高中数学数列特殊解法

合集下载

数列极限的几种特殊求解方法

数列极限的几种特殊求解方法

2 n

… l i m‘
2 =0 即 ,


塔 怀锁
( 北京 工业 职业技 术学 院 , 北京 10 4 ) 0 0 2

要: 求解数列的极限问题有时比较 困难 , 没有一般规律可循。但只要 注意发现和利用数列的特性 , 选择
适 当的方 法和运 用一 些技巧 就能很 容 易求解 。讨论 了几种数 列极 限的特 殊 求解方 法 : 比较 法 、 定积分 法和 忽
l1 1) 凡+ <
n+ ) < 1
< +) 1 1 1
1 + 1)

收稿 日期 :0 1— 1—1 21 0 5 作者筒介 : 塔怀锁 (9 4一) 男 , 15 , 吉林 九台人 , 副教授 , 主要从事应用数学 的教学及研究工作。
第 2期
塔 怀锁 : 列极 限 的几种 特殊 求 解方 法 数
Ta Hu iu as o
( e igP l eh i C l g , e ig10 4 C ia B in o tc nc o ee B in 0 0 2, hn ) j y l j
Ab t a t S mei s et g l t fa s q e c o u in i r ru ls me v n h sn w.Ho v r a _ sr c : o t me ,g t n i e u n e s l t mo e t be o ,e e a o l i mi o o s o a we e ,p y a . t t n in t n i g a d u i g t e c a a tr f e u n e o u e ,a d t e h o i g t e a e u t t o s a d U e t f d n n s h r ce so q e c f mb r n h n c o s d q a e me d n - o oi n h s n n h h

数列常见数列公式

数列常见数列公式

数列常见数列公式数列是数学中常见的一种数值排列模式,通常由一个初始项和一个通项公式来确定。

不同类型的数列有不同的求解方法,下面将介绍常见的数列公式及其解法。

1.等差数列(Arithmetic Progression):等差数列是指数列中的每一项与它的前一项之间的差等于一个常数d。

例如,1,3,5,7,9,…,其中公差d=2通项公式:an = a1 + (n - 1) * d求和公式:Sn = (n / 2) * (a1 + an)2.等比数列(Geometric Progression):等比数列是指数列中的每一项与它的前一项之间的比例等于一个常数r。

例如,2,6,18,54,162,…,其中公比r=3通项公式:an = a1 * r^(n-1)求和公式:Sn=a1*(1-r^n)/(1-r)3. 斐波那契数列(Fibonacci Sequence):斐波那契数列是指数列中的每一项等于前两项之和。

例如,1,1,2,3,5,8,13,…。

通项公式:an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列(Square Numbers Sequence):平方数列是指数列中的每一项都是一些自然数的平方。

例如,1,4,9,16,25,…。

通项公式:an = n^25. 立方数列(Cube Numbers Sequence):立方数列是指数列中的每一项都是一些自然数的立方。

例如,1,8,27,64,125,…。

通项公式:an = n^36.等差-等比数列(Arithmetic-Geometric Progression):等差-等比数列是指数列中的前一部分是等差,后一部分是等比。

例如,1,4,9,16,32,64,…,其中前四项是等差数列,后两项是等比数列。

通项公式:an = a + (n - m) * d * r^(n - m - 1),其中n >= m。

以上是一些常见的数列公式及其解法。

求数列极限的十五种解法

求数列极限的十五种解法

1

0
0 n1
n1
1 x
1 x (1 x)2
而 S(x) x f (x) x ;因此,原式= S(a1) a1 .
(1 x)2
(1 a1 )2
9.利用级数收敛性判断极限存在 由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此
数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.
求数列极限的十五种方法
求数列极限的十五种方法
1.定义法
N 定义:设{an} 为数列, a 为定数,若对任给的正数 ,总存在正数 N ,使得当 n N 时,

an
a
,则称数列
{an
பைடு நூலகம்
}
收敛于
a
;记作:
lim
n
an
a
,否则称{an} 为发散数列.
1
例 1.求证: lim an 1,其中 a 0 . n
列以外的数 a ,只需根据数列本身的特征就可鉴别其敛散性.
3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极限.
例 5.证明:数列 xn a a a ( n 个根式, a 0 , n 1, 2,
证:由假设知 xn a xn1 ;① 用数学归纳法可证: xn1 xn , k N ;② 此即证 {xn} 是单调递增的.
n0
n0
n
令 Sn
xk1 xk
xn1
x0
,∵
lim
n
Sn
存在,∴
lim
n
xn1
x0
lim
n
Sn
l
(存在);
k 0
对式子:

