2019年中考数学专题复习第十九讲解直角三角形(含详细参考答案)

合集下载

2019年宜宾中考数学总复习精练第6章第19讲解直角三角形(含答案)

2019年宜宾中考数学总复习精练第6章第19讲解直角三角形(含答案)

第十九讲 解直角三角形1.在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD ,如图,已知李明距假山的水平距离BD 为12 m ,他的眼睛距地面的高度为1.6 m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( A )A .(43+1.6)mB .(123+1.6)mC .(42+1.6)mD .4 3 m,(第1题图)),(第2题图))2.如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( B ) A.12 B.55 C.1010 D.2553.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D ) A .2 B.255 C.55 D.12,(第3题图)) ,(第4题图))4.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( C ) A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC5.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1 m ,则旗杆PA 的高度为( A )A.11-sin αB.11+sin αC.11-cos α D.11+cos α6.计算sin 245°+cos30°·tan60°,其结果是( A )A .2B .1 C.52 D.547.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE∶EB=4∶1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( C )A.33 B.233 C.533D. 3,(第7题图)) ,(第8题图))8.在寻找马航MH370航班过程中,某搜寻飞机在空中A 处发现海面上一块疑似漂浮目标B ,此时从飞机上看目标B 的俯角为α,已知飞行高度AC =1 500 m ,tan α=35,则飞机距疑似目标B 的水平距离BC 为( D )A .2 400 5 mB .2 400 3 mC .2 500 5 mD .2 500 3 m9.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =__10__.10.规定:sin(-x)=-sinx ,cos(-x)=cosx ,sin(x +y)=sinx ·cosy +cosx ·siny.据此判断下列等式成立的是__②③④__.(写出所有正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sinx ·cosx ;④sin(x -y)=sinx ·cosy-cosx ·siny.11.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上一点(不与A ,B 重合),则cosC 的值为__45__.,(第11题图)) ,(第12题图))12.如图,在四边形ABCD 中,AD =AB =BC ,连结AC ,且∠ACD=30°,tan ∠BAC =233,CD =3,则AC =.13.计算:(1)tan45°+2sin45°-2cos60°; 解:原式=1+2×22-2×12=1+2-1 =2;(2)sin 21°+sin 22°+sin 23°+…+sin 289°.解:设S =sin 21°+sin 22°+sin 23°+…+sin 289°①, ∴S =cos 289°+cos 288°+cos 287°+…+cos 22°+cos 21° ∴S =cos 21°+cos 22°+cos 23°+…+cos 288°+cos 289°②,①+②得2S =89, S =892.14.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M(点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点,如果MC =n ,∠CMN =α,那么P 点与B 点的距离为__m -n·tan αtan α__.15.如图,“中海海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B ,C 两地相距150海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中海海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A′时,测得点B 在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)解:(1)如图所示:延长BA ,过点C 作CD⊥BA 延长线与点D.由题意可得:∠CBD=30°,BC =150海里,则DC =75海里,∴cos30°=DC AC =75AC =32, 解得AC =50 3.答:点A 到岛礁C 的距离为503海里;(2)如图所示:过点A′作A′N⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=∠ABA′=15°,即A′B 平分∠CBA.∴A ′E =AN.