的 ,其生物活性与手性密切相关 ,不同手性分子的生物活性可
能存在显著差异。
手性识别与拆分方法
手性识别
通过对手性分子的结构和性质进行分析,确定其手性特征。常见的方法包括X射线晶体学、圆二色光 谱、核磁共振等。
构型与构象
构型
分子中原子或基团在空间中的相 对位置关系,是固定的空间排列
。
构象
由于单键旋转而产生的不同空间排 列,是动态的空间排列。
构型与构象的关系
构型是构象的基础,构象是构型的 动态表现。不同的构型可能产生不 同的构象,而同一构型也可能产生 多种不同的构象。
02
碳原子立体化学
碳原子杂化类型
sp杂化
03
有机化学基础知识点立体化学的基本概念
有机化学基础知识点立体化学的基本概念立体化学是有机化学中非常重要的一个概念,它涉及到分子的空间结构和构象。
在有机化学反应中,分子的立体构型对反应的速率和产物的选择性有着重要的影响。
本文将介绍立体化学的基本概念,包括立体异构、手性分子、构象等知识点。
1. 立体异构立体异构是指化学物质的分子在空间中的排列方式不同,从而导致其化学性质与物理性质的差异。
立体异构可以分为构造异构和空间异构两种类型。
1.1 构造异构构造异构是指分子结构的连接方式不同,分为链式异构、官能团异构和位置异构三种类型。
链式异构:同分子式下,碳骨架的排列方式不同,如正丁烷和异丁烷就是一对链式异构体。
官能团异构:同分子式下,分子中的官能团位置不同,如乙醇和甲醚就是一对官能团异构体。
位置异构:同分子式下,官能团位置相对于主链排列的位置不同,如2-丁醇和3-丁醇就是一对位置异构体。
1.2 空间异构空间异构是指分子在空间中的三维排列方式不同,分为立体异构和对映异构两种类型。
立体异构:分子中存在非自由旋转的键,由于旋转受限,使得分子结构不同,如顺式-反式异构。
对映异构:对称分子具有镜像关系,不能通过旋转重叠,如手性分子。
2. 手性分子手性分子是指与其镜像物不可重叠的化合物,也称为不对称分子。
手性分子通常包含一个或多个手性中心,手性中心是一个碳原子,与四个不同的基团连接。
手性分子的最重要特征是其对映异构体的存在。
对映异构体具有相同的分子式、相同的化学键,但是无法通过旋转或平移重叠。
这种现象称为手性体。
手性分子有很多实际应用,如生物活性物质、药物、拆分光等。
同时,手性分子还涉及到光学活性、旋光度等概念。
3. 构象构象是指分子在空间中的不同取向,由于化学键的旋转、振动等运动而引起的。
构象是立体化学中的重要概念之一,它与立体异构密切相关。
分子的构象由于化学键的自由旋转而产生,通常与键长、键角、键的取代基团等因素有关。
构象的改变可能会导致分子性能的变化。
有机化学第三章立体化学基础(2024)
手性药物的合成。手性药物是指具有手性中心的药物分子。在合成手性药物时,需要利用 立体化学原理来控制产物的立体构型。例如,通过引入手性辅剂或利用不对称催化等方法 ,可以实现手性药物的高效合成。
22
06
2024/1/25
立体化学在药物设计中的重要性
23
药物活性与手性关系
手性对药物活性的影响
手性药物的两个对映异构体可能具有 不同的生物活性,其中一个可能具有 治疗效果,而另一个可能无效或有毒 。
手性中心判断方法
7
2024/1/25
03
观察碳原子连接的四个基团或 原子是否相同,若不相同则为 手性中心。
04
使用Cahn-Ingold-Prelog规则 (CIP规则)进行判断。
9
手性分子表示方法
2024/1/25
Fischer投影式
01
将碳链竖直表示,横前竖后,横向基团朝右,纵向基团朝上。
透视式
一个物体不能通过旋转和平移操作与其镜 像完全重合的性质。
对称性的定义
一个物体可以通过旋转和平移操作与其镜 像完全重合的性质。
手性与对称性的关系
手性是对称性的一个特例,即没有对称中 心或对称面的物体具有手性。
手性在化学中的应用
