2018-2019学年福建省泉州一中八年级(下)期末数学试卷 (解析版)

合集下载

福建省泉州市八年级下学期期末考试数学试题

福建省泉州市八年级下学期期末考试数学试题

福建省泉州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是().A . (0,0)B . (1,-1)C . (2,-1)D . (3,-1)2. (2分)在-3,-1,0,2这四个数中,最小的数是().A . -3B . -1C . 0D . 23. (2分)若分式有意义,则x的取值范围是()A . x≠5B . x≠-5C . x>5D . x>-54. (2分)若a+=2,则a2+的值为()A . 2B . 4C . 0D . -45. (2分)正八边形的中心角是()A . 45°B . 135°C . 360°D . 1080°6. (2分)数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是,这种说明问题的方式体现的数学思想方法叫做()A . 代入法B . 换元法C . 数形结合D . 分类讨论7. (2分)(2012·贺州) 分式方程的解是()A . 3B . ﹣3C . ±3D . 无解8. (2分) (2018九下·扬州模拟) 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列不符合题意的是()A .B .C .D .9. (2分)如图,D、E分别是AB、AC的中点,则S△ADE:S△ABC=()A . 1∶2B . 1∶3C . 1∶4D . 2∶310. (2分)如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx ﹣1的解集在数轴上表示正确的是()A .B .C .D .二、填空题 (共9题;共10分)11. (1分)(2017·河池) 分解因式:x2﹣9=________.12. (1分) (2018八下·深圳期中) 已知关于x的不等式组有且只有三个整数解,则a 的取值范围是________13. (2分) (2017八下·仁寿期中) 若方程有增根,则它的增根是________,m=________;14. (1分)如图,折叠长方形的一边AD,点D落在BC边的点F处,已知:AB=8cm,BC=10cm,则△EFC的周长=________cm.15. (1分)(2018·达州) 已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为________.16. (1分)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为________.17. (1分) (2018八上·双城期末) 当m=________时,方程的解为1.18. (1分) (2018八上·苏州期末) 如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是________.19. (1分)若∠A是锐角,cosA>,则∠A的取值范围是________ .三、解答题 (共9题;共93分)20. (10分)解方程(1)(2)3x2+4x=5.21. (10分)解方程:(1)x2﹣5x﹣6=0(2)=0.22. (10分)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:三角形DEB是等腰三角形;(2)判断AF与BD是否平行,并说明理由.23. (11分)如图,把△ABC平移得到△DEF,使点A(-4,1)与点D(1,-2)对应。

福建省泉州市八年级下册期末数学试卷及答案

福建省泉州市八年级下册期末数学试卷及答案

福建省泉州市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.1.(4分)计算0(23)的结果是()A.0B.1C.23D.232.(4分)一个纳米粒子的直径是1纳米(1纳米0.000000 001米),则该纳米粒子的直径1纳米用科学记数法可表示为()A.80.110米B.9110米C.101010米D.9110米3.(4分)点(2,3)P关于原点对称的点的坐标是()A.(2,3)B.(2,3)C.(2,3)D.(3,2)4.(4分)若分式22xx有意义,则实数x的取值范围是()A.2x B.2x C.2x D.2x5.(4分)下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形B.矩形C.菱形D.正方形6.(4分)对于正比例函数3y x,下列说法正确的是()A .y随x的增大而减小B .y随x的增大而增大C .y随x的减小而增大D .y有最小值7.(4分)一组数据1,2,3,4,5的方差与下列哪组数据的方差相同的是() A.2,4,6,8,10B.10,20,30,40,50C.11,12,13,14,15D.11,22,33,44,558.(4分)若直线2y kx经过第一、二、四象限,则化简|2|k的结果是() A.2k B.2k C.2k D.不能确定9.(4分)在ABCDY中,对角线AC与BD相交于点O,10AC,6BD,则下列线段不可能是ABCDY的边长的是()A.5B.6C.7D.810.(4分)若14aa,则221aa的值为()A.14B.16C.18D.20二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.(4分)计算:12.12.(4分)计算:2133a aa 13.(4分)若正比例函数(2)y kx 的图象经过点(1,3)A ,则k 的值是.14.(4分)如图,把Rt ABC(ABC=90)沿着射线BC 方向平移得到Rt DEF ,8AB,5BE,则四边形ACFD 的面积是.15.(4分)如图,在菱形ABCD 中,过点C 作CE BC 交对角线BD 于点E ,若20ECD,则ADB.16.(4分)在平面直角坐标系xOy 中,点O 是坐标原点,点B 的坐标是(3,44)m m ,则OB的最小值是.三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17.(8分)解方程:231xx .18.(8分)先化简、再求值:29(3)()39x x xx,其中2x .19.(8分)在某校课外体育兴趣小组射击队日常训练中,教练为了掌握同学们一阶段以来的射击训练情况,对射击小组进行了射击测试,根据他们某次射击的测试数据绘制成不完整的条形统计图及扇形统计图如图所示:()I请补全条形统计图;()II填空:该射击小组共有个同学,射击成绩的众数是,中位数是;()III根据上述数据,小明同学说“平均成绩与中位数成绩相同”,试判断小明的说法是否正确?并说明理由.20.(8分)在等腰三角形ABD中,AB AD.()I试利用无刻度的直尺和圆规作图,求作:点C,使得四边形ABCD是菱形.(保留作图痕迹,不写作法和证明);()II在菱形ABCD中,连结AC交BD于点O,若8AC,6BD,求AB边上的高h的长.21.(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)22.(10分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?23.(10分)如图,在平面直角坐标系中,直线111 2y x与直线211 3y x相交于点A.()I求直线211 3y x与x轴的交点坐标,并在坐标系中标出点A及画出直线2y的图象;()II若点P是直线1y在第一象限内的一点,过点P作//PQ y轴交直线2y于点Q,POQ的面积等于60,试求点P的横坐标.24.(13分)如图,在矩形ABCD 中,16AB ,18BC ,点E 在边AB 上,点F 是边BC上不与点B 、C 重合的一个动点,把EBF 沿EF 折叠,点B 落在点B 处.()I 若0AE 时,且点B 恰好落在AD 边上,请直接写出DB 的长;()II 若3AE 时,且CDB 是以DB 为腰的等腰三角形,试求DB 的长;()III 若8AE时,且点B 落在矩形内部(不含边长),试直接写出DB 的取值范围.25.(13分)如图,已知点A 、C 在双曲线1(0)m y mx 上,点B 、D 在双曲线2(0)n y nx 上,////AD BC y 轴.()I 当6m,3n,3AD时,求此时点A 的坐标;()II 若点A 、C 关于原点O 对称,试判断四边形ABCD 的形状,并说明理由;()III 若3AD,4BC,梯形ABCD 的面积为492,求mn 的最小值.福建省泉州市八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.1.(4分)计算0(23)的结果是()A.0B.1C.23D.23【解答】解:原式1.故选:B.2.(4分)一个纳米粒子的直径是1纳米(1纳米0.000000 001米),则该纳米粒子的直径1纳米用科学记数法可表示为()A.80.110米B.9110米C.101010米D.9110米【解答】解:该纳米粒子的直径1纳米用科学记数法可表示为9110米.故选:D.3.(4分)点(2,3)P关于原点对称的点的坐标是()A.(2,3)B.(2,3)C.(2,3)D.(3,2)【解答】解:已知点(2,3)P,则点P关于原点对称的点的坐标是(2,3),故选:C.4.(4分)若分式22xx有意义,则实数x的取值范围是()A.2x B.2x C.2x D.2x 【解答】解:由题意得,20x,解得:2x;故选:D.5.(4分)下列四边形中,是中心对称而不是轴对称图形的是() A.平行四边形B.矩形C.菱形D.正方形【解答】解:A、平行四边形是中心对称图形,不是轴对称图形,故选项正确;B、矩形既是轴对称图形,又是中心对称图形,故选项错误;C、菱形既是轴对称图形,又是中心对称图形,故选项错误;D、正方形,矩形既是轴对称图形,又是中心对称图形,故选项错误.故选:A.6.(4分)对于正比例函数3y x,下列说法正确的是()A .y随x的增大而减小B .y随x的增大而增大C .y随x的减小而增大D .y有最小值【解答】解:A、y随x的增大而增大,错误;B、y随x的增大而增大,正确;C、y随x的减小而减小,错误;D、y没有最小值,错误;故选:B.7.(4分)一组数据1,2,3,4,5的方差与下列哪组数据的方差相同的是() A.2,4,6,8,10B.10,20,30,40,50C.11,12,13,14,15D.11,22,33,44,55【解答】解:一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,故方差不变,Q,12,13,14,15是在原数据1,2,3,4,5中每个数均加上10,11数据1,2,3,4,5的方差与数据11,12,13,14,15的方差相同,故选:C.k的结果是()y kx经过第一、二、四象限,则化简|2|8.(4分)若直线2A.2k B.2k C.2k D.不能确定y kx经过第一、二、四象限,【解答】解:Q直线2k,k k,|2|2故选:B.BD,则下列线段不AC,69.(4分)在ABCDY中,对角线AC与BD相交于点O,10可能是ABCD Y 的边长的是()A .5B .6C .7D .8【解答】解:Q 在ABCD Y 中,对角线AC 与BD 相交于点O ,10AC ,6BD,152OAAC,132OBBD ,边长AB 的取值范围是:28AB.故选:D .10.(4分)若14a a,则221aa的值为()A .14B .16C .18D .20【解答】解:14a a Q ,14aa,两边平方得,21()16a a,212216a a,即:22118aa,故选:C .二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.(4分)计算:1212.【解答】解:1111222.故答案为12.12.(4分)计算:2133a a a 1【解答】解:原式213aa33a a1,故答案为:1.13.(4分)若正比例函数(2)ykx 的图象经过点(1,3)A ,则k 的值是1.【解答】解:根据题意得:3(2)1k1k故答案为114.(4分)如图,把Rt ABC(ABC=90)沿着射线BC方向平移得到Rt DEF,8AB,5BE,则四边形ACFD的面积是40.【解答】解:Rt ABCQ沿BC方向平移得到Rt DEF,8AB DE,5BE CF,ABC DEF,四边形ACFD的面积是:5840.故答案为:40.15.(4分)如图,在菱形ABCD中,过点C作CE BC交对角线BD于点E,若20ECD,则ADB35.【解答】解:Q菱形ABCD,//AD BC,BC CD,CE BCQ,20ECD,9020110BCD,180110352DBC,35ADB DBC,故答案为:3516.(4分)在平面直角坐标系xOy中,点O是坐标原点,点B的坐标是(3,44)m m,则OB的最小值是125.【解答】解:Q点O是坐标原点,点B的坐标是(3,44)m m,22221614412(30)(44)253216(5)5255OB m m mm m….故答案为:125.三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17.(8分)解方程:231xx .【解答】解:方程的两边同乘(1)x x ,得:2(1)3x x ,解得:2x ,检验:把2x代入(1)60x x,原方程的解为:2x.18.(8分)先化简、再求值:29(3)()39x x x x,其中2x .【解答】解:29(3)()39x xx x9(3)(3)3(3)(3)x x xx x x 2(3)(3)3xx x x xg (3)x x ,当2x时,原式2(23)10.19.(8分)在某校课外体育兴趣小组射击队日常训练中,教练为了掌握同学们一阶段以来的射击训练情况,对射击小组进行了射击测试,根据他们某次射击的测试数据绘制成不完整的条形统计图及扇形统计图如图所示:()I 请补全条形统计图;()II 填空:该射击小组共有20个同学,射击成绩的众数是,中位数是;()III根据上述数据,小明同学说“平均成绩与中位数成绩相同”,试判断小明的说法是否正确?并说明理由.【解答】解:()I Q射击的总人数为315%20(人),8环的人数为2030%6(人)如图所示:()II该射击小组共有20名同学,射击成绩的众数是7环,中位数为787.52(环),故答案为:20、7环、7.5环;()III不正确,平均成绩:367768391107.620x(环),7.5Q环7.6环,小明的说法不正确.20.(8分)在等腰三角形ABD中,AB AD.()I试利用无刻度的直尺和圆规作图,求作:点C,使得四边形ABCD是菱形.(保留作图痕迹,不写作法和证明);()II在菱形ABCD中,连结AC交BD于点O,若8AC,6BD,求AB边上的高h的长.【解答】解:()I如图,点C是所求作的点;()II Q四边形ABCD是菱形,AC BD,132OD OB BD,142OA OC AC,在Rt OAB中,22345AB,Q菱形ABCD的面积12AB h AC BDg g,16824255h,即AB边上的高h的长为245.21.(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)【解答】已知:如图,四边形ABCD中,//AB CD,A C.求证:四边形ABCD是平行四边形.证明://AB CDQ,180A D,180B C.A CQ,B D.四边形ABCD是平行四边形.22.(10分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?【解答】解:设原计划每天加工x套,由题意得:16040016018(120%)x x.解得:20x,经检验:20x是原方程的解.答:原计划每天加工20套23.(10分)如图,在平面直角坐标系中,直线111 2y x与直线211 3y x相交于点A.()I求直线211 3y x与x轴的交点坐标,并在坐标系中标出点A及画出直线2y的图象;()II若点P是直线1y在第一象限内的一点,过点P作//PQ y轴交直线2y于点Q,POQ的面积等于60,试求点P的横坐标.【解答】解:()I在211 3y x中,令0y,则1103x,解得:3x,2y与x轴的交点B的坐标为(3,0),由113112y xy x,解得1xy,所以点(0,1)A,过A、B两点作直线2y的图象如图所示.()II Q 点P 是直线1y 在第一象限内的一点,设点P 的坐标为1(,1)(0)2x x x ,又//PQ y 轴,点1(,1)3Q x x ,12115|||(1)(1)|||236PQ y y x x x ,Q 21155||||||22612POQS PQ x x x x g ,又POQ 的面积等于60,256012x,解得:12x或12x(舍去),点P 的横坐标为12.24.(13分)如图,在矩形ABCD 中,16AB,18BC,点E 在边AB 上,点F 是边BC上不与点B 、C 重合的一个动点,把EBF 沿EF 折叠,点B 落在点B 处.()I 若0AE 时,且点B 恰好落在AD 边上,请直接写出DB 的长;()II 若3AE 时,且CDB 是以DB 为腰的等腰三角形,试求DB 的长;()III 若8AE时,且点B 落在矩形内部(不含边长),试直接写出DB 的取值范围.【解答】(13分)解:()I 如图1,当0AE 时,E 与A 重合,由折叠得:16ABAB,Q 四边形ABCD 是矩形,18AD BC,18162DB,()II Q 四边形ABCD 是矩形,16DCAB,18ADBC.分两种情况讨论:()i 如图2,当16DBDC时,即CDB 是以DB 为腰的等腰三角形,(5分)()ii 如图3,当B DB C 时,过点B 作//GH AD ,分别交AB 与CD 于点G 、H .Q 四边形ABCD 是矩形,//AB CD ,90A 又//GH AD ,四边形AGHD 是平行四边形,又90A,AGHD Y 是矩形,AG DH ,90GHD ,即B H CD ,又B D B C ,1116822DH HC CD,8AGDH ,(7分)3AE Q ,16313BE EB AB AE ,835EGAGAE,(8分)在Rt EGB 中,由勾股定理得:2213512GB,18126B HGHGB,在Rt △B HD 中,由勾股定理得:226810B D ,综上,DB 的长为16或10.(10分)()III 如图4,由勾股定理是得:2216185802145BD ,如图5,连接DE ,8AB,Q,16AEEB,8由折叠得:8EB EB,Q,EB DB ED当E、B、D共线时,DB最小,如图6,由勾股定理得:22ED,188388297DB ED EB,2978,不扣分)(13分)DBDB29782145,.(或写成388858025.(13分)如图,已知点A 、C 在双曲线1(0)m y mx上,点B 、D 在双曲线2(0)n y n x上,////AD BC y 轴.()I 当6m,3n,3AD时,求此时点A 的坐标;()II 若点A 、C 关于原点O 对称,试判断四边形ABCD 的形状,并说明理由;()III 若3AD,4BC,梯形ABCD 的面积为492,求mn 的最小值.【解答】解:()6I mQ ,3n ,16y x,23y x,设点A 的坐标为6(,)t t ,则点D 的坐标为3(,)t t ,由3AD 得:633tt,解得:3t,此时点A 的坐标为(3,2).()II 四边形ABCD 是平行四边形,理由如下:设点A 的坐标为(,)m t t .Q 点A 、C 关于原点O 对称,点C 的坐标为(,)m t t ,////AD BC y Q 轴,且点B 、D 在双曲线2n y x上,(,)m A t t ,点(,)nB t t ,点(,)nD t t,点B 与点D 关于原点O 对称,即OB OD ,且B 、O 、D 三点共线,又点A 、C 关于原点O 对称,即OA OC ,且A 、O 、C 三点共线,AC 与BD 互相平分,四边形ABCD 是平行四边形.()III 设AD 与BC 的距离为h ,3AD Q ,4BC,梯形ABCD 的面积为492,149()22AD BC h g ,即149(34)22h g ,解得:7h,设点A 的坐标为(,)m x x,则点(,)n D x x,(7,)7n B x x ,(7,)7m C xx,由3AD,4BC,可得:3477mn x x n m xx,则3m nx ,4(7)n mx,34(7)x x,解得:4x,12m n ,22()()40m n m n mn Q …,21240mn …,4144mn …,即36mn …,又0m ,0n ,当0m n取到等号,即6m,6n时,mn 的最小值是36.法二:0mQ ,0n,0n,22()12()[]()3622mn m n ,,当6m,6n 时,()m n 的最大值是36,mn 的最小值是36.。

