微积分6.5
微积分(第四版)(大学本科经济应用数学基础特色教材系列)
者介绍
目录
02 内容摘要 04 目录分析 06 精彩摘录
思维导图
本书关键字分析思维导图
基础
理论
运算
基本概念
微积分
积分
方面
数学
书
方法 函数
经济
应用
习题
阶
法则
微积分
概念
极限
内容摘要
《微积分》(第四版)共分七章,介绍了经济工作所需要的一元微积分、二元微积分及无穷级数、一阶微分 方程等,书首列有预备知识初等数学小结。本书着重讲解基本概念、基本理论及基本方法,培养学生的熟练运算 能力及解决实际问题的能力。
读书笔记
我想尝试一件事,用徽分学解水流连续不断的问题,无论多远它们似乎都是连接的,但中间的外来或己生长 的杂物只能在一定条件下生存。
目录分析
1
§1.1函数的类 别与基本性质
§1.2几何与经 2
济方面函数关 系式
3 §1.3极限的概
念与基本运算 法则
4
§1.4无穷大量 与无穷小量
5
§1.5未定式极 限
感谢观看
习题四
§5.1定积分的概念 与基本运算法则
§5.2变上限定积分
§5.3牛顿-莱不尼兹 公式
§5.4定积分换元积 分法则
§5.5定积分分部积 分法则
§5.6广义积分
§5.7平面图形的面 积
习题五
§6.1二元函数的一 阶偏导数
§6.2二元函数的二 阶偏导数
§6.3二元函数的全 微分
§6.4二元函数的极 值
§3.5函数曲线的凹 向区间与拐点
§3.6经济方面函数 的边际与弹性
微积分知识点
微积分知识点微积分是现代数学的一个重要分支,它主要研究函数的变化和无穷小量的运算。
微积分的应用广泛,不仅在数学中有重要地位,在物理、工程、经济学等领域也都发挥着重要的作用。
本文将按照逐步思考的方式,介绍微积分的一些基本知识点。
1.极限极限是微积分的基本概念之一,它描述了函数在某一点或无穷远处的趋势。
当自变量趋近于某一值时,函数的取值是否有限或者趋于无穷大,就可以通过极限来刻画。
例如,当自变量 x 趋近于 0 时,函数 f(x)=sin(x)/x 的极限可以用极限符号表示为lim(x→0) sin(x)/x = 1。
2.导数导数是函数在某一点的变化率,它描述了函数曲线在该点的切线斜率。
导数可以通过极限的概念来定义,即函数在某一点的导数等于该点的函数值在该点的极限。
例如,函数 f(x)=x^2 在 x=2 的导数可以表示为f’(2) =lim(x→2) (f(x)-f(2))/(x-2) = 4。
3.积分积分是导数的反运算,它描述了函数在某一区间上的累积。
积分可以看作是将一个函数从一个点到另一个点的面积或曲线长度加总的过程。
例如,函数 f(x)=2x在区间 [0, 3] 上的积分可以表示为∫[0,3] 2x dx = x^2∣[0,3] = 9。
4.泰勒展开泰勒展开是一种将函数表示为幂级数的方法,通过利用函数在某一点的导数来近似计算函数在其他点的值。
泰勒展开可以将复杂的函数表达式近似为简单的多项式形式,从而简化计算。
例如,函数 f(x)=e^x 的泰勒展开形式为f(x)=1+x+x2/2!+x3/3!+…。
5.偏导数偏导数是多元函数的导数推广,它描述了函数在某一点关于其中一个自变量的变化率。
偏导数将函数的其他自变量视为常数,只关注某一自变量的变化对函数值的影响。
例如,函数 f(x, y)=x2+y2 的关于 x 的偏导数可以表示为∂f/∂x = 2x。
6.线性代数与微积分的关系微积分与线性代数密切相关。
《微积分》教材目录
《微积分》教材目录 第一章 函数、极限与连续1.1 函数1.2 数列的极限1.3 函数的极限1.4 极限的运算法则1.5 极限存在准则、两个重要极限1.6 无穷小、无穷大及无穷小的比较1.7 函数的连续性与间断点1.8 闭区间上连续函数的性质第二章 导数与微分2.1 导数概念2.2 函数的求导法则2.3 高阶导数2.4 隐函数的导数 由参数方程所确定的函数的导数 2.5 函数的微分第三章 中值定理与导数的应用3.1 中值定理3.2 洛必达法则3.3 函数单调性的判别法3.4 函数的极值及其求法3.5 最大值、最小值问题3.6 曲线的凹凸性与拐点3.7 函数图形的描绘3.8 导数与微分在经济分析中的简单应用第四章 不定积分4.1 不定积分的概念与性质4.2 换元积分法4.3 分部积分法4.4 有理函数的积分第五章 定积分及其应用5.1 定积分的概念与性质5.2 微积分基本公式5.3 定积分的换元积分法与分部积分法5.4 定积分在几何学及经济学上的应用5.5 反常积分第六章 多元函数微积分6.1 空间解析几何简介6.2 多元函数的基本概念6.3 偏导数6.4 全微分6.5多元复合函数的导数6.6 隐函数的求导公式6.7 多元函数的极值6.8 二重积分第七章 无穷级数7.1 常数项级数的概念和性质7.2 常数项级数的审敛法7.3 函数项级数的概念与幂级数7.4函数展开成幂级数第八章 微分方程与差分方程初步8.1 微分方程的基本概念8.2 一阶微分方程及解法8.3 一阶微分方程在经济学中的应用8.4 可降阶的高阶微分方程8.5 二阶常系数线性微分方程8.6差分方程的基本概念及常系数线性差分方程解的结构 8.7 一阶常系数线性差分方程及应用举例第九章 Matlab在微积分中的应用9.1 MATLAB的基本操作9.2 MATLAB在一元微积分中的应用9.3 MATLAB在二元微积分中的应用 9.4 MATLAB在级数中的应用附录参考答案参考文献。
微积分第六章习题解答
2
3、利用定积分的几何意义,说明下列等式: 利用定积分的几何意义,说明下列等式: 1 1 π 2
(1)
∫ 0 2 x dx = 1 ;
y
y = 2x
(2)∫
0
1 − x dx =
y
4
;
2
x2 + y2 = 1
o
1 x
o
(3) ∫
π
−π
sin x dx = 0 ;
( 4)
∫
π
1
x
2 π − 2
cos x dx = 2∫ 2 cos x dx .
1 1 e−x 0 1 dx + ∫ dx = − ln(1 + e − x ) + ln(1 + x ) =∫ 01+ x −1 1 + e − x 0 −1
e ⋅ y ′ + cos x = 0 ,
y′ = −
cos x e
y
.