数列通项公式的求解方法归纳

数列通项公式的求解方法归纳

数列通项公式的解法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。

本文给出了求数列通项公式的常用方法。

小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。

做题时要不断总结经验,多加琢磨。

总结方法比做题更重要!方法产生于具体数学内容的学习过程中.1.直接法2.公式法3.归纳猜想法4.累加(乘)法5.取倒(对)数法6.迭代法7.待定系数法8.特征根法9.不动点法10.换元法11.双数列12.周期型13.分解因式法14.循环法15.开方法◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。

例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- ◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.(注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。

◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

巧用三角换元 破解一类数列最值问题

巧用三角换元 破解一类数列最值问题

可 得 aio = 代入
5-45^
10
整 理 得 (1352 + 452)rf2 - 360必 + 2S2 -1000 = 0 • 由关于的二次方程有实根可得 A = 36025 2 - 4(1352 + 452)(25-2 -1000) > 0 , 化 简 可 得 炉 <2500 , 则 S U O , 故 选 B . 评注本题考查等差数列的通项公式和求和公 式及不等式解法等知识,涉及转化与化归及函数与 方 程 思 想 .笔 者 将 此 题 作 为 考 试 题 让 学 生 做 ,结果 全 班 4 4 位同 学 做 对 3 位 , 得 分 率 仅 为 6 . 8 % . 究其原 因 ,发现学生的困难点有二,一是很难转化到二次 方程有根的问题模型, 即A 法; 二是答案给出的消元 方法导致运算相对较为繁琐. 而实际上只需将条件 和目标都转化为关于巧与^的关系再消去 t 运算就
2017年第8 期
福建中学数学
35
2 - 2) , 因
k1■ ,故 只 需 分 7 ■与7 ,即 e k <1 q k >1 q
与一般思想” 的理解与应用,平时教学与高三复习都 应予以足够的重视.
h e * 2与 l ^ < e2讨论即可,轻松快捷.
在数学全国卷中, 经常会设置一些具有“ 一般性” 特征的试题,以此考查学生对“ 特殊化方法” 与“ 特殊
A . [1,2] C . [1,5]
)
D . 40
C . 45
试卷给出的解答过程如下. 解析设等差数列的公差为, 因为 =10,
U ffiS1= a1 0 +an +••■«!, =10a1 0 +45rf ,

数列求和公式的几种方法

数列求和公式的几种方法

数列求和公式的几种方法数列求和是数学中的一个重要问题,其解法有多种,下面将介绍几种常用的求和方法。

1.等差数列求和公式:当数列为等差数列时,可以使用等差数列求和公式来求和。

设首项为a,公差为d,共有n项,则等差数列的和Sn可以通过公式给出:Sn=(n/2)*(2a+(n-1)d)这个公式的推导比较复杂,不再详述。

2.等差数列求和的几何解释:我们可以通过对等差数列进行几何解释来得到求和公式。

首先,我们将等差数列排列成一个逆序的数列,然后把它与原数列叠加。

下面以等差数列1,2,3,4,5为例,进行解释。

1,2,3,4,55,4,3,2,1相加得到:6,6,6,6,6其和是n(a+an)/2,等差数列求和公式的等效形式。

3.等差数列和的差分法:我们可以利用数列的差分来求等差数列的和,方法如下:令Sn为等差数列的和,An为等差数列的第n项。

则Sn=A1+A2+A3+...+An=(A1+An)+(A2+An-1)+(A3+An-2)+...+(An)将上两行相加得到:2Sn=(A1+An)+(A1+An)+...+(A1+An)=(n/2)*(A1+An)这样就得到了等差数列求和公式。

4.等比数列求和公式:当数列为等比数列时,可以使用等比数列求和公式来求和。

设首项为a,公比为r,共有n项,则等比数列的和Sn可以通过公式给出:Sn=(a*(1-r^n))/(1-r)这个公式的证明需要使用数学归纳法。

5.级数求和:在数学中,级数是指无限等差数列的和。

常见的级数求和有等差级数、等比级数和调和级数等。

对于等差级数,其和可以通过等差数列求和公式得出。

对于等比级数,其和可以通过等比数列求和公式得出。

调和级数的和是一个无穷大,它表示为:S=1+1/2+1/3+1/4+...+1/n+...调和级数有很多有趣的性质和应用,但关于调和级数的求和公式目前还没有找到。