福建省泉州市2018-2019学年第二学期八年级数学期末试卷及参考答案

福建省泉州市2018-2019学年第二学期八年级数学期末试卷及参考答案

八年级数学 期末抽考试卷(考试时间:120分钟;满分:150分)一、选择题(每小题3分,共21分)1.函数21-=x y 中,自变量x 的取值范围是( ) A .x >2 B .2≠x C .x ≥2 D .2=x 2.在平面直角坐标系中,点(3,2-)关于y 轴对称的点的坐标是( )A .(3,2)B.(3,2-)C.(3-,2)D.(3-,2-)3.如图,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点O ,AE=AD ,若要使△ABE≌△ACD,则添加的一个条件不能..是( ) A .AB=AC B. BE=CD C .∠B=∠CD. ∠ADC=∠AEB4. 如图,小明在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和B 为圆心,以大于AB 一半的长为半径画弧,两弧相交于点C 和D ,则直线CD 就是所要作的线段AB 的垂直平分线.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形5. 下列命题是真命题的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形6.如图,函数kx y =(0≠k )和4+=ax y (0≠a )的图象相交于点A ),(32•,则不等式kx >4+ax 的解集为( )A .x >3B .x <3C .x >2D .x <27.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( )A .1B .1-C .2D .2- 二、填空题(每小题4分,共40分)8.计算:aba ÷1= . 9.当x = 时,分式13+-x x 的值为零.10.某种禽流感病毒的直径为0.000 000 012米,将这个数用科学记数法表示为 米.(第3题) EAB DCO(第4题)BACD(第6题)+=ax y11.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是 .12.某剧团甲、乙两个女舞蹈队队员的平均身高都是1.65m ,甲队身高的方差是512.S =甲,乙队身高的方差是422.S =乙,则两队中身高更整齐的是 队.(填“甲”或“乙”)13.如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,PD=7cm ,当PE= cm 时,点P 在∠AOB的平分线上.14.如图,在□ABCD 中,对角线AC 与BD 相交于点O .则图中共有 对全等三角形. 15.已知反比例函数xky =(0≠k ),当x >0时,y 随着x 的增大而增大,试写出一个符合条件的整数..k = .16.把直线x y 3=向下平移2个单位后所得到直线的解析式为=y . 17.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为a 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C —D —A —……的规律紧绕在四边形ABCD 的边上. (1)当12=a 时,细线另一端所在位置的点的坐标是 ; (2)当2013=a 时,细线另一端所在位置的点的坐标是 . 三、解答题(共89分) 18.(9分)计算:421)1.3(51+⎪⎭⎫⎝⎛--π+--19.(9分)先化简,再求值:1112---x x x ,其中21-=x .20.(9分)解方程:11312=-+-xx x(第17题)(第14题)OB ADC OB(第13题)21.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,∠B=∠E ,BF=CE ,AC ∥DF.求证:△ABC≌△DEF .22.(9分)“最美女教师”张丽莉为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学八年级(1)班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示: (1)求该班的总人数;(2)将条形图补充完整,并写出捐款数额的众数; (3)该班平均每人捐款多少元?23.(9分)如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF . (1)填空:∠B= 度; (2)求证:四边形AECF 是矩形.24.(9分)在“母亲节”期间,某校部分团员准备购进一批“康乃馨”进行销售,并将所得利润捐给贫困同学的母亲.根据市场调查,这种“康乃馨”的销售量y (枝)与销售单价x (元/枝)之间成一次函数关系,它的部分图...象.如图所示. (1)试求y 与x 之间的函数关系式;(2)若“康乃馨”的进价为5元/枝,且要求每枝的销售盈利不少于...1元,问:在此次活动中,他们最多可购进多少数量的康乃馨?捐款(元)(1)AB28% D E CA :5元B :10元C :15元D :20元E :25元(2)ECABDF/枝)ABCDFE25.(13分)如图,直线22+-=x y 与x 轴、y 轴分别相交于点A 和B. (1)直接写出坐标:点A ,点B ;(2)以线段AB 为一边在第一象限内作□ABCD ,其顶点D(3,1)在双曲线xky =(x >0)上.①求证:四边形ABCD 是正方形;②试探索:将正方形ABCD 沿x 轴向左平移多少个单位长度时,点C 恰好落在双曲线xky =(x >0)上.26.(13分)如图1,直线43y x b =-+分别与x 轴、y 轴交于A 、B 两点,与直线y kx =交于点C ⎪⎭⎫ ⎝⎛342•,. 平行于y 轴的直线l 从原点O 出发, 以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;直线l 分别交线段BC 、OC 、x 轴于点D 、E 、P ,以DE 为斜边向左侧作等腰..直角..△DEF ,设直线l 的运动时间为t (秒). (1)填空:k = ;b = ;(2)当t 为何值时,点F 在y 轴上(如图2所示);(3)设△DEF 与△BCO 重叠部分的面积为S ,请直接写出....S 与t 的函数关系式(不要求写解答过程),并写出t 的取值范围.(图1) (图2)(备用图)四、附加题(每小题5分,共10分)友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分. 1.命题“等边对等角”的逆命题是“ ”. 2.点P 2(,1-) 直线32+-=x y 上(填“在”或“不在”).参考答案及评分标准一、选择题(每小题3分,共21分)1.B ; 2.D ; 3.B ; 4.B ; 5.A ; 6.C ; 7.B. 二、填空题(每小题4分,共40分)8.b1; 9.3; 10.8102.1-⨯; 11.210; 12.甲; 13.7; 14.4; 15.开放性题,如:3-; 16.23-=x y ; 17.(1)(-1,1);(2)(-1,0 ).三、解答题(共89分)18.解:原式=2215+-+ …………………………… 8分 =6 …………………………………………… 9分 19.解:原式=112--x x …………………………………………………………… 3分=1)1)(1(--+x x x ………………………………………………… 5分=1+x …………………………………………………………… 7分当21-=x 时,原式=21121=+-. ………………………………… 9分20.解:原方程可化为:11312=---x x x ……………………………………… 2分 去分母,得132-=-x x , ………………………… 5分 解得2=x …………………………………………… 8分 经检验2=x 是原方程的根.∴原方程的解为2=x . ……………………………… 9分21.证明:∵AC ∥DF ,∴∠1=∠2,……………………………… 3分 ∵BF=CE , ∴BF+CF=CE+CF ,即BC=EF , ……………………………… 6分ECABDF12又∵∠B=∠E ,…………………………… 8分 ∴△ABC≌△DEF (A.S.A.). …………… 9分 22.解: (1)50%2814=(人).………………… 2分 (2)捐款10元的人数为:164714950=----(人),画条形图(略). ………………… 4分众数是10元. …………………… 6分(3))4257201415161095(501⨯+⨯+⨯+⨯+⨯1.13=(元) ……………………… 9分 答:该班平均每人捐款13.1元. 23.(1)60; (3)分(2)证明:∵四边形ABCD 是菱形,∴AD=BC ,AD ∥BC ,…………………………… 5分 ∵E 、F 分别是BC 、AD 的中点,∴CE=21BC ,AF=21AD , ∴AF=CE ,……………………………………… 6分 ∴四边形AECF 是平行四边形,……………… 7分 ∵AB=AC ,E 是BC 的中点,∴AE ⊥BC ,即∠AEC=90°, ………………… 9分 ∴ 四边形AECF 是矩形. 24.解:(1)设一次函数的解析式为b kx y +=(0≠k ),则⎩⎨⎧=+=+100125007b k b k ………………… 2分 ∴106080+-=x y . …………… 5分(2)∵80-=k <0,∴y 随x 的增大而减小, ……………………………………… 6分 又∵x ≥6, …………………………………………………… 7分 ∴当6=x 时,5801060680=+⨯-=最大y (枝). ……… 9分答:他们最多可购进580枝的康乃馨. 25.(1)A ),(01•,B ),(20•;……………………………… 4分(2)解:作DE ⊥x 轴于点E ,A B CD FE 解得⎩⎨⎧=-=106080b k …………………… 4分 捐款(元)(1) /枝)∵A ),(01•,B ),(20•,D(3,1),∴OA=DE=1,OB=AE=2,…………………………… 5分 ∵∠AOB=∠DEA=90°,∴△AOB ≌△DEA(S.A.S.),……………………… 6分 ∴∠OAB=∠ADE ,AB=AD , ∵∠ADE+∠DAE=90°, ∴∠OAB +∠DAE=90°,∴∠BAD=90°,…………………………………… 7分 又∵四边形ABCD 是平行四边形,∴四边形ABCD 是正方形. ……………………… 8分(3)作CF ⊥x 轴于点F ,BG ⊥CF 于点G ,由图形易得四边形BOFG 是矩形, ∴FG=OB=2,∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,………………………………………… 9分 又∵∠AOB=∠CGB=90°,AB=BC ,∴△AOB ≌△CGB(A.A.S.), ……………………… 10分 ∴CG=OA=1,BG=OB=2,∴CF=3,∴C ),(32•,………………………………………… 11分∵点D(3,1)在双曲线xky =上, ∴3=k ,∴xy 3=, 当3=y 时,1=x ,∴C ′),(31• …………………………………………… 12分∴将正方形ABCD 沿x 轴向左平移1个单位长度时,点C 恰好落在双曲线xy 3=(x >0)上. ………………………………………………… 13分26. (1)k =32,b =4;………………………………………………… 4分 (2)解:由(1)得两直线的解析式为:434+-=x y 和x y 32=,依题意得OP=t ,则D )434(+-t •t ,,E )32(t •t ,,……………………………… 6分∴DE=42+-t , ……………………………………………… 7分 作FG ⊥DE 于G ,则FG=OP=t∵△DEF 是等腰直角三角形,FG ⊥DE ,∴FG=21DE , 即)42(21+-=t t ,…………………………………………… 8 分解得1=t . …………………………………………………… 9分(3)当0<t ≤1时(如图1),t t S 432+-=; ………………… 11分 当1<t <2时(如图2),=S 2)2(-t . …………………… 13 分 注:每个解析式和范围各1分. 四、附加题(每小题5分,共10分) 1.等角对等边; 2.在.(图2)(图1)(备用图)。

2018-2019学年福建省泉州市惠安县八年级(下)期末数学试卷(解析版)

2018-2019学年福建省泉州市惠安县八年级(下)期末数学试卷(解析版)

福建省泉州市惠安县2018-2019学年八年级(下)期末数学试卷一、选择题1.若分式31x +在实数范围内有意义,则实数x 的取值范围是( ) A. 1x >-B. 1x <-C. 1x =-D. 1x ≠- 【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:x 10+≠,x 1∴≠-,故选:D .【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.2.在平面直角坐标系中,点(1,2)P -位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】∵点P(−1,2)的横坐标−1<0,纵坐标2>0,∴点P 在第二象限。