11
4、求下列极限: 求下列极限: (2) lim
∫ 0 arctan t dt
x2
x
0 " "型 0
arctan x 1 = lim = . x →0 2x 2
x →0
sin 2 t dt ∫π
x
(3) lim π
x→ 2
2
F ′( x ) = f ( x ) + x f ′( x ) ,
∃c ∈ (ξ ,1) ⊂ (0,1) , 使 F ′( c ) = 0 ,即 f (c) + c f ′(c) = 0 ,
f (c ) 而 c > 0 , 即有 f ′(c ) = − . c
大一高数微积分下册答案
第六章 定积分§6.1~6.2 定积分的概念、性质一、填空题1、设()f x 在[,]a b 上连续,n 等分011[,]:n n a b a x x x x b -=<<<<=,并取小区间左端点1i x -,作乘积1()i b af x n --⋅,则11lim ()ni n i b a f x n -→∞=-⋅=∑()d b af x x⎰.2、根据定积分的几何意义,20d x x =⎰2,1x -=⎰2π,sin d x x ππ-=⎰0.3、设()f x 在闭区间[,]a b 上连续,则()d ()d b baaf x x f t t -=⎰⎰0.二、单项选择题1、定积分()d b af x x ⎰(C) .(A) 与()f x 无关 (B) 与区间[,]a b 无关 (C) 与变量x 采用的符号无关 (D) 是变量x 的函数 2、下列不等式成立的是 (C) . (A) 222311d d x x x x >⎰⎰ (B) 22211ln d (ln )d x x x x <⎰⎰(C)110d ln(1)d x x x x >+⎰⎰ (D) 11e d (1)d xx x x <+⎰⎰3、设()f x 在[,]a b 上连续,且()d 0b af x x =⎰,则 (C) .(A) 在[,]a b 的某小区间上()0f x = (B) [,]a b 上的一切x 均使()0f x = (C) [,]a b 内至少有一点x 使()0f x = (D) [,]a b 内不一定有x 使()0f x = 4、积分中值公式()d ()()b af x x f b a ξ=-⎰中的ξ是 (B) .(A) [,]a b 上的任一点 (B) [,]a b 上必存在的某一点(C) [,]a b 上唯一的某一点 (D) [,]a b 的中点5、d arctan d d bax x x =⎰ (D) .析:arctan d b ax x ⎰是常数(A) arctan x (B)211x+ (C) arctan arctan b a - (D) 06、设244123d ,s i n d I x x Ix x ππ===⎰⎰⎰,则123,,I I I 的关系为 (B) .(A) 123I I I >> (B) 213I I I >> (C) 312I I I >> (D) 132I I I >> 7、设41I x =⎰,则I 的值 (A) . (A) 0I ≤≤(B) 115I ≤≤ (C) 1165I ≤≤ (D) 1I ≥析:4()f x =[]0,1上的最大值是2,最小值是0,所以0I ≤≤.三、估计定积分220e d x x I x -=⎰的值.解 记2()e ,[0,2]xxf x x -=∈,则2()(21)e x x f x x -'=-,令()0f x '=,得12x =. 因为1241e ,(0)1,(2)e 2f f f -⎛⎫=== ⎪⎝⎭,所以()f x 在[0,2]上的最大值为2e ,最小值为14e -,从而 212242ee d 2e x x I x --≤=≤⎰.四、设()f x 在[,]a b 上连续,在(,)a b 内可导,且1()d ()baf x x f b b a =-⎰.求证:至少存在一点(,)a b ξ∈,使得()0f ξ'=.证明 由积分中值定理,存在一点[,]a b η∈,使得()d ()()b af x x f b a η=-⎰,即1()d ()b af x x f b a η=-⎰.又由题设可知,()f x 在[,]b η上连续,在(,)b η内可导,且有()()f f b η=,根据罗尔定理,存在一点(,)(,)b a b ξη∈⊂,使得()0f ξ'=.§6.3微积分的基本公式一、填空题1、若20()x f x t t =⎰,则()f x '=32x .2、32d d x x x⎰23、极限0sin 3d lim1cos x x t tx→=-⎰3.4、定积分412d x x -=⎰52.5、设,0()sin ,0x x f x x x ≥⎧=⎨<⎩,则11()d f x x -=⎰1cos12-.6、由方程2d cos d 0e y xt t t t +=⎰⎰所确定的隐函数()y y x =的导数d d y x=2cos ey x-.7、设()f x 是连续函数,且31()d x f t t x -=⎰,则(7)f =112.8、设13201()()d 1f x x f x x x =++⎰,则10()d f x x =⎰3π.析:设10()d f x x A =⎰,则等式两端同时积分得111320001()d d d 1f x x x x A x x =+⋅+⎰⎰⎰ 1013arctan |,,4443A x A A A ππ=+⋅∴==. 9、设()f x 在闭区间[,]a b 上连续,且()0f x >,则方程1()d d 0()x x abf t t t f t +=⎰⎰在开区间(,)a b 内有1个实根.析:设1()()d d ()x x abF x f t t t f t =+⎰⎰,则有 1()d 0,()()d 0()a b ba F a t Fb f t t f t =<=>⎰⎰,由根的存在定理知至少有存在一个(),a b ξ∈使得()0F ξ=;若方程有两个根,不妨设1,2ξξ即12()0,()0F F ξξ==,则由罗尔定理知,(),a b ξ∃∈使得()0F ξ'=, 即使得1()0()f x f x +=成立,这与()0f x >矛盾, 所以方程又且只有一个根.二、单项选择题1、下列积分中能用微积分基本公式的只有 (C) .(A) 11d x x -⎰ (B) 31e d ln x x x ⎰(C) 1-⎰(D) 1-⎰2、设2()()d xa x F x f t t x a=-⎰,其中()f x 是连续函数,则lim ()x a F x →= (B) . (A) 2a (B) 2()a f a (C) 0 (D) 不存在3、设561cos 2()sin d ,()56x x x f x t t g x -==+⎰,则当0x →时,()f x 是()g x 的 (B) .(A) 低阶无穷小 (B) 高阶无穷小 (C) 等价无穷小 (D) 同阶但不等价无穷小 析: 1cos 42056450004()sin d ()2limlimlim 0()56xx x x x xt tf x x xg x x x-→→→⋅===++⎰. 三、求020(e 1)d limsin x t x t t x x→-⎰.解 根据洛必得法则,得202322000(e 1)d (e 1)d (e 1)1limlimlim lim sin 333x x t t x x x x x t t t t x x x xx x x →→→→---====⎰⎰.四、求函数20()e d xtI x t t -=⎰的极值.解 2()e x I x x -'=,()2222()ee (2)12e x x x I x x x x ---''=+-=-.令()0I x '=,得驻点0x =,又(0)10I ''=>,所以0x =是()I x 得极小值点,极小值为(0)0I =.五、求x .解x x x ==⎰()()24204sin cos d cos sin d sin cos d x x x x x x x x x ππππ=-=-+-⎰⎰⎰()()42042sin cos cos sin x x x x πππ=++--=.六、已知0()()d 1cos xx t f t t x -=-⎰,证明:20()d 1f x x π=⎰.证明 原式可化为 0()d ()d 1cos x xx f t t tf t t x -=-⎰⎰,两边对x 求导,得()d ()()sin xf t t xf x xf x x +-=⎰,即0()d sin xf t t x =⎰,令2x π=,得20()d sin12f t t ππ==⎰,即 20()d 1f x x π=⎰.§6.4 定积分的换元积分法一、填空题1、设()f x 在区间[,]a a -上连续,则2[()()]d a ax f x f x x ---=⎰.2、91x =⎰2ln 2. 3、09912(21)d x x -+=⎰1200.4、31e =⎰2. 5、(211d x x -=⎰2.6、222d 2x xx x -+=+⎰ln3. 7、x =⎰4π.8、设211e ,22()11,2x x x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则212(1)d f x x -=⎰12-.二、单项选择题1、设()f x 是连续函数,()d ()d b baaf x x f a b x x -+-=⎰⎰ (A) .(A) 0 (B) 1 (C) a b + (D) ()d b af x x ⎰析:令a b x y +-=,则()d ()d ()d ()dy 0b bbaaaabf x x f a b x x f x xg x -+-=+=⎰⎰⎰⎰2、设()f x 是连续函数,()F x 是()f x 的原函数,则 (A) . (A) 若()f x 是奇函数,()F x 必为偶函数 (B) 若()f x 是偶函数,()F x 必为奇函数 (C) 若()f x 是周期函数,()F x 必为周期函数 (D) 若()f x 是单调增函数,()F x 必为单调增函数 析:(B)反例:()cos ,()sin 1f x x F x x ==+(C)反例:()1,()f x F x x ==(D)反例:212(),()f x x F x x == 三、计算下列定积分1、()234332011311211222d 3d 32233t t t t t t t t -+⎛⎫⋅=+=+= ⎪⎝⎭⎰⎰. 2、()1ln 1122000021d 21d 2arctan 2112t t t t t t t t π⎛⎫⋅=-=-=- ⎪++⎝⎭⎰⎰.3、d d t t t t =⎰1t=-=.四、设()f x 是连续函数,证明:02(sin )d (sin )d xf x x f x x πππ=⎰⎰.证明(sin )d ()(sin )(d )=()(sin )d x txf x xt f t t t f t t ππππππ=-=---⎰⎰⎰令(sin )d (sin )d (sin )d (sin )d f t t tf t t f x x xf x x ππππππ=-=-⎰⎰⎰⎰.从而 02(sin )d (sin )d xf x x f x x πππ=⎰⎰,即 02(sin )d (sin )d xf x x f x x πππ=⎰⎰.五、设(),()f x g x 在[,](0)a a a ->上连续,且()f x 满足条件()()f x f x A +-=(A 为常数),()g x 为偶函数. (1)证明:()()d ()d a aaf xg x x A g x x -=⎰⎰;(2)利用(1)的结论计算定积分22sin arctan e d xx x ππ-⎰.(1)证明00()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰,而000()()d ()()(d )()()d ()()d a aaax tf xg x xf tg t t f t g t t f x g x x -=----=-=-⎰⎰⎰⎰令,所以()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x -=-+⎰⎰⎰[]0()()()d ()d a af x f xg x x A g x x =-+=⎰⎰.(2)解 取()arctan e ,()sin ,2xf xg x x a π===,令 ()()()arctan earctan e xx F x f x f x -=-+=+,则 ()2222e e e e ()arctan e arctan e 01e 1e 1e 1e x x x x xx x x x xF x -----''=+=+=+=++++,所以 ()F x A =(常数),又(0)arctan1arctan12arctan12F π=+==,即 ()()2f x f x A π-+==.