手性化合物在生命体系中具有重要的作用 ,如氨基酸、糖类等。
5
构型与构象
构型的定义
02
将碳链放平,基团朝向观察者方向。
Newman投影式
03
沿碳-碳键的键轴方向观察,将碳原子和与之相连的基团放在纸
平面上,其他基团则竖立在纸平面上。
10
2024/1/25
03
对称性与对称操作
11
对称元素及类型
有机化学基础知识分子的立体化学
有机化学基础知识分子的立体化学有机化学是研究含碳的化合物的分子结构、性质、合成、反应以及它们在生物体系中的作用的科学。
其中,分子的立体化学是有机化学中至关重要的一部分。
本文将介绍有机化学中分子的立体化学基础知识,包括手性,立体异构体及其命名以及手性分子的光学活性。
一、手性分子的手性是指其镜像不能重合的特性。
由于碳原子可以形成四个互不相同的键,大部分有机化合物都可以具有手性。
手性分子包括两种类型:手性中心和轴手性。
1. 手性中心手性中心是指分子中的一个碳原子,它与四个不同的基团连接。
手性中心的碳原子通常以S(拉丁语 sinister )和R(拉丁语 rectus)表示,分别代表左旋和右旋的空间构型。
2. 轴手性轴手性是指分子中存在一个对称轴,该对称轴可以将分子分为两个不可重合的镜像体。
轴手性是由于分子的非完全对称所导致的,在立体异构体中较为常见。
二、立体异构体及其命名立体异构体是指分子在空间排列上存在不同的构型,从而导致其化学性质和生物活性的差异。
立体异构体包括构象异构体和对映异构体。
1. 构象异构体构象异构体是指分子在空间上能够互相转换,但又不能通过化学反应相互转化的异构体。
最常见的构象异构体是旋转受限的双键环状化合物,如环烯烃和环烷烃。
2. 对映异构体对映异构体是指分子的镜像体,在化学和物理性质上没有差异,但与其他手性物质的相互作用不同。
对映异构体是由于分子的手性中心或轴手性所引起的。
对映异构体的命名通常使用R/S命名法或者D/L命名法,其中R/S命名法适用于手性中心,而D/L命名法适用于糖类和氨基酸等化合物。
这些方法可以准确地描述分子在空间中的立体排列。
三、手性分子的光学活性手性分子的光学活性是指它们对平面偏振光有选择性地旋转偏振面的性质。
手性分子旋光的方向可以是顺时针旋光(右旋)或逆时针旋光(左旋),分别用(+)和(-)表示。
对于含有手性中心的分子,不对称的环境可以导致光学活性。
手性分子的光学活性在药物、农药、香料等领域具有重要的应用价值。
有机化学基础知识点立体化学基础概念与手性化合物
有机化学基础知识点立体化学基础概念与手性化合物立体化学基础概念与手性化合物有机化学是研究有机物的结构、性质、合成及其在生物、化工、医学等领域中应用的学科。
其中,立体化学是有机化学的重要基础概念之一。
本文将对立体化学的基础概念以及手性化合物进行介绍。
一、立体化学基础概念1. 手性和对映异构体:在有机化合物中,当它们的空间结构不能通过旋转、平移相互重合时,这些化合物被称为手性化合物。
手性化合物存在对映异构体现象,即它们的立体异构体成对出现,并且互为镜像关系。
例如,人的左右手就是对映异构体。
这两个异构体被称为左旋体(S体)和右旋体(R 体)。
2. 手性中心:手性中心是指化合物中的一个碳原子,它与四个不同的官能团或原子键相连。
由于它的四个取代基在空间上的排列不同,使得它的对映异构体产生。
手性中心常用希腊字母α、β、γ等表示。
3. 还原混合原则:还原混合原则用来判断手性中心的对映异构体的数量。
当一个化合物中有n个手性中心且各个手性中心均是不对称的,那么该化合物的对映异构体数量为2^n。
二、手性化合物手性化合物具有重要的生物活性和光学活性,对人体和环境有着重要的影响。
以下是一些常见的手性化合物和它们的应用:1. 丙氨酸:丙氨酸是一种α-氨基酸,它是生物体内合成蛋白质所必需的。
丙氨酸具有手性中心,存在左旋体(L-丙氨酸)和右旋体(D-丙氨酸)。