故选:B.【点睛】此题考查点的坐标,难度不大3.目前,随着制造技术的不断发展,手机芯片制造即将进入7nm (纳米)制程时代.已知10.000000001mm m =,则7nm 用科学记数法表示为( )A. 107010m -⨯B. 9710m -⨯C. 80.710m -⨯D. 70.0710m -⨯【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:1nm 0.000000001m =Q ,97nm 710m -∴=⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.若4x =是分式方程123a x x --=的根,则a 的值为( ) A. 9B. 9-C. 13D. 13- 【答案】B【解析】【分析】把x=4代入分式方程计算即可求出a 的值.【详解】解:把x 4=代入分式方程得:1a 2344--=, 去分母得:112a 2-=-,解得:a 9=-,故选:B .【点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.5.在平面直角坐标系中,点(2,)P a -与点(,1)Q b 关于原点对称,则+a b 的值为( )A. 1-B. 3-C. 1D. 3 【答案】C【解析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案【详解】解:Q 点()P 2,a -与点()Q b,1关于原点对称,b 2∴=,a 1=-,a b 1∴+=.故选:C .【点睛】此题主要考查了关于原点对称点的性质,正确得出a ,b 的值是解题关键.6.小杨同学五次数学小测成绩分别是91分、95分、85分、95分、100分,则小杨这五次成绩的众数和中位数分别是( )A. 95分、95分B. 85分、95分C. 95分、85分D. 95分、91分【答案】A【解析】【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:95分出现次数最多,所以众数为95分;排序为:85,91,95,95,100所以中位数为95,故选:A .【点睛】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.如图,矩形ABCD 中,对角线AC 、BD 交于点O .若30ACB ∠=︒,10AC =,则AB 的长为( )A. 6B. 5C. 4D. 3【答案】B【解析】【分析】由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=5,∠AOB=2∠ACB=60°,△AOB 为等边三角形,故AB=OA=5.【详解】解:∵四边形ABCD 是矩形,∴OA=OC=OB=OD=12AC=5,∠ABC=90°, ∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB 是等边三角形∴AB=OA=5故选:B【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.8.如图,在ABCD Y 中,AC a =,若ABC ∆的周长为13,则ABCD Y 的周长为( )A. 13a -B. 13a +C. 26a -D. 262a -【答案】D【解析】【分析】 求出AB+BC 的值,其2倍便是平行四边形的周长.【详解】解:ΔABC Q 的周长为13,AC a =,AB BC 13a ∴+=-,则平行四边形ABCD 周长为()213a 262a -=-,【点睛】本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.9.如图,点E 为正方形ABCD 内一点,AD ED =,70AED ∠=︒,连结EC ,那么AEC ∠的度数是( )A. 105︒B. 130︒C. 135︒D. 140︒【答案】C【解析】【分析】 由正方形的性质得到AD=CD ,根据等腰三角形的性质得到∠DAE=∠AED=70°,求得∠ADE=180°-70°-70°=40°,得到∠EDC=50°,根据等腰三角形的性质即可得到结论.【详解】解:AD DE =Q ,DAE AED 70∠∠∴==︒,ADE 180707040∠∴=︒-︒-︒=︒,Q 四边形ABCD 是正方形,AD CD ∴=,ADC 90∠=︒,EDC 50∠∴=︒,DC DE ∴=,()1DEC DCE 18050652∠∠∴==︒-︒=︒, AEC AED DEC 135∠∠∠∴=+=︒,故选:C .【点睛】本题考查了正方形的性质,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.10.如图,一次函数1y x =-+的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 开始向点B 运动时,则矩形CDOE 的周长( )A. 不变B. 逐渐变大C. 逐渐变小D. 先变小后变大【答案】A【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+1),根据矩形的周长公式即可得出C 矩形CDOE =2,此题得解. 【详解】解:设点C 的坐标为(m ,m 1)(0m 1)-+<<,则CE m =,CD m 1=-+,()CDOE C 2CE CD 2∴=+=矩形,故选:A .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.二、填空题11.计算:2111m m m +-=++_____. 【答案】1【解析】【分析】直接进行分式的加减即可. 【详解】解:原式m 211m 1+-==+. 故答案为:1.【点睛】本题考查了分式的加减.12.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 【答案】24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为:24.13.若30a b ab +-=,则11a b +=____. 【答案】3【解析】【分析】由a+b-3ab=0得a+b 11333a b ab ab a b ab ab+=+===,. 【详解】解:由a+b-3ab=0得a+b=3ab ,113a b ab a b ab ab++===3, 故答案为3.【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键.14.函数2(y kx k k =-+为任意实数)的图象必经过定点,则该点坐标为____.【答案】(1,2)【解析】【分析】先把函数解析式化为y=k (x-1)+2的形式,再令x=1求出y 的值即可.【详解】解:函数y kx k 2=-+可化为()y k x 12=-+,当x 10-=,即x 1=时,y 2=,∴该定点坐标()1,2.故答案为:()1,2.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k (x-1)+2的形式是解答此题的关键.15.如图,AFDE Y 的顶点F 在矩形ABCD 的边BC 上,点F 与点B 、C 不重合,若AED ∆的面积为4,则图中阴影部分两个三角形的面积和为_____.【答案】4【解析】【分析】由平行四边形的性质可得S △ADE =S △ADF =4,由矩形的性质可得阴影部分两个三角形的面积和=S △ADF =4.【详解】解:∵四边形AFDE 是平行四边形∴S △ADE =S △ADF =4,Q 四边形ABCD 是矩形,∴阴影部分两个三角形的面积和ΔADF S 4==,故答案为4.【点睛】本题考查了矩形的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.16.如图,将矩形ABCD 绕点B 顺时针旋转α度(0360)α︒<<︒,得到矩形BEFG .若AG DG =,则此时α的值是_____.【答案】60°或300° 【解析】由“SAS”可证△DCG ≌△ABG ,可得CG=BG ,由旋转的性质可得BG=BC ,可得△BCG 是等边三角形,即可求解.【详解】解:如图,连接CG ,∵四边形ABCD 是矩形,∴CD=AB ,∠DAB=∠ADC=90°,∵DG=AG ,∴∠ADG=∠DAG ,∴∠CDG=∠GAB ,且CD=AB ,DG=AG ,∴△DCG ≌△ABG (SAS ),∴CG=BG ,∵将矩形ABCD 绕点B 顺时针旋转α度(0°<α<360°),得到矩形BEFG ,∴BC=BG ,∠CBG=α,∴BC=BG=CG ,∴△BCG 是等边三角形,∴∠CBG=α=60°,同理当G 点在AD 的左侧时,△BCG 仍是等边三角形,Α=300°故答案为:60°或300°. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG 是等边三角形是本题的关键.三、解答题17.计算:0114(1)()2----+.【解析】【分析】先去掉绝对值符号、对负整数指数幂、零指数幂分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式412=-+5=.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值考点的运算.18.先化简,再求值:212(1)11x x x --÷--,其中5x =-. 【答案】x+1;-4.【解析】【分析】原式被除数括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a 的值代入计算即可求出值. 【详解】解:212111x x x -⎛⎫-÷ ⎪--⎝⎭ =11(1)(1)12x x x x x --+-⋅--, =x+1,当x=-5时,原式=-5+1=-4.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.王老师计划用36元购买若干袋洗衣液,恰遇超市降价促销,每袋洗衣液降价3元,因而王老师只用24元便可以购买到相同袋数洗衣液.问这种洗衣液每袋原价是多少元?【答案】这种洗衣液每袋原价是9元.【解析】【分析】设这种洗衣液每袋原价是x 元,则现价为(x-3)元,根据数量=总价÷单价结合降价后24元钱购买的洗衣液袋数等于降价前36元购买的洗衣液袋数,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设这种洗衣液每袋原价是x 元,则现价为()x 3-元, 依题意,得:3624x x 3=-, 解得:x 9=,经检验,x 9=是原分式方程的解,且符合题意. 答:这种洗衣液每袋原价是9元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表: 投进个数 10个 8个 6个 4个 人数 1个5人2人2人(1)请计算甲组平均每人投进个数;(2)经统计,两组平均每人投进个数相同且乙组成的方差为3.2.若从成绩稳定性角度看,哪一组表现更好? 【答案】(1)甲组平均每人投进个数为7个;(2)乙组表现更好. 【解析】 【分析】(1)加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则x1w1+x2w2+…+xnwnw1+w2+…+wn 叫做这n 个数的加权平均数,根据加权平均数的定义计算即可. (2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示,根据方差的计算公式结合平均数进行计算即可. 【详解】解:(1)甲组平均每人投进个数:()1101856242710⨯+⨯+⨯+⨯=(个); (2)甲组方差:()()()()22221107587267247 3.410⎡⎤-+⨯-+⨯-+⨯-=⎣⎦, 乙组的方差为3.2,3.2<3.4所以从成绩稳定性角度看,乙组表现更好.【点睛】本题考查了方差的计算以及方差越小数据越稳定,正确运用方差公式进行计算是解题的关键.21.平行四边形ABCD 中,对角线AC 上两点E ,F ,若AE=CF ,四边形DEBF 是平行四边形吗?说明你的理由.【答案】是,理由见解析. 【解析】 【分析】连接BD ,交AC 于点O ,证明四边形AECF 的对角线互相平分即可. 【详解】四边形DEBF 是平行四边形,理由如下: 连接BD ,∵四边形ABCD 是平行四边形, ∴AO =CO ,DO =BO , ∵AE =CF , ∴AO −AE =CO −CF , ∴EO =FO , 又∵DO =BO ,∴四边形DEBF 是平行四边形.【点睛】本题考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.22. 甲车从A 地驶往B 地,同时乙车从B 地驶往A 地,两车相向而行,匀速行驶,甲车距B 地的距离y (km )与行驶时间x (h )之间的函数关系如图所示,乙车的速度是60km/h . (1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a (km/h ),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a 的值.【答案】(1)80km/h ;(2)75. 【解析】 【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km ,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a (km/h ),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a 的值. 【详解】(1)由图象可得,甲车的速度为:(280-120)÷2=80km/h ,即甲车的速度是80km/h ; (2)相遇时间为:2808060+=2h ,由题意可得:602388028060a⨯⨯+=,解得,a=75,经检验,a=75是原分式方程的解,即a 的值是75.【点睛】考点:分式方程的应用;函数的图象;方程与不等式.23.设P (x ,0)是x 轴上的一个动点,它与原点的距离为y 1. (1)求y 1关于x 的函数解析式,并画出这个函数的图象; (2)若反比例函数y 2kx=的图象与函数y 1的图象相交于点A ,且点A 的纵坐标为2. ①求k 的值;②结合图象,当y 1>y 2时,写出x 的取值范围.【答案】(1)y 1=|x |,图象见解析;(2)①±4;②答案见解析. 【解析】 【分析】(1)写出函数解析式,画出图象即可;(2)①分两种情形考虑,求出点A 坐标,利用待定系数法即可解决问题;②利用图象法分两种情形即可解决问题.【详解】(1)由题意y 1=|x|,函数图象如图所示:(2)①当点A 在第一象限时,由题意A (2,2), ∴2k 2=, ∴k =4,同法当点A 在第二象限时,k =﹣4,②观察图象可知:当k >0时,x >2时,y 1>y 2或x <0时,y 1>y 2. 当k <0时,x <﹣2时,y 1>y 2或x >0时,y 1>y 2.【点睛】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.24.如图,在正方形ABCD 中,点E 是BC 边上的一动点,点F 是CD 上一点,且CE DF =,AF 、DE 相交于点G .(1)求证:ADF DCE V V ≌; (2)求AGD ∠的度数 (3)若BG BC =,求DGAG的值.【答案】(1)见解析;(2)∠AGD =90°;(3)12DG AG =. 【解析】 【分析】(1)直接利用正方形的性质得到AD =DC ,∠ADF =∠DCE ,CE DF =,结合全等三角形的判定方法得出答案;(2)根据∠DAF =∠CDE 和余角的性质可得∠AGD =90°;(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出DGAG的值.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,△ADF和△DCE中AD DCADF DCEDF EC=⎧⎪∠=∠⎨⎪=⎩;∴△ADF≌△DCE(SAS);(2)解:由(1)得△ADF≌△DCE,∴∠DAF=∠CDE,∵∠ADG+∠CDE=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,(3)过点B作BH⊥AG于H∵BH⊥AG,∴∠BHA=90°,∴∠BHA=∠AGD,∵四边形ABCD是正方形,∴AB=AD=BC,∠BAD=90°,∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,∴∠ABH=∠DAG,在△ABH和△ADG中BHA AGDABH DAGBA DA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH≌△ADG(AAS),∴AH=DG,∵BG=BC,BA=BC,∴BA=BG,∴AH=12 AG,∴DG=12 AG,∴12 DGAG=.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.25.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①132y x=-+;②四边形ABCD是菱形,理由见解析;(2)四边形ABCD能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B (4,4m ),D (4,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4m =Q ,∴反比例函数为4y x=, 当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=, ()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩,∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+; ②四边形ABCD 是菱形, 理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =,48433PA ∴=-=,208433PC =-=,PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n ny x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫⎪⎝⎭,4,8m n P +⎛⎫∴ ⎪⎝⎭,8(m A m n ∴+,)8m n +,8(n C m n +,)8m n+ AC BD =Q ,∴8844n m n mm n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.。

泉州实验中学2018-2019学年度下学期期末考试初二年数学

泉州实验中学2018-2019学年度下学期期末考试初二年数学

泉州实验中学2018-2019学年度下学期期末考试初二年数学1、关于x的方程(k2–k–2)x2+kx+1=0是一元二次方程的条件是()A、k≠– 1B、k≠2 C 、k≠– 1或k≠2 D 、k≠– 1且k≠22、下列运算正确的是()A、B、C、D、3、如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A、B、C、 D、4、随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多5套,且两次进价相同.若设该书店第一次购进x套,根据题意,列方程正确的是()A、B、C、D、5、下列关于函数y= –的说法错误的是()A、它是反比例函数B、它的图象关于原点中心对称C、它的图象经过点(,–1)D、当x<0时,y随x的增大而增大6、近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A、 10%B、 15%C、 20%D、 25%7、在Rt△ABC中,斜边AB上的高为CD,AB = 12,AD : BD = 3 : 1,那么CD长为()A、 6B、C、 18D、8、对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于()A、﹣1B、 ±2C、 1D、 ±19、如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足P M:PQ=3:2,则PM的长为()A、 60mmB、mmC、 20mmD、mm10、如图,已知点A是双曲线y=在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线y=上运动,则k的值是()A、﹣3B、 3C、﹣2D、﹣311、两个相似三角形的面积比是16:25,则它们的对应边上的角平分线的比是_______.12、已知点和点都在直线上(其中k是常数),则(填“>”或“<”号)13、已知关于x的分式方程的解大于1,则实数m的取值范围是______.14、若、为方程的两实根,则代数式=__________.15、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价________元.16、将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+的最小值为________.17、解方程:(1)(2)18、先化简:,其中.19、如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.20、在如图所示的方格中,每个小正方形的边长都是1,△O1A1B1与△OAB是以点P为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)在图中标出位似中心P的位置(请保留画图痕迹);(2)以点O为位似中心,在直线m的左侧画出△OAB的另一个位似△OA2B2,使它与△OAB的位似比为2:1,并直接写出△OA2B2,与△OAB的面积之比是_21、已知关于的一元二次方程.(1)无论为何值,方程总有两个不相等的实数根;(2)若原方程的一个根大于3,另一个根小于3,求的最大整数值.22、如图,正方形中,为上一点,是的中点,,垂足为,交的延长线于点,交于点.(1)求证:△∽△;(2)若,,求的长.23、甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地___千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.24、如图1,反比例函数y=(m>0)的图象上有两点A,B,其中A的横坐标为1,作BC⊥x轴于C点,连接AO,BO.(1)若m=2,则AO的长为____,△BOC的面积为____.(2)若点B的纵坐标为1,连接AB,当AO=AB时,求m的值.(3)如图2,BD⊥y轴于D,交反比例函数y=(0<n<m)于点M,BC交其于N点,连接MN,OM,ON.若m=4,记△OMN的面积为S1,△BMN的面积为S2,且S=S1﹣S2,求S与n的函数关系式以及S的最大值.25、如图1,在平面直角坐标系中,直线l:y=与x轴交于点A,且经过点B(2,m)、点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE 以每秒1个单位运动到点E再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,请直接写出t的最小值.泉州实验中学2018-2019学年度下学期期末考试初二年数学参考答案1-5DBBDC 6-10ADDAA11、4:5 12、< 13、02m m <≠-且 14、-2 15、3 16、17、解:(1)方程两边同时乘以(x+2)(x-1)得:,整理得:﹣4x=8,解得:x=﹣2,检验:当x=-2时,(x+2)(x-1)=0,∴x=-2是增根,所以原方程无解; (2),,, ,18、解:原式= =,当时,原式=19、解:(1)将点A (4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A 作AC ⊥x 轴于点C ,则OC=4、AC=3,∴OA==5,∵AB ∥x 轴,且AB=OA=5,∴点B 的坐标为(9,3);设OB 所在直线解析式为y=mx (m≠0),将点B (9,3)代入得m=, ∴OB 所在直线解析式为y=x ;(3)联立解析式:解得:,可得点P 坐标为(6,2), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,连接AP ,则点E 坐标为(6,3), ∴AE=2,PE=1,PD=2,则△OAP 的面积=×(2+6)×3-×6×2-×2×1=5.20、解:(1)如图所示:点P即为所求;(2)如图所示:△OA2B2,即为所求,△OA2B2与△OAB的面积之比是:4:1.21、解:(1)∵a=1,b=k-5,c=1-k,∴△=b2-4ac=(k-5)2-4×1×(1-k)=k2-6k+21=(k-3)2+12.∵(k-3)2≥0,∴(k-3)2+12>0,即△>0,∴无论k为何值,方程总有两个不相等实数根;(2)∵方程x2+(k-5)x+1-k=0的一根大于3,另一根小于3,∴抛物线y=x2+(k-5)x+1-k与x轴的两交点位于(3,0)的两侧.∵a=1>0,∴当x=3时,y<0,即9+3(k-5)+1-k<0,∴2k-5<0,解得:,∴k的最大整数值为2.22、(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴,AD=12,∵F是AM的中点,∴,∵△ABM∽△EFA,∴,∴,∴AE=16.9,∴DE=AE-AD=4.9.23、(1)30(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x-195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴当x=3.9时,轿车与货车相遇;(3)当x=2.5时,y货=150,两车相距=150-80=70>20,由题意60x-(110x-195)=20或110x-195-60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.24、解:(1);1;(2)由题意得A(1,m),B(m,1),∵AO=AB 由勾股定理可得,,解得,∵m-1>0,即m>1,∴(3)设,则M(,),,∴S1=4﹣S△DOM﹣S△ONC﹣S2,,=4﹣n﹣S2,∵S=S1﹣S2=4﹣n﹣2S2,=,,,=-(n﹣2)2+1,∵-<0,∴n=2时,S有最大值,最大值为1.25、解:(1)将点B坐标代入直线l的表达式得:m==3,点B(2,3),令y=0,则x=-2,即点A(-2,0),将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故:直线BC的表达式为:y=-3x+9;(2)过点O作OD∥AB交BC于点D,则D点为所求,直线AB表达式得k值为,则直线OD的表达式为y=x,将直线BC与OD表达式联立并解得:x=,即:点D的坐标为(,);(3)过点P作x轴的平行线分别于过点A、M与y轴的平行线于点G、H,设点P的坐标为(0,n)、点M(m,9-3m),∵∠GPA+∠GAP=90°,∠GPA+∠HPM=90°,∴∠HPM=∠GAP,又PA=PM,∠G=∠H=90°,∴△AGP≌△PHM(AAS),GP=HM=2,GA=PH,即:,解得:m=或,即点M的坐标为(,)或(,-);(4)t=+=AB+AE,过点A作倾斜角为45度的直线l2,过点E作EF⊥l2交于点F,则:EF=AE,即t=BE+EF,当B、E、F三点共线且垂直于直线l2时,t最小,即:t=BF′,同理,直线l2的表达式为:y=-x-2,直线BF表达式为:y=x+1,将上述两个表达式联立并解得:x=-,即:点F′(-,-),t=BF′==.。

