2020高考数学一轮复习第九章解析几何第五节椭圆课后作业理
【走向高考】2020年高考数学总复习 9-5椭 圆课后作业 北师大版
【走向高考】2020年高考数学总复习 9-5椭圆课后作业北师大版一、选择题1.(2020·新课标文,4)椭圆x216+y28=1的离心率为( )A.13B.12C.33D.22[答案] D[解析]考查椭圆的离心率,这样的题目要注意焦点的位置.e=224=22.2.设椭圆x2m2+y2m2-1=1(m>1)上一点P到其左焦点的距离为3,到右焦点的距离为1,则该椭圆的离心率为( )A.2 B.1 2C.32D.22[答案] B[解析]由椭圆定义知2a=3+1=4,故a=2. ∴m2=a2=4,b2=m2-1=3.∴c2=a2-b2=1,即c=1.∴e=1 2 .3.已知椭圆的方程为2x2+3y2=m(m>0),则此椭圆的离心率为( )A.13B.33C.22D.12[答案] B[解析]由选项知e与m无关,令m=6,则a2=3,b2=2,c2=1,∴e=ca=33.一般解法:2x2+3y2=m(m>0)化为x2m2+y2m3=1,∴c 2=m 2-m 3=m 6.∴e 2=13.故选B.4.(文)椭圆x 24+y 23=1的右焦点到直线y =3x 的距离是( )A.12B.32C .1 D. 3[答案] B[解析] 由题意知,右焦点坐标为(1,0),则其到直线y =3x 的距离为d =|3-0|3+1=32. (理)椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2→|=( )A.32B. 3C.72 D .4[答案] C[解析] 设F 1、F 2分别为椭圆的左、右焦点,由椭圆的方程可得F 1(-3,0)即垂线的方程为x=-3,由⎩⎨⎧x 24+y 2=1 x =-3得y =±12,∴|PF 1→|=12,由椭圆的定义知|PF 1→|+|PF 2→|=4,所以|PF 2→|=72,故选C. 5.如图F 1、F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1[答案] D[解析]连接AF1,由圆的性质知,∠F1AF2=90°,又∵△F2AB是等边三角形,∴∠AF2F1=30°,∴AF1=c,AF2=3c,∴e=ca=2c2a=2cc+3c=3-1.故选D.6.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线[答案] A[解析]∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a.即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.二、填空题7.(2020·江西理,14)若椭圆x2a2+y2b2=1的焦点在x轴上,过点(1,12)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.[答案]x25+y24=1[解析] 由题意可得切点A (1,0),设切点B (m ,n )满足⎩⎪⎨⎪⎧n -12m -1=-mnm 2+n 2=1,解得B ⎝ ⎛⎭⎪⎫35,45,∴过切点A 、B 的直线方程为2x +y -2=0, 令y =0得x =1,即c =1,令x =0得y =2,即b =2. ∴a 2=b 2+c 2=5, ∴椭圆方程为x 25+y 24=1.8.已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为________. [答案]2-1[解析] 令AB =2,则AC =22,∴椭圆中c =1,2a =2+22,∴a =1+2, 可得e =c a=12+1=2-1.三、解答题9.(2020·天津文,18)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P (a ,b )满足|PF 2|=|F 1F 2|.(1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆(x +1)2+(y -3)2=16相交于M ,N 两点,且|MN |=58|AB |,求椭圆的方程.[解析] (1)设F 1(-c,0),F 2(c,0)(c >0),因为|PF 2|=|F 1F 2|,所以a -c2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,得c a =-1(舍),或c a =12,所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ),A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3x -c .,消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c ,不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B ()0,-3c ,所以|AB |=⎝ ⎛⎭⎪⎫85c 2+⎝ ⎛⎭⎪⎫335c +3c 2=165c . 于是|MN |=58|AB |=2c ,圆心()-1,3到直线PF 2的距离d =|-3-3-3c |2=3|2+c |2.因为d 2+⎝ ⎛⎭⎪⎫|MN |22=42,所以34(2+c )2+c 2=16.整理得7c 2+12c -52=0,得c =-267(舍),或c=2,所以椭圆方程为x 216+y 212=1.一、选择题1.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3 C.303D.326 [答案] C[解析] 依题设弦端点A (x 1,y 1)、B (x 2,y 2),则x 1 2+2y 1 2=4,x 22+2y 22=4, ∴x 1 2-x 22=-2(y 1 2-y 22), ∴此弦斜率k =y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12, ∴此弦所在直线方程y -1=-12(x -1),即y =-12x +32代入x 2+2y 2=4,整理得3x 2-6x +1=0, ∴x 1·x 2=13,x 1+x 2=2.∴|AB |=x 1+x 22-4x 1x 2·1+k 2=4-4×13·1+14=303. 2.椭圆x 2a 2+y 2b 2=1(a >b >0,c 2=a 2-b 2)的右焦点为F ,直线x =a 2c与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝ ⎛⎦⎥⎤0,12 C .[2-1,1) D.⎣⎢⎡⎭⎪⎫12,1 [答案] D[解析] 由题意得|PF |=|AF |=a 2c-c ,∵a -c ≤|PF |≤a +c ,∴a -c ≤a 2c -c ≤a +c ,12≤e <1.二、填空题3.已知P 是以F 1、F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为________.[答案]53 [解析] ∵PF 1→·PF 2→=0,∴PF 1⊥PF 2, 又tan ∠PF 1F 2=12,令PF 2=12PF 1=x ,则⎩⎪⎨⎪⎧3x =2a5x 2=4c 2,∴⎩⎪⎨⎪⎧a =3x2c =52x,∴e =c a =53. 4.(文)(2020·新课标理,14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________. [答案]x 216+y 28=1 [解析] 本题主要考查椭圆的定义及几何性质. 依题意:4a =16,即a =4,又e =c a =22, ∴c =22,∴b 2=8. ∴椭圆C 的方程为x 216+y 28=1.(理)(2020·浙江理,17)设F 1、F 2分别为椭圆x 23+y 2=1的左、右焦点,点A ,B 在椭圆上,若F 1A→=5F 2B →,则点A 的坐标是________.[答案] (0,1)或(0,-1)[解析] 如图,设直线AB 与x 轴交于点N (n,0),∵F 1A →=5F 2B ,∴|NF 2||NF 1|=15,∴n -2n +2=15,∴n =322 设直线AB 方程为x =my +322,代入椭圆方程,得:(m 2+3)y 2+32my +32=0 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-32m m 2+3,y 1y 2=32m 2+3,由F 1A →=5F 2B →得y 1=5y 2. ∴⎩⎪⎨⎪⎧6y 2=-32mm 2+3,5y 22=32m 2+3,∴5m22m 2+32=32m 2+3, ∴m =±322,∴y 2=±15,从而y 1=±1, ∴A 点坐标为(0,±1). 三、解答题5.(2020·北京文)已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,直线y =t 与椭圆C 交于不同的两点M 、N ,以线段MN 为直径作圆P ,圆心为P .(1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标. [解析] 本题考查了圆和椭圆的标准方程. (1)∵c a =63且c =2,∴a =3,b =1. ∴椭圆C 的方程为x 23+y 2=1.(2)由题意知点P (0,t )(-1<t <1),由⎩⎪⎨⎪⎧y =t x 23+y 2=1得x =±31-t2∴圆P 的半径为31-t 2,又∵圆P 与x 轴相切, ∴|t |=31-t2,解得t =±32, 故P 点坐标为⎝⎛⎭⎪⎫0,±32. 6.(文)(2020·陕西文,17)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.[解析] (1)将(0,4)代入C 的方程得16b2=1,∴b =4,又e =c a =35得a 2-b 2a 2=925即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0,∴AB 的中点坐标x =x 1+x 22=32, y =y 1+y 22=25(x 1+x 2-6)=-65, 即中点为(23,-65).(理)(2020·陕西理,17)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程. (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.[解析] (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上,∴x 2+(54y )2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=1+1625x 1-x 22=4125×41=415. 注:求AB 长度时,利用韦达定理或弦长公式求得正确结果,同样给分.7.如图所示,已知圆C (x +1)2+y 2=8,定点A (1,0),C (-1,0),M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足AM →=2AP →,NP →·AM →=0,NP →·AM →点N 的轨迹为曲线E .经过点(0,2)且斜率为k 的直线与曲线E 有两个不同的交点P 和Q .(1)求曲线E 的方程; (2)求k 的取值范围;(3)设曲线E 与x 轴、y 轴正半轴的交点分别为D 、B ,是否存在常数k ,使得向量OP →+OQ →与DB →共线?如果存在,求k 的值;如果不存在,请说明理由.[解析] (1)∵AM →=2AP →,∴P 为AM 的中点. 又∵NP →·AM →=0,∴NP →⊥AM → ∴NP 为AM 的垂直平分线∴|NA |=|NM |,∵|NC |+|NM |=2 2 ∴|NC |+|NA |=22>2∴动点N 的轨迹是以点C (-1,0)A (1,0)为焦点的椭圆,且2a =22,2c =2 ∴a =2,c =1,b 2=1,∴E 的方程为x 22+y 2=1(2)由已知条件设直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1,整理得(12+k 2)x 2+22kx +1=0 ①直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4(12+k 2)=4k 2-2>0解得k <-22或k >22,∴k 的范围为(-∞,-22)∪(22,+∞)(3)设P (x 1,y 1)、Q (x 2,y 2)则OP →+OQ →=(x 1+x 2,y 1+y 2)由方程①得x 1+x 2=-42k1+2k 2② 又y 1+y 2=k (x 1+x 2)+2 2③ 而D (2,0)、B (0,1)DB →=(-2,1)∴OP →+OQ →与DB →共线等价于x 1+x 2=-2(y 1+y 2)将②③代入上式得k =22.由(2)知k <-22或k >22故没有符合题意的常数k .。
数学课标通用(理科)一轮复习配套教师用书:第九章 解析几何 双曲线
§9.6 双曲线考纲展示►1。
了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2.了解圆锥曲线的简单应用、了解双曲线的实际背景、了解双曲线在刻画现实世界或解决实际问题中的作用.3.理解数形结合的思想.考点1 双曲线的定义双曲线的定义平面内与两个定点F1,F2的________等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做________,两焦点间的距离叫做________.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a〉0,c>0。
(1)当________时,P点的轨迹是双曲线;(2)当________时,P点的轨迹是两条射线;(3)当________时,P点不存在.答案:距离的差的绝对值 双曲线的焦点 双曲线的焦距(1)a 〈c (2)a =c (3)a >c(1)[教材习题改编]已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0).双曲线上一点P 到F 1,F 2距离之差的绝对值等于6,则双曲线的标准方程为________. 答案:x 29-y 216=1 解析:由已知可知,双曲线的焦点在x 轴上,且c =5,a =3,∴b =4,故所求方程为错误!-错误!=1.(2)[教材习题改编]双曲线的方程为x 2-2y 2=1,则它的右焦点坐标为________.答案:错误!解析:将双曲线方程化为标准方程为x 2-错误!=1,∴a 2=1,b 2=错误!,∴c 2=a 2+b 2=错误!,∴c =错误!,故右焦点坐标为错误!。
双曲线的定义:关注定义中的条件.(1)动点P 到两定点A (0,-2),B (0,2)的距离之差的绝对值等于4,则动点P的轨迹是________.答案:两条射线解析:因为||PA|-|PB||=4=|AB|,所以动点P的轨迹是以A,B为端点,且没有交点的两条射线.(2)动点P到点A(-4,0)的距离比到点B(4,0)的距离多6,则动点P的轨迹是________.答案:双曲线的右支,即x29-错误!=1(x≥3)解析:依题意有|PA|-|PB|=6<8=|AB|,所以动点P的轨迹是双曲线,但由|PA|-|PB|=6知,动点P的轨迹是双曲线的右支,即x29-错误!=1(x≥3).[典题1](1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为________.[答案] x2-错误!=1(x≤-1)[解析]如图所示,设动圆M与圆C1及圆C2分别外切于A和B。
2020版高考数学一轮复习第九章解析几何第五节椭圆教案理(含解析)
第五节椭圆1.椭圆的定义平面内到两定点F1,F2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆.两定点F1,F2叫做椭圆的焦点.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数.(1)当2a>F1F2时,P点的轨迹是椭圆;(2)当2a=F1F2时,P点的轨迹是线段;(3)当2a<F1F2时,P点不存在.2.椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围x∈[-a,a],y∈[-b,b]x∈[-b,b],y∈[-a,a][小题体验]1.已知椭圆错误!+错误!=1的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为________.答案:122.已知直线x-2y+2=0过椭圆错误!+错误!=1(a>b>0)的左焦点和一个顶点,则椭圆的方程为________.解析:直线x-2y+2=0与x轴的交点为(-2,0),即为椭圆的左焦点,故c=2.直线x-2y+2=0与y轴的交点为(0,1),即为椭圆的顶点,故b=1,所以a2=b2+c2=5,故椭圆的方程为错误!+y2=1.答案:错误!+y2=13.已知椭圆的一个焦点为F(1,0),离心率为错误!,则椭圆的标准方程为________.解析:设椭圆的标准方程为错误!+错误!=1(a>b>0).因为椭圆的一个焦点为F(1,0),离心率e=错误!,所以错误!解得错误!故椭圆的标准方程为错误!+错误!=1.答案:错误!+错误!=11.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为错误!+错误!=1(a>b>0).2.注意椭圆的范围,在设椭圆错误!+错误!=1(a>b>0)上点的坐标为P(x,y)时,|x|≤a,|y|≤b,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[小题纠偏]1.(2019·无锡一中月考)已知椭圆错误!+错误!=1的焦距为6,则m=________.解析:∵椭圆错误!+错误!=1的焦距为6,∴当焦点在x轴时,(13-m)-(m-2)=9,解得m=3;当焦点在y轴时,(m-2)-(13-m)=9,解得m=12。
数学(理)一轮复习:第九章 解析几何 双曲线
1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0。
(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a〉0,b〉0)y2a2-错误!=1(a〉0,b〉0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关c2=a2+b2 (c>a>0,c>b〉0)系【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a>0,b〉0)有共同渐近线的方程可表示为错误!-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程错误!-错误!=λ(m〉0,n>0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.( √)(4)等轴双曲线的渐近线互相垂直,离心率等于 2.(√)(5)若双曲线错误!-错误!=1(a〉0,b>0)与错误!-错误!=1(a〉0,b>0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。
2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆课时作业含解析北师大版