6.微积分方法:在微积分中,我们可以使用积分来求和。

对于连续函数f(x),我们可以通过积分得到其在区间[a,b]上的和:S = ∫[a, b] f(x) dx这种方法可以求解一些特殊的数列求和问题,比如调和级数的和。

一次函数递推数列求通项的方法

一次函数递推数列求通项的方法

一次函数递推数列求通项的方法一次函数递推数列是指每一项与前一项之间存在一个常数差的数列。

为了求出这个数列的通项公式,我们可以使用以下50个方法进行计算:方法一:观察法1. 观察数列的前几项,看是否能够发现规律。

2. 如果发现数列的差值相等,则可以猜测数列的通项公式为一次函数。

方法二:代入法1. 将数列的前几项逐个代入一次函数的通项公式中,求得方程组。

2. 解方程组得到一次函数的通项公式。

方法三:线性方程法1. 假设数列的通项公式为y = ax + b。

2. 代入数列的前几项,得到若干个方程。

3. 解这些方程,得到a和b的值,进而求得一次函数的通项公式。

方法四:差分法1. 对数列进行差分,得到一个新的数列。

2. 如果新数列是等差数列,则可以猜测原数列为一次函数递推数列,并求得通项公式。

方法五:归纳法1. 假设数列的通项公式为y = ax + b。

2. 假设数列的第n项为An。

3. 利用数学归纳法,证明或推导出An = an + b的表达式。

4. 解方程组得到a和b的值,进而求得一次函数的通项公式。

方法六:解复合型一次函数方程法1. 假设数列的一次函数通项为y = ax + b。

2. 如果出现an+1 = f(an) 或者an+1 = f(an, n)的形式,则可以试着将其转化为一次函数方程。

3. 解一次函数方程,得到a和b的值,进而求得一次函数的通项公式。

方法七:根据数列的性质和条件1. 如果数列满足一定的性质或者给出了一些条件,可以根据这些性质或条件来求解一次函数的通项公式。

2. 如果数列的前几项之和等于某个数,则可以通过求解方程的方法得到一次函数的通项公式。

方法八:逆向推导法1. 对于数列的通项公式y = ax + b,我们可以通过逆向推导的方法来求解常数a和b 的值。

2. 从数列的最后一项开始,逆向推导出倒数第二项、倒数第三项等,直到推导出数列的第一项。

3. 通过推导出的数列项,可以建立方程组来求解常数a和b的值,从而得到一次函数的通项公式。

高三数学 特殊数列求和、数列极限的意义及运算、数列极限的应用、数学归纳法、归纳猜想、证明 知识精讲

高三数学 特殊数列求和、数列极限的意义及运算、数列极限的应用、数学归纳法、归纳猜想、证明  知识精讲

高三数学 特殊数列求和、数列极限的意义及运算、数列极限的应用、数学归纳法、归纳猜想、证明知识精讲一. 特殊数列求和:1. 概念:这里所指的“特殊数列”是指中学阶段能够求和的数列,包括:等差、等比数列,常数列,自然数列,自然数的平方数列,自然数的立方数列,项部分相消数列等。

数列求和,就是通过一些手段将数列转化为上述这些特殊数列而达到求和的目的。

2. 常用求和公式(1)等差:S n a a na n n d n n =+=+-()()11212(2)等比:S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()() (3)i n n i n =∑=+1121() (4)i n n n i n 211216=∑=++()() (5)i n n i n 31212=∑=+[()] 3. 常见数列求和的方法大致有五种如:直接由求和公式求和(如等差、等比数列的求和),裂项分组求和,裂项相消求和,错位相减求和,倒序相加求和。

(1)在求等比数列前n 项和S n 时,一定要注意分清公比q =1还是q ≠1;(2)裂项法的关键是研究通项公式,裂项的目的是转化成几个等差或等比数列或自然数的平方组成的数列求和,或者正、负相消;(3)错位相减法求和,主要用于一个等差与一个等比数列相应项相乘所得的数列求和;(4)含有组合数的数列求和,注意考虑利用组合数的性质公式求和或利用倒序相加求和;(5)三角函数求和考虑裂项相消求和或利用复数转化为等比数列求和;学习时,还要注意归纳总结一些常见类型的数列求和方法。