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·卢龙期中) 在直角坐标系中,点P的坐标为(-3,2),则和点P关于原点中心对称的点P′的坐标是()A .B .C .D .2. (2分) (2019七下·长春月考) 边形的内角和等于,则的值是()A . 8B . 7C . 6D . 53. (2分) (2016七上·钦州期末) 下列图案中,是中心对称图形的是()A .B .C .D .4. (2分)方程y=1﹣x与3x+2y=5的公共解是()A .B .C .D .5. (2分)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A . 8,8B . 8.4,8C . 8.4,8.4D . 8,8.46. (2分) (2018九上·翁牛特旗期末) 如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度()A . 变大B . 变小C . 不变D . 不能确定7. (2分)二元一次方程3a+b=10在正整数范围内的解的个数是()A . 1B . 2C . 3D . 48. (2分) (2017九上·新乡期中) 方程x2+ax+7=0和x2﹣7x﹣a=0有一个公共根,则a的值是()A . 9B . 8C . 7D . 69. (2分) (2020九下·宝山期中) 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是()A .B .C .D .10. (2分)(2018·咸宁) 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共9分)11. (1分) (2019八下·长沙期中) 函数中自变量 x 的取值范围是________;12. (1分)(2018·巴中) 如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=________.13. (4分)如下图,五间亭的位置是________,飞虹桥的位置是________,下棋亭的位置是________,碑亭的位置是________.14. (1分)(2019·成都模拟) 如图,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D、E作DF∥EG,分别交BC于F、G,沿DF将△BDF剪下,并顺时针旋转180°与△AMD重叠,沿EG将△CEG剪下,并逆时针旋转180°与△ANE重叠,则四边形MFGN周长的最小值是________.15. (1分)(2017·青海) 若点A(m,n)在直线y=kx(k≠0)上,当﹣1≤m≤1时,﹣1≤n≤1,则这条直线的函数解析式为________.16. (1分) (2018九上·运城月考) 已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________三、解答题 (共10题;共100分)17. (10分) (2017九上·临沭期末) 解方程:(1) x2-1=2(x+1);(2) 2x2-4x-5=0.18. (11分)(2020·温州模拟) (12分)学校计划选购甲、乙两种图书作为“校园读书节”的奖品。

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)把多项式4a2b+4ab2+b3因式分解,正确的是()A . a(2a+6)2B . b(2a+b)2C . b(a+2b)2D . 4b(a+b)22. (2分) (2018九上·岐山期中) 顺次连接对角线相等的四边形各边中点所得四边形是()A . 矩形B . 平行四边形C . 菱形D . 任意四边形3. (2分)(2017·隆回模拟) 函数y= 的自变量x的取值范围是()A . x≠2B . x<2C . x≥2D . x>24. (2分) (2019八下·顺德月考) 不等式-3x+6>0的正整数解有()A . 1个B . 2个C . 3个D . 无数多个5. (2分)(2017·嘉祥模拟) 如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于 EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A . AG平分∠DABB . AD=DH6. (2分) (2016八上·宁阳期中) 下列等式中,不成立的是()A . =x﹣yB . =x﹣yC .D .7. (2分)以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A . (1)(2)(3)B . (1)(3)(5)C . (2)(4)(5)D . (4)(5)8. (2分) (2019八下·东莞月考) 如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB 于点E,DF⊥AC于点F,则BE+CF=()A . 5B . 10C . 15D . 209. (2分) (2020八下·富平期末) 关于x的分式方程的解为正实数,则实数m的取值范围是()C . 且D . 且10. (2分)如图,AC与BD互相平分于点O,则△AOB至少绕点O旋转多少度才可与△COD重合()A . 60°B . 30°C . 180°D . 不确定二、填空题 (共5题;共5分)11. (1分) (2017八上·官渡期末) 如果一个多边形的内角和是1800°,那么这个多边形的边数是________.12. (1分) (2017八上·新会期末) 若分式的值为0,则实数x的值为________.13. (1分)如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=________ .14. (1分)已知,且﹣1<x﹣y<0,则k的取值范围为________ .15. (1分) (2018九上·桥东期中) 如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.三、解答题 (共8题;共66分)16. (15分) (2020九下·台州月考) 已知抛物线y=ax2+bx﹣a+b(a,b为常数,且α≠0).(1)当a=﹣1,b=1时,求顶点坐标;(2)求证:无论a,b取任意实数,此抛物线必经过一个定点,并求出此定点;(3)若a<0,当抛物线的顶点在最低位置时:①求a与b满足的关系式;②抛物线上有两点(2,s),(m,t),当s<t时,求m的取值范围.17. (5分)当n为整数时,(n+1)2﹣(n﹣1)2的值一定是4的倍数吗?18. (5分)(2018·马边模拟) 先化简,再求值:,其中.19. (6分) (2015八下·沛县期中) 方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标________.20. (10分) (2019八上·成都开学考)(1)如图,在中,已知,,与的平分线交于点,求证:是等腰三角形.(2) .阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图1可以得到.请解答下列问题:①.写出图2中所表示的数学等式;②.利用(1)中所得到的结论,解决下面的问题:已知,,求的值;21. (10分)(2019·泰安模拟) 某服装商预测一种应季衬衫能畅销市场,用8000元购进一批此种衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价为100元,最后10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?22. (5分) (2019八上·融安期中) 一个多边形的内角和是1260°,求这个多边形的边数。

泉州实验中学2018-2019学年度下学期期末考试初二年数学

泉州实验中学2018-2019学年度下学期期末考试初二年数学

泉州实验中学2018-2019学年度下学期期末考试初二年数学1、关于x的方程(k2–k–2)x2+kx+1=0是一元二次方程的条件是()A、k≠– 1B、k≠2 C 、k≠– 1或k≠2 D 、k≠– 1且k≠22、下列运算正确的是()A、B、C、D、3、如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A、B、C、 D、4、随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多5套,且两次进价相同.若设该书店第一次购进x套,根据题意,列方程正确的是()A、B、C、D、5、下列关于函数y= –的说法错误的是()A、它是反比例函数B、它的图象关于原点中心对称C、它的图象经过点(,–1)D、当x<0时,y随x的增大而增大6、近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A、 10%B、 15%C、 20%D、 25%7、在Rt△ABC中,斜边AB上的高为CD,AB = 12,AD : BD = 3 : 1,那么CD长为()A、 6B、C、 18D、8、对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于()A、﹣1B、 ±2C、 1D、 ±19、如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足P M:PQ=3:2,则PM的长为()A、 60mmB、mmC、 20mmD、mm10、如图,已知点A是双曲线y=在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线y=上运动,则k的值是()A、﹣3B、 3C、﹣2D、﹣311、两个相似三角形的面积比是16:25,则它们的对应边上的角平分线的比是_______.12、已知点和点都在直线上(其中k是常数),则(填“>”或“<”号)13、已知关于x的分式方程的解大于1,则实数m的取值范围是______.14、若、为方程的两实根,则代数式=__________.15、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价________元.16、将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+的最小值为________.17、解方程:(1)(2)18、先化简:,其中.19、如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.20、在如图所示的方格中,每个小正方形的边长都是1,△O1A1B1与△OAB是以点P为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)在图中标出位似中心P的位置(请保留画图痕迹);(2)以点O为位似中心,在直线m的左侧画出△OAB的另一个位似△OA2B2,使它与△OAB的位似比为2:1,并直接写出△OA2B2,与△OAB的面积之比是_21、已知关于的一元二次方程.(1)无论为何值,方程总有两个不相等的实数根;(2)若原方程的一个根大于3,另一个根小于3,求的最大整数值.22、如图,正方形中,为上一点,是的中点,,垂足为,交的延长线于点,交于点.(1)求证:△∽△;(2)若,,求的长.23、甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地___千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.24、如图1,反比例函数y=(m>0)的图象上有两点A,B,其中A的横坐标为1,作BC⊥x轴于C点,连接AO,BO.(1)若m=2,则AO的长为____,△BOC的面积为____.(2)若点B的纵坐标为1,连接AB,当AO=AB时,求m的值.(3)如图2,BD⊥y轴于D,交反比例函数y=(0<n<m)于点M,BC交其于N点,连接MN,OM,ON.若m=4,记△OMN的面积为S1,△BMN的面积为S2,且S=S1﹣S2,求S与n的函数关系式以及S的最大值.25、如图1,在平面直角坐标系中,直线l:y=与x轴交于点A,且经过点B(2,m)、点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE 以每秒1个单位运动到点E再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,请直接写出t的最小值.泉州实验中学2018-2019学年度下学期期末考试初二年数学参考答案1-5DBBDC 6-10ADDAA11、4:5 12、< 13、02m m <≠-且 14、-2 15、3 16、17、解:(1)方程两边同时乘以(x+2)(x-1)得:,整理得:﹣4x=8,解得:x=﹣2,检验:当x=-2时,(x+2)(x-1)=0,∴x=-2是增根,所以原方程无解; (2),,, ,18、解:原式= =,当时,原式=19、解:(1)将点A (4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A 作AC ⊥x 轴于点C ,则OC=4、AC=3,∴OA==5,∵AB ∥x 轴,且AB=OA=5,∴点B 的坐标为(9,3);设OB 所在直线解析式为y=mx (m≠0),将点B (9,3)代入得m=, ∴OB 所在直线解析式为y=x ;(3)联立解析式:解得:,可得点P 坐标为(6,2), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,连接AP ,则点E 坐标为(6,3), ∴AE=2,PE=1,PD=2,则△OAP 的面积=×(2+6)×3-×6×2-×2×1=5.20、解:(1)如图所示:点P即为所求;(2)如图所示:△OA2B2,即为所求,△OA2B2与△OAB的面积之比是:4:1.21、解:(1)∵a=1,b=k-5,c=1-k,∴△=b2-4ac=(k-5)2-4×1×(1-k)=k2-6k+21=(k-3)2+12.∵(k-3)2≥0,∴(k-3)2+12>0,即△>0,∴无论k为何值,方程总有两个不相等实数根;(2)∵方程x2+(k-5)x+1-k=0的一根大于3,另一根小于3,∴抛物线y=x2+(k-5)x+1-k与x轴的两交点位于(3,0)的两侧.∵a=1>0,∴当x=3时,y<0,即9+3(k-5)+1-k<0,∴2k-5<0,解得:,∴k的最大整数值为2.22、(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴,AD=12,∵F是AM的中点,∴,∵△ABM∽△EFA,∴,∴,∴AE=16.9,∴DE=AE-AD=4.9.23、(1)30(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x-195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴当x=3.9时,轿车与货车相遇;(3)当x=2.5时,y货=150,两车相距=150-80=70>20,由题意60x-(110x-195)=20或110x-195-60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.24、解:(1);1;(2)由题意得A(1,m),B(m,1),∵AO=AB 由勾股定理可得,,解得,∵m-1>0,即m>1,∴(3)设,则M(,),,∴S1=4﹣S△DOM﹣S△ONC﹣S2,,=4﹣n﹣S2,∵S=S1﹣S2=4﹣n﹣2S2,=,,,=-(n﹣2)2+1,∵-<0,∴n=2时,S有最大值,最大值为1.25、解:(1)将点B坐标代入直线l的表达式得:m==3,点B(2,3),令y=0,则x=-2,即点A(-2,0),将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故:直线BC的表达式为:y=-3x+9;(2)过点O作OD∥AB交BC于点D,则D点为所求,直线AB表达式得k值为,则直线OD的表达式为y=x,将直线BC与OD表达式联立并解得:x=,即:点D的坐标为(,);(3)过点P作x轴的平行线分别于过点A、M与y轴的平行线于点G、H,设点P的坐标为(0,n)、点M(m,9-3m),∵∠GPA+∠GAP=90°,∠GPA+∠HPM=90°,∴∠HPM=∠GAP,又PA=PM,∠G=∠H=90°,∴△AGP≌△PHM(AAS),GP=HM=2,GA=PH,即:,解得:m=或,即点M的坐标为(,)或(,-);(4)t=+=AB+AE,过点A作倾斜角为45度的直线l2,过点E作EF⊥l2交于点F,则:EF=AE,即t=BE+EF,当B、E、F三点共线且垂直于直线l2时,t最小,即:t=BF′,同理,直线l2的表达式为:y=-x-2,直线BF表达式为:y=x+1,将上述两个表达式联立并解得:x=-,即:点F′(-,-),t=BF′==.。