椭圆课时作业1.若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12B .33 C .22D .24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22,故选C .2.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.3.(2019·杭州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A .4.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D .32答案 B解析 |ON |=12|MF 2|=12×(2a -|MF 1|)=12×(10-2)=4,故选B .5.(2019·河南豫北联考)已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△PAB 的面积为( )A .2B .24C .12 D .1答案 D解析 由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △PAB =12×2a ×22=1,故选D .6.(2019·吉林长春模拟)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则·的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴=(-1-x ,-y ),=(1-x ,-y ),则·=x 2+y 2-1=x 22∈[0,1],故选C .7.(2019·湖南郴州模拟)设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B .⎝⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3.故选C .8.若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率是( )A .2B .-2C .13D .-12答案 D解析 设弦的端点为A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 21+4y 21=36,x 22+4y 22=36,整理,得x 21-x 22=-4(y 21-y 22),∴此弦的斜率为y 1-y 2x 1-x 2=x 1+x 2-4(y 1+y 2)=-12,则此直线的斜率为-12. 9.(2020·甘肃联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C .10.(2020·西安摸底检测)设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A .463B .263C .433D .233答案 A解析 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为463.11.(2019·山西八校联考)椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( )A .53 B .103C .203D .53答案 A解析 在椭圆x 225+y 216=1中,a =5,b =4,所以c =3.故椭圆左、右焦点分别为F 1(-3,0),F 2(3,0).由△ABF 2的内切圆周长为π,可得内切圆的半径为r =12.△ABF 2的面积=△AF 1F 2的面积+△BF 1F 2的面积=12|y 1|·|F 1F 2|+12|y 2|·|F 1F 2|=12(|y 1|+|y 2|)·|F 1F 2|=3|y 1-y 2|(A ,B 在x轴的上下两侧),又△ABF 2的面积=12r (|AB |+|BF 2|+|F 2A |)=12×12(2a +2a )=a =5,所以3|y 1-y 2|=5,即|y 1-y 2|=53.12.(2019·湖北八校联考)如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为( )A .x 236+y 216=1B .x 240+y 215=1C .x 249+y 224=1 D .x 245+y 220=1 答案 C解析 由题意可得c =5,设右焦点为F ′,连接PF ′,由|OP |=|OF |=|OF ′|=12|FF ′|知,∠FPF ′=90°,即PF ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=102-62=8,由椭圆定义,得|PF |+|PF ′|=2a =6+8=14,从而a =7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y 224=1,故选C .13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=m ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2m ,|F 1F 2|=3m .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3m,2c =3m ,∴C 的离心率为e =c a =33. 14.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知M 在以F 1为圆心、焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).15.(2019·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,即直线PF 的斜率是15.16.(2020·南充模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且·=0,=3,则椭圆C 的标准方程为________,圆A 的标准方程为________.答案x 24+y 2=1 (x -2)2+y 2=85解析 如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵·=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又=3, ∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得半焦距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4, ∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.17.(2019·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解 (1)连接PF 1.由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥4 2. 当b =4,a ≥42时,存在满足条件的点P . 所以b =4,a 的取值范围为[42,+∞).18.(2019·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解 由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·(x 1+x 2)2-4x 1x 1 =2×⎝ ⎛⎭⎪⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即直线BN ⊥l .19.(2019·广东广州联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为26,且过点A (2,1).(1)求椭圆C 的方程;(2)若不经过点A 的直线l :y =kx +m 与椭圆C 交于P ,Q 两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值.解 (1)因为椭圆C 的焦距为26,且过点A (2,1), 所以4a 2+1b2=1,2c =2 6.又因为a 2=b 2+c 2,由以上三式解得a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)证明:设点P (x 1,y 1),Q (x 2,y 2),x 1≠x 2≠2, 则y 1=kx 1+m ,y 2=kx 2+m .由⎩⎪⎨⎪⎧y =kx +m ,x 28+y22=1,消去y 并整理,得(4k 2+1)x 2+8kmx +4m 2-8=0, 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-84k 2+1.因为k AP +k AQ =0,所以y 1-1x 1-2=-y 2-1x 2-2, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 即2kx 1x 2+(m -1-2k )(x 1+x 2)-4m +4=0. 所以2k (4m 2-8)4k 2+1-8km (m -1-2k )4k 2+1-4m +4=0, 整理得(2k -1)(m +2k -1)=0. 因为直线l 不经过点A , 所以2k +m -1≠0,所以k =12.所以直线PQ 的斜率为定值,该值为12.20.(2019·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0),直线PB 的斜率为k (k ≠0),因为B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立,得⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以直线PB 的斜率为2305或-2305.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
高考数学一轮复习第九章解析几何9.5椭圆学案理含解析北师大版
9.5 椭圆必备知识预案自诊知识梳理1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.已知集合P={M||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a>0,c>0,且a ,c 为常数. (1)若a c ,则点M 的轨迹为椭圆; (2)若a c ,则点M 的轨迹为线段; (3)若a c ,则点M 不存在. 2.椭圆的标准方程及性质标准方程 x 2a2+y 2b 2=1(a>b>0)y 2a 2+x 2b2=1(a>b>0) 图形性 质 范围-a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b ,-a ≤y ≤a 对称性对称轴:坐标轴,对称中心:点(0,0) 顶点 A 1(-a ,0),A 2(a ,0) B 1(0,-b ),B 2(0,b ) A 1(0,-a ),A 2(0,a ) B 1(-b ,0),B 2(b ,0) 焦点 F 1(-c ,0),F 2(c ,0) F 1(0,-c ),F 2(0,c )轴长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b离心率e=ca ,且e ∈(0,1) a ,b ,c的关系c 2=a 2-b 2(1)过椭圆x 2a 2+y 2b 2=1上一点M (x 0,y 0)的切线方程为x 0xa 2+y 0y b 2=1.(2)若点P(x0,y0)在椭圆x2a2+y2b2=1外,过点P作椭圆的两条切线,切点为P1,P2,则切点弦P1P2所在的直线方程是x0xa2+y0yb2=1.(3)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P为短轴端点;当x=±a时,|OP|有最大值a,这时,P为长轴端点.(4)若P为椭圆x2a2+y2b2=1(a>b>0)上任意一点,则a-c≤|PF|≤a+c.(5)椭圆的焦半径公式设M(x0,y0)是椭圆x2a2+y2b2=1(a>b>0)上的任意一点,椭圆的焦点为F1(-c,0),F2(c,0),则|MF1|=a+ex0,|MF2|=a-ex0(其中e是离心率).(6)椭圆中点弦的斜率公式若M(x0,y0)是椭圆x2a2+y2b2=1(a>b>0)的弦AB(AB不平行y轴)的中点,则有k AB·k OM=-b2a2,即k AB=-b2x0a2y0.(7)弦长公式:若直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),则|AB|=√1+k2|x1-x2|=√(1+k2)[(x1+x2)2-4x1x2]=√1+1k2|y1-y2|=√(1+1k2)[(y1+y2)2-4y1y2].(8)若P是椭圆x2a2+y2b2=1(a>b>0)上的点,F1,F2为焦点,若∠F1PF2=θ,则△F1PF2的面积为b2tanθ2.(9)椭圆x2a2+y2b2=1的通径长为2b2a.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)平面内与两个定点F1,F2的距离的和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)关于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(4)椭圆x2x2+x2x2=1(a>b>0)与椭圆x2x2+x2x2=1(a>b>0)的焦距相同.()(5)椭圆上一点P与两个焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()2.设F1,F2分别是椭圆x225+x216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则点P与椭圆左焦点间的距离为()A.4B.3C.2D.53.(2020江西南昌三中期末)已知椭圆C:x2x2+x2x2=1(a>b>0)的左、右焦点为F1,F2,离心率为√33,过F2的直线l交C于A,B两点,若△AF1B的周长为4√3,则椭圆C的方程为()A.x23+x22=1 B.x23+y2=1C.x212+x28=1 D.x212+x24=14.“0<m<2”是“方程x2x +x22-x=1表示椭圆”的条件(填“充分不必要”“必要不充分”或“充要”).5.(2020天津河北区线上测试,12)已知椭圆C:x2x2+x2x2=1(a>b>0)的离心率为√32,焦距为2√3,则椭圆的方程为.关键能力学案突破考点椭圆的定义及应用【例1】(1)已知F1,F2分别是椭圆E:x225+x29=1的左、右焦点,P为椭圆E上一点,直线l 为∠F1PF2的外角平分线,过点F2作l的垂线,交F1P的延长线于点M,则|F1M|=()A.10B.8C.6D.4(2)(2020山东东营联考)设F1,F2是椭圆x24+x2x2=1(0<b<2)的左、右焦点,过F1的直线l 交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为()A.12B.√22C.√5-12D.√32思考具有哪些特征的问题常利用椭圆的定义求解?解题心得常利用椭圆的定义求解的问题:(1)求解问题的结论中含有椭圆上动点到焦点的距离;(2)求解问题的条件中含有椭圆上动点到焦点的距离.对点训练1(1)过椭圆x225+x216=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PFQ的周长的最小值为()A.12B.14C.16D.18(2)已知点P(x,y)在椭圆x236+x2100=1上,F1,F2是椭圆的两个焦点,若△PF1F2的面积为18,则∠F1PF2的余弦值为.考点椭圆的标准方程及应用【例2】(1)(2020福建福州三模,理10)已知椭圆C:x2x2+x2x2=1(a>b>0)的焦距为2,右顶点为A.过原点与x轴不重合的直线交椭圆C于M,N两点,线段AM的中点为B,若直线BN经过椭圆C的右焦点,则椭圆C的方程为()A.x24+x23=1 B.x26+x25=1C.x29+x28=1 D.x236+x232=1(2)椭圆的离心率为√22,F为椭圆的一个焦点,若椭圆上存在一点与F关于直线y=x+4对称,则椭圆的方程为.(3)已知方程x2|x|-1+x22-x=1表示焦点在y轴上的椭圆,则m的取值范围是.思考求椭圆的标准方程的基本方法是什么?利用该方法应注意些什么?解题心得1.求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组.2.若椭圆的焦点位置不确定,则要分焦点在x轴上或在y轴上两种情况求解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0且m≠n)的形式,避免讨论.3.椭圆的标准方程的两个应用:(1)椭圆x2x2+x2x2=1(a>b>0)与椭圆x2x2+x2x2=λ(a>b>0,λ>0)有相同的离心率.(2)与椭圆x2x2+x2x2=1(a>b>0)共焦点的椭圆系方程为x2x2+x+x2x2+x=1(a>b>0,b2+k>0).恰当运用椭圆系方程,可使运算简便.4.用待定系数法求椭圆标准方程的一般步骤.(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y轴上,还是两个坐标轴都有可能;(2)设方程:根据上述判断设椭圆标准方程为x2 x2+x2x2=1(a>b>0)或x2x2+x2x2=1(a>b>0);(3)找关系:根据已知条件,建立关于a,b的方程组;(4)得方程:解方程组求出a,b,即可得到椭圆的标准方程.对点训练2(1)(2020山东聊城调研)过点(3,2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为()A.x25+x210=1 B.x210+x215=1C.x215+x210=1 D.x225+x210=1(2)如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆C1,C2都过点A(0,-√2),且椭圆C1,C2的离心率相等,以椭圆C1,C2的四个焦点为顶点的四边形面积为2√2,则椭圆C1的标准方程为.(3)(2020湖南郴州二模)已知椭圆E的中心为原点,焦点在x轴上,椭圆上一点到焦点的最小距离为2√2-2,离心率为√22,则椭圆E的方程为.考点椭圆的几何性质及应用【例3】(1)(2020安徽合肥一中等六校检测)已知椭圆C:x2x2+x2x2=1(a>b>0)的右焦点为F,短轴的一个端点为P,直线l:4x-3y=0与椭圆相交于A,B两点.若|AF|+|BF|=6,点P到直线l的距离不小于65,则椭圆离心率的取值范围为()A.(0,95] B.(0,√32]C.(0,√53] D.(13,√32](2)设F1,F2是椭圆E:x2x2+x2x2=1(a>b>0)的左、右焦点,P为直线x=2a上一点,△F2PF1是底边为PF1的等腰三角形,且直线PF1的斜率为13,则椭圆E的离心率为()A.1013B.58C.35D.23(3)已知椭圆x2x2+x2x2=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得在△MF1F2中,sin∠xx1x2x=sin∠xx2x1x,则该椭圆离心率的取值范围为()A.(0,√2-1)B.(√22,1)C.(0,√22) D.(√2-1,1)思考求离心率的方法有哪些?解题心得求离心率常见的三种方法①求出a,c,代入公式e=xx;②由a与b的关系求离心率,利用变形公式e=√x2x2=√x2-x2x2=√1-x2x2求解;③只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).