又∵A′E ⊥BA ,A ′N ⊥BC , 设AA′=x ,则A′E=A′N=32x , ∴CA ′=2A′N=2×32x =3x. ∵3x +x =503, 解得x =75-253,答:此时“中国海监50”的航行距离为(75-253)海里.16.(2019潍坊中考)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5 m ;上面五层居住,每层高度相等.测角仪支架离地1.5 m ,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14 m .求居民楼的高度.(结果精确到0.1 m ,参考数据:3≈1.73)解:设每层高为x m.由题意得MC′=MC-CC′=2.5-1.5=1,则DC′=5x+1,EC′=4x+1.在Rt△DC′A′中,∠DA′C′=60°.∴C′A′=DC′tan60°=33(5x+1).在Rt△EC′B′中,∠EB′C′=30°.∴C′B′=EC′tan30°=3(4x+1).∵A′B′=C′B′-C′A′=AB,∴3(4x+1)-33(5x+1)=14.解得x=23-27.∴居民楼高为:5×(23-27)+2.5≈18.4(m).17.AE,CF是锐角三角形ABC的两条高,如果AE∶CF=3∶2,则sin∠BAC∶sin∠ACB等于( B )A.3∶2 B.2∶3 C.9∶4 D.4∶92019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元2x的取值范围在数轴上表示正确的是()A.B.C.D.3.如图,点A所表示的数的绝对值是()A.3B.﹣3C.13D.13-4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.数据1、10、6、4、7、4的中位数是().A.9B.6C.5D.46.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分7.如图,四边形ABCD是正方形,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3,若l1与l2的距离为6,正方形ABCD的面积等于100,l2与l3的距离为()A.8 B.10 C.9 D.78.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cmB.4cmC.5cmD.6cm9.若a b ,则实数a ,b 的大小关系为( ) A .a >bB .a <bC .a =bD .a≥b10.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A .﹣13B .﹣2C .3D .411.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()P x y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .2412.若一个多边形的内角和为1440°,则这个多边形的边数是( ) A .8 B .10C .12D .14二、填空题13.用48m 长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为______2m14.将点P (﹣3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,﹣1),则x+y =_____.15x 的取值范围是_______. 16.如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.17.把多项式ax 2+2a 2x+a 3分解因式的结果是_____.18.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一条直线上.已知纸板的两条边DE =70cm ,EF =30cm ,测得AC =78m ,BD =9m ,求树高AB .20.在女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数关系分別如图中线段OA 和折线OBCD 所示.(1)谁先到终点,当她到终点时,另一位同学离终点多少米?(请直接写出答案) (2)起跑后的60秒内谁领先?她在起跑后几秒时被追及?请通过计算说明.21.先化简:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭然后解答下列问题: (1)当x =2时,求代数式的值(2)原代数式的值能等于0吗?为什么?22.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚,对市场最为关注的产量和产量的稳定性进行了抽样调查,过程如下:收集数据从甲、乙两个大棚中分别随机收集了相同生产周期内25株秧苗生长出的小西红柿的个数:甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71整理数据按如下分组整理样本数据:(说明:45个以下为产量不合格,45个及以上为产量合格,其中45≤x<65个为产量良好,65≤x<85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论(1)补全上述表格;(2)可以推断出大棚的小西红柿秩苗品种更适应市场需求,理由为(至少从两个不同的角度说明推断的合理性);(3)估计乙大棚的300株小西红柿秧苗中产量优秀的有多少株?23.(111|2|2cos453-︒⎛⎫-+-⎪⎝⎭;(2)解分式方程:2133xx x=++24.为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?25.