2018年福建省泉州八年级下学期期末考试数学试题word版含答案

2018年福建省泉州八年级下学期期末考试数学试题word版含答案

2018年福建省泉州八年级下学期期末考试数学试题满分:150分;考试时间:120分钟一.选择题(每题3分,共21分)1. 要使分式21-x 有意义,x 必须满足的条件是( )A. 2≠xB. 2>xC. 0≠xD. 2=x 2. 若4-=kx y 的函数值y 随着x 的增大而减小,则k 的值可能是下列的( )A. πB. 21 C. 0 D. 4- 3. 在5月份的地理学科市质检后,叶老师调查了班上某小组10名同学的地理成绩如下:85, 83, 81, 81, 87, 73, 82, 79, 81, 7 9,则这组数据的中位数,众数分别为( )A. 80, 81B. 81, 81C. 81, 89D. 73, 814. 正方形具有而菱形不具有的性质是( )A. 对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5. 如右图,丝带重叠的部分一定是( )A. 正方形B.矩形C.菱形D.都有可能6. 如图,点P 在反比例函数2y x=的图象上,过P 点作PA ⊥x 轴于点A , 作PB ⊥y 轴于B 点,矩形OAPB 的面积为( )A. 1B. 2C. 4D. 87.为了更好保护水资源,造福人类. 某工厂计划建一个容积V (m 3)一定..的污水处理池,池的底面积S (m 2)与其深度h (m)满足关系式:V = Sh (V ≠0),则S 关于h 的函数图象大致是( )二.填空题(每小题4分,共40分)8. 在平面直角坐标系中,点P (1,2-)关于原点的对称点坐标为9. 计算:2111n n n -+++= 10. 计算:2a b b a=⋅ 11. 在ABCD 中,∠A ﹦80°, 则∠B=________ .12. 自2013年2月以来,H7N9禽流感在我国流行。

该病毒的直径是0.00 000 012米,用科学记数法表示为_____________ 米.13. 甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四人中成绩发挥最稳定的是__________选手14. 小王某学期的物理成绩分别为:平时平均成绩得84分,期中考试得90分,期末考试得85 分.若按如图所显示的权重,那么小王该学期的总评成绩应该为 分.15. 函数y kx b =+的图象如图所示,则不等式0≥+b kx 的解集是16. 如图,菱形ABCD 的周长为85,对角线AC 和BD 相交于点O ,2:1:=BD AC ,则菱 形ABCD 的面积S = .17.有一数值转换器,原理如图所示,若开始输入 x 的值是7,可发现第 1 次输出的结果是12,第2次输出 的结果是6,第3次输出的结果是 ,依次继续下去…,第2014次输出的结果是三.解答题(共89分)18.(9分)计算:013(4)|2|164162π--+--⨯+÷19.(9分)先化简,再求值:(,4)212122-÷++-x x x x 其中.2=x20.(9分)某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多20% ,结果提前4天完成任务, 问原计划每天能完成多少套校服?21.(9分)如图:正方形ABCD 的一条对角线AC 的长为4cm ,求它的边长和面积。

2018-2019学年福建省泉州市南安市八年级(下)期末数学试卷(解析版)

2018-2019学年福建省泉州市南安市八年级(下)期末数学试卷(解析版)

2018-2019学年福建省泉州市南安市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.1.若分式20195x有意义,则实数x的取值范围是()A.x>5 B.x<5 C.x=5 D.x≠52.平行四边形的一个内角为50°,它的相邻的一个内角等于()A.40°B.50°C.130°D.150°3.边长为3cm的菱形的周长是()A.15cm B.12cm C.9cm D.3cm4.某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是()A.20时风力最小B.8时风力最小C.在8时至12时,风力最大为7级D.8时至14时,风力不断增大5.点P(2,3)到y轴的距离是()A.3 B.2 C.1 D.06.下列各点一定在函数y=3x-1的图象上的是()A.(1,2)B.(2,1)C.(0,1)D.(1,0)7.如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是()A.AC=BD B.OA=OB C.∠ABC=90°D.AB=AD8.下列说法中正确的是()A.有一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形9.甲、乙两八年级学生在一学期里多次检测中,其数学成绩的平均分相等,但他们成绩的方差不等,那么正确评价他们的数学学习情况的是()A.学习水平一样B.虽然平均成绩一样,但方差小的学习成绩稳定C.方差大的学生学习潜力大D.方差较小的学习成绩不稳定,忽高忽低10.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)二、填空题:本题共6小题,每小题4分,共24分.11.计算:20190= .12.某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为 米. 13.在一次函数y=(m-1)x+6中,y 随x 的增大而增大,则m 的取值范围是 . 14.在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,则这个班学生的平均年龄是 . 15.如图,两个反比例函数y=4x 和y=2x在第一象限内的图象依次是C1和C2,设点P 在C1上,PC ⊥x 轴于点C ,交C2于点A ,PD ⊥y 轴于点D ,交C2于点B ,则四边形PAOB 的面积为 .16.如图,在▱ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上) (1)∠DFC+∠FEC=90°(2)∠B=∠AEF ;(3)CF=EF ;(4)S △EFC =12S △BDC三、解答题:本题共9小题,共86分.17.先化简,再求值218416x x ---,其中x=2. 18.为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)19.如图,已知▱ABCD 的对角线AC 、BD 相交于点O ,其周长为16,且△AOB 的周长比△BOC 的周长小2,求AB 、BC 的长.20.某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:(1)这15位营销人员该月销售量的中位数是,众数是;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.21.已知反比例函数y=mx与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时这两个函数值相等.(1)求这两个函数的解析式;(2)直接写出当x取何值时,mx>kx+b成立.22.【知识链接】连结三角形两边中点的线段,叫做三角形的中位线.【动手操作】小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.【性质证明】小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).23.如图,在△ABC中,AB=10,BC=8,AC=6.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.(1)判断四边形DECF的形状,并证明;(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.24.如图,Rt△AOB中,∠OAB=90°,OA=AB,将Rt△AOB放置于直角坐标系中,OB在x轴上,点O是原点,点A在第一象限.点A与点C关于x轴对称,连结BC,OC.双曲线y=9x(x>0)与OA边交于点D、与AB边交于点E.(1)求点D的坐标;(2)求证:四边形ABCD是正方形;(3)连结AC交OB于点H,过点E作EG⊥AC于点G,交OA边于点F,求四边形OHGF 的面积.25.已知:AC是菱形ABCD的对角线,且AC=BC.(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.①求证:△PBE是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE的度数;(2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.参考答案与试题解析1.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:若分式20195x有意义,则x-5≠0,解得:x≠5.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握相关定义是解题关键.2.【分析】利用平行四边形的邻角互补进而得出答案.【解答】解:∵平行四边形的一个内角为50°,邻角互补,∴它的相邻的一个内角等于180°-50°=130°;故选:C.【点评】此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.3.【分析】由菱形的四条边长相等可求解.【解答】解:∵菱形的边长为3cm∴这个菱形的周长=4×3=12cm故选:B.【点评】本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.4.【分析】根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:由图象可得,20时风力最小,故选项A正确,选项B错误,在8时至12时,风力最大为4级,故选项C错误,8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.5.【分析】根据点的到y轴的距离等于横坐标的绝对值解答.【解答】解:点P(2,3)到y轴的距离为2.故选:B.【点评】本题考查了点的坐标,熟记点的到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.6.【分析】分别把x=1、2、0代入直线解析式,计算出对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.【解答】解:A、当x=1时,y=2,故选项正确;B、当x=2时,y=5≠1,故选项错误;C、当x=0时,y=-1≠1,故选项错误;D、当x=1时,y=2≠0,故选项错误;故选:A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.7.【分析】根据平行四边形的性质,矩形的判定方法即可一一判断即可.【解答】解:∵四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形,故A正确;∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴AC=BD,∴▱ABCD是矩形,故B正确;∵四边形ABCD是平行四边形,∵∠ABC=90°,∴▱ABCD是矩形,故C正确;∵四边形ABCD 是平行四边形,∵AB=AD,∴▱ABCD是菱形,故D错误.故选:D.【点评】本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.8.【分析】运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.【解答】解:A、有一组对边平行的四边形不一定是平行四边形,故该选项错误;B、对角线互相垂直的四边形不一定是菱形,故该选项错误;C、有一组邻边相等的平行四边形是菱形,故该选项正确;D、对角线互相垂直平分的四边形不一定是正方形,故该选项错误;故选:C.【点评】本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定是本题的关键.9.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:A、学习水平不能只看平均成绩,故本选项错误;B、虽然平均成绩一样,但方差小的学习成绩稳定,故本选项正确;C、方差大的学生学习潜力小,故本选项错误;D、波动越小,越稳定,故本选项错误.故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.【分析】根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【解答】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点评】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究A n的坐标规律是解题的关键.11.【分析】直接利用零指数幂的性质计算得出答案.【解答】解:20190=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00005=5×10-5.故答案为:5×10-5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【分析】由一次函数的性质可得到关于m的不等式,可求得m的取值范围.【解答】解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,∴m-1>0,解得m>1,故答案为:m>1.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b 中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.14.【分析】直接利用加权平均数的求法得出答案.【解答】解:∵在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,∴这个班学生的平均年龄是:150(14×2+15×36+16×12)=15.2(岁).故答案为:15.2岁.【点评】此题主要考查了加权平均数,正确掌握基本运算方法是解题关键.15.【分析】根据反比例函数的性质xy=k,即可得出正方形PCOD的面积,以及△ODB的面积与△OCA的面积,即可得出答案.【解答】解:∵两个反比例函数y=4x和y=2x在第一象限内的图象依次是C1和C2,∴正方形PCOD的面积为:xy=4,△ODB的面积与△OCA的面积为12xy=1,∴四边形PAOB的面积为:4-1-1=2.故答案为:2.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出正方形PAOC的面积,以及△ODB的面积与△OCA的面积是解决问题的关键.16.【分析】分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.【解答】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,A FDMAF DFAFE DFM∠∠∠∠⎧⎪⎨⎪⎩===,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵∠B=∠ADC>∠M,∴∠B>∠AEF,(2)不成立;∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=EF ,(3)成立;∴∠FEC=∠FCE ,∵∠DCF+∠FEC=90°,∴∠DFC+∠FEC=90°,(1)成立;∵四边形ADCE 的面积=12(AE+CD )×CE ,F 是AD 的中点, ∴S △EFC =12S 四边形ADCE , ∵S △BDC =12S 平行四边形ABCD =12CD×CE , ∴S △EFC ≠12S △BDC ,(4)不成立; 故答案为:(1)(3).【点评】此题主要考查了平行四边形的性质全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF ≌△DMF 是解题关键.17. 【分析】根据分式的减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解答】解:218416x x --- , 184(4)(4)48(4)(4)4(4)(4)14x x x x x x x x x x =--+-+-=+--=+-=+ 当x=2时,原式11246==+. 【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 【分析】设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:40016020.8x x=⨯+,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.19.【分析】根据平行四边形对边相等可得BC+AB=8,根据△AOB的周长比△BOC的周长小2可得BC-AB=2,再解即可.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,其周长为16,∴OA=OC,OB=OD,AB=CD,AD=CB,∴BC+AB=8①;∵△AOB的周长比△BOC的周长小2,∴OB+OC+BC-(OA+OB+AB)=2,∴BC-AB=2②,①+②得:2BC=10,∴BC=5,∴AB=3.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形两组对边分别相等,对角线互相平分.20.【分析】(1)根据中位数和众数的定义求解;(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.【解答】解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;210出现的次数最多,则众数为210;故答案为:210,210;(2)合理;因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.21. 【分析】(1)先把点(-2,-1)代入y=m x,求出反比例函数解析式;再把x=3代入求出y 的值,把点(-2,-1)和x=3时y 的值代入一次函数解析式即可求出一次函数的解析式;(2)找出反比例函数在一次函数图象上方对应的自变量的取值范围即可.【解答】解:∵反比例函数y=m x 的图象经过(-2,-1), ∴-1=2m -,即m=2, ∴反比例函数解析式为y=2x ; 当x=3时,y=23. 把(-2,-1)、(3,23)代入y=kx+b , 得21233k b k b -+=-⎧⎪⎨+=⎪⎩,解得,1313k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴一次函数的解析式为1133y x =-;(2)∵反比例函数y=m x与一次函数y=kx+b 的图象交于点(-2,-1)、(3,23), 当x <-2或0<x <3时,反比例函数在一次函数图象的上方, ∴当x <-2或0<x <3时,m x >kx+b 成立. 【点评】本题考查了反比例函数与一次函数的交点问题,用待定系数法求一次函数及反比例函数的解析式,函数图象上点的坐标特征,数形结合思想.正确求出两个函数的解析式是解题的关键.22. 【分析】作出图形,然后写出已知、求证,延长DE 到F ,使DE=EF ,证明△ADE 和△CEF 全等,根据全等三角形对应边相等可得AD=CF ,全等三角形对应角相等可得∠F=∠ADE ,再求出BD=CF ,根据内错角相等,两直线平行判断出AB ∥CF ,然后判断出四边形BCFD 是平行四边形,根据平行四边形的性质证明结论.【解答】解:已知:如图所示,在△ABC 中,D 、E 分别是AB 、AC 的中点,求证:DE=12BC ,DE ∥BC , 证明:延长DE 到F ,使DE=EF ,连接CF ,∵点E 是AC 的中点,∴AE=CE ,在△ADE 和△CEF 中,AE EC AED CEF DE EF ⎪∠⎪⎩∠⎧⎨===,∴△ADE ≌△CEF (SAS ),∴AD=CF ,∠ADE=∠F ,∴AB ∥CF ,∵点D 是AB 的中点,∴AD=BD ,∴BD=CF ,∴BD ∥CF ,∴四边形BCFD 是平行四边形,∴DF ∥BC ,DF=BC ,∴DE ∥BC 且DE=12BC . 【点评】本题考查的是三角形中位线定理的证明、平行四边形的判定和性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.23. 【分析】(1)根据勾股定理的逆定理得到△ABC 是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF 是矩形;(2)连结CD ,由矩形的性质得到CD=EF ,当CD ⊥AB 时,CD 取得最小值,即EF 为最小值,根据三角形的面积即可得到结论.【解答】解:(1)四边形DECF 是矩形,理由:∵在△ABC 中,AB=10,BC=8,AC=6,∴BC 2+AC 2=82+62=102=AB 2,∴△ABC 是直角三角形,∠C=90°,∵DE ⊥AC ,DF ⊥BC ,∴∠DEC=DFC=90°,∴四边形DECF 是矩形;(2)存在,连结CD ,∵四边形DECF 是矩形,∴CD=EF ,当CD ⊥AB 时,CD 取得最小值,即EF 为最小值,∵S △ABC =12AB•CD=12AC•BC , ∴12×10×CD=12×6×8, ∴EF=CD=4.8.【点评】本题考查了矩形的判定和性质,垂线段最短,勾股定理的逆定理,三角形的面积,熟练掌握矩形的判定定理是解题的关键.24. 【分析】(1)由OA=AB ,∠OAB=90°可得出∠AOB=∠ABO=45°,进而可设点D 的坐标为(a ,a ),再利用反比例函数图象上点的坐标特征结合点D 在第一象限,即可求出点D 的坐标;(2)由点A 与点C 关于x 轴对称结合OA=AB 可得出OA=OC=AB=BC ,进而可得出四边形ABCO 是菱形,再结合∠OAB=90°,即可证出四边形ABCO 是正方形;(3)依照题意画出图形,易证△AFG ≌△AEG ,进而可得出S 四边形OHGF =S △AOH -S △AFG =S △AOH -S △AEG ,设点A 的坐标为(m ,m ),点E 的坐标为(n ,9n ),易证AG=GE,进而可得出2m-n=9n,再利用三角形的面积公式结合S四边形OHGF=S△AOH-S△AEG,即可求出四边形OHGF的面积.【解答】解:(1)∵OA=AB,∠OAB=90°,∴∠AOB=∠ABO=45°,∴设点D的坐标为(a,a).∵点D在反比例函数y=9x的图象上,∴a=9a,解得:a=±3.∵点D在第一象限,∴a=3,∴点D的坐标为(3,3).(2)证明:∵点A与点C关于x轴对称,∴OA=OC,AB=BC.又∵OA=AB,∴OA=OC=AB=BC,∴四边形ABCO是菱形.又∵∠OAB=90°,∴四边形ABCO是正方形.(3)依照题意,画出图形,如图所示.∵EG⊥AC,∴∠AGE=∠AGF=90°.∵四边形ABCO是正方形,∴AC⊥OB.∵OA=AB,在△AFG 和△AEG 中,AGF AGE AG AG FAG EAG ∠∠∠⎧⎪⎪⎩∠⎨===,∴△AFG ≌△AEG (ASA ),∴S 四边形OHGF =S △AOH -S △AFG =S △AOH -S △AEG .设点A 的坐标为(m ,m ),点E 的坐标为(n ,9n ). ∵OA=AB ,EF ∥OB ,∴AG=GE ,∴m-9n =n-m ,即2m-n=9n, ∴S 四边形OHGF =22211911919()2222222m m n m m m mn m n n ⎛⎫---=-++- ⎪⎝⎭ 1999999(2)2222222m m m m m n n n n =-+-=+-=. 【点评】本题考查了反比例函数图象上点的坐标特征、正方形的判定与性质、等腰三角形的性质、全等三角形的判定与性质以及三角形的面积,解题的关键是:(1)利用反比例函数图象上点的坐标特征,求出点D 的坐标;(2)利用正方形的判定定理证出四边形ABCO 是正方形;(3)利用三角形的面积公式结合S四边形OHGF =S △AOH -S △AEG ,求出四边形OHGF 的面积.25. 【分析】(1)①先判断出△ABC 等边三角形,得出∠ABC=60°,再由旋转知BP=BE ,∠PBE=∠ABC=60°,即可得出结论.②先用勾股定理的逆定理判断出△ACP 是直角三角形,得出∠APC=90°,进而判断出∠PBE+∠PCE=90°,即可得出结论;(2)先判断出△G'DG 是等边三角形,得出GG'=DG ,即:AG+EG+DG=A'G'+EG+GG'得出当A'、G'、G 、E 四点共线时,A'G'+EG+G'G 的值最小,即可得出结论.【解答】(1)①∵四边形ABCD 是菱形∴AB=BC ,∵AC=BC ,∴AB=BC=AC ,∴△ABC 等边三角形,由旋转知BP=BE,∠PBE=∠ABC=60°,∴△PBE是等边三角形;②由①知AB=BC=5∵由旋转知△ABP≌△CBE,∴AP=CE=4,∠APB=∠BEC,∵AP2+PC2=42+32=25=AC2,∴△ACP是直角三角形,∴∠APC=90°,∴∠APB+∠BPC=270°,∵∠APB=∠CEB,∴∠CEB+∠BPC=270°,∴∠PBE+∠PCE=90°,∵∠PBE=∠ABC=60°,∴∠PCE=90°-60°=30°;(2)如图,将△ADG绕着点D顺时针旋转60°得到△A'DG',由旋转知△ADG≌△A'DG',∴A'D=AD=4,G'D=GD,A'G'=AG,∵∠G'DG=60°,G'D=GD,∴△G'DG是等边三角形,∴GG'=DG,∴AG+EG+DG=A'G'+EG+GG'∵当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即AG+EG+DG的值最小,∵∠A'DA=60°,∠ADE=12∠ADC=30°,∴∠A'DE=90°,∴,∴AG+EG+DG的最小值为5.【点评】此题是四边形综合题,主要考查了等边三角形性质和判定,勾股定理,勾股定理的逆定理,旋转的性质,判断出点A',G',G,E四点共线时,A'G'+EG+G'G的值最小,是解本题的关键.。