对点训练3(1)(2020河南洛阳一模)已知椭圆x211-x+x2x-3=1的长轴在y轴上,且焦距为4,则m等于()A.5B.6C.9D.10(2)设F 是椭圆E :x 2x 2+x 2x 2=1(a>b>0)的右焦点,A 是椭圆E 的左顶点,P 为直线x=3x 2上一点,△APF 是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.34 B.23C.12D.13(3)设椭圆x 2x 2+x 2x 2=1(a>b>0)的左、右焦点分别为F 1,F 2,点P 在椭圆上运动,|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最大值为m ,xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为n ,且m ≥2n ,则该椭圆的离心率的取值范围为 .考点直线与椭圆的综合问题 (多考向探究)考向1 与弦长有关的问题【例4】已知椭圆M :x 2x 2+x 2x 2=1(a>b>0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B.(1)求椭圆M 的方程;(2)若k=1,求|AB|的最大值;(3)设点P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若点C ,D 和点Q (-74,14)共线,求k 的值.思考利用哪种弦长公式能使求直线和椭圆相交所得的弦长变简单?如何设直线的方程能减少计算量?解题心得与椭圆中点弦有关的问题应用椭圆中点弦的斜率公式k AB·k OM=-x2x2,即k AB=-x2x0x2x0比较方便快捷,其中点M的坐标为(x0,y0).解决此类问题常用方法是“韦达定理”和“点差法”.这两种方法的前提都是必须保证直线和椭圆有两个不同的公共点.对点训练4(2020山东菏泽一模,21)已知椭圆C:x2x2+x2x2=1(a>b>0)的左、右焦点分别为F1,F2,以M(-a,b),N(a,b),F2和F1为顶点的梯形的高为√3,面积为3√3.(1)求椭圆C的标准方程;(2)设A,B为椭圆C上的任意两点,若直线AB与圆O:x2+y2=127相切,求△AOB面积的取值范围.考向2中点弦、弦中点问题【例5】已知椭圆x22+y2=1.(1)求斜率为2的平行弦中点的轨迹方程;(2)求过点P12,12且被点P平分的弦所在直线的方程.思考如何快捷求解弦中点、中点弦的问题?点差法应用于何种题型?解题心得直线方程的设法,根据题意,如果需要讨论斜率不存在的情况,则设直线方程为x=ty+m,避免讨论;若所研究的直线的斜率存在,则可设直线方程为y=kx+b的形式,若平行于坐标轴的直线都包含,则不要忘记斜率不存在的情况的讨论.对点训练5(2020山西太原五中3月摸底)若过椭圆x216+x24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A.3x+4y-13=0B.3x-4y-5=0C.4x+3y-15=0D.4x-3y-9=0考向3直线与椭圆的综合【例6】(2020北京,20)已知椭圆C:x2x2+x2x2=1(a>b>0)过点A(-2,-1),且a=2b.(1)求椭圆C的方程;(2)过点B(-4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q,求|xx||xx|的值.思考求解直线与椭圆的综合问题的基本思想是什么?什么是设而不求思想?解题心得求解直线与椭圆的综合问题的基本思想是方程思想,即根据题意,列出有关的方程,利用代数的方法求解.为减少计算量,在代数运算中,经常运用设而不求的方法,即把题目中涉及的点的坐标利用未知量设出来,但不需求出这些未知量,只需联立方程,判别式Δ>0,然后根据韦达定理列出x1+x2,x1x2的关系式,利用弦长公式|AB|=√x2+1|x1-x2|=√x2+1√(x1+x2)2-4x1x2=√1+1x2|y1-y2|=√1+1x2√(x1+x2)2-4x1x2=√x2+1√x|x|,选好公式能减少计算量.对点训练6(2020北京西城一模)设椭圆E:x22+y2=1,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1,l2分别与椭圆E相交于A,B两点和C,D两点.(1)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(2)若直线l2的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(3)在(2)的条件下,判断四边形ABCD能否为矩形,说明理由.1.求椭圆标准方程的两种常用方法定义法根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程待定系数法若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B)求椭圆的方程,先定性,后定量,利用待定系数法求解,注意焦点位置不定的要讨论.2.椭圆定义的应用技巧求方程通过对题设条件分析、转化后,能够明确动点P满足椭圆的定义,便可直接求解其轨迹方程求最值抓住|PF1|与|PF2|之和为定值,可联系到基本不等式求|PF1|·|PF2|的最值;利用定义|PF1|+|PF2|=2a转化或变形,借助三角形性质求最值3.直线与椭圆相交时有关弦的问题的处理方法一般是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,注意直线斜率存在与否的讨论和判别式的符号判断的应用.数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征.数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系.在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用弦中点的斜率公式:一、问题的提出在研究直线与椭圆相交形成的弦中点的有关问题时,往往需要求出弦的斜率.如果已知直线l与椭圆x 2x2+x 2x2=1(a>b>0)相交于A 、B 两点,线段AB 的中点为M (x 0,y 0),请抽象出弦AB的斜率公式并以结论的形式表达出来,然后给出结论的证明.结论:若M (x 0,y 0)是椭圆x 2x 2+x 2x 2=1(a>b>0)的弦AB (AB 不平行y 轴)的中点,则有k AB =-x 2x 0x 2x 0.证明设A (x 1,y 1),B (x 2,y 2), 则有k AB =x 1-x 2x 1-x 2,{x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1,两式相减,得x 12-x 22x 2+x 12-x 22x 2=0,整理得x 12-x 22x 12-x 22=-x 2x2,即(x 1+x 2)(x 1-x 2)(x 1+x 2)(x 1-x 2)=-x 2x 2(x 1≠-x 2).因为M (x 0,y 0)是弦AB 的中点,所以k OM =x 0x 0=2x02x 0=x 1+x 2x 1+x 2,所以k AB ·k OM =-x 2x 2即k AB =-x 2x 0x 2x 0.当x 1=-x 2时,AB 平行于x 轴,此时x 0=0,k AB =0,k AB =-x 2xx 2x 0也成立,综上,k AB =-x 2x0x 2x 0.二、定理的应用应用一 求椭圆的基本元素 【例1】已知椭圆x 2x 2+x 2x 2=1(a>b>0),点F 为左焦点,点P 为下顶点,平行于FP 的直线l交椭圆于A ,B 两点,且AB 的中点为M (1,12),则椭圆的离心率为( )A.√22 B.12C.14D.√32答案A解析设A (x 1,y 1),B (x 2,y 2),∵AB 的中点为M (1,12),∴x 1+x 2=2,y 1+y 2=1,又A ,B 在椭圆上,∴x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1.两式相减,得x 1-x 2x 1-x 2·x 1+x 2x 1+x 2=-x 2x 2,∵k AB =x 1-x 2x 1-x 2=k FP =-x x ,∴x x=2x 2x 2,∴a 2=2bc.∴a 4=4(a 2-c 2)c 2, ∴x 2x 2=12,∴x x =√22.故选A.评析1.中点弦斜率公式适用于有关椭圆的弦的中点问题.2.利用中点弦的斜率公式求离心率,就是根据中点弦斜率与椭圆方程中的a ,b ,c 之间的关系,利用椭圆的有关性质构造齐次方程,抽象转化为解关于a ,b ,c 的方程.应用二 求中点弦所在直线方程【例2】过椭圆x 216+x 24=1内一点M (2,1)画一条弦,使弦被点M 平分,则这条弦所在的直线方程为 .答案x+2y-4=0解析(方法1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),M (2,1)为AB 的中点,所以x 1+x 2=4,y 1+y 2=2,又A ,B 两点在椭圆上,则x 12+4x 12=16,x 22+4x 22=16,两式相减,得(x 12−x 22)+4(x 12−x 22)=0,所以x 1-x 2x 1-x 2=-x 1+x24(x 1+x 2)=-12,即k AB =-12.故所求直线方程为x+2y-4=0.(方法2)设所求直线方程为y-1=k (x-2),代入椭圆方程并整理得,(4k 2+1)x 2-8(2k 2-k )x+4(2k-1)2-16=0.又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程的两个根,于是x 1+x 2=8(2x 2-x )4x 2+1,又M 为AB 的中点,所以x 1+x 22=4(2x 2-x )4x 2+1=2,解得k=-12,故所求直线方程为x+2y-4=0.(方法3)设所求直线与椭圆的一个交点为A (x ,y ),由于弦的中点为M (2,1),则另一个交点为B (4-x ,2-y ),因为A ,B 两点在椭圆上,所以{x 2+4x 2=16,(4-x )2+4(2-x )2=16,两式相减得x+2y-4=0,由于过A ,B 的直线只有一条,故所求直线方程为x+2y-4=0.评析求中点弦所在的直线方程,一般先利用椭圆中点弦斜率公式求得中点弦的斜率,再根据点斜式求得中点弦所在的直线方程.应用三 求曲线轨迹方程【例3】过椭圆x 264+x 236=1上一点P (-8,0)作直线交椭圆于Q 点,则PQ 中点的轨迹方程为 .答案(x +4)216+x 29=1(x ≠-8)解析(方法1)设弦PQ 中点为M (x ,y ),弦端点P (x 1,y 1),Q (x 2,y 2),则有{9x 12+16x 12=576,9x 22+16x 22=576,两式相减得9(x 12−x 22)+16(x 12−x 22)=0,又因为x 1+x 2=2x ,y 1+y 2=2y ,所以9×2x (x 1-x 2)+16×2y (y 1-y 2)=0,所以x 1-x 2x 1-x 2=-9x 16x ,而k PQ =x -0x -(-8),故-9x 16x =xx +8.化简可得9x 2+72x+16y 2=0(x ≠-8).所以PQ 中点M 的轨迹方程为(x +4)216+x 29=1(x ≠-8).(方法2)设弦中点M (x ,y ),Q (x 1,y 1),由x=x 1-82,y=x 12可得x 1=2x+8,y 1=2y ,又因为Q 在椭圆上,所以x 1264+x 1236=1,即4(x +4)264+4x 236=1,所以PQ 中点M 的轨迹方程为(x +4)216+x 29=1(x ≠-8).评析求解椭圆的弦中点的轨迹问题,一般利用椭圆中点弦斜率公式求得弦的斜率,再根据已知点与弦中点连线的斜率与已知直线的斜率相等求得轨迹方程,注意弦中点对方程的限制.应用四 求参数的范围【例4】已知椭圆x 2x 2+x 2x 2=1(a>b>0),A ,B 是椭圆上的两点,线段AB 的垂直平分线l 与x轴交于点P (x 0,0),求证:-x 2-x 2x <x 0<x 2-x 2x. 证明设AB 的中点为M (x 1,y 1),由题设可知AB 与x 轴不垂直,∴y 1≠0.由椭圆的中点弦斜率公式,得k AB =-x 2x 2·x 1x 1,∴k l =x 2x1x 2x 1.∴直线l 的方程为y-y 1=x 2x1x 2x 1(x-x 1).把(x 0,0)代入得x 1=x 2x 2-x 2x 0.∵|x 1|<a ,∴-a<x 2x 2-x 2x 0<a ,即-x 2-x 2x <x 0<x 2-x 2x. 评析利用中点弦斜率公式求得弦的斜率,写出弦所在直线的方程,并用弦中点的横坐标的范围抽象出不等式来求解参数范围.技巧一 巧用平面几何性质【例1】已知椭圆C :x 24+x 23=1的右焦点为F ,P 为椭圆C 上一动点,定点A (2,4),则|PA|-|PF|的最小值为 .答案1解析设椭圆C 的左焦点为F',则|PF|+|PF'|=4,所以|PF|=4-|PF'|,所以|PA|-|PF|=|PA|+|PF'|-4.如图,易知当点P 在线段AF'上时,|PA|+|PF'|取最小值|AF'|=√(2+1)2+(4-0)2=5.所以|PA|-|PF|的最小值为1.解题心得解决此类问题要熟练掌握平面几何的性质,利用数形结合,找到解题的关键. 技巧二 设而不求,整体代换【例2】已知椭圆E :x 2x 2+x 2x 2=1(a>b>0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B两点.若AB 的中点坐标为M (1,-1),则椭圆E 的标准方程为( )A.x 245+x 236=1 B.x 236+x 227=1 C.x 227+x 218=1 D.x 218+x 29=1答案D解析设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1, 两式相减得(x 1+x 2)(x 1-x 2)x 2+(x 1+x 2)(x 1-x 2)x 2=0,所以k AB =x 1-x 2x 1-x 2=-x 2(x 1+x 2)x 2(x 1+x 2)=x 2x 2. 又k AB =0+13-1=12,所以x 2x 2=12.又a 2-b 2=c 2=9,所以b 2=9,a 2=18. 所以椭圆E 的标准方程为x 218+x 29=1.解题心得本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简【例3】已知椭圆x 24+y 2=1的左顶点为A ,过点A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一个定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.解(1)当直线AM 的斜率为1时,直线AM 的方程为y=x+2,代入椭圆方程并化简得5x 2+16x+12=0,解得x 1=-2,x 2=-65.所以点M (-65,45).(2)由题意可知直线AM ,AN 的斜率存在,且不为0.设直线AM 的斜率为k (k ≠0),直线AM 的方程为y=k (x+2),直线AN 的方程为y=-1x (x+2).由{x =x (x +2),x 24+x 2=1,化简得(1+4k 2)x 2+16k 2x+16k 2-4=0, 则x A +x M =-16x 21+4x 2.又x A =-2,所以x M =-x A -16x 21+4x 2=2-16x 21+4x 2=2-8x 21+4x 2. 同理,可得x N =2x 2-8x 2+4.当x M =x N 时,2-8x 21+4x2=2x 2-8x 2+4,解得k=±1.此时直线MN 的方程为x=-65,直线MN 过x 轴上的点(-65,0).当x M ≠x N 时,k ≠±1,因为点M (2-8x 21+4x 2,4x 1+4x 2),N2x 2-8x 2+4,-4xx 2+4,所以k MN=4x 1+4x 2+4xx 2+42-8x 21+4x 2-2x 2-8x 2+4=5x 4-4x 2,所以直线MN 的方程为y-4x1+4x 2=5x4-4x 2x-2-8x 21+4x 2.令y=0,得x=-65. 所以直线MN 过x 轴上的点(-65,0). 综上所述,直线MN 过x 轴上的定点(-65,0).解题心得在圆锥曲线问题中,常设出直线与圆锥曲线的两个交点坐标,联立直线方程与圆锥曲线方程,消元得到一元二次方程,利用根与系数的关系,得到两个交点横坐标或纵坐标的关系.这是解决圆锥曲线问题的常用方法.通过设而不求,大大降低了运算量,体现了整体思想.技巧四 巧妙“换元”减少运算量【例4】如图,已知椭圆C 的离心率为√32,A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-√32.(1)求椭圆C 的方程;(2)已知直线l :y=kx+m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.解(1)由已知得椭圆C 的焦点在x 轴上,设椭圆C 的方程为x 2x 2+x 2x 2=1(a>b>0),则点A (a ,0),B (0,b ),F (c ,0),c=√x 2-x 2.由已知得e2=x 2x 2=x 2-x 2x 2=34,所以a 2=4b 2,即a=2b ,则c=√3b.又S △ABF =12|AF||OB|=12(a-c )b=1-√32, 所以12(2b-√3b )b=1-√32,解得b=1.所以a=2,c=√3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心坐标为(0,0),半径r=1,由直线l :y=kx+m 与圆O :x 2+y 2=1相切,得|x |√1+x 2=1,故m 2=1+k 2.由{x 24+x 2=1,x =xx +x 消去y ,得(1+4k 2)x 2+8kmx+4(m 2-1)=0. 由题意可知k ≠0,所以Δ=16(4k 2-m 2+1)=48k 2>0. 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8xx4x 2+1,x 1x 2=4x 2-44x 2+1,所以|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√(-8xx 4x 2+1)2-4×4x 2-44x 2+1=√16(4x 2-x 2+1)(4x 2+1)2=√48x 2(4x 2+1)2,所以|x 1-x 2|=4√3|x |4x 2+1.所以|MN|=√1+x 2|x 1-x 2|=√1+x 2·4√3|x |4x 2+1=4√3x 2(x 2+1)4x 2+1.所以△OMN 的面积S=12|MN|×1=2√3x 2(x 2+1)4x 2+1.令t=4k 2+1,则t>1,k 2=x -14,所以S=2√3×x -14(x -14+1)x2=√32√(x -1)(x +3)x 2=√32√x 2+2x -3x 2=√32√-3x2+2x +1=32√-(1x -13)2+49.当t=3,即4k 2+1=3,即k=±√22时,S 取得最大值,最大值为32×√49=1.解题心得圆锥曲线中的最值问题往往转化为函数的最值问题,可先根据已知条件建立目标函数,再求出函数的最值.在求函数的最值时,有时会利用换元,起到消除根号、降次等目的.9.5 椭圆必备知识·预案自诊知识梳理1.(1)> (2)= (3)<考点自诊1.