二. 数列极限的意义及运算1. 数列极限的概念对于数列{}a n ,如果存在一个常数A ,无论预先指定多么小的正整ε都能在数列中找到一项a N 使得这一项后面的所有项a n 与A 的差的绝对值都小于ε,(即当n N >时,恒有||a A n -<ε成立),就把常数A 叫做数列{}a n 的极限,记作:lim n n a A →∞=。

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法数列中的数学思想和方法数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧!一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法。

在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法。

例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-464a a +=-,求其前n 项和n S .解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。

再解方程组:112662a d a d +=-⎧⎨+=⎩1102a d =-⎧⇒⎨=⎩, 所以10(1)n S n n n =-+-。

〈法一〉法二、基本量法,建立首项和公差的二元方程 知三求二点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ⋅=⋅)找出解题的捷径。

关注未知数的个数,关注独立方程的个数。

点评基本量法:性质法 技巧备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)由已知得错误!解得a 2=2。

设数列{a n }的公比为q ,由a 2=2,可得a 1=错误!,a 3=2q ,又S 3=7,可知错误!+2+2q =7,即2q 2-5q +2=0。

特殊数列解法

特殊数列解法

特殊数列解法
对于数列形如An^2+A(n+1)^2+B*An*A(n+1)+C=0
有An^2+A(n-1)^2+B*An*A(n-1)+C=0;
则A(n-1),A(n+1)可看作二次方程x^2+B*An*x+An^2+C=0的解,则有A(n+1)+A(n-1)=-B*An,
此时此方程可由特征方程x^2+B*x+1=0求出根x1,x2,
则数列An表达为An=a*x1^n+b*x2^n,将其代入A1,A2中解得a,b, 则可解得数列An.
以下为特征方程法:
设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。

(1)若特征方程有两个不相等的实根,则其通项公式为
(),其中A、B由初始值确定;
(2)若特征方程有两个相等的实根,则其通项公式为
(),其中A、B由初始值确定。

(这个问题的证明我们将在后面的讲解中给出)
因此对于斐波那契数列,对应的特征方程为,其特征根为:
,所以可设其通项公式为,利用初始条件得,解得
所以。

这个数列就是著名的斐波那契数列的通项公式。

斐波那契数列有许多生要有趣的性质,如:。

常见递归数列通项公式的求解策略

常见递归数列通项公式的求解策略

常见递归数列通项公式的求解策略数列是中学数学中重要的知识之一,而递归数列又是近年来高考和全国联赛的重要题型之一。

数列的递归式分线性递归式和非线性递归式两种,本文仅就高中生的接受程度和能力谈谈几种递归数列通项公式的求解方法和策略。

一、周期数列如果数列满足:存在正整数M、T,使得对一切大于M的自然数n,都有成立,则数列为周期数列。

例1、已知数列满足a1 =2,an+1 =1-,求an 。

解:an+1 =1-an+2 =1-=-, 从而an+3 = 1-=1+an-1=an ,即数列是以3为周期的周期数列。

又a1 =2,a2=1-=, a3 =-12 , n=3k+1所以an= ,n=3k+2 ( kN )-1 , n=3k+3二、线性递归数列1、一阶线性递归数列:由两个连续项的关系式an= f (an-1 )(n,n)及一个初始项a1所确定的数列,且递推式中,各an都是一次的,叫一阶线性递归数列,即数列满足an+1 =f (n) an+g(n),其中f (n)和g(n)可以是常数,也可以是关于n 的函数。