泉州市八年级下学期数学期末考试试卷

泉州市八年级下学期数学期末考试试卷

泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·太原期中) a,b 都是实数,且 a <b,则下列不等式的变形正确是()A . a+m>b+mB . -a+1<-b+1C . 3a<3bD . 2a>2b2. (2分) (2018八上·台州期中) 下列图案属于轴对称图形的是()A .B .C .D .3. (2分) (2011八下·建平竞赛) 下列多项式能用完全平方公式分解的是()A . x2-2x-B . (a+b) (a-b)-4abC . a2+ab+D . y2+2y-14. (2分) (2016九上·肇源月考) 不等式-3x≥6的解集在数轴上表示为()A .B .C .D .5. (2分)如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是()A . HLB . ASAC . AASD . SAS6. (2分)(2017·平谷模拟) 在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,下面所列方程正确的是()A . (9﹣7)x=1B . (9+7)x=1C . ( + )x=1D . (﹣)x=17. (2分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为A . 10°B . 15°C . 20°D . 30°8. (2分) (2016八下·蓝田期中) 如图,直线y=kx+b交坐标轴于A(﹣5,0),B(0,7)两点,则不等式kx+b>0的解集是()A . x<﹣5B . x>﹣5C . x>7D . x<﹣79. (2分)如图,在△ABC中,∠C=90°,∠BDC=30°,AD=2BC,则∠A=()A . 15°B . 20°C . 16°D . 18°10. (2分)(2017·江汉模拟) 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是()A . 32°B . 64°C . 77°D . 87°二、填空题 (共4题;共4分)11. (1分) (2019七下·临泽期中) 观察下列各式,你发现什么规律:将你猜想到的规律用只含有一个字母的等式表示出来________.1×3=22-1,3×5=42-1,5×7=62-1,7×9=82-1,…13×15=195=142-1.12. (1分)化简的结果是________ .13. (1分)等式组的解集是x>4,那么m的取值范围是________14. (1分)(2017·武汉模拟) 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为________.三、解答题 (共6题;共48分)15. (10分)(2013·无锡)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.16. (10分) (2018九上·长春开学考) 解分式方程(1)(2)17. (10分) (2017九上·宁城期末) 如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)将正方形ABCD绕点A顺时针方向旋转90°画出旋转后的图形;(2)若点B到达点,点C到达点,点D到达点,写出点、、的坐标.18. (5分) (2017八上·南京期末) 阅读下面材料:在数学课上,老师提出如下问题:已知:直线l和l外一点P .求作:直线l的垂线,使它经过点P .小芸的作法如下:①在直线上任取两点A , B;②分别以点A , B为圆心,AP , BP长为半径作弧,两弧线相交于点Q;③作直线PQ .所以直线PQ就是所求的垂线.请将小芸的作图补充完整(保留作图痕迹),小芸的作法是否正确?请说明理由.19. (10分) (2016七下·威海期末) 某学校期末表彰优秀,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品,若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)求购买一支钢笔和一本笔记本各需多少元?(2)若学校共需要购买钢笔和笔记本共80件,而且要求购买的总费用不超过1100元,则最多可以购买多少支钢笔?20. (3分) (2017八下·江阴期中) 如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D。

福建省泉州市2018-2019学年八年级下册期末考试数学试卷附答案解析

福建省泉州市2018-2019学年八年级下册期末考试数学试卷附答案解析

福建省泉州市2018-2019学年八年级下册期末数学试卷一、选择题1、正比例函数y=x 与反比例函数y= 的图象相交于A 、C两点.AB ⊥x 轴于B ,CD ⊥x 轴于D (如图),则四边形ABCD 的面积为( )A. 1B.C. 2D.2、已知四边形ABCD 中,AB ∥CD ,对角线AC 与BD 交于点O ,下列条件中不能用作判定该四边形是平行四边形条件的是( )A .AB=CDB .AC=BDC .AD ∥BC D .OA=OC3、某校八年级学生去距学校10km 的科技馆参观,一部分学生骑自行车,过了30min ,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的4倍,设骑自行车学生的速度为xkm/h ,则下列方程正确的是( )A .B .C .D .4、如图,已知四边形ABCD 是平行四边形,下列结论中错误的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当AC=BD 时,它是矩形 D .当∠ABC=90°时,它是正方形5、已知反比例函数y=,下列结论不正确的是( )A .该函数图象经过点(﹣1,1)B .该函数图象在第二、四象限C .当x <0时,y 随着x 的增大而减小D .当x >1时,﹣1<y <06、测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣57、在平面直角坐标系中,点P (﹣3,2)关于x 轴的对称点的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣3,2) D .(﹣3,﹣2)○………※※请※※○………8、若分式有意义,则实数x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣19、要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的()A.方差B.中位数C.众数D.平均数10、已知点P(2,﹣1),则点P位于平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限三、填空题11、如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AB=1,则AD的长为_____。

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·辽阳模拟) 要调查下面的问题:①调查某种灯泡的使用寿命.②调查你们班学生早餐是否有喝牛奶的习惯.③调查全国中学生的节水意识。

④查某学校七年级学生的视力情况.其中适合采用普查的是()A . ①③B . ②④C . ①②④D . ②③④2. (2分)若点M(a-3,a+4)在x轴上,则点M的坐标是()A . (-3,4)B . (-7,0)C . (-3,0)D . (4,0)3. (2分)下列角度中,不能成为多边形内角和的是()A . 600°B . 720°C . 900°D . 1080°4. (2分)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A .B .C .D .5. (2分) (2016八上·平阳期末) 如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A . 3(m﹣1)B .C . 1D . 36. (2分)已知四边形ABCD,下列说法正确的是()A . 当AD=BC,AB∥DC时,四边形ABCD是平行四边形B . 当AD=BC,AB=DC时,四边形ABCD是平行四边形C . 当AC=BD,AC平分BD时,四边形ABCD是矩形D . 当AC=BD,AC⊥BD时,四边形ABCD是正方形7. (2分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A . 四边形ABCD由矩形变为平行四边形B . BD的长度增大C . 四边形ABCD的面积不变D . 四边形ABCD的周长不变8. (2分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y9. (2分)如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是()A . (1,4)B . (4,1)C . (4,﹣1)D . (2,3)10. (2分)一个班有40名学生,在期末体育考核中,优秀的有20人,在扇形统计图中,代表体育优秀扇形的圆心角是()A . 144°B . 162°C . 180°D . 216°11. (2分)在平行四边形ABCD中, ∠B=60°,那么下列各式中,不能成立的是()A .B .C .D .12. (2分) (2017八下·西城期末) 如图,点E为菱形ABCD边上的一个动点,并沿ABCD的路径移动,设点E经过的路径长为x ,△ADE的面积为y ,则下列图象能大致反映y与x的函数关系的是().A .B .C .D .二、填空题 (共8题;共8分)13. (1分)(2019·阿城模拟) 函数中,自变量的取值范围是________.14. (1分) (2018八上·大田期中) 已知点,是一次函数图象上的两个点,则 ________ (填“>”或“<”“=”)15. (1分) (2016九上·仙游期末) 已知点M的坐标为(-2,-3),则点M关于原点对称的坐标为________.16. (1分) (2018八上·龙港期中) 如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连结EF,则EF的最小值为________.17. (1分) (2019八下·闵行期末) 已知的面积为27,如果,,那么的周长为________.18. (1分) (2019八下·黄陂月考) 如图,∠AOB=30°,M、N分别在OA、OB上,且OM=2,ON=4,点P、Q 分别在OB、OA上,则MP+PQ+QN的最小值是 ________.19. (1分) (2020八下·邢台月考) 如图,已知长方形ABCD顶点坐标为A(1,1),B(3,1),C(3,4),D (1,4),一次函数y=2x+b的图像与长方形ABCD的边有公共点,则b的变化范围是________.20. (1分)观察下列算式:12= ,12+22= ,12+22+32= ,12+22+32+42= ,…,请用字母表示数,将你发现的一般规律用一个等式表示出来:________.三、解答题 (共5题;共67分)21. (15分) (2019七下·惠阳期末) 某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且甲商品的件数不能低于48件,请你帮忙求出该商场有几种进货方案?(3)在(2)的基础上,商场预备用2500元资金来进货.若商场选择能使总利润最大的进货方案,试判断商场预备的资金是否够?22. (15分)(2016·南山模拟) 为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?23. (12分)(2012·河南) 5月31日是世界无烟日.某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18﹣65岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:(1)这次接受随机抽样调查的市民总人数为________;(2)图1中的m的值是________;(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;(4)若该市18﹣65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是“对吸烟危害健康认识不足”的人数.24. (10分) (2020八下·大庆期中) 已知直线l经过点(-1,5),且与直线y=-x平行.(1)求直线l的函数关系式;(2)若直线l分别交x轴、y轴于A , B两点,求△AOB的面积.25. (15分) (2020八下·偃师期末) 如图,等腰△ABC中,已知AC=BC=,AB=2,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒1个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共67分)21-1、答案:略21-2、答案:略21-3、答案:略22-1、答案:略22-2、答案:略22-3、23-1、23-2、23-3、答案:略23-4、24-1、答案:略24-2、答案:略25-1、25-2、25-3、答案:略。

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题4分,共40分) (共10题;共40分)1. (4分) (2019八下·芜湖期中) 下列各式中,属于最简二次根式的是()A .B .C .D .2. (4分)如图,在▱ABCD中,AE平分∠DAB,AB=5,DE=2.则▱ABCD的周长是()A . 7B . 10C . 14D . 163. (4分) (2017九上·东丽期末) 若关于的一元二次方程的一个根是,则的值是()A .B .C .D .4. (4分)如果y是z的反比例函数,z是x的反比例函数,那么y是x的()函数.A . 正比例B . 反比例C . 一次函数D . 二次函数5. (4分)如图,将矩形ABCD绕点A顺时针旋转90o后,得到矩形AB’C’D’,若CD=8,AD=6,连接CC’,那么CC’的长是()A . 20B .C .D . 1006. (4分)我校八年级一班有学生46人,学生的平均身高为1.58米.明明身高为1.59米,但明明说他的身高在全班是中等偏下的,班上有25个同学比他高,20个同学比他矮,下列说法不正确的是()A . 不可能,他的身高已经超过平均身高了B . 可能,因为他的身高可能低于中位数C . 可能,因为平均数会受极端值影响D . 可能,因为某个同学可能特别矮7. (4分)在实数0.3、、、3.6024×103、、-1中无理数的个数为()A . 1个B . 2个C . 3个D . 4个8. (4分) (2020八上·武汉期末) 甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A . 他们都骑了20 kmB . 两人在各自出发后半小时内的速度相同C . 甲和乙两人同时到达目的地D . 相遇后,甲的速度大于乙的速度9. (4分)抛物线y=x2-2x+a2的顶点在直线y=2上,则a的值为()A . -2B . 2C . ±2D . 无法确定10. (4分) (2019八上·东莞期中) 如图,∠ABD=∠ABC,补充一个条件,使得,则下列选项错误的是()A . ∠D=∠CB . ∠DAB=∠CABC . BD=BCD . AD=AC二、填空题(木题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分)(2018·阜宁模拟) 二次根式有意义,则的取值范围是________.12. (5分)从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是________.13. (5分) (2018九上·营口期末) 点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC 为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为________.14. (5分)(2016·巴中) 两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为________.15. (5分) (2019八上·湛江期中) 已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是________ 。