(1)×(2)×(3)√(4)√(5)√2.A由题意知,OM是△PF1F2的中位线,所以|OM|=12|PF2|,所以|PF2|=6,所以|PF1|=2a-|PF2|=10-6=4.3.A因为△AF1B的周长为4√3,且△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,所以4a=4√3,则a=√3,又因为xx =√33,解得c=1,所以b=√x2-x2=√2,故椭圆C的方程为x23+x22=1.4.必要不充分方程x2x +x22-x=1表示椭圆,即{x>0,2-x>0,x≠2-x,解得0<m<2,且m≠1,所以“0<m<2”是“方程x2x +x22-x=1表示椭圆”的必要不充分条件.5.x24+y2=1由题意,椭圆的焦距2c=2√3,所以c=√3,又离心率e=xx=√32,所以a=2,所以b=√x2-x2=1,所以椭圆C的方程为x24+y2=1.关键能力·学案突破例1(1)A(2)A(1)(1)如图,由直线l为∠F1PF2的外角平分线,l⊥F2M,可得|PM|=|PF2|.而在椭圆E:x225+x29=1中,a=5,2a=|PF1|+|PF2|=|PF1|+|PM|=|F1M|=10.故选A.(2)因为x24+x2x2=1,则a=2,由0<b<2可知,焦点在x轴上.因为过点F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8,所以|BF2|+|AF2|=8-|AB|,当AB垂直于x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|=2x2x,又a=2,所以5=8-b2,解得b=√3,则椭圆的离心率e=xx =√1-x2x2=12.对点训练1(1)D(2)35(1)由椭圆的对称性可知,P,Q两点关于原点对称.设F'为椭圆另一焦点,则四边形PFQF'为平行四边形,由椭圆定义可知|PF|+|PF'|+|QF|+|QF'|=4a=20.又|PF|=|QF'|,|QF|=|PF'|,∴|PF|+|QF|=10.又PQ为椭圆内过原点的弦,∴|PQ|min=2b=8,∴△PFQ的周长的最小值为10+8=18.故选D.(2)椭圆x 236+x 2100=1的两个焦点为F 1(0,-8),F 2(0,8),由椭圆的定义知|PF 1|+|PF 2|=20,两边平方得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=202,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos ∠F 1PF 2=|F 1F 2|2=162,两式相减得2|PF 1||PF 2|(1+cos ∠F 1PF 2)=144.又x △xx 1x 2=12|PF 1||PF 2|sin ∠F 1PF 2=18,所以1+cos ∠F 1PF 2=2sin ∠F 1PF 2.解得cos ∠F 1PF 2=35. 例2(1)C (2)x 218+x 29=1或x 218+x 29=1 (3)m<-1或1<m<32 (1)(方法1)设M (x 0,y 0),则N (-x 0,-y 0),因为A (a ,0)且线段AM 的中点为B ,所以B (x +x 02,x 02),由B ,F ,N 三点共线,得xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,依题意,F (1,0),故xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 0-1,-y 0),xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x +x 02-1,x 02),即-(x 0+1)x 02+(x +x 02-1)y 0=0,又y 0≠0,解得a=3,所以b 2=32-12=8,所以椭圆C 的标准方程为x 29+x 28=1.故选C.(方法2)设M (x 0,y 0),则N (-x 0,-y 0),依题意,A (a ,0),因为AO 和NB 是△AMN 的中线,所以F (1,0)为△AMN 的重心,故x 0-x 0+x3=1,解得a=3,所以b 2=32-12=8,所以椭圆C 的标准方程为x 29+x 28=1.故选C.(2)由题意知xx =√22,得a 2=2b 2=2c 2.当焦点在x 轴上时,设椭圆的方程为x 2x 2+x 2x 2=1(a>b>0),在椭圆上任取一点P (x 0,y 0),取焦点F (-c ,0),则PF 的中点M 为(x 0-x 2,x 02),根据条件可得x 02=x 0-x 2+4,k PF =x 0x0+x=-1,联立两式解得x 0=-4,y 0=4-c ,代入椭圆方程解得a=3√2,b=3.由此可得椭圆的方程为x 218+x 29=1,同理,当焦点在y 轴上时,椭圆的方程为x 218+x 29=1.(3)由x 2|x |-1+x 22-x =1表示焦点在y 轴上的椭圆,得2-m>|m|-1>0,解得m<-1或1<m<32.对点训练2(1)C (2)x 24+x 22=1(3)x28+x24=1(1)椭圆3x2+8y2=24化为x28+x23=1,它的焦点为(±√5,0),可得c=√5,设椭圆的方程为x2x2+x2x2=1(a>b>0),可得9x2+4x2=1,又a2-b2=5,所以a=√15,b=√10,故所求的椭圆方程为x215+x210=1.(2)由题意可设椭圆C1:x2x2+x22=1,C2:x22+x2x2=1(a>√2,0<b<√2),由x2-2x2=2-x22,得ab=2,由2√x2-2·√2-x2=2√2,可得(a2-2)(2-b2)=2,解得a=2,b=1,即椭圆C1的标准方程为x24+x22=1.(3)因为椭圆上一点到焦点的最小距离为a-c,所以a-c=2√2-2,因为离心率e=√22,所以x x =√22,解得a=2√2,c=2,则b2=a2-c2=4,所以椭圆E的方程为x28+x24=1.例3(1)C(2)A(3)D(1)设椭圆的左焦点为F',P为短轴的上端点,连接AF',BF',如下图所示:由椭圆的对称性可知,A,B关于原点对称,则|OA|=|OB|,又|OF'|=|OF|,∴四边形AFBF'为平行四边形,∴AF=BF',又|AF|+|BF|=|BF|+|BF'|=2a=6,∴a=3,∵点P(0,b)到直线l距离d=|-3x|5≥65,∴b≥2,∴√x2-x2=√9-x2≥2,即0<c≤√5,∴e=xx ∈(0,√53].故选C.(2)由题意,因为△F2PF1是底边为PF1的等腰三角形,所以|PF2|=|F2F1|.因为P为直线x=2a上一点,直线PF1的斜率为13,△PDF2是直角三角形,所以|PD|2+|DF2|2=|PF2|2,即(2x+x3)2+(2a-c)2=4c2,可得13e2+16e-20=0,解得e=1013或e=-2(舍去).故选A.(3)由正弦定理,可得|xx 1|sin∠xx 2x 1=|xx 2|sin∠xx 1x 2,结合题意可得|xx 1|x=|xx 2|x,所以|xx 1|x=|xx 2|x=|xx 1|+|xx 2|x +x .根据椭圆的定义可得|MF 1|+|MF 2|=2a ,所以|MF 1|=2xxx +x ,|MF 2|=2x 2x +x ,易知|MF 2|>|MF 1|.因为M 为椭圆上一点,所以a-c<|MF 2|<a+c ,即a-c<2x 2x +x <a+c , 整理得c 2+2ac-a 2>0,所以e 2+2e-1>0,解得√2-1<e<1.故选D. 对点训练3(1)C (2)B (3)12,1 (1)由椭圆x 211-x +x 2x -3=1的长轴在y 轴上,且焦距为4,可得√x -3-11+x =2,解得m=9.故选C .(2)如图,设直线x=3x 2与x 轴的交点为C ,由△APF 是底角为30°的等腰三角形和椭圆性质可知PF=AF=a+c ,FC=OC-OF=3x 2-c ,由题意可知∠PFC=60°,所以cos ∠PFC=xxxx=3x2-x x +x=12,解得e=xx =23.故选B.(3)∵|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2a ,∴|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2a-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|(a-c ≤|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤a+c ). ∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |(2a-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |)=-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2+2a|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|=-(|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |-a )2+a 2. ∵a-c ≤|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤a+c ,∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=-(|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |-a )2+a 2∈[b 2,a 2].∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最大值m=a 2. 设P (x ,y ),则xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-c-x ,-y )·(c-x ,-y )=x 2+y 2-c 2=x 2+x 2x 2(a 2-x 2)-c 2=1-x 2x 2x 2+b 2-c 2,∵x ∈[-a ,a ],∴x 2∈[0,a 2],xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为n=b 2-c 2.由m ≥2n ,得a 2≥2(b 2-c 2)=2(a 2-2c 2),∴a 2≤4c 2,解得e=x x ∈12,1.例4解(1)由题意,得2c=2√2,所以c=√2.又e=xx =√63,所以a=√3,所以b 2=a 2-c 2=1,所以椭圆M 的方程为x 23+y 2=1.(2)设直线AB 的方程为y=x+m.由{x =x +x ,x 23+x 2=1消去y ,得4x 2+6mx+3m 2-3=0,则Δ=36m 2-4×4(3m 2-3)=48-12m 2>0,即m 2<4.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-3x 2,x 1x 2=3x 2-34,所以|AB|=√1+x 2|x 1-x 2|=√1+x 2·√(x 1+x 2)2-4x 1x 2=√6×√4-x 22,易得当m 2=0时,|AB|max =√6,故|AB|的最大值为√6.(3)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则x 12+3x 12=3,x 22+3x 22=3.又P (-2,0),所以可设k 1=k PA =x 1x 1+2,直线PA 的方程为y=k 1(x+2).由{x =x 1(x +2),x 23+x 2=1消去y ,得(1+3x 12)x 2+12x 12x+12x 12-3=0,则x 1+x 3=-12x 121+3x 12,即x 3=-12x 121+3x 12-x 1.又k 1=x 1x1+2,代入上式可得x 3=-7x 1-124x 1+7,所以y 3=x14x 1+7, 所以点C (-7x 1-124x 1+7,x14x 1+7). 同理可得点D (-7x 2-124x 2+7,x 24x 2+7). 故xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 3+74,x 3-14),xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 4+74,x 4-14).因为Q ,C ,D 三点共线,所以(x 3+74)(x 4-14)-x 4+74(x 3-14)=0.将点C ,D 的坐标代入化简可得x 1-x2x 1-x 2=1,即k=1.对点训练4解(1)由题意,得b=√3,且2x +2x2·√3=3√3,所以a+c=3.又a 2-c 2=3,解得a=2,c=1. 所以椭圆C 的方程为x 24+x 23=1.(2)如图,设A (x 1,y 1),B (x 2,y 2).当圆O 的切线l 的斜率存在时,设l 的方程为:y=kx+m.切点为H ,连接OH ,则OH ⊥AB.联立{x =xx +x ,x 24+x 23=1,整理得(3+4k 2)x 2+8kmx+4m 2-12=0.所以x 1+x 2=-8xx 4x 2+3,x 1x 2=4x 2-124x 2+3.又直线l 与圆O :x 2+y 2=127相切,所以OH=|x |√x 2+1=√127.所以m 2=12(1+x 2)7.又|AB|=√1+x 2·√(x 1+x 2)2-4x 1x 2=√1+x 2·√64x 2x 2-4(4x 2-12)(4x 2+3)(4x 2+3)2=√1+x 2·√48(3+4x 2-x 2)(4x 2+3)2=4√3√7√(1+x 2)(9+16x 2)(4x 2+3)2=4√3√7√1+x216x 4+24x 2+9.①若k ≠0时,|AB|=4√3√7√1+116x 2+24+9x 2. 因为16k 2+24+9x 2≥2√16×9+24=48,当且仅当k=±√32时,等号成立.所以|AB|≤4√3√7×√1+148=4√3√7×74√3=√7,易知|AB|>4√3√7,即4√3√7<AB ≤√7. ②当k=0时,|AB|=4√3√7.所以4√3√7≤|AB|≤√7.又|OH|=2√3√7,所以S △AOB =12|AB|·|OH|=2√32√7|AB|∈[127,√3].当圆O 的切线斜率不存在时,则AB 的方程为x=√127,或x=-√127.此时A ,B 的坐标分别为√127,√127,√127,-√127或-√127,√127,-√127,-√127. 此时S △AOB =127.综上,△AOB 面积的取值范围为[127,√3].例5解设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有x 122+x 12=1,x 222+x 22=1,两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0,因为x 1+x 2=2x 0,y 1+y 2=2y 0,x 2-x1x 2-x 1=k AB ,所以k AB =-x02x 0.①(1)设弦中点为M (x ,y ),由①式,2=-x2x ,所以x+4y=0.故所求的轨迹方程为x+4y=0-43<x<43.(2)由①式及题意可知,弦所在的直线的斜率k=-x 02x 0=-12,所以其方程为y-12=-12x-12,即2x+4y-3=0.对点训练5A 设弦的两端点为A (x 1,y 1),B (x 2,y 2),P 为AB 中点.A ,B 在椭圆上,则x 1216+x 124=1,x 2216+x 224=1,两式相减,得x 12-x 2216+x 12-x 224=0,又因为x 1+x 2=6,y 1+y 2=2,可得x 1-x 2x 1-x 2=-34,则k=-34,直线AB 过点P (3,1),所以该弦所在的直线方程为y-1=-34(x-3),整理得3x+4y-13=0.故选A .例6解(1)由题意可得{4x 2+1x 2=1,x =2x ,解得{x 2=8,x 2=2,故椭圆C 的方程为x 28+x 22=1.(2)设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为y=k (x+4),与椭圆方程x 28+x 22=1联立,可得x 2+4k 2(x+4)2=8,即(4k 2+1)x 2+32k 2x+(64k 2-8)=0,则x 1+x 2=-32x 24x 2+1,x 1x 2=64x 2-84x 2+1.直线MA 的方程为y+1=x 1+1x 1+2(x+2),令x=-4,可得y P =-2×x 1+1x 1+2-1=-2×x (x 1+4)+1x 1+2−x 1+2x 1+2=-(2x +1)(x 1+4)x 1+2,同理可得y Q =-(2x +1)(x 2+4)x 2+2.很明显y P y Q <0,且|xx ||xx |=|xx x x|,注意到y P +y Q =-(2k+1)x 1+4x 1+2+x 2+4x 2+2=-(2k+1)×(x 1+4)(x 2+2)+(x 2+4)(x 1+2)(x 1+2)(x 2+2),而(x 1+4)(x 2+2)+(x 2+4)(x 1+2)=2[x 1x 2+3(x 1+x 2)+8]=264x 2-84x 2+1+3×(-32x 24x 2+1)+8=2×(64x 2-8)+3×(-32x 2)+8(4x 2+1)4x 2+1=0,故y P +y Q =0,y P =-y Q .从而|xx ||xx |=|xx x x|=1.对点训练6(1)解由题意可得M (-1,0),N (1,0),令x=-1,得y=±√22,所以|AB|=√2,因为|BC|=|MN|=2,且四边形ABCD 是矩形,所以四边形ABCD 的面积为S=|AB|·|BC|=2√2. (2)证明设l 1为y=k (x-m ),则{x 22+x 2=1,x =x (x -x ),故(2k 2+1)x 2-4k 2mx+2m 2k 2-2=0,设A (x 1,y 1),B (x 2,y 2), 故{x 1+x 2=4x 2x2x 2+1,x 1x 2=2x 2x 2-22x 2+1,|AB|=√1+x 2|x 1-x 2|=√1+x 2√(x 1+x 2)2-4x 1x 2 =√1+x 2√16x 2-8x 2x 2+82x 2+1,同理可得|CD|=√1+x 2√16x 2-8x 2x 2+82x 2+1,因为四边形ABCD 为平行四边形,所以|AB|=|CD|,故√1+x 2√16x 2-8x 2x 2+82x 2+1=√1+x 2√16x 2-8x 2x 2+82x 2+1,即m 2=n 2,又m ≠n ,所以m+n=0. (3)解设AB 中点为P (a ,b ),则x 122+x 12=1,x 222+x 22=1,两式相减,得(x1+x2)(x1-x2)2+(y1+y2)(y1-y2)=0,即a+2kb=0, 同理可得CD的中点Q(c,d),满足c+2kd=0,故k PQ=x-xx-x =x-x-2xx+2xx=-12x≠-1x,故四边形ABCD不能为矩形.。
2020版高考数学一轮复习第九章解析几何9.5椭圆课件新人教A版
A1(0,-a),A2(0,a) B1(-b,0),B2(b,0) ;短轴 B1B2 的长
离心率
������
e= ������
∈(0,1)
a,b,c 的关系 c2=a2-b2
知识梳理
-5-
知识梳理 双基自测
123456
1.下列结论正确的打“√”,错误的打“×”. (1)平面内与两个定点F1,F2的距离的和等于常数的点的轨迹是椭 圆.( ) (2)椭圆是轴对称图形,也是中心对称图形.( ) (3)椭圆上一点P与两个焦点F1,F2构成△PF1F2的周长为2a+2c(其中 a为椭圆的长半轴长,c为椭圆的半焦距).( ) (4)椭圆的离心率e越大,椭圆就越圆.( ) (5)关于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.