某市在地铁施工期间,交管部门计划在施工路段设高为3米的矩形路况警示牌BCEF(如图所示BC=3米)警示牌用立杆AB 支撑,从侧面D 点测到路况警示牌顶端C 点和底端B 点的仰角分别是60°和45°,求立杆AB 的长度(结果精确到整数,≈1.41)【参考答案】*** 一、选择题二、填空题13. 14.﹣3. 15.x≤2且x≠0 16.11°. 17.a (x+a )218.12 三、解答题19.203232+【解析】 【分析】先判定△DEF 和△DBC 相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解. 【详解】解:在直角△DEF 中,DE =70cm ,EF =30cm ,则由勾股定理得到DF ==在△DEF 和△DBC 中,∠D =∠D ,∠DEF =∠DCB , ∴△DEF ∽△DCB ,∴DF EFDB BC=, 又∵EF =30cm ,BD =9m ,∴BC =EF DB DF ⋅==(m ) ∵78AC m =,∴AB =AC+BC =7203858232++=,即树高203232+m . 【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.20.(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)小梅在起跑后5407秒时被追及. 【解析】 【分析】(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)根据图象可以知道跑后的60秒内小梅领先,根据线段的交点坐标可以求出小梅被追及时间. 【详解】(1)小莹比小梅先到终点,此时小梅距离终点200米; (2)根据图象可以知道跑后的60秒内小梅领先, 小莹的速度为:800401809= (米/秒), 故线段OA 的解析式为:y =409x , 设线段BC 的解析式为:y =kx+b ,根据题意得:60300180600k b k b +=⎧⎨+=⎩,解得k 2.5b 150=⎧⎨=⎩, ∴线段BC 的解析式为y =2.5x+150, 解方程40 2.51509x x =+,得5407x =, 故小梅在起跑后5407秒时被追及. 【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.21.(1)11x x +-;(2)见解析. 【解析】【分析】(1)将x =2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x 的值,再将所得的x 的值代入化简后的式子,看是否使得原分式有意义即可解答本题.【详解】 解:2222111211x x x x x x +-⎛⎫-÷ ⎪--++⎝⎭ 22(1)11(1)(1)(1)1x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21(1)11x x x ⎛⎫=-⋅+ ⎪--⎝⎭ 1(1)1x x =⋅+- 11x x +=- (1)当x =2时,原式=2121+-=3; (2)原代数式的值不等等于0, 理由:令11x x +-=0,得x =﹣1, 当x =﹣1时,原分式无意义,故原代数式的值不等等于0.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)5,5,6,54;(2)乙,乙的方差较小,众数比较大;(3)84株【解析】【分析】(1)利用划计法统计即可.(2)从平均数,众数,方差三个方面分析即可.(3)利用样本估计总体的思想解决问题即可.【详解】(1)甲:35≤x<45时,小西红柿的株数为5,55≤x<65时,小西红柿的株数为5.甲的众数为54,乙:45≤<55时,小西红柿的株数为6.故答案为:5,5,6,54.(2)选:乙.理由:乙的方差较小,众数比较大.故答案为:乙,乙的方差较小,众数比较大.(3)300725⨯=84(株)答:估计乙大棚的300株小西红柿秧苗中产量优秀的有84株.【点睛】本题考查了方差,众数,平均数,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(11;(2)23x=.【解析】【分析】(1)原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式=23212-+-⨯=;(2)去分母得:3x=2,解得:23x=,经检验23x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.15,30.【解析】【分析】等量关系为:甲工效+乙工效=110,甲(乙)的工效×甲(乙)的工作时间=甲(乙)的工作量;【详解】设甲工程队单独完成此项工程需x天,则乙工程队单独完成此工程需2x天.由题意,得10×(112x x+)=1 解得:x =15. 经检验,x =15是原方程的根.∴2x =30.答:甲、乙两个工程队单独完成此项工程分别需15天和30天.【点睛】考查了工程问题,题目相对复杂.分析题意,找到合适的等量关系是解决本题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.25.立杆AB 的长度约为4米.【解析】【分析】设AB =x 米,由∠BDA =45°知AB =AD =x 米,再根据tan ∠ADC =AC AD 建立关于x 的方程,解之可得答案.【详解】设AB =x 米,在Rt △ABD 中,∵∠BDA =45°,∴AD =AB =x 米,在Rt △ACD 中,∵∠ADC =60°,∴tan ∠ADC =AC AD ,即3x x +=解得:x ≈4(米), 答:立杆AB 的长度约为4米.【点睛】此题考查解直角三角形的应用,仰角俯角问题,解题关键在于求出∠ADC =60°2019-2020学年数学中考模拟试卷一、选择题1.