于是有22202sin arctan e d sin d sin d 222xx x x x x x πππππππ-===⎰⎰⎰.§6.5 定积分的分部积分法一、填空题1、cos d x x x π=⎰2-.2、已知()f x 的一个原函数是2ln x ,则1e()d xf x x '=⎰1.3、11()e d xx x x --+=⎰124e --.4、设0sin ()d xtf x t t π=-⎰,则0()d f x x π=⎰2. 析:0000sin sin ()d ()|d ()d x x f x x xf x x x x x x xπππππππ=-=---⎰⎰⎰0(cos )|2x π=-=. 二、计算下列定积分1、2001d arccos 122x x x x =+=-⎰⎰12==+. 2、1e111e1e 1e 1111eeee11ln d (ln )d ln d ln d ln d x x x x x x x x x x x x x x x x =-+=-+⋅+-⋅⎰⎰⎰⎰⎰1121e e 12e e e=-+-+-+=-. 3、ln 2ln 2ln 20ln 2ln 211e d d(e )e e d ln 2e (1ln 2)22x x xx xx x x x x -----=-=-+=--=-⎰⎰⎰. 4、2222200001cos 211sin d d d cos 2d 222x x x x x x x x x x x ππππ-=⋅=-⎰⎰⎰⎰22220022011d(sin 2)sin 2sin 2d 44164x x x x x x x πππππ⎛⎫⎪=-=-- ⎪ ⎪⎝⎭⎰⎰22201110cos 21642164x πππ⎛⎫ ⎪=-+=+ ⎪⎝⎭. 5、1102x x =⎰⎰(被积函数为偶函数)方法一 :122arcsin dx =-⎰1202arcsin x x ⎫=--⎪⎪⎝⎭212x ⎛⎫=-- ⎪ ⎪⎝⎭1202d 1x ⎫=--=-⎪⎪⎝⎭⎰. 方法二:166sin arcsin cos dt cos t txt x t t ππ-=⎰⎰602d(-cos )1t t π==-⎰. 6、111120000ln(1)1ln(1)1d ln(1)d d ln(1)(2)222x x x x x x x x x ++⎛⎫=+=-+ ⎪----⎝⎭⎰⎰⎰ 11001111ln 2d ln 2d (2)(1)321x x x x x x ⎛⎫=-=-+ ⎪-+-+⎝⎭⎰⎰[]1121ln 2ln(2)ln(1)ln 2ln 2ln 2333x x =---++=-=.三、设()f x 是连续函数,证明:000()d d ()()d x u xf t t u x u f u u ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰.证明()0000()d d ()d d()d ()d ()d xx u u x u x xf t t u u f t t u f t t x f t t uf u u ⎡⎤=-=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰()d ()d ()d ()d xxx xx f u u uf u u xf u u uf u u =-=-⎰⎰⎰⎰()()d xx u f u u =-⎰.§6.6 广义积分与Γ函数一、单项选择题1、下列广义积分收敛的是 (D) . (A)e d xx +∞⎰(B) e1d ln x x x +∞⎰(C) 1x +∞⎰ (D) 321d x x +∞-⎰2、以下结论中错误的是 (D) .(A) 201d 1x x +∞+⎰收敛 (B) 20d 1x x x +∞+⎰发散 (C) 2d 1x x x +∞-∞+⎰发散 (D) 2d 1x x x +∞-∞+⎰收敛 3、1211d x x -=⎰ (D) .(A) 0 (B) 2 (C) 2- (D) 发散析:1101222210101111d d d ,d x x x x x x x x --=+⎰⎰⎰⎰发散,0211d x x-⎰也发散。
大学微积分课件(PPT版)
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
微积分下册主要知识点汇总
一、第一换元积分法(凑微分法)C x F C u F du u g dx x x g +=+=='⎰⎰)]([)()()()]([ϕϕϕ.二、常用凑微分公式三、第二换元法C x F C t F dt t t f dx x f +=+='=⎰⎰)]([)()()]([)(ψϕϕ,注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下:当被积函数中含有a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c),22a x - 可令 .sec t a x =当有理分式函数中分母的阶较高时, 常采用倒代换tx 1=.四、积分表续 4.3分部积分法xu x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx xx f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx xx f x d x f dx x x f a b ax d b axf a dx b ax f xx xx x x xx x x arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)(arcsin .11)(arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1)(ln .3)0()()(1)(.2)0()()(1)(.1法分积元换一第换元公式积分类型22221==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅≠=≠++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-μμμμμμμ分部积分公式: ⎰⎰-=vdu uv udv (3.1)⎰⎰'-='vdx u uv dx v u (3.2)分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算. 一般地, 下列类型的被积函数常考虑应用分部积分法(其中m , n 都是正整数)..arctan arccos arcsin )(ln cos sin cos sin 等mx x mxx mxx x x e x mx e mx e mx x mx x n n n n mx n nx nx n n5.1定积分的概念 5.2定积分的性质两点补充规定:(a) 当b a =时, ;0)(=⎰badx x f (b) 当b a >时,⎰⎰-=abbadx x f dx x f )()(.性质1 .)()()]()([⎰⎰⎰±=±bababadx x g dx x f dx x g x f性质2 ,)()(⎰⎰=baba dx x f k dx x kf (k 为常数).性质3⎰⎰⎰+=bccab a dx x f dx x f dx x f )()()(.性质4 .1a b dx dx baba-==⋅⎰⎰性质5 若在区间],[b a 上有),()(x g x f ≤ 则,)()(⎰⎰≤babadx x g dx x f ).(b a <推论1 若在区间],[b a 上,0)(≥x f 则 ,0)(≥⎰badx x f ).(b a <推论2).(|)(|)(b a dxx f dx x f baba<≤⎰⎰性质6 (估值定理)设M 及m 分别是函数)(x f 在区间],[b a 上的最大值及最小值,则).()()(a b M dx x f a b m ba-≤≤-⎰性质7 (定积分中值定理) 如果函数)(x f 在闭区间],[b a 上连续,则在],[b a 上至少存在一个点ξ, 使).(),)(()(b a a b f dx x f ba≤≤-=⎰ξξ5.3微积分的基本公式 一、引例二、积分上限的函数及其导数:⎰=Φxadt t f x )()(定理2 若函数)(x f 在区间],[b a 上连续,则函数⎰=Φxadt t f x )()(就是)(x f 在],[b a 上的一个原函数.三、牛顿—莱布尼兹公式定理3 若函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()()(a F b F dx x f ba-=⎰. (3.6)公式(3.4)称为牛顿—莱布尼茨公式.5.4定积分的换元法积分法和分部积分法 一、定积分换元积分法定理1 设函数)(x f 在闭区间],[b a 上连续,函数)(t x ϕ=满足条件: (1),)(,)(b a ==βϕαϕ 且b t a ≤≤)(ϕ; (2))(t ϕ在],[βα(或],[αβ)上具有连续导数,则有⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(. (4.1)公式(4.1)称为定积分的换元公式.定积分的换元公式与不定积分的换元公式很类似. 但是,在应用定积分的换元公式时应注意以下两点:(1)用)(t x ϕ=把变量x 换成新变量t 时, 积分限也要换成相应于新变量t 的积分限,且上限对应于上限,下限对应于下限;(2) 求出)()]([t t f ϕϕ'的一个原函数)(t Φ后,不必象计算不定积分那样再把)(t Φ变换成原变量x 的函数,而只要把新变量t 的上、下限分别代入)(t Φ然后相减就行了. 二、定积分的分部积分法⎰baudv ⎰-=ba b a vdu uv ][ 或⎰'badx v u ⎰'-=ba b a dx u v uv ][5.5广义积分一、无穷限的广义积分)()(|)()(a F F x F dx x f a a-+∞==∞++∞⎰)()(|)()(-∞-==∞-∞-⎰F b F x F dx x f b b)()(|)()(-∞-+∞==∞+∞-+∞∞-⎰F F x F dx x f二、无界函数的广义积分⎰⎰++→=ba ba dx x f dx x f εε)(lim )(0.)(lim)(0⎰⎰-+→=εεb aba dx x f dx x f5.6定积分的几何应用一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量U (总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元 根据具体问题,选取一个积分变量,例如x 为积分变量,并确定它的变化区间],[b a ,任取],[b a 的一个区间微元],[dx x x +,求出相应于这个区间微元上部分量U ∆的近似值,即求出所求总量U 的微元 dx x f dU )(=;(2) 由微元写出积分 根据dx x f dU )(=写出表示总量U 的定积分⎰⎰==bab adx x f dU U )(微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量U 关于区间],[b a 应具有可加性,即如果把区间],[b a 分成许多部分区间, 则U 相应地分成许多部分量, 而U 等于所有部分量U ∆之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量U ∆的近似表达式dx x f )(,即使得U dU dx x f ∆≈=)(. 在通常情况下,要检验dx x f U )(-∆是否为dx 的高阶无穷小并非易事,因此,在实际应用要注意dx x f dU )(=的合理性. 二、平面图形的面积(1)直角坐标系下平面图形的面积 (2)极坐标系下平面图形的面积曲边扇形的面积微元 θθd r dA 2)]([21=所求曲边扇形的面积 .)]([212θθϕβαd A ⎰=三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 ,)]([2dx x f dV π= 所求旋转体的体积 .)]([2⎰=badx x f V π四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 ,)(dx x A dV = 所求立体的体积 .)