它们在构型上相似,但在生物活性上却有很大差别。
2. 扑热息痛:扑热息痛是一种常见的退烧镇痛药。
它的左旋体(S-扑热息痛)具有镇痛和退烧的作用,而右旋体(R-扑热息痛)则没有这种作用。
这也是为什么在合成和制药过程中要求生产单一对映异构体的原因之一。
3. 手性催化剂:手性催化剂是一类广泛应用于有机合成领域的手性化合物。
它们能够在催化反应中选择性地促使某个位点的反应,从而获得高产率和高对映选择性的产物。
手性催化剂对于药物合成和农业化学品的合成具有重要的意义。
三、总结立体化学基础概念与手性化合物是有机化学中的重要内容。
第三章 立体化学
尼可尔棱镜
平面偏振光
平面偏振光的模型
旋光性与旋光性物质
装入水、或乙醇
光源 自然光 尼科尔 偏振光 样品管 尼科尔
偏振面不改变
偏振面发生偏转
装入葡萄糖水溶液
旋光性——物质使偏振光偏转面发生旋转的特性 ➢ 旋光 性 物 质 ——使偏振光偏转面发生旋转的物质 ➢ 非旋光性物质——不能使偏振光偏转面发生旋转的物质
构造 constitution 构型 configuration 构象 conformation
同分异构 isomerism
构造异构 constitutional
碳架异构 官能团异构 位置异构 互变异构
立体异构 Stereo-
构型异构
顺反异构
configurational 手性异构
构象异构
旋转异构
1902年获诺贝尔化学奖
In recognition of the extraordinary services he has rendered by his work on sugar and purine syntheses
埃米尔·费雪 Hermann Emil Fisher
1852~1919 Germany
COOH
H
OH
H
OH
COOH
COOH
H
OH
HO
H COOH
COOH
H *C OH
H C OH COOH
COOH
HO
H
H
OH
COOH
* H
OH
H
OH
COOH COOH
H
OH
COOH
H
OH
COOH
第二节 立体化学中的顺序规则
有机化学第三章立体化学基础
H
HO
CHO
C H2O H
R
H
HO
CHO
C H2O H
结论:当最小基团处于竖键位置时,其余三个基 团从大到小的顺序若为顺时针,其构型为R;反 之,构型为S。
判断基团大小的依据是我们已经熟悉的顺 序规则
OH
COOH
COOH
COOH
CH HOOC CH3
(S)-
CH
CH3
OH
(S)-
C H
HO CH3 (R)-
Cl
Cl
H
H
-
H
(二) 判别手性分子的依据
A.有对称面、对称中心、交替对称轴的分子均可 与其镜象重叠,是非手性分子;反之,为手性分子。
至于对称轴并不能作为分子是否具有手性的判据。
B.大多数非手性分子都有对称轴或对称中心, 只有交替对称轴而无对称面或对称中心的化合物是 少数。
∴既无对称面也没有对称中心的,一般 判定为是手性分子。
如果在两个棱镜之间放一个盛液管,里面装 入两种不同的物质。
亮
丙酸
α
暗
亮
乳酸
结论: 物质有两类:
(1)旋光性物质——能使偏振光振动面旋转的性质, 叫做旋光性;具有旋光性的物质,叫做旋光性物质。
(2)非旋光性物质——不具有旋光性的物质,叫做 非旋光性物质。
旋光性物质使偏振光旋转的角度,称为旋光度,
以“α”表示。
COOH
H CH3CH2 COOH
CH3
COOH H CH2CH3
CH3
CH3 H COOH
CH2CH3
S
S
S
S
试判断下列Fischer投影式中与(s)-2-甲基丁酸成对 映关系的有哪几个?
有机化学第三章-立体化学
顺 _1,2_二氯乙烯 Z _1,2_ 二氯乙烯
H
Cl
C=C
Cl
H
反_ 1,2 _ 二氯乙烯 E _1,2_ 二氯乙烯
3.顺 / 反标记法和Z/E标记法一致吗?