(一)当f (n) =p 时,g(n) =q(p、q为常数)时,数列是常系数一阶线性递归数列。

(1)当p =1时,是以q为公差的等差数列。

(2)当q=0,p0时,是以p为公比的等比数列。

(3)当p1且q0时,an+1 =p an+q可化为an+1-=p(an-),此时{an-}是以p为公比,a1-为首项的等比数列,从而可求an。

例2、已知:=且,求数列的通项公式。

解:=-=即数列是以为公比,为首项的等比数列。

(二)当f(n),g(n)至少有一个是关于n的非常数函数时,数列{an}是非常系数的一阶线性递归数列。

(1)当f(n) =1时,化成an+1=an+g(n),可用求和相消法求an。

例3、(2003年全国文科高考题)已知数列{an}满足a1=1,an=3n--1+an -1 (n2) , (1)求a2 ,a3 ; (2) 证明:an= .(1)解:a1 =1, a2=3+1=4 , a3=32+4=13 .(2)证明:an=3n--1+an-1 (n2) ,an-an-1=3n—1 ,an-1-an-2=3n—2 ,an-2-an-3=3n—3……,a4-a3=33 ,a3-a2=32 ,a2-a1=31将以上等式两边分别相加,并整理得:an-a1=3n—1+3n—2+3n—3+…+33+32+31 ,即an=3n—1+3n—2+3n—3+…+33+32+31+1= .(2)当g(n)=0时,化为a n+1=f(n) an ,可用求积相消法求an 。

高中数学解题特殊方法

高中数学解题特殊方法

1高中数学解题特殊方法在高考复习的整个过程中,我们最好能建立一个积错本,就是要求我们在每一次练习中对于错误的地方一定要进行错误分析,一般错误包括三种:一种是计算失误,一种是审题失误,一种是思维起点错误。

对于第一种这是我们大多数同学经常出现的问题,在高考备考中我们一定要注意,每次考试和做题中一定要有始有终,千万不能眼高手低,我们很多同学在平时训练时一看题觉得自己会做就放弃演算过程,这是不好的学习习惯,只有每次在做题时能善始善终,才能提高我们运算的准确度,避免计算失误!对于第二种审题失误,比如在有一年的高考中让你求的是极值,而我们很多同学求的是最值,画蛇添足,浪费了时间还要扣分,对于这种情况,我想在考试时一定要先把题仔细阅读一遍,甚至可以把试卷上关键字做上记号来提示你充分而准确地利用已知条件,这是一个不错的办法,同学们不妨可以试试!对于第三种这是一个很关键的问题,在高考中解答题占了很大的比例,要克服这个问题,我们在平时学习中一定要注意积累一些典型例题的典型解法,比如在解析几何里的动点问题我们可以考虑消参法,数列中的构造法,函数中的转移法,等等,这都是很好的方法,在备考中通过掌握这一种方法就可以很顺利做一类题目,触类旁通,举一反三!只有我们在平时不断积累,我们就会不断进步,高考中就会得心应手,出奇制胜!2解题特殊方法正确对待学习中遇到的新困难和新问题:高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