【解析版】泉州市晋江市2018-2019年八年级下期末数学试卷

【解析版】泉州市晋江市2018-2019年八年级下期末数学试卷

福建省泉州市晋江市2019-2019学年八年级下学期期末数学试卷一、选择题:(每小题3分,共21分) 1.(3分)下列各代数式中是分式的是()A . 2+xB .C .D .2.(3分)两年前日本近海发生9.0级强震.该次地震导致地球当天自转快了0.0000016秒.这里的0.0000016用科学记数法表示为()A . 16×10﹣5B . 1.6×10﹣5C . 1.6×10﹣7D .1.6×10﹣63.(3分)要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的() A . 方差 B . 中位数 C . 众数 D .平均数 4.(3分)在如图所示的正方形网格中,确定点D 的位置,使得以A 、B 、C 、D 为顶点的四边形为等腰梯形.则点D 的位置应在()A . 点M 处B . 点N 处C . 点P 处D .点Q 处 5.(3分)将直线y=﹣2x+1向下平移4个单位得到直线l ,则直线l 的解析式为() A . y =﹣6x+1 B . y =﹣2x ﹣3 C . y =﹣2x+5 D .y=2x ﹣3 6.(3分)如图,将一张矩形纸片对折两次后剪下一个角,然后打开.如果要剪出一个正方形,那么剪口线与折痕所成的锐角大小是()A . 22.5°B . 45°C . 60°D .135°7.(3分)观察下列等式:a 1=n ,a 2=1﹣,a 3=1﹣,…;根据其蕴含的规律可得()A . a 2019=nB . a 2019=C . a 2019=D .a 2019=二、填空题(每小题4分,共40分)8.(4分)计算:20190+()﹣1=.9.(4分)函数y=中自变量x的取值范围是.10.(4分)为保障公民的人身安全,对醉酒驾车行为(血液酒精含量大于或等于80毫克/百毫升)按刑事犯罪处理.某交警中队于5月1日~5月3日这3天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.则这组数据的极差是毫克/百毫升.11.(4分)正比例函数y=﹣5x中,y随着x的增大而.12.(4分)命题“如果x=y,那么|x|=|y|”的逆命题是命题.(填“真”或“假”)13.(4分)已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是.14.(4分)如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC=(度).15.(4分)如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)16.(4分)如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.17.(4分)如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.(1)△AOE≌△;(2)线段EF的最小值是cm.三、解答题(共89分)18.(9分)计算:•﹣.19.(9分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2=[x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])20.(9分)如图,在四边形ABCD中,AB=AD,AC是∠BAD的角平分线.求证:△ABC≌△ADC.21.(9分)某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.22.(9分)为了加强安全教育,2019-2019学年八年级二班参加中小学生安全知识网络竞赛.班长将全班同学的成绩整理后绘制成如下两幅不完整的统计图:请根据图中所给信息解答下列问题:(1)2019-2019学年八年级二班共有人,扇形统计图中表示90分的圆心角的度数为(度);(2)求全班同学成绩的平均数、众数、中位数.23.(9分)如图,矩形ABCD中,对角线AC的垂直平分线交AD边于点E,交BC边于点F,分别连结AF和CE.(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法);(2)试判断四边形AFCE的形状,并证明你的判断.24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣在第二象限内交于点B(﹣3,a).(1)求a和b的值;(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.25.(13分)请阅读下列材料:问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.26.(13分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x 轴分别交于点D、F.(1)直接写出线段BO的长;(2)求直线BD解析式;(3)若点N在直线BD上,在x轴上是否存在点M,使以M、N、E、D为顶点的四边形是平行四边形?若存在,请求出一个满足条件的点M的坐标;若不存在,请说明理由.福建省泉州市晋江市2019-2019学年八年级下学期期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共21分)1.(3分)下列各代数式中是分式的是()A.2+x B.C.D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:A、2+x,它是整式.故本选项错误;B、的分母是常数2,所以它是整式.故本选项错误;C、的分母是字母x,所以它是分式.故本选项正确;D、是二次根式,故本选项错误;故选C.点评:本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(3分)两年前日本近海发生9.0级强震.该次地震导致地球当天自转快了0.0000016秒.这里的0.0000016用科学记数法表示为()A.16×10﹣5B.1.6×10﹣5C.1.6×10﹣7D.1.6×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0016=1.6×10﹣6;故选:D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的()A.方差B.中位数C.众数D.平均数考点:统计量的选择;方差.分析:根据方差的定义判断,方差越小数据越稳定.解答:解:由于方差是用来衡量一组数据波动大小的量,故判断两队舞蹈队的身高较整齐通常需要比较两个队身高的方差.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)在如图所示的正方形网格中,确定点D的位置,使得以A、B、C、D为顶点的四边形为等腰梯形.则点D的位置应在()A.点M处B.点N处C.点P处D.点Q处考点:等腰梯形的判定;坐标确定位置.分析:分别讨论:AB为底,AB为腰的情况,画出图形,即可得出点D的位置.解答:解:①若AB为底,如图所示:此时没有符合题意的点D.②若AB为腰,如图所示:此时符合题意的点为点P.故选C.点评:本题考查了等腰梯形的判定,解答本题的关键是掌握等腰梯形的性质,注意结合图形进行判断,这样的题目其实可以每个点都代入试一下.5.(3分)将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为()A.y=﹣6x+1 B.y=﹣2x﹣3 C.y=﹣2x+5 D.y=2x﹣3考点:一次函数图象与几何变换.分析:直接根据“上加下减”的平移规律求解即可.解答:解:将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为y=﹣2x+1﹣4,即y=﹣2x﹣3.故选B.点评:本题考查了一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.6.(3分)如图,将一张矩形纸片对折两次后剪下一个角,然后打开.如果要剪出一个正方形,那么剪口线与折痕所成的锐角大小是()A.22.5°B.45°C.60°D.135°考点:剪纸问题.分析:根据翻折变换的性质及正方形的判定进行分析从而得到最后答案.解答:解:一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故选:B.点评:本题考查了剪纸问题、通过折叠变换考查正方形的有关知识及学生的逻辑思维能力,解答此类题最好动手操作,易得出答案.7.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2019=n B.a2019=C.a2019=D.a2019=考点:分式的混合运算.专题:规律型.分析:归纳总结得到一般性规律,即可得到结果.解答:解:由a1=n,得到a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣=,a4=1﹣=1﹣(1﹣n)=n,以n,,为循环节依次循环,∵2019÷3=671,∴a2019=.故选D点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(每小题4分,共40分)8.(4分)计算:20190+()﹣1=4.考点:负整数指数幂;零指数幂.分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+3=4,故答案为:4.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.9.(4分)函数y=中自变量x的取值范围是x≠3.考点:函数自变量的取值范围.分析:根据分母不等于0列式进行计算即可求解.解答:解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.点评:本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.(4分)为保障公民的人身安全,对醉酒驾车行为(血液酒精含量大于或等于80毫克/百毫升)按刑事犯罪处理.某交警中队于5月1日~5月3日这3天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.则这组数据的极差是71毫克/百毫升.考点:极差.分析:极差是指一组数据中最大数据与最小数据的差,由此计算即可.解答:解:这组数据的最大数是92,最小数是21,故这组数据的极差=92﹣21=71.故答案为:71.点评:本题考查了极差的知识,掌握极差的定义是解题关键.11.(4分)正比例函数y=﹣5x中,y随着x的增大而减小.考点:正比例函数的性质.分析:直接根据正比例函数的图象与系数的关系进行解答即可.解答:解:∵正比例函数y=﹣5x中k=﹣5<0,∴y随着x的增大而减小.故答案为:减小.点评:本题考查的是正比例函数的性质,熟知正比例函数y=kx中,当k<0时,y随着x 的增大而减小是解答此题的关键.12.(4分)命题“如果x=y,那么|x|=|y|”的逆命题是假命题.(填“真”或“假”)考点:命题与定理.分析:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.解答:解:命题:如果x=y,那么|x|=|y|,其逆命题是如果|x|=|y|那么x=y,是假命题,故答案为:假.点评:考查了命题与定理的知识,根据逆命题的定义回答,题设和结论与原命题要调换位置.13.(4分)已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是S=.考点:根据实际问题列反比例函数关系式.分析:利用耕地总面积以及总人数,进而表示出人均占有的土地面积.解答:解:∵晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,∴S与n的函数关系式是:S=.故答案为:S=.点评:此题主要考查了根据实际问题列反比例函数关系式,得出正确等量关系是解题关键.14.(4分)如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC=100(度).考点:角平分线的性质.分析:根据到角的两边的距离相等的点在角平分线上可得BD平分∠ABC,再根据∠DBC=50°可得答案.解答:解:∵DE⊥AB于点E,DF⊥BC于点F,且DE=DF,∴BD平分∠ABC,∴∠ABC=2∠DBC,∵∠DBC=50°,∴∠ABC=100°,故答案为:100.点评:此题主要考查了角平分线的性质,关键是掌握到角的两边的距离相等的点在角平分线上.15.(4分)如图,四边形ABCD的对角线交于点O,从下列条件:①A D∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是①③.(填写一组序号即可)考点:平行四边形的判定.专题:开放型.分析:根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.解答:解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.16.(4分)如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为6千米∕小时.考点:函数的图象.分析:由图象可以看出,小明家离学校有6千米,小明用(3﹣2)小时走回家,根据速度=路程÷时间即可求出小明从学校回家的平均速度.解答:解:小明从学校回家的平均速度为:6÷1=6千米/时.故答案为6.点评:本题考查了函数的图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,读懂图意是解题的关键.17.(4分)如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.(1)△AOE≌△BOF;(2)线段EF的最小值是cm.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的对角线互相平分且相等可得AO=BO,∠AOB=90°,对角线平分一组对角可得∠OAE=∠OBF,再根据AE=BF,然后利用“SAS”证明△AOE和△BOF全等,根据全等三角形对应角相等可得∠AOE=∠BOF,可得∠EOF=90°,然后利用勾股定理列式计算即可得解.解答:解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,∵点E、F的速度相等,∴AE=BF,在△AOE和△BOF中,,∴△AOE≌△BOF(SAS),故答案为BOF.(2)∵△AOE≌△BOF,∴∠AOE=∠BOF,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt△BEF中,设AE=x,则BF=x,BE=2﹣x,EF===.∴当x=1时,EF有最小值为;故答案为.点评:本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,熟记正方形的性质,求出三角形全等的条件是解题的关键.三、解答题(共89分)18.(9分)计算:•﹣.考点:分式的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加减运算即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(9分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2=[x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])考点:方差;算术平均数.分析:(1)根据平均数的计算公式代值计算即可;(2)根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],进行计算即可.解答:解:(1)=(1+2+3+4+5)=3;(2)S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.(9分)如图,在四边形ABCD中,AB=AD,AC是∠BAD的角平分线.求证:△ABC≌△ADC.考点:全等三角形的判定.专题:证明题.分析:根据角平分线的性质可得∠DAC=∠BAC,从而利用SAS,可判定全等.解答:证明:∵AC是∠BAD的角平分线∴∠DAC=∠BAC,在△ABC和和△ADC中,,∴△ABC≌△ADC(SAS).点评:本题考查了全等三角形的判定,注意熟练掌握全等三角形的判定定理.21.(9分)某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.考点:分式方程的应用.分析:关键描述语为:“结果乘中巴车的同学晚到8分钟”;本题的等量关系为:慢车走40千米所用时间﹣=快车走40千米所用时间,把相应数值代入即可求解.解答:解:设中巴车的速度为x千米/时,则旅游车的速度为1.2x千米/时,则﹣=,解得x=50,经检验,x=50是原方程的解,且符合题意.答:中巴车的速度是50千米/小时.点评:此题考查了分式方程的应用,找到合适的等量关系是解决问题的关键,此题的等量关系是快车与慢车所用时间差为8分钟.注意单位要一致.22.(9分)为了加强安全教育,2019-2019学年八年级二班参加中小学生安全知识网络竞赛.班长将全班同学的成绩整理后绘制成如下两幅不完整的统计图:请根据图中所给信息解答下列问题:(1)2019-2019学年八年级二班共有50人,扇形统计图中表示90分的圆心角的度数为57.6(度);(2)求全班同学成绩的平均数、众数、中位数.考点:条形统计图;扇形统计图;加权平均数;中位数;众数.分析:(1)根据70分的有20人,所占的比例是40%,据此即可求得总人数,用1减去其它各组所占的比例即可求得90分的人数所占的比例,用360°乘以90分的人数所占的比例即可求得对应的圆心角的度数;(2)根据加权平均数公式,以及众数、中位数的定义求解.解答:解:(1)2019-2019学年八年级二班共有人数:20÷40%=50(人),90分的人数所占的比例=1﹣30%﹣40%﹣8%﹣2%﹣4%=16%,则扇形统计图中表示90分的圆心角的度数为:360°×16%=57.6°;(2)平均数是:=76.2(分),众数是:70分,中位数是:(70+80)=75(分).点评:本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.23.(9分)如图,矩形ABCD中,对角线AC的垂直平分线交AD边于点E,交BC边于点F,分别连结AF和CE.(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法);(2)试判断四边形AFCE的形状,并证明你的判断.考点:菱形的判定;线段垂直平分线的性质;矩形的性质.分析:(1)分别以A、C为圆心,以大于AC的长为半径四弧交于两点,过两点作直线即可得到线段AC的垂直平分线;(2)利用垂直平分线证得△AEO≌△CFO即可证得结论.解答:解:(1)如图,(2)四边形AFCE是菱形证明∵四边形ABCD是矩形∴AD∥BC,∴∠EAO=∠FCO,∵EF是AC的垂直平分线,∴AO=CO,又∵∠EOA=∠FOC,∴△AEO≌△△CFO,∴AE=CF,∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形AFCE是菱形.点评:本题考查了基本作图及全等三角形的判定与性质,了解基本作图是解答本题的关键,难度中等.24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣在第二象限内交于点B(﹣3,a).(1)求a和b的值;(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先把B(﹣3,a)代入反比例函数解析式可计算出a=2,得到B点坐标,然后把B点坐标代入y=﹣x+b可计算出b的值;(2)先利用直线BC平行x轴确定C点坐标为(0,2),然后根据三角形面积公式计算.解答:解:(1)把B(﹣3,a)代入y=﹣得﹣3a=﹣6,解得a=2,则B点坐标为(﹣3,2)把B(﹣3,2)代入y=﹣x+b得1+b=2,解得b=1;(2)因为BC平行x轴,所以C点坐标为(0,2),所以△ABC的面积=×2×3=3.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.25.(13分)请阅读下列材料:问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.考点:菱形的性质;全等三角形的判定与性质.分析:(1)延长GP交DC于点H,构造全等三角形,从而得出DH=GF,PH=PG,进而得出△GCH是等腰三角形,得出PG⊥PC,∠PCG=∠PCH,由∠ABC=120°,得出∠BCD=60°,即可证得∠PCG=30°;(2)延长GP交AD于点H,先证得△DPH≌△FPG,从而得出PH=PG,DH=FG=BG,进进而证得△CDH≌△CBG,得出CH=CG,∠DCH=∠BCG,即可证得CP⊥PG,由∠HCG=∠HCB+∠BCG=∠HCB+∠DCH=∠DCB=60°,证得∠PCG=∠HCG=30°.解答:解:(1)PG⊥PC,∠PCG=30°;如图①,延长GP交DC于点H,∵在菱形ABCD和菱形BEFG中,AE∥DC,AE∥GF,∴DC∥GF,∴∠PDH=∠PFG,在△PDH和△PFG中,,∴△PDH≌△PFG(ASA),∴DH=GF,PH=PG,∵BG=GF,∴DH=BG,∵DC=BC,∴HC=GC,∴△GCH是等腰三角形,∴PG⊥PC,∠PCG=∠PCH,∵∠ABC=120°,∴∠BCD=60°,∴∠PCG=30°;(2)(1)中两个结论仍成立;证明:如图②,延长GP交AD于点H,连接CG,∵四边形ABCD和BEFG是菱形∴AD∥BC,BE∥FG,∵E在CB的延长线上∴AD∥FG,∴∠HDP=∠GFP,在△DPH和△FPG中,,∴△DPH≌△FPG(ASA),∴PH=PG,DH=FG=BG,在△CDH和△CBG中,,∴△CDH≌△CBG(SAS),∴CH=CG,∠DCH=∠BCG,∴CP⊥PG,∵∠HCG=∠HCB+∠BCG=∠HCB+∠DCH=∠DCB=60°,∴∠PCG=∠HCG=30°.点评:本题考查了菱形的性质,三角形全等的判定和性质,等腰三角形的性质等,作出辅助线构建全等三角形是本题的关键.26.(13分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x 轴分别交于点D、F.(1)直接写出线段BO的长;(2)求直线BD解析式;(3)若点N在直线BD上,在x轴上是否存在点M,使以M、N、E、D为顶点的四边形是平行四边形?若存在,请求出一个满足条件的点M的坐标;若不存在,请说明理由.考点:一次函数综合题.分析:(1)根据勾股定理即可求得;(2)根据△OED∽△OAB,求得D点坐标,然后应用待定系数法即可求得;(3)先根据相似求得E点的坐标,然后根据EM∥BD和直线BD的解析式为:y=﹣x+10,设出解析式,把E点的坐标代入即可.解答:解:(1)20;(2)∵矩形ABCO中点B的坐标是(﹣12,16),∴AB=12,OA=16,设D(0,a)则OD=a,AD=ED=16﹣a,在Rt△AOB与Rt△EOD中,∠AOB=∠EOD,∠OAB=∠OED=90°,∴△OED∽△OAB,∴=,即=,解得:a=10,∴D(0,10),设直线DB的解析式y=kx+b经过B(﹣12,16),D(0,10),∴有,解得,∴直线BD的解析式为:y=﹣x+10,(3)如图2,作EG⊥x轴于G,作EM∥BD交轴与M,MN∥ED交BF于N,∴四边形DEMN是平行四边形,∵EG⊥x轴,BC⊥x轴,∴EG∥BC,∴==,∵OB=20,BE=12,BC=16,OC=12,∴OE=8,即==,∴EG=6.4,OG=4.8,∴E(﹣4.8,6.4),∵直线BD的解析式为:y=﹣x+10,∴设直线EM的解析式为:y=﹣x+b,把E(﹣4.8,6.4)代入得6.4=﹣×(﹣4.8)+b,解得;b=4,∴直线EM的解析式y=﹣x+4,令y=0,则﹣x+4=0,解得x=8,∴M(8,0).点评:本题考查了待定相似法求解析式,轴对称的性质,三角形相似的判定及性质,两条直线平行其斜率相等是解题中经常用到的依据.。