两种标记方法绝大多数情况下一致,即顺式 就是Z 式,反式就是E式。但有时却刚好相反。
H
COOH
C=C
CH3
CH3
顺 _ 2 _ 甲基 _ 2 _ 丁烯酸
合霉素 —— 外消旋体 已淘汰
手性药物 ——二十一世纪的宠儿
第五节 构象异构
构象异构产生的原因:
由于以σ键 连接的两个原子可以相对的自由旋转,
从而使分子中的原子或基团在空间有不同的排布方式。
2、每个双键或环上碳原子上连接两个不 同基团
顺反异构体的命名:
1. 顺/反构型标记法:
a
a
C=C
b
b
a
b
C=C
b
a
a
a
b
b
顺式 (cis_)
反式 (trans_ )
顺式 (cis_)
a
b
b
a
反式 (trans_ )
相同的原子或基团位于双键(或环平面)的同侧为 “顺式”;否则为“反式”。
2. Z /E构型标记法:
CH3 H Cl
C2H5
C2H5
旋转180°Cl
H
构型保持
CH3
旋转90°
C2H5
H CH3
Cl
构型改变
2 投影式不能离开纸面翻转。
3 投影式手性C原子上所连的原子或基 团,可以两—两相互交换偶数次,不能 交换奇数次。
CH3 H Cl
C2H5
有机化学第三章 立体化学
H C H3 CO O H C H3 H C H3 C H3 CO O H
C=C
C=C
_ _ _ _ 顺 2 甲基 2 丁烯酸 _ _ _ _ 2 甲基 2 丁烯酸 (E)
_ _ _ _ 反 2 甲基 2 丁烯酸 _ _ _ _ (Z) 2 甲基 2 丁烯酸
1、测得一个葡萄糖溶液的旋光角为+3.4°,而 葡萄糖的比旋光度为+ 52.7(°)· ml· g-1· dm-1,若 盛液管长度为1dm,计算出葡萄糖的浓度为
3.4 1 B 0.0646 ( g.m l ) m· l 52.7 1
同样也可通过已知旋光度物质的浓度而求得该 物质的比旋光度。
(-)-麻黄碱 (1R,2S)
2
1
H C OH H C NHCH3 CH3
(+)-麻黄碱 (1S,2R)
2
1
HO C H H C NHCH3 CH3
2
1
H C OH H3CHN C H CH3
(+)-伪麻黄碱
(1S,2S)
2
1
(-)-伪麻黄碱 (1R,2R)
说明:
1、n个不同C* , 产生 2n 个对映异构体
L-(-)-甘油醛
CHO HO H CH2OH
Br2/H2O
COOH HO H CH2OH
L-(-) -甘油醛
L-(+) -甘油酸
说明:D,L-构型与旋光方向无简单对应关系, 旋光方向是由旋光仪实际测得的。
(二) R、S 标记法
(序旋标记法)
1.排序:将四个基团按顺序规则排序,a>b>c>d。 2.定向:从最小基团d的对面进行观察,C-d键。
[化学]第三章立体化学
H Cl
H
H
H
Cl
Cl
H
Cl Cl HH
具有二重对 H 称轴,有旋 Cl 光性
更替对称轴(Sn)
如果一个分子沿一根轴旋转了360°/n的角度以 后,再用一面垂直于该轴的镜象将分子反射,所得 的镜象如能与原物重合,此轴即为该分子的n重更替 对称轴(用Sn表示)。
如果旋转的角度为90°(360°/4),就称为四 重更替对称轴(S4)。 如:
(N) (C)
CN>
> C CH > CH CH2
练习:
1.
C H
CH2
H3C CH CH3
HC C
3
4
1
CH3CH2
CH3
H
CH3 C CH3 CH3
2
5
6
7
O
O
O
2.
OR OH
C OR
C NH2 C OH
12
3
5
4
CH2OH
6
第三节 顺反异构
定义:有机物分子中如具有双键或环的存在,键的自由旋 转会受到阻碍,当双键或环上连接不同的原子或基团时, 就会产生顺式和反式的结构,这种异构现象称为顺反异构
第三章 立体化学基础
Organic Stereochemistry
(一) 分子模型的平面表示方法 (二) 立体化学的顺序规则 (三) 顺反异构 (四) 对映异构 (五) 构象异构
有机化合物异构现象的关系:
构造异构 异构现象
立体异构
碳架异构 官能团位置异构 官能团异构 互变异构
顺反异构 构型异构
对映异构 构象异构
ρB: 质量浓度(g/ml) l: 盛液管的长度(分米) t: 测定时的温度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体化学基础
主要内容
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 平面偏振光及比旋光度 分子的对称性和手性 含一个手性碳的化合物 含两个手性碳的化合物 外消旋体的拆分 取代环烷烃的立体异构 不含手性碳原子的手性分子 不对称合成