将一副三角板按照如图所示的位置摆放在同一水平面上,两条斜边互相平行,两个直角顶点重合,则∠1的度数是( )A.30oB.45oC.75oD.105o2.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A.∠C=∠DB.∠CAB=∠DBAC.AC=BDD.BC=AD3.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A.(,0)B.(0)C.(40352,2) D.(0) 4.如图,平行四边形OABC 的顶点O ,B 在y 轴上,顶点A 在反比例函数y =﹣5x 上,顶点C 在反比例函数y =7x上,则平行四边形OABC 的面积是( )A .8B .10C .12D .312 5.若点,,在反比例函数的图象上,则,,的大小关系是( ) A.B. C. D.6.下列运算正确的是( )A .22321a a -=B .22122a a a ⋅=C .623a a a ÷=D .()()3223a b a b b -÷=-7.如图,⊙O 的半径OA =8,以A 为圆心,OA 为半径的弧交⊙O 于B ,C 点,则BC =( )A. B. C. D.8.下列图形是用长度相等的火柴棒按一定规律排列的图形,第(1)个图形中有8根火柴棒,第(2)个图形中有14根火柴棒,第(3)个图形中有20根火柴棒,…,按此规律排列下去,第(6)个图形中,火柴棒的根数是( )A .34B .36C .38D .489.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%10.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°11.已知点(﹣2,y 1),(﹣3,y 2),(2,y 3)在函数y =﹣8x 的图象上,则( ) A .y 2>y 1>y 3 B .y 1>y 2>y 3 C .y 3>y 1>y 2D .y 1>y 3>y 2 12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14二、填空题13.解方程:3x 2﹣6x+1=2.14.已知抛物线2=2(1)3y x -+-与直线2y kx m =+相交于A (-2,3)、B (3,-1)两点,则12y y ≥时x 的取值范围是___________.15.双曲线y=在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__________.16.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为________.17.因式分解______________________.18.若m 、n 互为倒数,则mn 2﹣(n ﹣1)的值为_____.三、解答题19.如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP = 时,四边形AOCP 是菱形;②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.20.已知两个函数:y1=ax+4,y2=a(x﹣12)(x﹣4)(a≠0).(1)求证:y1的图象经过点M(0,4);(2)当a>0,﹣2≤x≤2时,若y=y2﹣y1的最大值为4,求a的值;(3)当a>0,x<2时,比较函数值y1与y2的大小.21.计算:(1)(a+2)(a﹣3)﹣a(a﹣1)(2)224972 6926a aa a a--÷-+++22.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.23.校园安全受到全社会的广泛关注,某市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次活动中抽查了多少名中学生?(2)若该中学共有学生1600人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)若从对校园安全知识达到“了解程度的2个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.24.如图,在平面直角坐标系中,△ABC 的三个顶点为:A (1,1),B (4,4),C (5,1).(1)若△ABC 和△A 1B 1C 1关于原点O 成中心对称图形,画出△A 1B 1C 1;(2)在x 轴上存在一点P ,满足点P 到点B 1与点C 1距离之和最小,请直接写出PB 1+PC 1的最小值为 .25.阅读下列材料,解决材料后的问题:材料一:对于实数x 、y ,我们将x 与y 的“友好数”用f (x ,y )表示,定义为:f (x )=2x y +,例如17与16的友好数为f (17,16)=17162+=1718. 材料二:对于实数x ,用[x]表示不超过实数x 的最大整数,即满足条件[x]≤x<[x]+1,例如:[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……(1)由材料一知:x 2+2与1的“友好数”可以用f (x 2+2,1)表示,已知f (x 2+2,1)=2,请求出x 的值;(2)已知[12a ﹣1]=﹣3,请求出实数a 的取值范围; (3)已知实数x 、m 满足条件x ﹣2[x]=72,且m≥2x+112,请求f (x ,m 2﹣32m )的最小值.【参考答案】***一、选择题二、填空题13.x 1 ,x 2. 14.x≤-2或x≥315.m <1.16.4π 17.18.1三、解答题19.