常规解法的优点是容易想到,缺点是运算量可能会大一些,有时甚至很难算到底,或即使“历尽艰辛”算出来,但耗时太多,“成本太高”。

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法

高中数学解题方法系列:数列中求最大项或最小项的方法法一 :利用单调性 ①差值比较法若有0)()1(1>-+=-+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)()1(1<-+=-+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =. ②商值比较法若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1>+=+n f n f a a n n ,则n n a a >+1,则 <<<<<+121n n a a a a 即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若有0)(>=n f a n 对于一切n ∈N *成立,且1)()1(1<+=+n f n f a a n n ,则n n a a <+1,则 >>>>>+121n n a a a a 即数列}{n a 是单调递减数列,所以数列}{n a 的最小项为)1(1f a =.③利用放缩法若进行适当放缩,有n n a n f n f a =>+=+)()1(1,则 <<<<<+121n n a a a a ,即数列}{n a 是单调递增数列,所以数列}{n a 的最小项为)1(1f a =;若进行适当放缩,有n n a n f n f a =<+=+)()1(1,则 >>>>>+121n n a a a a ,即数列}{n a 是单调递减数列,所以数列}{n a 的最大项为)1(1f a =.法二: 先猜后证通过分析,推测数列}{n a 的某项k a (k ∈N *)最大(或最小),再证明)(k n k n a a a a ≥≤或对于一切n ∈N *都成立即可. 这样就将求最值问题转化为不等式的证明问题.例1 已知函数x x x f 63)(2+-= ,S n 是数列}{n a 的前n 项和,点(n ,S n )(n ∈N *)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6n n n b a c •=,且T n 是数列}{n c 的前n 项和. 试问T n 是否存在最大值?若存在,请求出T n 的最大值;若不存在,请说明理由.解 (Ⅰ)因为点(n ,S n )在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当n =1时,311==S a . 当n >1时,1--=n n n S S a,69)]1(6)1(3[)63(22n n n n n -=-+---+-=当n =1时,31=a 也满足上式,所以n a n 69-=.(Ⅱ)因为n n n n n n n n n b a c b )21)(23(6)21)(69(61,)21(11-=-===-- ① 所以,)21)(23()21)(3()21)(1(2132n n n T -++-+-+= ②,)21)(23()21)(3()21)(1()21(211432+-++-+-+=n n n T ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+------+=n n n .整理得1)21)(12(-+=n n n T ④利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以.)21)(21()21)](12(23[)21)](12()21)(32[()21)(12()21)(32(11n n nn n n n n n n n n n T T n-=+-+=+-+=+-+=-++ 因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值.211=T 利用商值比较法由④式得0)21)(12(1>+=+n n n T .因为,)12(22)12()12(232)21)(12()21)(32(1111•n n n n n n T T nn n n +++=++=++=++++165)1221(21)1221(21<=++≤++=n 所以111+<++n n T T ,即n n T T <+1. 所以 >>>>>>+1321n n T T T T T / 所以T n 存在最大值211=T . 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为T n 是数列}{n c 的前n 项和,所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以T n 存在最大值211=T .先猜后证通过分析,推测数列}{n T 的第一项211=T 最在. 下面证明:*)2(1N ∈≥<n n T T n 且.方法① 分析法因为1)21)(12(-+=n n n T ,所以只要证明211)21)(12(<-+n n . 即只要证明23)21)(12(<+n n . 只需要证明2423+>•n n . 即只要证明02423>--•n n 由二项式定理得2≥n 且*Ν∈n 时,222)1(1)11(22210++=-++=++≥+=n n n n n C C C nnnnn所以02423>--•n n 成立. 所以)2(1≥<n T T n 成立. 所以n T 存在最大值211=T . 方法② 利用数学归纳法(i )当n =2时,因为1)21)(12(-+=n n n T ,所以12221411)21)(14(T T =<=-+=,不等式成立.(ii )假设)2(≥=k k n 时不等式成立,即1T T k <. 则当1+=k n 时,.1111++++<+=k k k k c T c T T由①式得.0)21)(21()21)](1(23[111<-=+-=+++k k k k k c 所以11T T k <+. 这就是说,当n =k +1时,不等式也成立.由(i )(ii )得,对于一切2≥n 且*N ∈n ,总有1T T n <成立. 所以n T 存在最大值211=T .数列是一种特殊的函数,其通项公式可以视为函数的解析式.因此可以通过判断函数单调性的方法来求函数的最大值,然后通过分析求出数列的最大项.但如果函数的单调性较难判断,那就需要探求另一种途径来解决.例 若数列{}n a 的通项公式9(1)()10n n a n =+⋅,求{}n a 的最大项.解:设n a 是数列{}n a 中的最大项,则11,(2)n n n n a a n a a -+≥⎧≥⎨≥⎩,即1199(1)()(),101099(1)()(2)().1010n n n n n n n n -+⎧+⋅≥⋅⎪⎪⎨⎪+⋅≥+⋅⎪⎩解,得89n ≤≤, 又∵n N +∈, ∴8n =或9,9898910a a ==.当1n =时,91899510a =<,∴{}n a 的最大项为9898910a a ==.对于这种解法,不少同学可能会存在疑问.下面将可能出现的疑问一一展示,加以分析,以探究问题的实质及其解决方法.疑问1:为什么要单独讨论1n =的情况?分析:由于11,(2)n n n n a a n a a -+≥⎧≥⎨≥⎩这个不等式中出现了下标1n -,而数列中的项应该从1开始,因此11n -≥,即2n ≥。

高三数学数列问题的题型与方法

高三数学数列问题的题型与方法

高三数学数列问题的题型与方法第90-93课时课题:数列问题的题型与方法一.复习目标:1.能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n项和公式解题;2.能熟练地求一些特殊数列的通项和前项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题。

4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

(完整)数列题型及解题方法归纳总结,推荐文档

(完整)数列题型及解题方法归纳总结,推荐文档

1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)

数列常见数列公式(超全的数列公式及详细解法编撰)