第一节 平面偏振光及比旋光度
光是一种电磁波, 光是一种电磁波,光波的振动方向与光的前进 方向垂直。 方向垂直。
R
CH3
CH3
S
H 在纸平面上 COOH
R
旋转180o
COOH H OH CH3
R
第四节 含两个手性碳原子的化合物
主要的基本概念
(1)旋光异构体的数目 ) (2)非对映体 ) (3)赤式和苏式 ) (4)差向异构体 )
第二节 分子的对称性和手性
一、对称性
分析有旋光性的乳酸和没有旋光性的丙酸 在结构上的差别: 在结构上的差别:
H CH3 C H COOH CH3 H * C OH COOH
乳酸所以具有旋光性,可能是因为分子中有 乳酸所以具有旋光性, 原子( 称碳原子或手性碳)。 一个*C原子(不对称碳原子或手性碳)。 原子 不对称碳原子或手性碳 原子就可能具有旋光性 为什么有*C原子就可能具有旋光性? :
OH C HOOC H CH3 COOH C CH3 H OH COOH C HO H CH3 H HO COOH C CH3 (R )-
(S)-
(S)-
(R)-
基团大小顺序:OH > COOH > CH3 > H
CH3 C HO H CH2CH3 HO
CH3 C CH2CH3 H HO
CH2CH3 C H CH3
对映体:成对存在,旋光能力相同, 对映体:成对存在,旋光能力相同,但旋光 方向相反。二者能量相同( 方向相反。二者能量相同(分子中任何两原子的 距离相同)。 距离相同)。 换句话说, 换句话说,具有实物和镜象关系的两个化 合物互称对映异构体。 合物互称对映异构体。
COOH C CH3 H OH COOH H C CH3 HO R-(-)-乳酸 乳
S-(+)-乳酸 乳
外消旋体:等量对映体的混合物。 外消旋体:等量对映体的混合物。
二、手性
(一)对称因素: 对称因素: 1. 对称面(m) 对称面( )
2. 对称中心(σ) 对称中心( )
H H3C H H H H H CH3
3. 对称轴(Cn) 对称轴(Cn) 以设想直线为轴旋转360。/ n,得到与原分子 以设想直线为轴旋转 , 相同的分子,该直线称为n重对称轴 又称n阶对 重对称轴( 相同的分子,该直线称为 重对称轴(又称 阶对 称轴)。 称轴)。
就有两种不同的构型: (1)一个*C就有两种不同的构型: ) 就有两种不同的构型
COOH COOH
COOH C H HO
H H
COOH C H OH
CH3
OH CH3 CH3 OH
H3C -
(2)二者的关系:互为镜象(实物与镜象关系,或者 )二者的关系:互为镜象(实物与镜象关系, 说左、右手关系)。二者无论如何也不能完全重叠。 说左、右手关系)。二者无论如何也不能完全重叠。 )。二者无论如何也不能完全重叠 与镜象不能重叠的分子,称为手性分子。 与镜象不能重叠的分子,称为手性分子。 分子的构造相同,但构型不同, 分子的构造相同,但构型不同,形成实物与 镜象的两种分子,称为对映异构体(简称: 镜象的两种分子,称为对映异构体(简称:对映 体)。
COOH
COOH
H OH
H CH 3
CH 3
OH
使用Fischer 投影式的注意事项: 投影式的注意事项: 使用 (1)可以沿纸面旋转,但不能离开纸面翻转。 )可以沿纸面旋转,但不能离开纸面翻转。
COOH H OH CH3
翻 转
COOH HO H CH3
翻 转
但不能旋转90 (2)可以旋转 )可以旋转180。,但不能旋转 。或270。。
=
α
L c ×
式中: 式中: α 为旋光仪测得试样的旋光度
C为试样的质量浓度,单位 g/mL;若试样为纯液体则为密度。 为试样的质量浓度, 若试样为纯液体则为密度。 为试样的质量浓度 若试样为纯液体则为密度 l 为盛液管的长度,单位 dm 。 为盛液管的长度, t 测样时的温度。 测样时的温度。 λ为旋光仪使用的光源的波长(通常用钠光,以D表示。) 为旋光仪使用的光源的波长(通常用钠光, 表示。) 为旋光仪使用的光源的波长 表示
COOH C 2H5 CH3 C C 2H 5 H3C H COOH H
COOH H 3C H C 2H 5 D
CH3 C 2H 5 H COOH E
将投影式在纸平面上旋转90 则成它的对映体 则成它的对映体。 将投影式在纸平面上旋转 o,则成它的对映体。
CH2CH3 H3C H COOH 转 90
旋光性物质使偏振光旋转的角度,称为旋光度, 旋光性物质使偏振光旋转的角度,称为旋光度, 表示。 以“α”表示。 表示