所线以段Mb=F3的. 垂直平分线交ME于点P,则动点P的轨迹方程 (为2)因为点 P 在线段 ME 的垂. 直平分线上, 所所以以思|点考PF如P|=的何|P轨灵M迹|活,所为运以以用|P椭EE,|F圆+为|的PF焦定|=点义|P的解E|椭+决|圆P有M.关|=问|E题M|?=2√2.
解得 ������ = 4, ������ = 2√3,
∴���1���62 椭+圆������42=的1标准方程为���1���62
+
������ 2 4
=1.
关闭
关闭
解析 答案
-11关闭
考(点11)由椭考圆点2 的定考义点3 知|PF1|+|PF2|=2a,������������1 ⊥ ������������2,
+
������ 2=1
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
2020年高中数学 一轮复习 专题检测卷九 解析几何(理科)(人教A版)
专题检测卷九 解析几何(时间:100分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019山西芮城模拟,6)点P (2,3)到直线l :ax+y-2a=0的距离为d ,则d 的最大值为( ) A.3B.4C.5D.72.(2019云南师范大学附中模拟,8)直线l 与双曲线x 2-y 22=1交于A ,B 两点,以AB 为直径的圆C 的方程为x 2+y 2+2x+4y+m=0,则m=( ) A.-3B.3C.5-2√2D.2√23.(2019湖南湖北八市十二校一调联考,8)已知抛物线C :y 2=2px (p>0)的焦点为F ,过点F 的直线l 与抛物线C 交于A 、B 两点,且直线l 与圆x 2-px+y 2-34p 2=0交于C 、D 两点.若|AB|=2|CD|,则直线l 的斜率为 ( )A.±√22B.±√32C.±1D.±√24.(2019江西名校(临川一中、南昌二中)2019联考,7)阿波罗尼斯(约公元前262—190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k>0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P 满足|PA ||PB |=√2,当P 、A 、B 不共线时,三角形PAB 面积的最大值是( ) A.2√2 B.√2 C.2√2D.√25.设F 1、F 2是双曲线C :x 2a2−y 2b2=1(a>0,b>0)的左、右焦点,A 为左顶点,点P 为双曲线C 右支上一点,|F 1F 2|=10,PF 2⊥F 1F 2,|PF 2|=163,O 为坐标原点,则OA⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ = ( )A.-293 B.163C.15D.-156.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为( ) A.11B.5√5C.41D.57.(2019山东青岛调研,11)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴相交于点R ,若∠NRF=60°,则|FR|等于( ) A.12 B.1 C.2 D.48.(2019福建宁德质检,8)如图,点F 是抛物线C :x 2=4y 的焦点,点A ,B 分别在抛物线C 和圆x 2+(y-1)2=4的实线部分上运动,且AB 总是平行于y 轴,则△AFB 周长的取值范围是( ) A.(3,6)B.(4,6)C.(4,8)D.(6,8)9.(2019黑龙江齐齐哈尔市二模,9)已知椭圆E :x 2a 2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,过F 1作垂直x 轴的直线交椭圆E 于A ,B 两点,点A 在x 轴上方.若|AB|=3,△ABF 2的内切圆的面积为9π16,则直线AF 2的方程是( ) A.3x+2y-3=0 B.2x+3y-2=0 C.4x+3y-4=0D.3x+4y-3=010.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足|PA|=m|PB|,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( ) A.√2+12B.√2+1C.√5-12D.√5-111.(2019四川南充三模,8)已知直线x+y=1与椭圆x 2a 2+y 2b2=1(a>b>0)交于P ,Q 两点,且OP ⊥OQ (其中O 为坐标原点),若椭圆的离心率e 满足√3≤e ≤√2,则椭圆长轴的取值范围是( ) A.[√5,√6] B.√52,√62C.54,32D.52,312.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3B.2√2C.√5D.2二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 过点P (3,2),且与x 轴的正半轴、y 轴的正半轴分别交于A ,B 两点,当△AOB 的面积取最小值时,直线l 的方程为 .14.(2019河北唐山摸底)已知直线l :kx-y-k+2=0与圆C :x 2+y 2-2y-7=0相交于A ,B 两点,则|AB|的最小值为 .15.已知抛物线C :y 2=2px (p>0)的焦点为F ,准线为l ,过点F 斜率为√3的直线l'与抛物线C 交于点M (M 在x 轴的上方),过M 作MN ⊥l 于点N ,连接NF 交抛物线C 于点Q ,则|NQ ||QF |= .16.(2019四川成都棠湖中学开学考试,16)已知F是椭圆C:x 225+y216=1的右焦点,P是椭圆上一点,A0,365,当△APF周长最大时,该三角形的面积为.三、解答题(本大题共5小题,共70分)17.(14分)(2019安徽滁州模拟,18)已知圆O:x2+y2=r2(r>0)与直线3x-4y+15=0相切.(1)若直线l:y=-2x+5与圆O交于M,N两点,求|MN|;(2)已知A(-9,0),B(-1,0),设P为圆O上任意一点,证明:|PA||PB|为定值.18.(14分)(2019河南洛阳模拟,20)已知椭圆x 2a2+y2b2=1(a>b>0)的离心率e=√33,左、右焦点分别为F1,F2,且F2与抛物线y2=4x的焦点重合.(1)求椭圆的标准方程;(2)若过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,求|AC|+|BD|的最小值.19.(14分)(2019湖南益阳,20)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.20.(14分)(2019江西宜春模拟,20)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√32,点-√3,12在椭圆上,A,B分别为椭圆C的上、下顶点,点M(t,2)(t≠0).(1)求椭圆C的方程;(2)若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.21.(14分)(2019河北衡水模拟,20)已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为13,点P在椭圆C上,且△PF1F2的面积的最大值为2√2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,若在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.参考答案专题检测卷九解析几何1.A直线方程即y=-a(x-2),据此可知直线恒过定点M(2,0),当直线l⊥PM时,d有最大值,结合两点之间距离公式可得d的最大值为√(2-2)2+(3-0)2=3.故选A.2.A 设A (x 1,y 1),B (x 2,y 2),根据圆的方程可知C (-1,-2),C 为AB 的中点,根据双曲线中点差法的结论k AB =b 22×x 00=2×-1-2=1,由点斜式可得直线AB 的方程为y=x-1,将直线AB 方程与双曲线方程联立{x 2-y22=1,y =x -1,解得{x =-3,y =-4,或{x =1,y =0,所以|AB|=4√2,由圆的直径|AB|=√D 2+E 2-4F =√22+42-4m =4√2,可解得m=-3,故选A .3.C 由题设可得x-p22+y 2=p 2,故圆心在焦点上,故CD=2p ,AB=4p ,设直线l 的方程为x=ty+p2,设A (x 1,y 1)B (x 2,y 2)代入y 2=2px (p>0)得y 2-2pty-p 2=0,所以y 1+y 2=2pt ,y 1y 2=-p 2,则AB=√(1+t 2)(4p 2t 2+4p 2)=2p (1+t 2)=4p ,即1+t 2=2,解得t=±1.故选C.4.A 以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0),B (1,0),设P (x ,y ),∵|PA |=√2,∴√(x+1)2+y 2√(x -1)+y 2=√2,两边平方并整理得x 2+y 2-6x+1=0,即(x-3)2+y 2=8,当点P 到AB (x 轴)的距离最大时,三角形PAB 的面积最大,此时面积为12×2×2√2=2√2,故选A .5.D 由题得{a 2+b 2=25,b2a=163,∴a=3,b=4.所以双曲线的方程为x 29−y 216=1,所以点P 的坐标为5,163或5,-163,所以OA ⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ =(-3,0)·5,±163=-15.故选D.6.C 圆的内接四边形对角互补,因为x 轴与y 轴垂直,所以2x+y-4=0与x+ky-3=0垂直.所以2×1+1×k=0,解得k=-2,直线2x+y-4=0与坐标轴的交点为(2,0),(0,4),x-2y-3=0与坐标轴的交点为0,-32,(3,0),两直线的交点纵坐标为-25.所以四边形的面积为12×3×32−12×1×25=4120,故选C.7.C ∵M ,N 分别是PQ ,PF 的中点,∴MN ∥FQ ,且PQ ∥x 轴,∵∠NRF=60°,∴∠FQP=60°,由抛物线定义知,|PQ|=|PF|,∴△FQP 为正三角形,则FM ⊥PQ ⇒QM=p=2,正三角形边长为4,PQ=4,FN=12PF=2,又可得△FRN 为正三角形,∴FR=2,故选C.8.B 抛物线x 2=4y 的焦点为(0,1),准线方程为y=-1,圆(y-1)2+x 2=4的圆心为(0,1),与抛物线的焦点重合,且半径r=2,∴|FB|=2,|AF|=y A +1,|AB|=y B -y A ,∴三角形ABF 的周长=2+y A +1+y B -y A =y B +3,∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选B . 9.D 设内切圆半径为r ,则πr 2=9π16,∴r=34,∵F 1(-c ,0),∴内切圆圆心为-c+34,0,由|AB|=3知A -c ,32,又F 2(c ,0),所以AF 2方程为3x+4cy-3c=0,由内切圆圆心到直线AF 2距离为r ,即|3(-c+34)-3c|√3+(4c )=34,得c=1,所以AF 2方程为3x+4y-3=0,故选D .10.B 过点P 作准线的垂线,垂足为N ,则由抛物线的定义可得|PN|=|PB|.∵|PA|=m|PB|, ∴|PA|=m|PN|.∴1m =|PN ||PA |. 设直线PA 的倾斜角为α,则sin α=1m .当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切.设直线PA 的方程为y=kx-1,代入x 2=4y ,可得x 2=4(kx-1),即x 2-4kx+4=0, ∴Δ=16k 2-16=0,∴k=±1, ∴P (2,1)或P (-2,1).∴双曲线的实轴长为|PA|-|PB|=2(√2-1), ∴双曲线的离心率为√2-1=√2+1. 故选B .11.A 联立{x +y =1,x 2a 2+y 2b2=1,得(a 2+b 2)x 2-2a 2x+a 2-a 2b 2=0,设P (x 1,y 1),Q (x 2,y 2),∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0,化为a 2+b 2>1. 则x 1+x 2=2a 2a 2+b2,x 1x 2=a 2-a 2b 2a 2+b2.∵OP ⊥OQ ,∴OP ⃗⃗⃗⃗⃗ ·OQ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(x 1-1)(x 2-1)=2x 1x 2-(x 1+x 2)+1=0,∴2×a 2-a 2b 2a 2+b2−2a 2a 2+b2+1=0.化简得a 2+b 2=2a 2b 2.∴b2=a 22a 2-1.∵椭圆的离心率e 满足√33≤e ≤√22,∴13≤e 2≤12, ∴13≤a 2-b 2a 2≤12,13≤1-12a 2-1≤12,化为5≤4a 2≤6,解得√5≤2a ≤√6.满足Δ>0.∴椭圆长轴的取值范围是[√5,√6].故选A .12.A 建立如图所示的平面直角坐标系,则A (0,1),B (0,0),D (2,1).设P (x ,y ),圆C 的半径为r ,由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45.易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0). 由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +λAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P (x ,y )在圆(x-2)2+y 2=45上,所以圆心C 到直线12x-y+1-z=0的距离d ≤r , 即√14+1≤2√5,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3,故选A .13.2x+3y-12=0方法1:易知直线l的斜率k存在且k<0,则直线l的方程为y-2=k(x-3)(k<0),则A3-2k ,0,B(0,2-3k),所以S△AOB=12(2-3k)3-2k=1212+(-9k)+4-k≥1212+2√(-9k)·4-k =12×(12+2×6)=12,当且仅当-9k=4-k,即k=-23时等号成立.所以当k=-23时,△AOB的面积最小,此时直线l的方程为y-2=-23(x-3),即2x+3y-12=0.方法2:设直线l的方程为xa+yb=1(a>0,b>0),将点P(3,2)代入得3a+2b=1≥2√6ab,即ab≥24,当且仅当3a =2b,即a=6,b=4时等号成立,又S△AOB=12ab,所以当a=6,b=4时△AOB的面积最小,此时直线l的方程为x6+y4=1,即2x+3y-12=0.14.2√6kx-y-k+2=0,化为y-2=k(x-1),直线过定点E(1,2),E(1,2)在圆x2+y2-2y-7=0内,当E 是AB中点时,|AB|最小,由x2+y2-2y-7=0得x2+(y-1)2=8,圆心C(0,1),半径2√2,|AB|=2√8-|EC|2=2√8-2=2√6,故答案为2√6.15.2由抛物线定义可得MF=MN,又斜率为√3的直线l'倾斜角为π3,MN⊥l,所以∠NMF=π3,即三角形MNF为正三角形,因此NF倾斜角为2π3,由{y2=2px,y=-√3(x-p2),解得x=p6或x=3p2(舍),即x Q=p6,|NQ||QF|=p6-(-p2)p2-p6=2.16.1445由x225+y216=1得右焦点F(3,0),左焦点F'(-3,0),△APF周长|AF|+|AP|+|PF|=|AF|+|AP|+2a-|PF'|≤10+(|AF|+|AF'|),当A,P,F'共线时△APF周长最大,此时直线AF'方程为x-3+y365=1,与x225+y216=1联立,解得y P=-125,可得S△APF=12|FF'|(y A-y P)=12×6×365+125=1445,故答案为1445.17.(1)解由题意知,圆心O到直线3x-4y+15=0的距离d=√9+16=3, ∵圆O与直线相切,∴r=d=3,∴圆O方程为x2+y2=9.圆心O到直线l:y=-2x+5的距离d1=√4+1=√5,∴|MN|=2√9-d 12=4.(2)证明 设P (x 0,y 0),则x 02+y 02=9,∴|PA |=√(x 0+9)2+y 2√(x 0+1)+y 0=√x 02+18x 0+81+y 2√x 0+2x 0+1+y 0=√18x 0+902x 0+10=3,即|PA ||PB |为定值3.18.解 (1)抛物线y 2=4x 的焦点为(1,0),所以c=1,又因为e=c a =1a =√33,所以a=√3, 所以b2=2,所以椭圆的标准方程为x 23+y 22=1.(2)(i)当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y=k (x+1),代入椭圆方程x 23+y 22=1, 并化简得(3k 2+2)x 2+6k 2x+3k 2-6=0. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k23k 2+2,x 1x 2=3k 2-63k 2+2,|BD|=√1+k 2·|x 1-x 2|=√(1+k 2)·[(x 1+x 2)2-4x 1x 2]=4√3(k 2+1)3k 2+2.易知AC 的斜率为-1k ,所以|AC|=4√3(1k 2+1)3×1k2+2=4√3(k 2+1)2k 2+3.所以|AC|+|BD|=4√3(k 2+1)13k 2+2+12k 2+3=20√3(k 2+1)2(3k 2+2)(2k 2+3)≥20√3(k 2+1)2[(3k 2+2)+(2k 2+3)2]2 =20√3(k 2+1)225(k 2+1)24=16√35.当k 2=1,即k=±1时,上式取等号,故|AC|+|BD|的最小值为16√35. (ii)当直线BD 的斜率不存在或等于零时,易得|AC|+|BD|=10√33>16√35. 综上,|AC|+|BD|的最小值为16√35.19.解 (1)由抛物线的定义可知,|MF|=m+p2=2,①又M (2,m )在抛物线上,所以2pm=4,②由①②联立解得p=2,m=1,所以抛物线C 的方程为x 2=4y.(2)①当x 0=0,即点P 为原点时,易知点Q 在直线y=0上;②当x 0≠0,即点P 不在原点时,由(1)得,x 2=4y ,则y'=1x ,所以在点P 处的切线的斜率为1x 0,所以在点P 处的切线l 0的方程为y-y 0=1x 0(x-x 0),又x 02=4y 0, 所以y=12x 0x-y 0.又过点F 与切线l 0垂直的方程为y-1=-2x 0x , 联立方程{y =12x 0x -y 0,y -1=-2x 0x , 消去x ,得y=-14(y-1)x 02-y 0.(*)因为x 02=4y 0,所以(*)可化为y=-yy 0,即(y 0+1)y=0,由y 0>0,可知y=0,即垂足Q 必在x 轴上.所以点Q 必在直线y=0上,综上,点Q 必在直线y=0上. 20.(1)解 由题意知{ c a =√32,3a 2+14b 2=1,a 2=b 2+c 2,解得{a =2,b =1,c =√3,所以椭圆C 的方程为x 24+y 2=1. (2)证明 易知A (0,1),B (0,-1),则直线MA 的方程为y=1t x+1,直线MB 的方程为y=3t x-1.联立{y =1t x +1,x 24+y 2=1,得4t 2+1x 2+8t x=0,于是x P =-8t t 2+4,y P =t 2-4t 2+4, 同理可得x Q =24t t 2+36,y Q =36-t 2t 2+36, 又由点M (t ,2)(t ≠0)及椭圆的对称性可知定点在y 轴上,设为N (0,n ),则直线PN 的斜率k 1=t 2-4t 2+4-n -8t t 2+4,直线QN 的斜率k 2=36-t 2t 2+36-n 24t t 2+36, 令k 1=k 2,则t 2-4t 2+4-n -8tt 2+4=36-t 2t 2+36-n 24t t 2+36,化简得t 2-4-n (t 2+4)-8t =36-t 2-n (t 2+36)24t ,解得n=12,所以直线PQ 过定点0,12. 21.解 (1)由已知得{ c a =13,12×2c ×b =2√2,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1,∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E (x 0,y 0),点G (m ,0),使得|GM|=|GN|, 则GE ⊥MN.由{y =kx +2,x 29+y 28=1,消y 得(8+9k 2)x 2+36kx-36=0,由Δ>0,得k ∈R . ∴x 1+x 2=-36k 9k 2+8, ∴x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8.∵GE ⊥MN ,∴k GE =-1k ,即169k 2+8-0-18k 9k 2+8-m =-1k , ∴m=-2k9k 2+8=-29k+8k . 当k>0时,9k+8k ≥2√9×8=12√2当且仅当9k=8k ,即k=2√23时,取等号, ∴-√212≤m<0;当k<0时,9k+8k ≤-12√2当且仅当9k=8k ,即k=-2√23时,取等号,∴0<m≤√212,∴点G的横坐标的取值范围为-√212,0∪0,√212.。
高考数学大一轮复习 第九章 平面解析几何 9.3 圆的方程试题 理 北师大版-北师大版高三全册数学试