数列常见数列公式(超全的数列公式及详细解法编撰)

数列常见数列公式(超全的数列公式及详细解法编撰)1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+==n a d m n a m )(-+或n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d ① d=n a -1-n a ② d=11--n a a n ③ d=mn a a mn -- 4.等差中项:,,2b a ba A ⇔+=成等差数列 5.等差数列的性质: m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式 6.等差数列的前n 项和公式 (1)2)(1n n a a n S +=(2)2)1(1dn n na S n -+=(3)n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式8.对等差数列前项和的最值问题有两种方法:(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S :由n )2da (n 2d S 12n -+=二次函数配方法求得最值时n 的值 等比数列1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0) 2.等比数列的通项公式: )0(111≠⋅⋅=-q a q a a n n ,)0(1≠⋅⋅=-q a q a a m n m n 3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0)“n a ≠0”是数列{n a }成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列.5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法 8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列; 当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列; 当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等比数列前n 项和等比数列的前n 项和公式:∴当1≠q 时,qq a S n n --=1)1(1①或q qa a S n n --=11②当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②.数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d ,∴d a =1………………………………①∵255a S =∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于一些基本的求数列的问题。

一般采用比较浅的方法就可以得到、但是对于无法用基本原理解的数列就需要特殊解法 不动点法
如果数列
}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有
h ra q
pa a n n n ++=
+1(其中p 、q 、
r 、h 均为常数,且
r h a r qr ph -
≠≠≠1,0,),那么,可作特征方程
h rx q
px x ++=
. (1)当特征方程有两个相同的根λ(称作特征根)时,
若,1λ=a 则;N ,∈=n a n
λ
若λ≠1a ,则,N ,1∈+=
n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存

,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.
(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则
11
2--=
n n n c c a λλ,,N ∈n
其中
).(,N ,)(211212111λλλλλ≠∈----=
-a n r p r p a a c n n 其中
例14 已知数列{}n a 满足112124
441
n n n a a a a +-=
=+,,求数列{}n a 的通项公式。

解:令212441x x x -=
+,得2
420240x x -+=,则1223x x ==,是函数2124()41
x f x x -=+的
两个不动点。

因为
112124
2
24121242(41)13262
132124321243(41)92793341
n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。

所以数列
23n n a a ⎧⎫-⎨⎬-⎩⎭
是以
112422343a a --==--为首项,以913
为公比的等比数列,故12132()39n n n a a --=-,则11313
2()19
n n a -=
+-。

评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程2124
41
x x x -=+的两
个根1223x x ==,,进而可推出
1122
13393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭
为等比数
列,再求出数列23n n a a ⎧⎫
-⎨⎬-⎩⎭
的通项公式,最后求出数列{}n a 的通项公式。

例15 已知数列{}n a 满足1172
223
n n n a a a a +-=
=+,,求数列{}n a 的通项公式。

解:令7223x x x -=
+,得2
2420x x -+=,则1x =是函数31()47
x f x x -=+的不动点。

因为17255
112323
n n
n n n a a a a a +---=
-=++,所以 2111
()()3423
n n n a =
++。

n b ,使得所给递推关系式转化
113
22
n n b b +=
+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。

不动点法
例14 已知数列{}n a 满足112124
441
n n n a a a a +-=
=+,,求数列{}n a 的通项公式。

解:令212441x x x -=
+,得2
420240x x -+=,则1223x x ==,是函数2124()41
x f x x -=+的
两个不动点。

因为
112124
2
24121242(41)13262
132124321243(41)927
93341n n n n n n n n
n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。

所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭
是以
112422343a a --==--为首项,以913
为公比的等比数列,故12132()39n n n a a --=-,则11313
2()19
n n a -=
+-。

评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程2124
41
x x x -=+的两
个根1223x x ==,,进而可推出
1122
13393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭
为等比数
列,再求出数列23n n a a ⎧⎫
-⎨
⎬-⎩⎭
的通项公式,最后求出数列{}n a 的通项公式。

例15 已知数列{}n a 满足1172
223
n n n a a a a +-=
=+,,求数列{}n a 的通项公式。

解:令7223x x x -=
+,得2
2420x x -+=,则1x =是函数31()47
x f x x -=+的不动点。

因为17255
112323
n n
n n n a a a a a +---=
-=++,所以。

相关文档
最新文档