(⎰=badx x A V5.7积分在经济分析的应用6.1空间解析几何简介一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz (图6-1-1). 空间直角坐标系有右手系和左手系两种. 我们通常采用右手系.二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=三曲面及其方程定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p ) 双曲抛物面 z qy p x =+-2222 ( p 与q 同号)单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a6.2多元函数的基本概念一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、二元函数的概念定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域.类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义三、二元函数的极限定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为A y x f y y x x =→→),(lim 00.或 A y x f →),( (),(),(00y x y x →) 也记作A P f P P =→)(lim 0或 A P f →)( )(0P P →二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果),(),(lim 0000y x f y x f y y x x =→→,则称),(y x f z =在点),(00y x 处连续. 如果函数),(y x f z =在点),(00y x 处不连续,则称函数),(y x f z =在),(00y x 处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数. 一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域或闭区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D 上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理. 下面我们不加证明地列出这些定理.定理1(最大值和最小值定理) 在有界闭区域D 上的二元连续函数, 在D 上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界. 定理3(介值定理)在有界闭区域D 上的二元连续函数, 若在D 上取得两个不同的函数值, 则它在D 上取得介于这两值之间的任何值至少一次. 6.3偏导数一、偏导数的定义及其计算法定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 当y 固定在0y 而x 在0x 处有增量x ∆时, 相应地函数有增量),,(),(0000y x f y x x f -∆+如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数, 记为).,(,,00000000y x f z xf xz x y y x x xy y x x y y x x 或======∂∂∂∂例如,有),(00y x f x xy x f y x x f x ∆-∆+=→∆),(),(lim00000.类似地,函数),(y x f z =在点),(00y x 处对y 的偏导数为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记为).,(,,00000000y x f z yfy z y y y x x yy y x x y y x x 或======∂∂∂∂上述定义表明,在求多元函数对某个自变量的偏导数时, 只需把其余自变量看作常数,然后直接利用一元函数的求导公式及复合函数求导法则来计算之. 二、关于多元函数的偏导数,补充以下几点说明:(1)对一元函数而言,导数dxdy可看作函数的微分dy 与自变量的微分dx 的商. 但偏导数的记号xu∂∂是一个整体. (2)与一元函数类似,对于分段函数在分段点的偏导数要利用偏导数的定义来求.(3)在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续. 但对多元函数而言,即使函数的各个偏导数存在,也不能保证函数在该点连续.例如,二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x yx xyy x f 在点)0,0(的偏导数为,00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆xx f x f f x x x .00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆y yf y f f x y y 但从上节例5已经知道这函数在点)0,0(处不连续.三、偏导数的几何意义设曲面的方程为),(y x f z =,)),(,,(00000y x f y x M 是该曲面上一点,过点0M 作平面0y y =,截此曲面得一条曲线,其方程为⎩⎨⎧==00),(y y y x f z 则偏导数),(00y x f x 表示上述曲线在点0M 处的切线x T M 0对x 轴正向的斜率(图6-3-1). 同理,偏导数),(00y x f y 就是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴正向的斜率.四、偏导数的经济意义设某产品的需求量),,(y p Q Q = 其中p 为该产品的价格, y 为消费者收入. 记需求量Q 对于价格p 、消费者收入y 的偏改变量分别为),,(),(y p Q y p p Q Q p -∆+=∆和 ).,(),(y p Q y y p Q Q y -∆+=∆易见,pQ p ∆∆表示Q 对价格p 由p 变到p p ∆+的平均变化率. 而pQ p Qp p ∆∆=∂∂→∆0lim 表示当价格为p 、消费者收入为y 时, Q 对于p 的变化率. 称Qp p Q pp Q Q E p p p ⋅∂∂-=∆∆=→∆//lim为需求Q 对价格p 的偏弹性. 同理,yQ y ∆∆表示Q 对收入y 由y 变到y y ∆+的平均变化率. 而yQ y Q y y ∆∆=∂∂→∆0lim 表示当价格p 、消费者收入为y 时, Q 对于y 的变化率. 称 Qy y Q yy Q Q E y y y ⋅∂∂-=∆∆=→∆//lim为需求Q 对收入y 的偏弹性.五、科布-道格拉斯生产函数在商业与经济中经常考虑的一个生产模型是科布-道格拉斯生产函数100,),(1<<>=-a c ycx y x p aa且,其中p 是由x 个人力单位和y 个资本单位生产处的产品数量(资本是机器、场地、生产工具和其它用品的成本)。
微积分性质公式整理
微积分性质公式整理微积分是数学中的一个重要分支,用于研究函数的变化、曲线的斜率和区域的面积等问题。
在微积分中,有很多重要的性质和公式需要掌握。
下面将对微积分的性质和公式进行整理和总结。
1.导数的基本性质导数是函数在其中一点处的变化率。
常见的导数性质如下:-常数函数导数为0:如果f(x)=C,则f'(x)=0,其中C是常数。
-变量的导数为1:如果f(x)=x,则f'(x)=1-导数的和、差、乘积和商的规则:如果f(x)和g(x)在区间上可导,则有以下性质:-(f+g)'(x)=f'(x)+g'(x)-(f-g)'(x)=f'(x)-g'(x)-(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2-复合函数的导数:如果g是可导的,并且f是可导的,则复合函数(f∘g)(x)的导数为(f∘g)'(x)=f'(g(x))*g'(x)。
2.基本的积分公式积分是导数的逆运算,用于求函数曲线下的面积。
常见的积分公式如下:- 幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数。
- 正弦函数、余弦函数的积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,C为积分常数。
- 指数函数的积分:∫e^x dx = e^x + C,C为积分常数。
- 对数函数的积分:∫(1/x) dx = ln,x, + C,C为积分常数。
3.微分与积分的基本关系微分和积分是微积分的两个基本概念,它们之间有一种基本关系,称为牛顿—莱布尼茨公式:如果F(x)是f(x)的一个原函数(即F'(x)=f(x)),则有以下公式:∫f(x) dx = F(x) + C其中C为积分常数。
微积分的公式大全
微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
微积分常用公式及运算法则上
微积分常用公式及运算法则上微积分是数学中的一个重要分支,广泛应用于物理、工程、经济学等领域。
在学习微积分的过程中,掌握常用的公式和运算法则是非常重要的。
下面是微积分中常用的公式和运算法则的详细介绍。
一、常用公式1.导数公式(1)常数的导数:若c为常数,则d/dx(c)=0。
(2)乘方函数的导数:若y=x^n,则dy/dx=nx^(n-1)。
(3)指数函数的导数:若y=e^x,则dy/dx=e^x。
(4)对数函数的导数:若y=ln(x),则dy/dx=1/x。
(5)三角函数的导数:(a)若y=sin(x),则dy/dx=cos(x)。
(b)若y=cos(x),则dy/dx=-sin(x)。
(c)若y=tan(x),则dy/dx=sec^2(x)。
(d)若y=cot(x),则dy/dx=-csc^2(x)。
(e)若y=sec(x),则dy/dx=sec(x)tan(x)。
(f)若y=csc(x),则dy/dx=-csc(x)cot(x)。
2.积分公式(1)不定积分:若F(x)是f(x)的一个原函数,则∫f(x)dx=F(x)+C,其中C为常数。
(2)定积分:若f(x)在区间[a, b]上可积,则∫[a, b]f(x)dx是f(x)在[a, b]上的定积分。
3.常用等式(1)和差化积:(a+b)(a-b)=a^2-b^2(2)完全平方差:a^2-2ab+b^2=(a-b)^2(3)二次方程的根:若ax^2+bx+c=0(a≠0)有实根,则判别式D=b^2-4ac≥0。
(4)勾股定理:在直角三角形ABC中,设∠C=90°,则a^2+b^2=c^2,其中a、b为直角边,c为斜边。
二、运算法则1.四则运算法则(1)加法法则:(f+g)'=f'+g'。
(2)减法法则:(f-g)'=f'-g'。
(3)乘法法则:(f*g)'=f'*g+f*g'。
微积分:6.5 函数的极值与最大值最小值
n1
n1 n1
n1
lim
n
M (n)
n lim (
n n
)n1 1
1
lim(1 1 )n1 n n 1
lim[ (1
n
1 )(n1) ]1 n1
e 1
函数y
x
2
x
在
区
间(0,
1]上
的
最
小
值
为
e
2 e
解 y x2 x e2xln x
y e2xln x (2ln x 2) 令 y 0 唯一驻点:x 1
11 11 11
11
极小值 f (1) 0
单调增加区间
(
,
7 ], 11
[1,).
定理 (第二充分条件)
如 果 f ( x0 ) 0, f ( x0 ) 0 ( 0),则f ( x0 )为
极大值 (极小值).
证
f
(
x0
)
lim
x x0
f ( x) f ( x0 ) lim
f ( x) 0,
y
(A) 一个极小值点和两个极大值点.
(B) 两个极小值点和一个极大值点.
(C) 两个极小值点和两个极大值点. • • • •
(D) 三个极小值点和一个极大值点.
O
x
两个红点是极大值点, 两个绿点是极小值点.
2. 最大值与最小值问题
若函数 f ( x) 在 [a,b] 上连续,则f ( x) 在 [a,b]
O
x0
xO
x0
x
一般求极值的步骤
(1) 求导数; (2) 求驻点与不可导点; (3) 求相应区间的导数符号,判别增减性; (4) 求极值.