第九章平面解析几何 9.3 圆的方程试题理北师大版圆的定义与方程定义在平面内,到定点的距离等于定长的点的集合叫作圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心(a,b)半径为r一般x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:(-D2,-E2)半径r=12D2+E2-4F【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 答案 C解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.3.(2015·)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D解析圆的半径r=12+12=2,∴圆的方程为(x-1)2+(y-1)2=2.4.(教材改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为______________.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即a+12+1=a-12+9,解得a=2,∴圆心为C(2,0),半径|CA|=2+12+1=10,∴圆C的方程为(x-2)2+y2=10.5.(2016·某某)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是______,半径是______.答案(-2,-4) 5解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·某某)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.(2016·某某八校联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧12+-b2=r 2,|b |=12r ,解得⎩⎪⎨⎪⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 已知点(x ,y )在圆(x -2)2+(y +3)2=1上.求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+-3-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求y x的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.所以y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.解x 2+y 2+2x -4y +5=x +12+y -22,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,所以x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)y x的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b ,当且仅当直线y=x+b与圆切于第四象限时,在y轴上的截距b取最小值,由点到直线的距离公式,得|2-0+b|2=3,即b=-2±6,故(y-x)min=-2- 6.(3)x2+y2是圆上的点与原点的距离的平方,故连接OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|2=(2+3)2=7+43,(x2+y2)min=|OB|2=(2-3)2=7-4 3.题型三与圆有关的轨迹问题例3 (2016·潍坊模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·某某模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹. 解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规X 解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,3+222+D3+22+F =0,3-222+D3-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0). 故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+t -12=3,所以圆C 的方程为(x -3)2+(y -1)2=9.1.(2016·某某检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0 答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2016·某某一模)方程|x |-1=1-y -12所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆 答案 D解析 由题意得⎩⎪⎨⎪⎧|x |-12+y -12=1,|x |-1≥0,即⎩⎪⎨⎪⎧x -12+y -12=1,x ≥1,或⎩⎪⎨⎪⎧x +12+y -12=1,x ≤-1.故原方程表示两个半圆.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2 答案 D解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2a b≥3+2b a ×2ab =3+22, 当且仅当b a =2ab,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.(2016·某某诊断)圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( )A .x 2+(y -1)2=1B .x 2+(y -3)2=3C .x 2+(y +1)2=1D .x 2+(y +3)2=3答案 A解析 依题意,得题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·某某模拟)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形PACB 的面积的最小值是( ) A. 2 B .2 2 C. 3 D .2 3答案 C解析 圆的方程可化为(x -1)2+(y -1)2=1,则C (1,1),当|PC |最小时,四边形PACB 的面积最小,|PC |min =|3-4+11|32+42=2,此时|PA |=|PB |= 3. 所以四边形PACB 的面积S =2×12×3×1=3,故选C. 7.(2016·某某模拟)若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是______________. 答案 (x -2)2+(y +32)2=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |,解之得m =-32. 所以圆C 的方程为(x -2)2+(y +32)2=254. 8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________.答案 x +y -2=0 解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧ x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求.易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13, tan θ=tan(α-β)=12+131-12×13=1, 得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径). 10.(2016·某某模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.答案 7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=x -12+y +32. 问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为3-12+0+32=7, ∴x -12+y +32的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43,知r 2=12+a 2,可得(a +1)2+(b -3)2=12+a 2,②由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧ y =-x +m ,x -12+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122,代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0),则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧ x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=2+22+7-32=4 2. 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
高考数学一轮复习 第九章解析几何9.5椭圆练习 理 新人教A版
课时作业47 椭圆一、选择题1.椭圆的焦点坐标为(-5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则椭圆的方程为( ).A .x 2169+y 2144=1B .x 2144+y 2169=1 C .x 2169+y 225=1 D .x 2144+y 225=1 2.(2012课标全国高考)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ).A .12B .23C .34D .453.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B中,若有两边之和是10,则第三边的长度为( ).A .6B .5C .4D .34.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线5.设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1,F 2,P 为这两条曲线的一个交点,则cos∠F 1PF 2的值为( ).A .14B .13C .23D .-136.如图所示,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,左焦点为F ,A ,B ,C 为其三个顶点,直线CF 与AB 交于D 点,则tan∠BDC 的值等于( ).A .3 3B .-3 3C .35D .-357.方程为x 2a 2+y 2b2=1(a >b >0)的椭圆的左顶点为A ,左、右焦点分别为F 1,F 2,D 是它短轴上的一个端点,若31DF =DA +22DF ,则该椭圆的离心率为( ).A .12B .13C .14D .15 二、填空题8.(2012四川高考)椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△FAB 的周长的最大值是12,则该椭圆的离心率是__________.9.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM |=1,且PM ·AM =0,则|PM |的最小值是__________.10.F 1,F 2是椭圆x 2a 2+y 29=1的左、右两焦点,P 为椭圆的一个顶点,若△PF 1F 2是等边三角形,则a 2=__________.三、解答题11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点F 及点A (0,b ),原点O 到直线FA 的距离为22b . (1)求椭圆C 的离心率e ;(2)若点F 关于直线l :2x +y =0的对称点P 在圆O :x 2+y 2=4上,求椭圆C 的方程及点P 的坐标. 12.(2012北京高考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.参考答案一、选择题1.A 解析:由题意知a =13,c =5, ∴b 2=a 2-c 2=144.又∵椭圆的焦点在x 轴上,∴椭圆方程为x 2169+y 2144=1.2.C 解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°,在Rt△PF 2M 中,PF 2=F 1F 2=2c ,F 2M =3a 2-c ,故cos 60°=F 2M PF 2=32a -c2c =12,解得c a =34,故离心率e =34.3.A 解析:根据椭圆定义,知△AF 1B 的周长为4a =16, 故所求的第三边的长度为16-10=6.4.B 解析:点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,动点P 的轨迹是椭圆. 5.B 解析:由题意可知m -2=3+1,解得m =6.由椭圆与双曲线的对称性,不妨设点P 为第一象限内的点,F 1(0,-2),F 2(0,2). 由题意得|PF 1|+|PF 2|=26,|PF 1|-|PF 2|=23,|F 1F 2|=4,解得|PF 1|=6+3,|PF 2|=6- 3.由余弦定理可得cos∠F 1PF 2=13.6.B 解析:由e =12知b a =1-e 2=32,c b =33.由图知ta n∠DBC =tan∠ABO =a b =233,tan∠DCB =tan∠FCO =c b =33. tan∠BDC =-tan(∠DBC +∠DCB )=-233+331-233×33=-3 3.7.D 解析:设点D (0,b ),A (-a,0),则1DF =(-c ,-b ),DA =(-a ,-b ),2DF =(c ,-b ). 由31DF =DA +22DF ,得-3c =-a +2c ,即a =5c ,故e =15. 二、填空题 8.23解析:如图所示,设椭圆右焦点为F 1,AB 与x 轴交于点H ,则|AF |=2a -|AF 1|,△ABF 的周长为2|AF |+2|AH |=2(2a -|AF 1|+|AH |), ∵△AF 1H 为直角三角形,∴|AF 1|>|AH |,仅当|AF 1|=|AH |,即F 1与H 重合时,△AFB 的周长最大,即最大周长为2(|AF |+|AF 1|)=4a =12,∴a =3,而b =5,∴c =2,离心率e =c a =23.9. 3 解析:∵PM ·AM =0, ∴AM ⊥PM .∴|PM |2=|AP |2-|AM |2=|AP |2-1.∵椭圆右顶点到右焦点A 的距离最小, 故|AP |min =2,∴|PM |min = 3.10.12 解析:∵△PF 1F 2是等边三角形, ∴2c =a .又∵b =3,∴a 2=12. 三、解答题11.解:(1)由点F (-ae,0),点A (0,b ),及b =1-e 2a 得直线FA 的方程为x -ae +y1-e 2a =1,即1-e 2x -ey +ae 1-e 2=0.∵原点O 到直线FA 的距离22b =ae 1-e 2,∴221-e 2·a =ea 1-e 2.解得e =22. (2)(方法一)设椭圆C 的左焦点F ⎝ ⎛⎭⎪⎫-22a ,0关于直线l :2x +y =0的对称点为P (x 0,y 0),则有⎩⎪⎨⎪⎧y 0x 0+22a=12,2·x 0-22a2+y 02=0,解得x 0=3210a ,y 0=225a .∵P 在圆x 2+y 2=4上, ∴⎝ ⎛⎭⎪⎫3210a 2+⎝ ⎛⎭⎪⎫225a 2=4. ∴a 2=8,b 2=(1-e 2)a 2=4.故椭圆C 的方程为x 28+y 24=1,点P 的坐标为⎝ ⎛⎭⎪⎫65,85.(方法二)∵F ⎝⎛⎭⎪⎫-22a ,0关于直线l 的对称点P 在圆O 上, 又直线l :2x +y =0经过圆O :x 2+y 2=4的圆心O (0,0),∴F ⎝ ⎛⎭⎪⎫-22a ,0也在圆O 上. 从而⎝ ⎛⎭⎪⎫-22a 2+02=4,a 2=8,b 2=(1-e 2)a 2=4. 故椭圆C 的方程为x 28+y 24=1.∵F (-2,0)与P (x 0,y 0)关于直线l 对称,∴⎩⎪⎨⎪⎧y 0x 0+2=12,2·x 0-22+y2=0.解得x 0=65,y 0=85.故点P 的坐标为⎝ ⎛⎭⎪⎫65,85. 12.解:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k2. 又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |·d =|k |4+6k21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1.。
高考数学总复习第九章解析几何95椭圆课时作业文含解析新人教A版
高考数学总复习第九章解析几何95椭圆课时作业文含解析新人教A 版9-5 椭圆课时作业A 组——基础对点练1.已知直线l 经过椭圆的一个顶点和一个焦点.若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34【答案】B2.(2019·武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1B.x 216+y 27=1或x 27+y 216=1C.x 216+y 225=1D.x 216+y 225=1或x 225+y 216=1 【答案】B3.(2019·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59【答案】B4.(2018·全国Ⅱ卷)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3 C.3-12D.3-1 【答案】D5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形FAMN 是平行四边形,则该椭圆的离心率为( )A .35B.12C.23D.34【答案】A6.以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.x 220+y 219=1B.x 29+y 28=1 C.x 25+y 24=1 D.x 23+y 22=1 【答案】C7.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为__________. 【答案】x 216+y 24=1 8.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为__________.【答案】249.分别求出满足下列条件的椭圆的标准方程. (1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3). (2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22. (1)求椭圆C 的方程.(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP →=OM →+2ON →,求点P 的轨迹方程.B 组——能力提升练1.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)【答案】A2.由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆x 2c 2+y 2b 2=1(x ≤0)合成的曲线称作“果圆”,如图所示,其中a 2=b 2+c 2,a >b >c >0.由右椭圆x 2a 2+y 2b 2=1(x ≥0)的焦点F 0和左椭圆x 2c 2+y 2b 2=1(x ≤0)的焦点F 1,F 2确定的△F 0F 1F 2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆x 2a 2+y 2b 2=1(x ≥0)的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫13,1B.⎝ ⎛⎭⎪⎫23,1 C.⎝ ⎛⎭⎪⎫33,1 D.⎝⎛⎭⎪⎫0,33 【答案】C 3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.【答案】x +2y -3=04.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|PA |+|PF |的最大值为________,最小值为________.【答案】6+ 2 6- 25.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →.(1)求椭圆的方程.(2)求m的取值范围.。
高考数学一轮复习 第九章 平面解析几何 9.5 椭圆 第2课时 直线与椭圆教学案 理 新人教A版-新