顺时 针 其旋 光方向 逆时 针
右 旋,以 “ d ” 或 “ + ” 表 示。 左 旋,以 “ l ” 或 “ ” 表 示。
但旋光度“ 是一个常量 它受温度、光源、浓度、 是一个常量, 但旋光度“α”是一个常量,它受温度、光源、浓度、 管长等许多因素的影响,为了便于比较, 管长等许多因素的影响,为了便于比较,就要使其成为一 个常量,故用比旋光度[α]来表示 来表示: 个常量,故用比旋光度 来表示: t [α] D α
平面偏振光
如果让光通过一个象栅栏一样的 Nicol 棱镜 (起 起 偏镜)就不是所有方向的光都能通过 就不是所有方向的光都能通过, 偏镜 就不是所有方向的光都能通过,而只有与棱镜 晶轴方向平行的光才能通过。这样, 晶轴方向平行的光才能通过。这样,透过棱晶的光 就只能在一个方向上振动, 就只能在一个方向上振动,象这种只在一个平面振 动的光,称为平面偏振光,简称偏振光或偏光。 动的光,称为平面偏振光,简称偏振光或偏光。
H H HO CHO HO CHO CH 2 OH
R
CH 2 OH
结论:当最小基团处于竖键位置时,其余三个基 结论:当最小基团处于竖键位置时, 团从大到小的顺序若为顺时针 其构型为R 若为顺时针, 团从大到小的顺序若为顺时针,其构型为R;反 构型为S 之,构型为S。
判断基团大小的依据是我们已经熟悉的顺 序规则
亮
α 丙 酸
暗 亮
乳酸
结论: 物质有两类: 结论: 物质有两类:
能使偏振光振动面旋转的性质, (1)旋光性物质 )旋光性物质——能使偏振光振动面旋转的性质, 能使偏振光振动面旋转的性质 叫做旋光性;具有旋光性的物质,叫做旋光性物质。 叫做旋光性;具有旋光性的物质,叫做旋光性物质。 不具有旋光性的物质, (2)非旋光性物质 )非旋光性物质——不具有旋光性的物质,叫做 不具有旋光性的物质 非旋光性物质。 非旋光性物质。
(二)外消旋体
一对对映体等量混合,得到外消旋体。 一对对映体等量混合,得到外消旋体。 外消旋体与纯对映体的物理性质不同, 外消旋体与纯对映体的物理性质不同,旋 光必然为零。 光必然为零。
熔 点
(i)外消旋混合物 )
(ii)外消旋化合物 )
曲 线
(iii)固体溶液 )
(三)对映异构体的表示方法
1. 透视式(三维结构) 透视式(三维结构) 2.Fischer 投影式 .
第三节 含一个手性碳的化合物
具有镜像与实物关系的一对旋光异构体。 具有镜像与实物关系的一对旋光异构体。
COOH C CH3
mp 53oC [α]D=+3.82 α
pKa=3.79(25oC)
COOH H C OH
(R)-(-)-乳酸 乳酸 mp 53oC [α]D=-3.82 α
pKa=3.83(25oC)
2. R / S标记法 标记法 A. 三维结构: 三维结构:
OH OH
C2H5 CH 3 H CH 3 H C2H5
R
S
B. Fischer 投影式: 投影式:
CHO H CHO CHO H H OH CH 2 OH OH HO
R
CH 2 OH CH 2 OH
结论:当最小基团处于横键位置时, 结论:当最小基团处于横键位置时,其余三个 基团从大到小的顺序若为逆时针 其构型为R 序若为逆时针, 基团从大到小的顺序若为逆时针,其构型为R; 反之,构型为S 反之,构型为S。
S
R
R
Fischer投影式具有下列几个性质: 投影式具有下列几个性质: 投影式具有下列几个性质
如果固定某一个基团, 如果固定某一个基团,而依次改变另三个基 团的位置, 构型不变。 团的位置,则分子 构型不变。
H H3C CH2CH3 COOH CH3CH2
H COOH CH3
COOH H CH2CH3 CH3
CHO HO H CH 2 OH
D、L与 “+、-” 没有必然的联系 、 与 、”
相对构型和绝对构型
CHO H OH CH 2 OH
O
H
COOH OH CH2OH
H
COOH H OH CH 3
D-(+)-甘油醛 甘油醛
D-(-)-乳酸 乳酸
绝 对 构 型 构型 R S
相 对 构 型 醛相 构型 D L甘油 甘油
o
CH3 HOOC H CH2CH3
(在纸平面上) 在
R
S
将投影式中与手性碳相连的任意两个基团对调,对 将投影式中与手性碳相连的任意两个基团对调 对 调一(或奇数次)则转变成它的对映体; 调一(或奇数次)则转变成它的对映体;对调二次 则为原化合物。 则为原化合物。
COOH COOH H 再对调一次 HO H OH 对调一次 HO CH3