微积分的基本介绍
微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。
就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分基础认识微积分的基本概念和运算法则
微积分基础认识微积分的基本概念和运算法则微积分基础:认识微积分的基本概念和运算法则微积分,作为数学的一个重要分支,是研究变化和运动的工具。
它有着广泛的应用领域,从物理学到经济学,从工程学到生物学,微积分无处不在。
本文将介绍微积分的基本概念和运算法则,帮助读者初步了解微积分的重要性和基础知识。
一、微积分的基本概念微积分的核心思想是研究变化的量。
在微积分中,最基本的概念是函数。
函数是一种映射关系,将一个自变量的取值映射到一个因变量的取值。
常用的表示方式是y=f(x),其中x表示自变量,y表示因变量。
对于一个函数,我们可以通过求导和积分来研究其变化情况。
1. 导数导数描述了函数的变化率。
对于函数y=f(x),它的导数可以表示为dy/dx或f'(x)。
导数可以理解为函数在某一点处的切线斜率,或者说函数在该点附近的线性近似。
导数有很多计算方法,其中最基本的是使用极限。
通过计算函数在一点处的极限,可以得到该点处的导数值。
导数可以帮助我们判断函数的增减性、极值点以及曲线的凹凸性等。
2. 积分积分是导数的逆运算。
对于函数f(x),它的积分可以表示为∫f(x)dx。
积分可以理解为函数所代表的曲线与x轴之间的面积。
积分也具有很多计算方法,其中最基本的是使用定积分。
通过将函数切割成无穷小的矩形,然后计算这些矩形面积的和,可以得到函数的积分值。
积分可以帮助我们计算曲线围成的面积、求解定积分问题以及求解微分方程等。
二、微积分的运算法则在微积分中,导数和积分有着一系列的运算法则,这些法则可以帮助我们简化复杂的计算过程。
1. 导数的运算法则(1)常数法则:对于常数c,它的导数为0。
(2)乘法法则:对于两个函数u(x)和v(x),它们的乘积的导数可以表示为(uv)'=u'v+uv'。
(3)除法法则:对于两个函数u(x)和v(x),它们的商的导数可以表示为(u/v)'=(u'v-uv')/v^2。
微积分基本定理公式
微积分基本定理公式微积分基本定理公式,这可是数学领域里相当重要的一块内容!咱们先来说说啥是微积分基本定理公式。
简单来讲,微积分基本定理公式就像是一座桥梁,把导数和定积分这两个看似不太相关的概念紧密地联系在了一起。
它告诉我们,如果有一个函数 F(x) 是另一个函数 f(x) 的原函数,那么在某个区间 [a, b] 上,定积分∫(从 a 到 b)f(x)dx 就等于 F(b) - F(a)。
就比如说,咱们来算一个简单的例子。
假设 f(x) = 2x,那它的一个原函数 F(x) 就是 x²。
如果我们要计算在区间 [1, 3] 上的定积分∫(从 1到 3)2xdx ,根据微积分基本定理公式,那就等于 F(3) - F(1),也就是3² - 1² = 9 - 1 = 8 。
还记得我之前给学生们讲这个公式的时候,有个学生特别可爱。
那是一节高中数学课,我正在黑板上推导微积分基本定理公式,底下的学生们都聚精会神地看着。
突然,一个平时特别活泼的男生举起了手,皱着眉头问我:“老师,这公式到底有啥用啊?感觉好复杂!”我笑了笑,没急着回答他,而是先在黑板上写下了一个物理中的匀加速直线运动的速度与位移的关系式子。
然后我对他说:“你看,这个物理问题,如果没有微积分基本定理公式,咱们要想求出位移,得多麻烦呀。
但是有了它,一下子就能轻松搞定。
”这孩子听了之后,眼睛一下子亮了起来,好像突然明白了什么。
这微积分基本定理公式在实际生活中的应用那可多了去了。
比如说,要计算一条不规则曲线围成的面积,要是没有这个公式,那可真是让人头疼。
但有了它,咱们就能把复杂的问题简单化,轻松求出面积来。
再比如,在经济学中,计算成本和收益的时候,微积分基本定理公式也能大显身手。
它可以帮助我们分析企业的生产决策,找到最优的生产规模,从而实现利润最大化。
而且啊,这公式不仅仅是在数学、物理、经济这些学科里有用,它还能培养咱们的逻辑思维能力和解决问题的能力。
微积分的公式大全
微积分的公式大全微积分是数学的一个重要分支,应用广泛,内容繁多。
在这里,我将为您介绍一些微积分中的基本公式和定理。
请注意,这里只是列举一些常用的公式,若要深入学习微积分,请参考相关教材和课程。
1.导数的基本公式:- 常数导数法则:对于常数c,其导数为0,即d/dx(c) = 0。
- 幂函数导数法则:对于幂函数f(x) = x^n ,其中n是常数,则其导数为d/dx(x^n) = nx^(n-1)。
-和差导数法则:若f(x)和g(x)都可导,则(f(x)±g(x))'=f'(x)±g'(x)。
-积法则:若f(x)和g(x)都可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-商法则:若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.基本积分公式:- 反微分法则:若F(x)是f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C为常数。
- 平方差公式:∫(a^2 - x^2)^(1/2) dx = (1/2)(x√(a^2 - x^2) + a^2sin^(-1)(x/a)) + C。
- 指数函数积分:∫e^x dx = e^x + C,其中e是自然对数的底数。
- 三角函数积分:∫cos(x) dx = sin(x) + C,∫sin(x) dx = -cos(x) + C。
3.特殊函数和公式:-泰勒级数展开:函数f(x)在点a处的泰勒展开式为f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...。
- 自然对数函数和指数函数的微分法则:d/dx(ln(x)) = 1/x,d/dx(e^x) = e^x。
微积分知识点总结6
微积分知识点总结6微积分是数学的一个重要分支,它研究函数的导数和积分,是分析学的一个重要组成部分。
微积分的核心概念包括导数、积分、微分方程和级数,这些概念也应用于物理学、工程学、经济学和其他领域。
在这篇文章中,我们将对微积分的一些重要知识点进行总结,包括导数、积分、微分方程和级数。
导数导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
一个函数的导数可以通过极限的方式定义,即在某一点处的导数等于函数在这一点的增量与自变量增量的比值在自变量趋近于0时的极限值。
导数表示了函数的瞬时变化率,它可以用来描述曲线的斜率或者函数在某一点的切线方向。
导数的计算方法包括极限、导数的定义式、导数的性质和导数的应用等。
积分积分是导数的反运算,它描述了函数在一定范围内的累积变化量。
一个函数的积分可以通过极限的方式定义,即在一定范围内的积分等于该范围内函数值的无限个增量的总和的极限值。
积分表示了函数的累积变化量,它可以用来计算曲线下的面积、函数的平均值和函数的累积总和等。
积分的计算方法包括不定积分、定积分、积分的性质和积分的应用等。
微分方程微分方程是描述自变量与相关变量之间关系的方程,其中包含了导数或者微分的表达式。
微分方程包括了常微分方程和偏微分方程两种类型,常微分方程是只涉及一个自变量的微分方程,而偏微分方程是涉及多个自变量的微分方程。
微分方程的解可以通过解析解或者数值解的方式来求得,它们可以描述系统的变化规律、自然现象的演化和工程问题的解决方法等。
级数级数是无限项的数列的求和,它可以是无穷级数或者有穷级数。
级数的性质包括比较判别法、比值判别法、根值判别法和收敛级数的性质等。
级数的计算方法包括级数的求和、级数收敛性的判断和级数的应用等。
级数在数学分析、物理学、工程学和概率论等领域中都有重要的应用,它们可以表示函数的泰勒级数、无穷几何级数、无穷等比级数等。
总结微积分是数学中的一个重要分支,它研究函数的变化和积累规律。
微积分知识点
微积分知识点微积分是数学中重要的分支之一,它研究的是变化与运动的规律,能够描述和解决各种实际问题。
本文将介绍微积分的基本概念和常用的知识点。
一、导数与微分1.导数的定义在微积分中,导数表示函数在某一点上的变化率。
对于函数f(x),它在点x处的导数记作f'(x)或dy/dx,定义为极限lim Δx→0 (f(x+Δx)-f(x))/Δx。
导数可以理解为函数曲线在某一点上的切线斜率。
2.求导法则求导法则是计算导数的基本规则,常用的法则有:- 常数规则:常数的导数为0;- 变量规则:变量的导数为1;- 基本初等函数的导数:如幂函数、指数函数、对数函数的导数等;- 四则运算法则:加减乘除的导数计算规则。
3.高阶导数高阶导数表示函数的导数的导数,记作f''(x),也可以表示成dy^2/dx^2。
高阶导数的计算方法与一阶导数类似,可以通过多次求导来得到。
4.微分微分是导数的另一种表示形式,它表示函数在某一点上的变化量。
如果y是函数f(x)在x点的值,dx是x的增量,dy是它对应的函数值的增量,那么微分dy可以表示成dy=f'(x)dx。
微分的应用十分广泛,例如在数值计算、误差分析等领域中都有重要的作用。
二、积分与不定积分1.积分的定义积分是导数的逆运算,它表示函数在一定区间上的累积变化量。
对于函数f(x),在区间[a, b]上的积分记作∫[a, b] f(x)dx,表示在该区间上函数f(x)与x轴之间的面积。
2.定积分与不定积分积分有两种常见形式,一种是定积分,另一种是不定积分。
- 定积分是区间上的积分,表示计算函数在某一区间上的累积量,其结果是一个确定的数值;- 不定积分是函数的积分,表示求解一个函数的原函数(或称为原始函数)。
不定积分的结果是一个包含常数C的函数集合。
3.牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分中的重要公式,它连接了定积分和不定积分。
该公式表示定积分与不定积分之间的关系,即∫[a, b] f(x)dx = F(b) - F(a),其中F(x)是函数f(x)的一个原函数。
《微积分(应用型)》教学课件 第六章
形如
dy p(x) y q(x) dx
(6-18)
的方程称为一阶非齐次线性微分方程,其中 p(x) , q(x) 为已知函数.当 q(x) 0 时,称
dy p(x) y 0 dx
(6-19)
为一阶齐次线性微分方程,也称为式(6-18)对应的齐次方程.