第2课时 直线与椭圆直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A.m >1B.m >0C.0<m <5且m ≠1D .m ≥1且m ≠5 答案 D解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴5k 2+m -1≥0, ∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.弦长及中点弦问题命题点1 弦长问题例1斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=2|x 1-x 2| =2x 1+x 22-4x 1x 2=2⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15=425·5-t 2, 当t =0时,|AB |max =4105.命题点2 中点弦问题例2已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________________. 答案 x +2y -3=0解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y -1=k (x -1),弦所在的直线与椭圆相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k x -1,x 24+y22=1,消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, ∴x 1+x 2=4k k -12k 2+1,又∵x 1+x 2=2, ∴4kk -12k 2+1=2,解得k =-12. 经检验,k =-12满足题意.故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.方法二 易知此弦所在直线的斜率存在,∴设斜率为k ,弦所在的直线与椭圆相交于A ,B 两点, 设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,①x 224+y 222=1,②①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式. 跟踪训练1(1)已知椭圆两顶点A (-1,0),B (1,0),过焦点F (0,1)的直线l 与椭圆交于C ,D 两点,当|CD |=322时,则直线l 的方程为________. 答案2x -y +1=0或2x +y -1=0.解析 由题意得b =1,c =1. ∴a 2=b 2+c 2=1+1=2. ∴椭圆方程为y 22+x 2=1.若直线l 斜率不存在时,|CD |=22,不符合题意. 若l 斜率存在时,设l 的方程为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1,y 2+2x 2=2,得(k 2+2)x 2+2kx -1=0.Δ=8(k 2+1)>0恒成立.设C (x 1,y 1),D (x 2,y 2). ∴x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. ∴|CD |=1+k 2|x 1-x 2| =1+k 2x 1+x 22-4x 1x 2=22k 2+1k 2+2.即22k 2+1k 2+2=322,解得k 2=2,∴k =± 2.∴直线l 方程为2x -y +1=0或2x +y -1=0.(2)(2019·某某模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝⎛⎭⎪⎫1,12,则椭圆的离心率为( )A.22B.12C.14D.32答案 A解析 设A (x 1,y 1),B (x 2,y 2).∵AB 的中点为M ⎝⎛⎭⎪⎫1,12,∴x 1+x 2=2,y 1+y 2=1.∵PF ∥l ,∴k PF =k l =-b c =y 1-y 2x 1-x 2.∵x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ∴x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b2=0,∴2a 2+-bc b2=0,可得2bc =a 2,∴4c 2(a 2-c 2)=a 4,化为4e 4-4e 2+1=0, 解得e 2=12,又∵0<e <1,∴e =22. 直线与椭圆的综合问题例3(2019·某某)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 解 (1)设椭圆的半焦距为c ,依题意知,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以,直线PB 的斜率为2305或-2305.思维升华(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 跟踪训练2已知椭圆C 的两个焦点分别为F 1(-1,0),F 2(1,0),短轴的两个端点分别为B 1,B 2. (1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P ,Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)由题意知,△F 1B 1B 2为等边三角形,则⎩⎨⎧c =3b ,c =1,即⎩⎪⎨⎪⎧a 2-b 2=3b 2,a 2-b 2=1,解得⎩⎪⎨⎪⎧a 2=43,b 2=13,故椭圆C 的方程为3x 24+3y 2=1.(2)易知椭圆C 的方程为x 22+y 2=1,当直线l 的斜率不存在时,其方程为x =1,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k x -1,x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0,Δ=8(k 2+1)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-12k 2+1,F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2),因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0,解得k 2=17,即k =±77,故直线l 的方程为x +7y -1=0或x -7y -1=0.1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A.至多为1B.2C.1D.0 答案 B 解析 由题意知,4m 2+n2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 24=1的内部, 故所求交点个数是2.2.直线y =kx +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( )A.2B.433C.4D.不能确定答案 B解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x ,y ), 则弦长为x 2+y -12=4-4y 2+y 2-2y +1=-3y 2-2y +5,当y =-13时,弦长最大为433.3.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53, 故选B.4.已知椭圆x 236+y 29=1以及椭圆内一点P (4,2),则以P 为中点的弦所在直线的斜率为( )A.12B.-12C.2D.-2 答案 B解析 设弦所在直线的斜率为k ,弦的端点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4,⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y229=1,两式相减,得x 1+x 2x 1-x 236+y 1+y 2y 1-y 29=0,所以2x 1-x 29=-4y 1-y 29,所以k =y 1-y 2x 1-x 2=-12. 经检验,k =-12满足题意.故弦所在直线的斜率为-12.故选B.5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点,若AB 的中点为M (1,-1),则椭圆E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 k AB =0+13-1=12,k OM =-1,由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2.∵c =3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1.6.(2019·某某模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba的值为( ) A.32B.233 C.932 D.2327答案 B解析 方法一 设A (x 1,y 1),B (x 2,y 2), 则ax 21+by 21=1,ax 22+by 22=1, 即ax 21-ax 22=-(by 21-by 22),则by 21-by 22ax 21-ax 22=-1,b y 1-y 2y 1+y 2a x 1-x 2x 1+x 2=-1,由题意知,y 1-y 2x 1-x 2=-1, 过点⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22与原点的直线的斜率为32,即y 1+y 2x 1+x 2=32, ∴b a×(-1)×32=-1, ∴b a =233,故选B. 方法二 由⎩⎪⎨⎪⎧y =1-x ,ax 2+by 2=1消去y ,得(a +b )x 2-2bx +b -1=0, 可得AB 中点P 的坐标为⎝ ⎛⎭⎪⎫b a +b ,a a +b ,∴k OP =a b =32,∴b a =233. 7.直线y =kx +k +1与椭圆x 29+y 24=1的位置关系是________.答案 相交解析 由于直线y =kx +k +1=k (x +1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.8.设F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为__________. 答案x 29+y 26=1 解析 ∵△F 2AB 是面积为43的等边三角形,∴AB ⊥x 轴,∴A ,B 两点的横坐标为-c ,代入椭圆方程,可求得|F 1A |=|F 1B |=b 2a.又|F 1F 2|=2c ,∠F 1F 2A =30°,∴b 2a =33×2c .① 又2F AB S △=12×2c ×2b2a=43,②a 2=b 2+c 2,③由①②③解得a 2=9,b 2=6,c 2=3, ∴椭圆C 的方程为x 29+y 26=1.9.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O为坐标原点),则△F 1PF 2的面积是________. 答案 1解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n , 则m +n =4,m 2+n 2=12, ∴2mn =4,mn =2, ∴12F PF S △=12mn =1.10.(2020·某某部分重点中学联考)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为________. 答案105解析 设|BF 1|=k ,则|AF 1|=3k ,|BF 2|=4k .由|BF 1|+|BF 2|=|AF 1|+|AF 2|=2a ,得2a =5k ,|AF 2|=2k .在△ABF 2中,cos∠BAF 2=4k 2+2k 2-4k 22×4k ×2k=14, 又在△AF 1F 2中,cos∠F 1AF 2=3k 2+2k 2-2c22×3k ×2k =14, 所以2c =10k ,故离心率e =ca =105. 11.已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点,则直线AB 的斜率为________.答案 2 解析 设A (x 1,y 1),B (x 2,y 2),同时设PA 的方程为y -2=k (x -1),代入椭圆方程化简,得(k 2+2)x 2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解,因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2, 由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2, 所以y 2-y 1x 2-x 1= 2. 故直线AB 的斜率为 2. 12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,E 的离心率为22,点(0,1)是E 上一点.(1)求椭圆E 的方程;(2)过点F 1的直线交椭圆E 于A ,B 两点,且BF 1→=2F 1A →,求直线BF 2的方程.解 (1)由题意知,b =1,且e 2=c 2a 2=a 2-b 2a 2=12, 解得a 2=2,所以椭圆E 的方程为x 22+y 2=1. (2)由题意知,直线AB 的斜率存在且不为0,故可设直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ x 22+y 2=1,x =my -1,得(m 2+2)y 2-2my -1=0,则y 1+y 2=2m m 2+2,① y 1y 2=-1m 2+2,② 因为F 1(-1,0),所以BF 1→=(-1-x 2,-y 2),F 1A →=(x 1+1,y 1),由BF 1→=2F 1A →可得,-y 2=2y 1,③由①②③可得B ⎝ ⎛⎭⎪⎫-12,±144, 则2BF k =146或-146, 所以直线BF 2的方程为14x -6y -14=0或14x +6y -14=0.13.(2019·全国100所名校联考)已知椭圆C :x 2+y 2b 2=1(b >0,且b ≠1)与直线l :y =x +m 交于M ,N 两点,B 为上顶点.若|BM |=|BN |,则椭圆C 的离心率的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎣⎢⎡⎭⎪⎫22,1C.⎝ ⎛⎭⎪⎫63,1D.⎝⎛⎦⎥⎤0,63 答案 C解析 设直线y =x +m 与椭圆x 2+y 2b 2=1的交点为M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =x +m ,x 2+y 2b 2=1,得(b 2+1)x 2+2mx +m 2-b 2=0, 所以x 1+x 2=-2m b 2+1,x 1x 2=m 2-b 2b 2+1, Δ=(2m )2-4(b 2+1)(m 2-b 2)=4b 2(b 2+1-m 2)>0.设线段MN 的中点为G ,知G 点坐标为⎝ ⎛⎭⎪⎫-m b 2+1,b 2m b 2+1, 因为|BM |=|BN |,所以直线BG 垂直平分线段MN ,所以直线BG 的方程为y =-x +b ,且经过点G ,可得b 2m b 2+1=m b 2+1+b ,解得m =b 3+b b 2-1. 因为b 2+1-m 2>0,所以b 2+1-⎝ ⎛⎭⎪⎫b 3+b b 2-12>0, 解得0<b <33, 因为e 2=1-b 2,所以63<e <1. 14.(2019·某某调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3,则椭圆C 的离心率为________.答案 63解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得x 1-x 2x 1+x 2a 2+y 1-y 2y 1+y 2b 2=0.(*) 因为△ABF 1的重心为G ⎝ ⎛⎭⎪⎫c 6,c 3, 所以⎩⎪⎨⎪⎧ x 1+x 2-c 3=c 6,y 1+y 23=c 3,故⎩⎪⎨⎪⎧ x 1+x 2=3c 2,y 1+y 2=c ,代入(*)式得3x 1-x 2c 2a 2+y 1-y 2c b 2=0, 所以y 1-y 2x 1-x 2=-3b 22a 2=-12,即a 2=3b 2, 所以椭圆C 的离心率e =63. 15.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则椭圆在其上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b2=1(a >b >0),其焦距为2,且过点⎝ ⎛⎭⎪⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( ) A.22B.2C.3D.2 答案 B解析 由题意可得2c =2,即c =1,a 2-b 2=1,将点⎝ ⎛⎭⎪⎫1,22代入椭圆方程,可得1a 2+12b 2=1, 解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2), 则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1, 令x =0,得y D =1y 2,令y =0,可得x c =2x 2, 所以S △OCD =12·1y 2·2x 2=1x 2y 2, 又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1, 即有1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2, 即S △OCD ≥2,当且仅当x 222=y 22=12, 即点B 的坐标为⎝ ⎛⎭⎪⎫1,22时,△OCD 面积取得最小值2,故选B. 16.已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝ ⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程; (2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0), 由题意可得⎩⎪⎨⎪⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1.故椭圆C 的标准方程为x 24+y 2=1. (2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4, 所以x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75. 又|AB |=1+34x 1+x 22-4x 1x 2=72·4-m 2, O 到直线AB 的距离d =|m |1+34=|m |72, 所以S △AOB =12·|AB |·d =12×72×4-m 2×|m |72=9110.。
核按钮(新课标)高考数学一轮复习第九章平面解析几何9.6椭圆习题理
核按钮(新课标)高考数学一轮复习第九章平面解析几何9.6椭圆习题理1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离的和等于常数2a (2a ______|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A 版教材选修2-1 P47例6、P50):平面内动点M 到定点F 的距离和它到定直线l 的距离之比等于常数e (0<e <1)的轨迹叫做椭圆.定点F 叫做椭圆的一个焦点,定直线l 叫做椭圆的一条准线,常数e 叫做椭圆的__________.2.椭圆的标准方程及几何性质焦点在x 轴上 焦点在y 轴上(1)图形(2)标准 方程y 2a 2+x2b 2=1 (a >b >0) (3)范围 -a ≤x ≤a , -b ≤y ≤b-a ≤y ≤a , -b ≤x ≤b(4)中心原点O (0,0)(5)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ), B 2(0,b )(6)对称轴 x 轴,y 轴(7)焦点F 1(0,-c ),F 2(0,c )(8)焦距 2c =2a 2-b 2(9)离心率※(10)准线x =±a 2cy =±a 2c自查自纠1.(1)> 焦点 焦距 (2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B . “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D . 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x 轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x 29+y 25=1.故填x 29+y 25=1. 类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 ①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0. 以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b 2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2,∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上,∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3.由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。
2023年人教版高考数学总复习第一部分考点指导第九章平面解析几何第五节 第2课时椭圆的几何性质
)
A.m>1
B.m>0
C.0<m<5 且 m≠1 D.m≥1 且 m≠5
【解析】选
D.方法一:由于直线
y=kx+1
恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则
1 0<m
≤1 且
m≠5,故 m≥1 且 m≠5.
y=kx+1, 方法二:由
消去 y 整理得(5k2+m)x2+10kx+5(1-m)=0.
【解析】(1)由题意知 e=ac =21 ,2a=4.又 a2=b2+c2,解得 a=2,b= 3 ,所以椭圆方程为x42 +y32 =1. (2)①当两条弦中一条弦所在直线的斜率为 0 时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.
②当两弦所在直线的斜率均存在且不为 0 时,设直线 AB 的方程为 y=k(x-1),A(x1,y1),B(x2,y2),则直线 CD 的方程为 y=
第2课时 椭圆的几何性质
第九章 平面解析几何
考点探究·悟法培优
考点探究·悟法培优
考点一 椭圆的几何性质 多维探究
高考考情:椭圆的几何性质是历年高考的重点,其中离心率的求解常出现在小题中,直线与椭圆的交点问题
几乎每年必考,难度较大.