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。

2018-2019学年福建省泉州市惠安县八年级(下)期末数学试卷(解析版)

2018-2019学年福建省泉州市惠安县八年级(下)期末数学试卷(解析版)
【详解】解:原式

【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值考点的运算.
18.先化简,再求值: ,其中 .
【答案】x+1;-4.
【解析】
【分析】
原式被除数括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a的值代入计算即可求出值.
所以中位数为95,
故选: .
【点睛】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
∵DG=AG,
∴∠ADG=∠DAG,
∴∠CDG=∠GAB,且CD=AB,DG=AG,
∴△DCG≌△ABG(SAS),
∴CG=BG,
∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
∴BC=BG,∠CBG=α,
∴BC=BG=CG,
∴△BCG是等边三角形,
∴∠CBG=α=60°,
16.如图,将矩形 绕点 顺时针旋转 度 ,得到矩形 .若 ,则此时 的值是_____.
【答案】60°或300°
【解析】
【分析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
【详解】解:如图,连接 ,
∵四边形ABCD是矩形,
∴CD=AB,∠DAB=∠ADC=90°,

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷

福建省泉州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知△ABC在平面直角坐标系上顶点A的坐标为(-2,3),△A1B1C1与△ABC关于原点对称,则A1的坐标为()A . (-2,3)B . (-2,-3)C . (2,-3)D . (2,3)2. (2分)抛物线y=x2向右平移一个单位得到抛物线()A . y=(x+1)2B . y=(x﹣1)2C . y=(x﹣1)2+1D . y=(x﹣1)2﹣13. (2分)如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A . 4B . 5C . 6D . 84. (2分) (2016九上·自贡期中) 已知抛物线y=﹣(x﹣1)2+4,下列说法错误的是()A . 开口方向向下B . 形状与y=x2相同C . 顶点(﹣1,4)D . 对称轴是x=15. (2分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为()A .B .6. (2分)如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A . 20cmB . cmC . 10πcmD . πcm7. (2分)有一拱桥的桥拱是抛物线形,其表达式是Y=-0.25x2,当桥下水面宽为12米时,水面到拱桥拱顶的距离为()A . 3米B . 2 米C . 4 米D . 9米8. (2分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A′B′C,设点A′的坐标为(a,b),则点A′的坐标为()A . (﹣a,﹣b)B . (﹣a,﹣b﹣1)C . (﹣a,﹣b+1)D . (﹣a,﹣b﹣2)9. (2分)一天晚上,婷婷帮助妈妈清洗3个只有颜色不同的有盖茶杯,突然停电了,婷婷只好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是()C .D .10. (2分)如图,PA、PB是⊙O的切线,切点分别是A、B,如果∠E=60°,那么∠P等于()A . 60°B . 90°C . 120°D . 150°二、填空题 (共8题;共9分)11. (1分)如图,直线垂直相交于点,曲线关于点成中心对称,点的对称点是点,于点,于点 .若 , ,则阴影部分的面积之和为________.12. (1分)(2018·黄梅模拟) 用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为________cm2(精确到1cm2).13. (1分)(2018·山西) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为________.14. (1分)二次函数的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省泉州一中八年级(下)期末数学试卷一.选择题(共10小题)1.20190×2﹣1等于()A.2B.0C.D.﹣20192.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣103.函数y=中自变量x的取值范围是()A.x≠2B.x≠0C.x≠0且x≠2D.x>24.点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为()A.(﹣4,0)B.(0,﹣4)C.(4,0)D.(0,4)5.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是()A.1999年B.2004年C.2009年D.2014年6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.下列函数中,当x<0时,y随x的增大而减小的是()A.y=x B.y=2x﹣1C.y=D.y=﹣8.如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为()A.24B.10C.4.8D.69.如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4B.6C.7D.810.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5二.填空题(共6小题)11.x2=x的解是.12.计算:+=.13.某种数据方差的计算公式是S2=,则该组数据的总和为.14.已知P1(﹣4,y1)、P2(1,y2)是一次函数y=﹣3x+1图象上的两个点,则y1y2(填>,<或=).15.在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m﹣4),则OB的最小值是.16.如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范围.三.解答题17.解方程:+=3.18.先化简,再求值:(1﹣),其中m=2019.19.某校八年级在一次广播操比赛中,三个班的各项得分如下表服装统一动作整齐动作准确八(1)班808487八(2)班977880八(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是;在动作准确方面最有优势的是班;(2)如果服装统一、动作整齐、动作准确三个方面按20%,30%,50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.20.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.21.如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.22.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式≥k2x+b的解.23.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?24.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA 的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.25.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.2018-2019学年福建省泉州一中八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.20190×2﹣1等于()A.2B.0C.D.﹣2019【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:20190×2﹣1=1×=.故选:C.2.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数据0.000000007用科学记数法表示为7×10﹣9.故选:C.3.函数y=中自变量x的取值范围是()A.x≠2B.x≠0C.x≠0且x≠2D.x>2【分析】让分母不为0列式求值即可.【解答】解:由题意得x﹣2≠0,解得x≠2.故选:A.4.点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为()A.(﹣4,0)B.(0,﹣4)C.(4,0)D.(0,4)【分析】先根据x轴上点的纵坐标为0列方程求出m的值,从而得到点A的坐标,再根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(m+4,m)在平面直角坐标系的x轴上,∴m=0,∴点A的坐标为(4,0),∴点A关于y轴对称点的坐标为(﹣4,0).故选:A.5.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是()A.1999年B.2004年C.2009年D.2014年【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将五次统计数据的年份按从小到大排列为:2014,1994,2009,2004,1999,处在第3位的数为2009,所以本题这组数据的中位数是2009年.故选:C.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=DC.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故选:D.7.下列函数中,当x<0时,y随x的增大而减小的是()A.y=x B.y=2x﹣1C.y=D.y=﹣【分析】根据一次函数的性质,以及反比例函数的性质,即可得到当x<0时,y随x的增大而减小的函数.【解答】解:A、为一次函数,比例系数大于0,y随x的增大而增大,不符合题意;B、为一次函数,比例系数大于0,y随x的增大而增大,不符合题意;C、为反比例函数,比例系数大于0,x<0时,y随x的增大而减小,符合题意;D、为反比例函数,比例系数小于0,x<0时,y随x的增大而增大,不符合题意;故选:C.8.如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为()A.24B.10C.4.8D.6【分析】运用勾股定理可求DB的长,再用面积法可求DH的长.【解答】解:∵四边形ABCD是菱形,AC=8,∴AC⊥DB,OA=4,∵AD=5,∴运用勾股定理可求OD=3,∴BD=6.∵×6×8=5DH,∴DH=4.8.故选:C.9.如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为()A.4B.6C.7D.8【分析】由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD=4,AD∥BC,AD=BC,∴∠DEC=∠BCE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=4,∵AE=3,∴AD=BC=3+4=7,故选:C.10.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5【分析】根据已知方程的解得出x﹣2=﹣3或x﹣2=1,求出x即可.【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.二.填空题(共6小题)11.x2=x的解是x1=0,x2=1.【分析】本题应对方程进行变形,提取公因式x,将原式化为左边是两式相乘,右边是0的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x2=xx2﹣x=0x(x﹣1)=0,解得x1=0,x2=1.故答案是:x1=0,x2=1.12.计算:+=2.【分析】根据分式的运算法则即可求出答案.【解答】解:原式===2,故答案为:2.13.某种数据方差的计算公式是S2=,则该组数据的总和为32.【分析】样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],其中n是这个样本的容量,是样本的平均数.利用此公式直接求解.【解答】解:由S2=[(x1﹣4)2+(x2﹣4)2+…(x8﹣4)2]知共有8个数据,这8个数据的平均数为4,则该组数据的总和为:8×4=32;故答案为:32.14.已知P1(﹣4,y1)、P2(1,y2)是一次函数y=﹣3x+1图象上的两个点,则y1>y2(填>,<或=).【分析】利用一次函数图象上的点的坐标特征可求出y1,y2的值,比较后即可得出结论(利用一次函数的性质,y随x的增大而减小亦可解决问题).【解答】解:∵P1(﹣4,y1)、P2(1,y2)是一次函数y=﹣3x+1图象上的两个点,∴y1=﹣3×(﹣4)+1=13,y2=﹣3×1+1=﹣2.∵13>﹣2,∴y1>y2.故答案为:>.15.在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m﹣4),则OB的最小值是2.【分析】由点O、B的坐标利用两点间的距离公式可得出OB=,再利用配方法即可求出OB的最小值,此题得解.【解答】解:∵点O是坐标原点,点B的坐标是(m,m﹣4),∴OB===≥=2.∴OB的最小值是2.故答案为:2.16.如图,直线AB与反比例函数y=(x>0)的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,求v的取值范围2<v<12.【分析】∠ACO=45°,可则设直线AB的解析式为y=﹣x+b,而点A(u,p)和点B (v,q)为反比例函数的图象上的点,则p=,q=,进而求解.【解答】解:∵∠ACO=45°,∴设直线AB的解析式为y=﹣x+b.∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,∴p=,q=,∴点A(u,),点B(v,).又∵点A、B为直线AB上的点,∴=﹣u+b①,=﹣v+b②,①﹣②得:,即.又∵<u<2,∴2<v<12.三.解答题17.解方程:+=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程变形得:﹣=3方程两边同乘以2(x﹣1)得:2x﹣1=6(x﹣1)解得:x=经验:把x=代入2(x﹣1)≠0所以:原分式方程的解x=.18.先化简,再求值:(1﹣),其中m=2019.【考点】6D:分式的化简求值.【专题】11:计算题;513:分式.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)•=•=,当m=2019时,原式==.19.某校八年级在一次广播操比赛中,三个班的各项得分如下表服装统一动作整齐动作准确八(1)班808487八(2)班977880八(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是89分;在动作准确方面最有优势的是八(1)班;(2)如果服装统一、动作整齐、动作准确三个方面按20%,30%,50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.【考点】W2:加权平均数.【专题】54:统计与概率.【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序.【解答】解:(1)服装统一方面的平均分为:=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是八(1)班;(2)∵八(1)班的平均分为:80×20%+84×30%+87×50%=84.7分;八(2)班的平均分为:97×20%+78×30%+80×50%=82.8分;八(3)班的平均分为:90×20%+78×30%+85×50%=83.9分;∴八(1)班的得分最高.故答案为:89分;八(1).20.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【考点】AA:根的判别式.【专题】523:一元二次方程及应用.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.21.如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.22.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式≥k2x+b的解.【考点】G8:反比例函数与一次函数的交点问题.【专题】534:反比例函数及其应用.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;(2)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;(3)根据两函数图象的上下位置关系,即可得出不等式的解集.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(2,4),B (﹣4,m),∴k1=2×4=8,m==﹣2,∴点B的坐标为(﹣4,﹣2).将A(2,4)、B(﹣4,﹣2)代入y2=k2x+b中,,解得:,∴k1=8,k2=1,b=2.(2)当x=0时,y2=x+2=2,∴直线AB与y轴的交点坐标为(0,2),∴S△AOB=×2×4+×2×2=6.(3)观察函数图象可知:不等式≥k2x+b的解集为x≤﹣4或0<x≤2.23.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【考点】FH:一次函数的应用.【专题】127:行程问题.【分析】(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【解答】解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.24.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA 的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.【考点】KD:全等三角形的判定与性质;KQ:勾股定理;LE:正方形的性质;LO:四边形综合题;P2:轴对称的性质.【专题】15:综合题;16:压轴题.【分析】(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM =x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.【解答】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠P AB+∠QBA=90°,∴∠P AB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP===,∴BH===2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中,根据勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的长为;(3)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ2=AP2=AB2+PB2,∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x﹣m.在Rt△MHQ中,根据勾股定理可得x2=(x﹣m)2+(m+n)2,解得x=m+n+,∴AM=MB﹣AB=m+n+﹣m﹣n=.∴AM的长为.25.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.【考点】FF:两条直线相交或平行问题.【专题】23:新定义.【分析】(1)根据新定义得2•k=﹣1,然后解方程即可;(2)设该直线的解析式为y=kx+b,根据新定理得﹣k=﹣1,解得k=3,然后把A(2,3)代入y=3x+b求出b即可.【解答】解:(1)∵直线y=2x+1与y=kx﹣1互相垂直,∴2•k=﹣1,∴k=﹣;(2)设该直线的解析式为y=kx+b,∵直线y=kx+b与直线y=﹣x+3互相垂直,∴﹣k=﹣1,解得k=3,把A(2,3)代入y=3x+b得6+b=3,解得b=﹣3,∴该直线的解析式为y=3x﹣3.。

相关文档
最新文档