6. 2. 1 一阶线性微分方程求解
下面我们来求式(6-18 )的通解.为此 ,先求式(6-19 )的通解.对式(6-19 )分离变
y 3y 2 y (C1ex 4C2e2x ) 3(C1ex 2C2e2x) 2(C1e x C2e2x) (C1 3C1 2C1)ex (4C2 6C2 2C2)e2x 0 .
6. 1. 1 相关定义
这表明函数 y C1ex C2e2x 满足所给微分方程,因此它是微分方程的解.又因为此解中有 两个独 立的任意常数 ,且任意常数 的个数正好与 微分方程的阶 数相同,所以 此解为微分方 程 的通解.
本节介绍了微分方程的一些概念,可分离变量的 微分方程、一阶齐次微分方程和高阶微分方程的解 法.
其中,可分离变量的微分方程的解法是: (1)将方程整理为变量分离方程,然后对方程的 两边取不定积分; (2)一阶齐次微分方程的解法是令 u y ;高阶微
x
分方程的解法是对方程两边进行n 次积分.
6.2 一阶线性微分方程
1 dy sin xdx , y
两边积分
dy y
( sin
x)dx
,
得方程的通解为
ln | y | cos x C .
该解称为微分方程的隐式通解.
因为 eln|y| ecos xC1 ,即 y eC1ecos x .令 C eC1 ,得 y Cecos ,此解称为原微分方程的显
高中数学 6.5含绝对值的不等式(第一课时) 大纲人教版必修
6.5 含有绝对值的不等式●课时安排 2课时 ●从容说课本小节的内容包括含绝对值不等式的一个定理,两个推论及其证明和应用.本小节教学时间约需2课时.1.本小节的定理是含绝对值不等式的一个重要性质,在以后解决各类含绝对值不等式的问题时经常用到,一定要让学生掌握.对于这个定理的教学,学生可能不易接受.为此,教学时要注意使学生明白:(1)绝对值的含义: 若x ∈R ,则|x|=⎪⎩⎪⎨⎧-x x 0).0(),0(),0(<=>x x x(2)绝对值的几何意义:|x|指数轴上坐标为x 的点到原点的距离,|x-m|指数轴上坐标为x 的点到坐标为m 的点的距离.(3)绝对值的运算性质: |a ·b|=|a|·|b|;|ba|=ba (b ≠0).(4)弄清楚为什么|x|=|-x|,-|x|≤x ≤|x|. (5)含绝对值不等式定理实际上包括两总分,即 |a+b|≤|a|+|b|; ① |a|-|b|≤|a+b|. ②而②式与|a|≤|a+b|+|b|等价,再把它改写成|(a+b)+(-b)|≤|a+b|+|-b|.以后,就可以发现本质上与①式一样,所以主要是证明①式.(6)为了加深对定理的理解,可以向学生指出:定理的左、中、右三部分中,右边是绝对值的和,肯定是非负的;中间是和的绝对值,可能因为a,b一正一负要抵消一部分,但由于是绝对值,仍是非负的;左边是绝对值的差,当b≠0时,肯定要抵消一部分,而且还可能是负的.这样大、中、小的关系也就容易理解与记忆了.还应指出,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义.2.本小节含绝对值不等式定理的推论1还可以推广到n(n是大于2的自然数)个数(或式)的和的绝对值小于或等于这n个数的绝对值的和.推论2与定理虽然形式上有所不同,但实质上是等价的.因为这里a,b是任意实数,所以只要用-b代替b,就可以由其中任何一个推得另一个,因此推论2不必要求学生记忆.3.本小节的重点和难点在于:(1)应用含绝对值不等式定理时,一定要注意等号成立的条件:|a+b|=|a|+|b|⇔ab≥0;|a-b|=|a|+|b|⇔ab≤0;|a|-|b|=|a+b|⇔(a+b)b≤0;|a|-|b|=|a-b|⇔(a-b)b≥0.(2)含绝对值的不等式的证明题主要分两类,一类是略简单的不等式,往往可通过平方法、换元法去掉绝对值转化为普通的不等式证明题,或利用不等式性质:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添项或拆项证明;另一类是综合性较强的函数型含绝对值的不等式,这时,往往可考虑利用恒成立,则特殊情况也成立,或转化为一元二次方程的根分布等证明.(3)含绝对值的不等式成立与否的判断,常可利用绝对值不等式性质,或特殊值法进行.(4)绝对值的定义,几何意义和运算性质,是解决含有绝对值不等式问题的基础.用平方法消去绝对值符号时,要注意不等式两边都必须是非负数;分段讨论消去绝对值符号的原则是“不重、不漏”,一般步骤是:(a)确定代数式的根值,(b)确定分段所得的区间,(c)逐段讨论,(d)求并集.4.课本本小节的三道例题,都是讲含绝对值不等式的证明.例1中,有意使用了字母“ξ”,其目的是为学生以后学习微积分作准备.例2、例3中,都没有使用到刚学过的含绝对值不等式的定理,而是用绝对值的性质、不等式的性质、算术平均数与几何平均数的定理证得的,这又一次说明,证明不等式的方法是多样的,一定要灵活掌握.含绝对值符号的不等式近几年在高考试题中出现率比较高.它有时出现在选择、填空题中,内容多以判断、求解、求参数的取值范围等的单纯的绝对值不等式或与其他知识小综合的形式出现,难度属于中低档;有时会与函数、数列、解析几何等综合,以证明、求解、求参数的取值范围等形式出现在解答题中,这时往往较难,需要我们在平时教学过程中根据学生的实际情况逐步进行渗透,以取得较好的效果.●课题§6.5.1 含有绝对值的不等式(一)●教学目标(一)教学知识点1.含有绝对值不等式的重要性质定理及推论.2.有关简单的含绝对值不等式的证明问题.(二)能力训练要求1.理解和掌握不等式|a|-|b|≤|a+b|≤|a|+|b|及推论,并会证明这个定理.2.能运用上面的不等式,解决一些简单的有关含绝对值不等式的证明问题.(三)德育渗透目标1.培养学生观察、推理的思维能力.2.使学生树立创新意识.3.运用联系的观点解决问题,提高学生的数学素质.●教学重点1.定理|a+b|≤|a|+|b|,可以推广到n个数的形式,即|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|,证明可以依照定理的方法.2.定理中|a|-|b|≤|a+b|≤|a|+|b|,等号成立的条件是:|a|-|b|=|a+b|⇔ab≤0且|a|≥|b|.|a|+|b|=|a+b|⇔ab≥03.在有关含绝对值的不等式的证明过程中,要注意运用不等式的性质,绝对值的性质.●教学难点定理|a|-|b|≤|a+b|≤|a|+|b|的理解和记忆以及等号成立的条件.●教学方法引导学生发现规律,启发诱导教学法.●教具准备幻灯片一张记作§6.5.1 A(二)不等式的概念、性质●教学过程Ⅰ.课题导入前面,我们学习过绝对值和不等式的性质以及不等式的证明方法.(打出幻灯片§6.5.1 A,引导学生阅读,复习巩固绝对值性质和不等式性质,为学习研究含有绝对值的不等式打下基础)我们知道,当a>0时,|x|<a⇔-a<x<a,|x|>a⇔x>a或x<-a.根据上面的结果和不等式的性质,我们再来研究一些含有绝对值的不等式的证明问题.Ⅱ.讲授新课(一)含有绝对值不等式的重要性质定理及推论:看下面的性质定理:定理|a|-|b|≤|a+b|≤|a|+|b|分析:由绝对值的定义及其性质可知:对任意的x∈R,均有|-x|=|x|,-|x|≤x≤|x|.再考虑定理内容,它实际上包括两部分,即|a+b|≤|a|+|b|;|a|-|b|≤|a+b|.注意到|a|-|b|≤|a+b|⇔|a|≤|a+b|+|b|⇔|(a+b)+(-b)|≤|a+b|+|-b|⇔|a+b|≤|a|+|b|,故只需证明命题|a+b|≤|a|+|b|即可.证明:∵-|a|≤a≤|a|-|b|≤b≤|b|∴-(|a|+|b|)≤a+b≤|a|+|b|即|a+b|≤|a|+|b|. ①又a=a+b-b且|-b|=|b|由①得|a|=|a+b-b|=|(a+b)-b|=|(a+b)+(-b)|≤|a+b|+|-b|=|a+b|+|b|∴|a|≤|a+b|+|b|即|a|-|b|≤|a+b| ②综合①、②可得:|a|-|b|≤|a+b|≤|a|+|b|请同学们想一想:上面的定理中,a、b满足什么条件时,可以取“=”号?生答:(1)当a,b同号时,右取“=”号;(2)当a,b异号且|a|≥|b|,左取“=”号;(3)当a,b至少有一个为0时,左、右都取“=”号.由上面的定理,我们很容易得到:推论1:|a1+a2+a3|≤|a1|+|a2|+|a3|(证明过程留给同学们自己完成) 推论2:|a |-|b |≤|a -b |≤|a |+|b |分析:利用上面定理结合a -b =a +(-b )很容易得证. 证明:∵|a |-|b |≤|a +b |≤|a |+|b |且a -b =a +(-b ) ∴|a |-|-b |≤|a +(-b )|≤|a |+|-b |即 |a |-|b |≤|a -b |≤|a |+|b |.同学们再想一想:推论2中,a ,b 满足什么条件时,可以取“=”号?生答:(1)当a ,b 异号时,右取“=”号; (2)当a ,b 同号且|a |≥|b |时,左取“=”号; (3)当a ,b 至少有一个为0时,左,右都取“=”号.注意:推论1还可以推广到n (n ∈N 且n >2)个数(或式)的和的绝对值小于或等于这n 个数的绝对值的和.即|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.