·角度 1 求椭圆的离心率的值(范围) [典例 1](1)已知 F1,F2 是椭圆 C:ax22 +by22 =1(a>b>0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜
·角度 2 与椭圆有关的范围(最值)问题 [典例 2]已知椭圆ax22 +by22 =1(a>b>0)的右焦点为 F2(3,0),离心率为 e.
(1)若 e=
3 2
,求椭圆的方程;
高考总复习一轮数学精品课件 第9章 平面解析几何 第5节 第1课时 椭圆的定义、方程与性质
由①②得|PF1|·
|PF2|= .
3
(2)(2024·广东梅州模拟)已知椭圆
2
C:
9
+
y2
=1
5
的左、右焦点分别为 F1,F2,过点
F2 的直线 l 与椭圆 C 的一个交点为 A.若|AF2|=4,则△AF1F2 的面积为
( D )
A.2 3
解析 在椭圆
B. 13
2
C: 9
2
+ 5 =1
第5节 椭圆
课标解读
1.通过圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界
和解决实际问题中的作用.
2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、
标准方程及简单几何性质.
3.能够把研究直线与椭圆位置关系的问题转化为研究方程解
的问题,会根据根与系数的关系及判别式解决问题.
目录索引
1
2
强基础
∠F1PF2=θ.
(1)当P为短轴端点时,θ最大.
1
(2) S=2|PF1||PF2|sin
θ=b
θ
tan2=c|y0|
2
值,最大值为bc.
(3)焦点三角形的周长为2(a+c).
(4)|PF1|max=a+c,|PF1|min=a-c.
,当|y0|=b时,即点P为短轴端点时,S取最大
2.椭圆的焦点弦(过焦点的弦)中通径(垂直于长轴的焦点弦)最短,弦长 lmin=
故2
2
+ 2 =1,则 =2.结合 a2=b2+c2,a+c=4+2
[对点训练 1](1)(2024·安徽芜湖模拟)设 P
2
为椭圆
北师大版2021版高考数学(理)一轮复习 第九章平面解析几何第5讲椭圆第1课时椭圆及其性质练习(含答案)
北师大版2021版高考数学(理)一轮复习第九章平面解析几何第5讲椭圆第1课时椭圆及其性质练习[基础题组练]1.(2020·河北衡水二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为13,则ab=( )A.98 B .322C.43D .324解析:选D.因为e =ca =a 2-b 2a 2=13,所以8a 2=9b 2,所以a b =324.故选D. 2.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7. 因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .4B .6C .8D .12解析:选A.由|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2,得3|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4,故选A.4.设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点,若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1 B .5-12C.22D .2+1解析:选A.不妨设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),如图所示,因为△PF 1F 2为直角三角形,所以PF 1⊥F 1F 2,又|PF 1|=|F 1F 2|=2c ,所以|PF 2|=22c ,所以|PF 1|+|PF 2|=2c +22c =2a ,所以椭圆E 的离心率e =2-1.故选A.5.(2020·江西赣州模拟)已知A ,B 是椭圆E :x 2a 2+y 2b2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4解析:选D.如图所示,设直线AB 的方程为ty =x ,F (c ,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧ty =x ,x 2a 2+y 2b2=1可得y 2=a 2b 2b 2t 2+a 2=-y 1y 2,所以△ABF 的面积S =12c |y 1-y 2|=12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时取等号.所以bc =2.所以a 2=b 2+c 2≥2bc =4,a ≥2.所以椭圆E 的长轴长的最小值为4.故选D.6.(2019·高考全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20=4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y 220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15). 答案:(3,15)7.(2020·河北衡水三模)“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图,圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为________千米.解析:设椭圆的长半轴长为a 千米,半焦距为c 千米,月球半径为r 千米.由题意知⎩⎪⎨⎪⎧a +c =100+r ,a -c =15+r ,解得2c =85.即椭圆形轨道的焦距为85千米. 答案:858.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是________.解析:根据椭圆的对称性及椭圆的定义可得,A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2.又e =c a =1-b 2a2=1-b 24,所以0<e ≤32.答案:⎝ ⎛⎦⎥⎤0,32 9.已知F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2.(1)求△ABF 2的周长;(2)若AF 2⊥BF 2,求△ABF 2的面积.解:(1)因为F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2. 所以△ABF 2的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =4 2. (2)设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1x 2+2y 2=2,得(m 2+2)y 2-2my -1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2, 因为AF 2⊥BF 2,所以F 2A →·F 2B →=0, 所以F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =(my 1-2)(my 2-2)+y 1y 2 =(m 2+1)y 1y 2-2m (y 1+y 2)+4 =-m 2-1m 2+2-2m ×2m m 2+2+4 =-m 2+7m 2+2=0. 所以m 2=7.所以△ABF 2的面积S =12×|F 1F 2|×(y 1+y 2)2-4y 1y 2=89.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e .(1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,M ,N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以MN 为直径的圆上,且22<e ≤32,求k 的取值范围. 解:(1)由题意得c =3,c a =32,所以a =2 3.又因为a 2=b 2+c 2,所以b 2=3.所以椭圆的方程为x 212+y 23=1.(2)由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k 2,依题意易知,OM ⊥ON ,四边形OMF 2N 为矩形,所以AF 2⊥BF 2.因为F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2), 所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2 =(1+k 2)x 1x 2+9=0.即-a 2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,将其整理为k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 因为22<e ≤32,所以23≤a <32,12≤a 2<18. 所以k 2≥18,即k ∈⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞.[综合题组练]1.设椭圆:x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,右焦点为F ,B 为椭圆在第二象限内的点,直线BO 交椭圆于点C ,O 为原点,若直线BF 平分线段AC ,则椭圆的离心率为( )A.12 B .13 C.14 D .15解析:选B.如图,设点M 为AC 的中点,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且|OF ||FA |=|OM ||AB |=12,即c a -c =12,解得e =c a =13.故选B. 2.(2020·福建福州一模)已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于点M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)解析:选C.如图,延长PF 2,F 1M 相交于N 点,因为K 点是△F 1PF 2内切圆的圆心,所以PK 平分∠F 1PF 2, 因为F 1M ⊥PK ,所以|PN |=|PF 1|,M 为F 1N 的中点, 因为O 为F 1F 2的中点,M 为F 1N 的中点,所以|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||<12|F 1F 2|=c =3,所以|OM |的取值范围是(0,3). 故选C.3.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若AF 1⊥AF 2,S △F 1AF 2=2,则椭圆C 的方程为________.解析:因为点A 在椭圆上,所以|AF 1|+|AF 2|=2a ,对其平方,得|AF 1|2+|AF 2|2+2|AF 1||AF 2|=4a 2,又AF 1⊥AF 2,所以|AF 1|2+|AF 2|2=4c 2,则2|AF 1||AF 2|=4a 2-4c 2=4b 2,即|AF 1||AF 2|=2b 2,所以S △F 1AF 2=12|AF 1||AF 2|=b 2=2.又△AF 1F 2是直角三角形,∠F 1AF 2=90°,且O 为F 1F 2的中点,所以|OA |=12|F 1F 2|=c ,由已知不妨设A 在第一象限,则∠AOF 2=30°,所以A ⎝ ⎛⎭⎪⎫32c ,12c ,则S △AF 1F 2=12|F 1F 2|·12c =12c 2=2,c 2=4,故a 2=b 2+c 2=6,所以椭圆方程为x 26+y 22=1.答案:x 26+y 22=14.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是________.解析:设正方形的边长为2m ,因为椭圆的焦点在正方形的内部,所以m >c ,又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,所以m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,所以0<e <5-12. 答案:⎝ ⎛⎭⎪⎫0,5-12 5.已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0, 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 2+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.6.(2020·江西八校联考)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),F 1,F 2为其左、右焦点,B 1,B 2为其上、下顶点,四边形F 1B 1F 2B 2的面积为2,点P 为椭圆E 上任意一点,以P 为圆心的圆(记为圆P )总经过坐标原点O .(1)求椭圆E 的长轴A 1A 2的长的最小值,并确定此时椭圆E 的方程;(2)对于(1)中确定的椭圆E ,若给定圆F 1:(x +1)2+y 2=3,则圆P 和圆F 1的公共弦MN 的长是不是定值?如果是,求|MN |的值;如果不是,请说明理由.解:(1)依题意四边形F 1B 1F 2B 2的面积为2bc , 所以2bc =2.因为|A 1A 2|=2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时取“=”,此时a =2, 所以长轴A 1A 2的长的最小值为22,此时椭圆E 的方程为x 22+y 2=1.(2)是定值.设点P (x 0,y 0),则x 202+y 20=1⇒y 20=1-x 202.圆P 的方程为(x -x 0)2+(y -y 0)2=x 20+y 20,即x 2+y 2-2x 0x -2y 0y =0,① 圆F 1的方程为(x +1)2+y 2=3,即x 2+y 2+2x -2=0,②①-②得公共弦MN所在直线的方程为(x0+1)x+y0y-1=0,所以点F1到公共弦MN所在直线的距离d=|x0+2|(x0+1)2+y20=|x0+2|(x0+1)2+1-12x20=|x0+2|12x20+2x0+2=2,则|MN|=23-d2=2,所以圆P和圆F1的公共弦MN的长为定值2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【创新方案】2017届高考数学一轮复习 第九章 解析几何 第五节 椭圆课后作业 理[全盘巩固]一、选择题1.(2015·广东高考)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .92.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8 D.323.已知实数4,m,9成等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.306B.7C.306或7 D.56或7 4.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为( )A.x 28+y 216=1B.x 216+y 28=1 C.x 24+y 222=1 D.y 24+x 222=1 5.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C的离心率为( )A.36 B.13 C.12 D.33二、填空题6.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________.7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.8.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.三、解答题9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.10.已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左、右焦点分别为F 1和F 2,且|F 1F 2|=2,点⎝ ⎛⎭⎪⎫1,32在该椭圆上.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的面积为1227,求以F 2为圆心且与直线l 相切的圆的方程.[冲击名校]1.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24 B.12 C.22 D.322.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则的最大值为( )A.32B.332C.94D.1543.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A ,B ,M 是直线l 与椭圆C 的一个公共点,设|AM |=e |AB |,则该椭圆的离心率e =________.4.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆 C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.5.(2015·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,左焦点为F ,离心率为55.(1)求直线BF 的斜率;(2)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B ),直线PQ 与y 轴交于点M ,|PM |=λ|MQ |.①求λ的值;②若|PM |sin ∠BQP =759,求椭圆的方程.答 案 [全盘巩固]一、选择题1.解析:选B 由左焦点为F 1(-4,0)知c =4.又a =5, ∴25-m 2=16,解得m =3或-3.又m >0,故m =3.2.解析:选B 如图,连接MF 2,已知|MF 1|=2,又|MF 1|+|MF 2|=10, ∴|MF 2|=10-|MF 1|=8.由题意知|ON |=12|MF 2|=4.故选B.3.解析:选C 因为4,m,9成等比数列,所以m 2=36,所以m =±6.当m =6时,圆锥曲线为椭圆x 26+y 2=1,其离心率为306;当m =-6时,圆锥曲线为双曲线y 2-x 26=1,其离心率为7.4.解析:选B 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,解得a =4.又离心率e =c a =22,故c =2 2.所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.5.解析:选 D 在Rt △PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.所以e =2c2a =|F 1F 2||PF 1|+|PF 2|=33.二、填空题6.解析:由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.答案:77.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e=3.答案:38. 解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a-1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1. 答案:⎝⎛⎭⎪⎫5-12,1三、解答题9.解:(1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2.解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m .消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.10.解:(1)由题意知c =1,2a =⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322+22=4,解得a =2, 故椭圆C 的方程为x 24+y 23=1.(2)①当直线l ⊥x 轴时,可取A ⎝⎛⎭⎪⎫-1,-32,B -1,32,△AF 2B 的面积为3,不符合题意. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),代入椭圆方程得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0成立,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,可得|AB |=1+k 2·x 1+x 22-4x 1x 2=12k 2+13+4k2, 又圆F 2的半径r =2|k |1+k2,∴△AF 2B 的面积为12|AB |·r =12|k |k 2+13+4k 2=1227, 化简得:17k 4+k 2-18=0,得k =±1, ∴r =2,圆的方程为(x -1)2+y 2=2.[冲击名校]1.解析:选C 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a ,由于OP ∥AB ,∴-y 0c =-b a,y 0=bc a ,把P ⎝⎛⎭⎪⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,而⎝ ⎛⎭⎪⎫c a 2=12,∴e =c a =22.选C. 2.3.解析:因为点A ,B 分别是直线l :y =ex +a 与x 轴,y 轴的交点,所以点A ,B 的坐标分别是⎝ ⎛⎭⎪⎫-a e,0,(0,a ).设点M 的坐标是(x 0,y 0),由|AM |=e |AB |,得⎩⎪⎨⎪⎧x 0=a e e -1,y 0=ea ,(*)因为点M 在椭圆上,所以x 20a 2+y 20b 2=1,将(*)式代入,得e -12e 2+e 2a 2b2=1,整理得,e 4+2e 3-e 2-2e +1=(e 2+e -1)2=0,e 2+e -1=0,解得e =5-12. 答案:5-124.解析:由题意知椭圆C 的离心率e =2a,求e 的最大值,即求 a 的最小值,由于A ,B 两点是椭圆的焦点,所以|PA |+|PB |=2a ,即在直线 l 上找一点P ,使|PA |+|PB |的值最小,设点A (-2,0)关于直线l :y =x +3的对称点为Q (x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0+2=-1,y 02=x 0-22+3,解得⎩⎪⎨⎪⎧x 0=-3,y 0=1,即Q (-3,1),则|PA |+|PB |≥|QB |=[-3-2]2+1-02=26,即2a ≥26,∴a ≥262,∴e =2a ≤426=22613. 答案:226135.解:(1)设F (-c,0).由已知离心率ca =55及a 2=b 2+c 2, 可得a =5c ,b =2c . 又因为B (0,b ),F (-c,0),所以直线BF 的斜率k =b -00--c =2cc=2.(2)设点P (xP ,yP ),Q (xQ ,yQ ),M (xM ,yM ).①由(1)可得椭圆的方程为x25c 2+y24c 2=1,直线BF 的方程为y =2x +2c .将直线方程与椭圆方程联立,消去y ,整理得3x 2+5cx =0,解得xP =-5c 3.因为BQ ⊥BP ,所以直线BQ 的方程为y =-12x +2c ,与椭圆方程联立,消去y ,整理得21x 2-40cx =0, 解得x Q =40c21.又因为λ=|PM ||MQ |及xM =0,可得λ=|xM -xP ||xQ -xM |=|xP ||xQ |=78.②由①有|PM ||MQ |=78,所以|PM ||PM |+|MQ |=77+8=715,即|PQ |=157|PM |.又因为|PM |sin ∠BQP =759,所以|BP |=|PQ |sin ∠BQP =157|PM |sin ∠BQP =553. 又因为y P =2xP +2c =-43c ,所以|BP |=⎝⎛⎭⎪⎫0+5c 32+⎝ ⎛⎭⎪⎫2c +4c 32=553c , 因此553c =553,得c =1.所以椭圆的方程为x 25+y 24=1.。