(n ∈N 且n >2).推论2与定理虽然形式上有所不同,但实质上是等价的.这是因为这里a ,b 是任意实数,所以只要用-b 代替b ,就可以由其中任一个推得另一个.(二)定理及其推论的应用:[例1]已知|x |<3ε,|y |<6ε,|z |<9ε,求证: |x +2y -3z |<ε.分析:从所证的不等式来看,左边复杂一些,故利用有关性质把结论左边进行变形,创设利用条件的机会.从目标不等式结构特点观察,显然利用推论1,即|a 1+a 2+a 3|≤|a 1|+|a 2|+|a 3|.证明:|x +2y -3z |≤|x |+|2y |+|-3z |=|x |+|2|·|y |+|-3|·|z |=|x |+2|y |+3|z |.∵|x |<3ε,|y |<6ε,|z |<9ε.∴|x |+2|y |+3|z |<3ε+62ε+93ε=ε即|x +2y -3z |<ε.[师生共析]本题的证明主要是依据本节定理的推论1进行变形的,望注意体会.这种方法在以后学习中还会遇到.本例还有意使用了字母“ε”,其目的是为我们以后学习微积分作点准备.[例2]设a ,b ,c ,d 都是不等于0的实数,求证:ad d c c b b a +++≥4.分析:本题中a ,b ,c ,d 都是不等于0的实数,由绝对值性质可知:|ba |、|cb |、|dc |、|ad |均为正数.结合目标不等式的结构特征,为运用算术平均数与几何平均数定理创造了条件.故运用公式2b a +≥ab (a >0,b >0)及不等式性质可使命题得证.证明:∵a ,b ,c ,d 都是不等式0的实数, ∴|ba |>0,|cb |>0,|dc |>0,|ad |>0. ∴|ba |+|cb |≥2ca cb b a 2=⋅ ①|dc |+|ad |≥2ac ad d c 2=⋅ ②2224=⋅=⋅≥+ac c a ac c a a c c a 又由①②③式,得:[师生共析]本例的证明,没有使用到刚学过的含绝对值不等式的定理,而是用绝对值的性质、不等式的性质、算术平均数与几何平均数的定理证得的.这又一次说明,证明不等式的方法是多样的,一定要灵活掌握.Ⅲ.课堂练习1.证明下列不等式:(1)a ,b ∈R ,求证|a +b |≤|a |+|b |;(2)已知|h |<ε,|k |<ε(ε>0),求证:|hk |<ε; (3)已知|h |<c ε,|x |<c (c >0,ε>0),求证:|xh |<ε.分析:用绝对值性质及不等式性质作推理运算.绝对值性质有:|ab |=|a |·|b |;|a n|=|a |n,|ba |=ba 等.证明:(1)证法一:∵-|a |≤a ≤|a |,-|b |≤b ≤|b | ∴-(|a |+|b |)≤a +b ≤|a |+|b | 即|a +b |≤|a |+|b | 证法二:(平方作差)(|a |+|b |)2-|a +b |2=a 2+2|a ||b |+b 2-(a 2+2ab +b 2)=2[|a |·|b |-ab )=2(|ab |-ab )≥0显然成立.故(|a |+|b |)2≥|a +b |2③又∵|a |+|b |≥0,|a +b |≥0所以|a |+|b |≥|a +b |,即|a +b |≤|a |+|b |.(2)∵0≤|h |<ε,0≤|k |<ε (ε>0)∴0≤|h |·|k |<ε·ε即|hk |<ε.(3)由0<c <|x |可知: 0<c x 11<且0≤|h |<c ε ∴c h x 11<⋅·c ε 即|x h |<ε.2.求证:|x +x 1|≥2(x ≠0)分析:x 与x 1同号,因此有|x +x 1|=|x |+|x 1|.证法一:∵x 与x 1同号∴|x +x 1|=|x |+x 1 ∴|x +x 1|=|x |+x 1≥2x x 1⋅=2 即|x +x 1|≥2.证法二:当x >0时,x +x 1≥2xx 1⋅=2当x <0时,-x >0,有-x +2121)(21-≤+⇒=-⋅-≥-x x x x x∴x ∈R 且x ≠0时有x +x 1≤-2,或x +x 1≥2即|x +x 1|≥2方法点拨:不少同学这样解:因为|x +x 1|≤|x |+x 1 又|x |+x 1≥2x x 1⋅=2 所以|x +x 1|≥2.学生认为这样解答是根据不等式的传递性.实际上,上述两个不等式是异向不等式,是不符合传递性的,因而如此作解是错误的.3.已知:|A-a |<2ε,|B-b |<2ε,求证:(1)|(A +B )-(a +b )|<ε(2)|(A -B )-(a -b )|<ε分析:证明本题的关键是把结论的左边凑出条件的左边,创造利用条件的机会.证明:因为|A -a |<2ε,|B -b |<2ε.所以(1)|(A +B )-(a +b )|=|(A -a )+(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε即|(A +B )-(a +b )|<ε(2)|(A -B )-(a -b )|=|(A -a )-(B -b )|≤|A -a |+|B -b |<2ε+2ε=ε即|(A -B )-(a -b )|<ε方法点拨:本题的证明过程中运用了凑的技巧,望给予足够重视,灵活掌握.Ⅳ.课时小结本节重点学习了含有绝对值不等式的性质定理及其推论,理解和掌握其定理及推论,是证明含绝对值不等式的关键所在.在分析问题的转化策略上同时用好不等式的概念和性质.含有绝对值的不等式在题型结构上,有它自身的特点,要在解决问题的过程中自觉地创设运用公式的条件.Ⅴ.课后作业(一)课本P22习题6.5 1、2、3(二)1.复习巩固课本P20§6.5含有绝对值的不等式.2.巩固提纲:(1)理解掌握定理|a|-|b|≤|a+b|≤|a|+|b|的应用.(2)注意定理及其推论中等号成立的条件.(3)证明含有绝对值的不等式,一方面要用到前面学过的不等式证明的常用方法,另一方面,有些题目要应用到本节所学的重要性质定理及其推论.●板书设计§6.5.1 含有绝对值的不等式(一)一、性质定理二、应用|a|-|b|≤|a+b|≤|a|+|b| 例题推论1|a1+a2+a3|≤|a1|+|a2|+|a3| 课堂练习推论2 课时小结。
微积分知识点
微积分知识点微积分知识点概述一、引言微积分是数学的一个分支,主要研究函数的微分和积分,是现代科学和工程学的基础工具。
它起源于17世纪,由艾萨克·牛顿和戈特弗里德·威廉·莱布尼兹独立发展。
微积分的应用范围非常广泛,包括物理学、工程学、经济学和生物学等领域。
二、微分学1. 极限概念- 极限的定义- 极限的性质- 无穷小与无穷大2. 导数基础- 导数的定义- 导数的几何意义- 可导性与连续性的关系3. 常见函数的导数- 幂函数的导数- 三角函数的导数- 指数函数与对数函数的导数4. 高阶导数- 高阶导数的定义- 高阶导数的计算5. 微分法则- 乘积法则- 商法则- 链式法则6. 隐函数与参数方程的微分 - 隐函数的求导- 参数方程的求导7. 微分应用- 相关率- 极值问题- 曲线的切线与法线三、积分学1. 不定积分- 基本积分表- 换元积分法- 分部积分法2. 定积分概念- 定积分的定义- 定积分的几何意义3. 定积分的计算- 计算方法- 特殊技巧4. 积分应用- 面积计算- 体积计算- 平面曲线的弧长5. 无穷级数- 级数的收敛性- 泰勒级数- 傅里叶级数四、多变量微积分1. 偏导数- 偏导数的定义- 高阶偏导数2. 多重积分- 二重积分- 三重积分- 累次积分3. 曲线与曲面积分- 曲线积分- 曲面积分- 格林定理、高斯定理和斯托克斯定理五、微分方程1. 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程2. 偏微分方程- 波动方程- 热传导方程- 拉普拉斯方程六、结语微积分作为数学的重要分支,不仅在理论数学中有深刻的意义,而且在应用科学和工程领域中发挥着至关重要的作用。
掌握微积分的基础知识和技能对于理解和解决现实世界中的问题至关重要。
七、附录A. 微积分公式汇总B. 常见微积分习题及解答C. 推荐阅读与学习资源请注意,本文仅为微积分知识点的概述,详细的解释和示例需要在完整的微积分教材或课程中学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.定 B( p, q ) = ∫0 x 义
1
p −1
(1 − x )
q −1
dx ( p > 0, q > 0)
1. 特点: 特点: B ( p , q ) = B ( q , p );
Γ( p)Γ(q) ( . 2. B 函数与 Γ 函数的关系 B p,q) = Γ( p+q) 11 2 算 例 计 B( , ). key : π . 22
1 1 1 在x = 0点无界 = ∫0 xdx × lnx0 x lim 定 ∀ε > 0, f ( x )在[a + ε , b]上可积, f ( x ) = ∞ , 如果 义 上可积, →a x
1
f ( x )dx存在, 则称此极限值为 f ( x )在(a , b]上的 ε →0 a +ε b b 瑕积分, 瑕积分 记为 ∫ab f (x)dx = εlim∫a+ε f (x)dx 0 →+ 此时称广义积分 ∫ f ( x ) dx 存在或收敛 .
a
若 lim
两 广 积 都 敛 ,原 广 积 收 . 当 个 义 分 收 时原 义 分 敛 定 给 了 穷 积 的 算 法 义 出 无 限 分 计 方 : b 1.计算常义积分 ∫ f ( x ) dx; b a 2.求极限 lim ∫ f ( x ) dx , 确定敛散性 .
b→ +∞ a
∫ab f ( x )dx存在, 称广义积分 ∫a f ( x )dx存在或收敛 . b→ +∞ +∞ 不存在, 若 lim ∫ f ( x )dx不存在, 称 ∫ f ( x )dx不存在或发散 . a b→ +∞ a b b 同理可定义, − 同理可定义,∫ ∞ f (x)dx =lim∫ f (x)dx a→ −∞ a c +∞ +∞ ∫−∞ f (x)dx =∫−∞ f (x)dx + ∫c f (x)dx
§6.5
广义积分初步
有限; 定积分的两个必要条件 : 1. 积分区间 [a , b] 有限; 2. f ( x ) 在 [a,b] 上有界 . 若条件满足 , 称为常义积分 . 若条件不满足 , 称为广义积分 .
1 由 线 例 求 曲 y = e−x , y轴 x轴 成 开 曲 梯 的 积 及 围 的 口 边 形 面 . y +∞ − x 解 S = ∫ e dx 0 b −x b −x 1 = lim e dx = lim ( − e )
b→ +∞ 0
b→ +∞ b
∫
b→ +∞
0
= lim (1 − e ) = 1
−bቤተ መጻሕፍቲ ባይዱ
0
bx
∫a
+∞
f ( x )dx ,
--无穷区间上的广义 ∫−∞ f ( x )dx , ∫−∞ f ( x )dx --无穷区间上的广义积分
+∞
无 穷 积 ) 一、无穷区间上的广义积分 (无 限 分 定 设 f ( x ) 在 [a , b] 上可积, 义 上可积, 则定义 f ( x ) 在 [a ,+∞ )上 b +∞ 的广义积分为 ∫ f (x)dx = lim ∫ f (x)dx
b −x
2
2 ∫ 例 求 xe dx.
-x2 0
+∞
b
b
2
2
散 E :(1)∫ cos xdx;(2)∫ x−2 ln xdx. key:(1)发 ;(2)1. x
0 1
+∞
+∞
dx 4 论 例 讨 ∫ 的 散 ( p为 数 . p积分 敛 性 实 ) p 1 x b 1 1− p b −p x 1 解1. p ≠ 1时, 原式 = lim ∫1 x dx = lim b→ +∞ 1 − p b→ +∞ + ∞,1 − p > 0时, 1 1− p (b − 1) = 1 = lim b→ +∞ 1 − p , − p < 0时, 1 p−1 b dx b 2. p = 1时, lim ∫ = lim ln x 1 = blim ln b = +∞ → +∞ b→ +∞ 1 x b→ +∞ 时 发 散 p ≤1 , +∞ dx 1 ∫1 xp = 收 时 ( 敛 p > 1 ,p − 1 ) 1 +∞ dx p = < 1, 积分发散 . (1)∫ 2 1 x 3 +∞ dx p = > 1, 积分收敛 . (2)∫ 2 1 x x
如 例 ∫ e dx = −e 0
+∞ −x
−x +∞ 0
(表 − lim e−x +1) =1. 示
x→ +∞
3. 积 的 元 在 穷 积 中 成 。 定 分 换 法 无 限 分 也 立
e 6 ∫ dx . 例 求-∞ 2x 1+e
+∞ x
π key : . 2
二、无界函数的广义积分 (瑕积分) 瑕积分)
若 lim ∫
b a
lim ∫ +
b
同理可定义右端点 b处无界及 ∀c ∈ ( a , b )处无界的情形 :
ε →0+ a + ε
f ( x )dx不存在, 称 ∫ f ( x )dx不存在或发散 . 不存在,
a
b
当两个广义积分都收敛 时, 原广义积分收敛 .
∫a f (x)dx =εlim∫a f (x)dx 0 →+ c b b ∫a f (x)dx =∫a f (x)dx + ∫c f (x)dx
1 算 (3 例 计 (1)∫ x e dx;(2)∫ x e dx(λ > 0);)∫ e dx.
3 −x 4 −λx 0 0 0
+∞
+∞
+∞ −x2
解 (1)原式 = Γ(4) = 3! ( 2)令λx = u, λdx = du, x = 0, u = 0; x → +∞ , u → +∞ . 1 +∞ 4 −u 1 4! 原式 = 5 ∫0 u e du = 5 Γ(5) = 5 λ λ λ ( 3)令x 2 = u, x = 0, u = 0; x → +∞ , u → +∞ . du x = u , dx = . 2 u 1 −1 +∞ 1 1 1 π −u 2 原式 = ∫0 u e du = Γ( ) = 2 2 2 2 1 Γ( ) = π 2
1
应 牛 莱 尼 公 、 元 和 部 分 计 在 用 顿 布 茨 式 换 法 分 积 法 算 时 须 出 点 被 函 的 函 在 点 的 按 必 指 瑕 , 积 数 原 数 瑕 处 值 1 lnx 照 等 数 续 来 。 求0 初 函 连 性 求 ∫ xdx.
dx 3 明 0 例 证 ∫ q 当 < q <1 收 ,q ≥1 发 . q积分 时 敛 时 散 0 x 解 1 1−q 1 1 −q x ε 1.q ≠ 1时, 原式 = lim ∫ x dx = εlim → 0+ 1 − q ε →0+ ε 1 1 − q > 0时, , 1 1− q (1 − ε ) = 1 − q = lim ε → 0+ 1 − q ∞, 1 − q < 0时, 1 dx 1 = lim ln x ε = − lim ln ε = +∞ 2.q = 1时, lim ∫ ε → 0+ ε →0+ + ε → 0+ ε x , 散 1 dx 发 q ≥1时 ∫0 xq = 收 q <1时 ( 1 ) 敛 1− q
+∞
概率论中的重要极限
x e dx = − ∫
− x +∞ 0 +∞
t −x
+∞
0
x t de − x
t +∞ 0
=−x e
+ ∫ e dx = t ∫ 0
−x
Γ x t −1e − x dx = tΓ(t )
Γ Γ Γ 特别地, 特别地, (n + 1) =nΓ(n) = n( n − 1)Γ( n − 1) = L = n!Γ(1) = n! 5 Γ( ) Γ(6) 1 算 ;(2) 2 . 例 计 (1) 1 2Γ(3) 3 3 3 1 1 Γ( ) Γ( ) ⋅ Γ( ) 3 2 5! 2 2 =2 2 2 = 解 (1)原式 = = 30 ( 2)原式 = 1 1 4 2 ⋅ 2! Γ( ) Γ( ) 2 2
b
b−ε
义 出 瑕 分 计 方 : 定 给 了 积 的 算 法 1.寻找瑕点 ( 特别要注意内部瑕点 );
2.利用定义计算积分并求 极限 , 确定敛散性 .
例 求 lnxdx. key : −1 1 ∫ 0 1 1 2 ∫ 例 求 2dx. key : 发散 -1 x 8 1 2 dx x E : (1)∫ x ;(2)∫ dx. key :(1)π;(2) . 1 −1 1− x2 3 x −1 与 穷 积 一 , 积 具 类 于 积 的 质 无 限 分 样 瑕 分 有 似 定 分 性
1
三、 Γ函数 (含参变量的广义积分 ) 含参变量的广义积分
特点: 特点:1. 积分区间是无穷区间 ; 2. t > 0 时, Γ( t ) 收敛 . 3. Γ 函数的递推公式 Γ(t +1) = tΓ(t)
Γ( t + 1) = ∫
+∞ 0 t
1.定 Γ( t ) = ∫ x t −1e − x dx ( t > 0) 义 0
b
b→ +∞ a +∞
1 1 −x 2 −x 解原式 = lim ∫0 xe dx = lim ∫ e dx = lim ( − e ) b→ +∞ b→ +∞ 2 b→ +∞ 0 2 0 2 1 1 = lim (1 − e − b ) = b→ +∞ 2 2 +∞ 1 3 dx. 例 求I = ∫ 2 -∞ 1+ x b 1 π b dx = lim (arctan x 0 ) = lim arctan b = 解I1 = lim ∫0 2 b→ +∞ b→ +∞ b→ +∞ 2 1+ x 0 1 π 0 I 2 = lim ∫ dx = lim (arctan x a ) = − lim arctan a = 2 a → −∞ a → −∞ a 1 + x a → −∞ 2 0 +∞ 1 1 π π I=∫ dx + ∫ dx = + = π 0 1 + x2 −∞ 1 + x 2 2 2