(1)见解析;(2)①120°;②45°【解析】【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM .∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中, PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM ≌△AOM (AAS ),∴PC =OA .∵AB 是半圆O 的直径,∴OA =OB ,∴PC =OB .又PC ∥AB ,∴四边形OBCP 是平行四边形.(2)①∵四边形AOCP 是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.20.(1)证明见解析;(2)817a ;(3)见解析.【解析】【分析】(1)只需要把M的坐标带入到1y即可(2)把1y,2y代入到等式化简取y最大值时,即可解答(3)由(2)可知当a>0,x<2时,随x的增大而减小,然后再根二次函数的增减性可解此题【详解】解:(1)证明:当x=0时,y1=0+4=4,∴点M(0,4)在y1的图象上,即y1的图象经过点M(0,4);(2)∵y1=ax+4,y2=a(x﹣12)(x﹣4)(a≠0).∴y=y2﹣y1=a(x﹣12)(x﹣4)﹣(ax+4),即y=21124 2ax ax a-+-,∵a>0,对称轴为x=114>2,∴当﹣2≤x≤2时,y随x的增大而减小,∴当x=﹣2时,y取最大值为4a+11a+2a﹣4=17a﹣4,∵y=y2﹣y1的最大值为4,∴17a﹣4=4,解得,a=817;(3)由(2)知y=y2﹣y1=21124 2ax ax a-+-,当a>0,x<2时,随x的增大而减小,当x=2时,y=y2﹣y1=4a﹣11a+2a﹣4=﹣5﹣4<0,又当y=0时,21124 2ax ax a-+-=0,即2ax2﹣11ax+4a﹣8=0,x,∵△=121a2﹣32a2+64a=89a2+64a>0,2,根据二次函数的增减性可得,当x>2时,y2﹣y1<0,即y2<y1;当x2时,y2﹣y1=0,即y2=y1;当x2时,y2﹣y1>0,即y2>y1.【点睛】此题主要考察函数解析式的求解及常用方法,需要把已知的点,带入到函数解析式里面进行求解21.(1)-6(2)83 a-【解析】【分析】(1)根据整式的混合运算顺序和运算法则计算可得;(2)先计算除法,再计算减法即可得.【详解】(1)原式=a2﹣a﹣6﹣a2+a=﹣6;(2)原式=2(+7)(7)2(3)2(3)7a a a a a -+⋅-+-=2(+7)2(3)33a a a a +-++=83a +. 【点睛】 本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)详见解析;(2)详见解析;(3)(﹣2,﹣2).【解析】【分析】(1)利用关于y 轴对称的点坐标特征写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2;(3)作B 1B 2和C 1C 2的垂直平分线,它们相交于点P ,则点P 为旋转中心,然后写出P 点坐标即可.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;(3)如图,线段B 2C 2可以看成是线段B 1C 1绕着点P 逆时针旋转90°得到,此时P 点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)80(2)400(3)23【解析】【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数;(2)计算出样本中“了解”程度的人数,然后用1600乘以基本中“了解”程度的人数的百分比可估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解.【详解】解:(1)32÷40%=80(名),所以在这次活动中抽查了80名中学生;(2)“了解”的人数为80﹣32﹣18﹣10=20,1600×2080=400,所以估计该中学学生中对校园安全知识达到“了解”程度的人数为400人;(3)由题意列树状图:由树状图可知,在 4 名同学中随机抽取 2 名同学的所有等可能的结果有12 种,恰好抽到一男一女(记为事件A)的结果有8种,所以P(A)=82 123.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(1)见解析;(2【解析】【分析】(1)分别作出三角形ABC三顶点关于原点的对称点,再顺次连接即可得;(2)作点C1关于x轴的对称点C′,连接B1C′与x轴的交点即为所求点P,继而利用勾股定理求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P 即为所求,PB1+PC 1.【点睛】本题主要考查作图﹣旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点.25.(1)x =±2;(2)﹣4≤a<﹣2;(3)当m =34时,y 有最大值是﹣238,此时f (x ,m 2﹣32m )有最小值,最小值是﹣4023. 【解析】【分析】 (1)由题意得到22212x +=+,计算即可得到答案; (2)由题意得到131312a -≤-<-+,解不等式即可得到答案; (3)先由题意得到171712424x x x -≤<-+,则7322x -≤<-,设1724x k -=,由题意得到111222m x ≥+=,设y =﹣2m 2+3m ﹣4,根据二次函数的性质即可得到答案. 【详解】解:(1)∵f (x 2+2,1)=2, ∴22212x +=+, ∴x 2=4,∴x =±2;(2)∵[x]≤x<[x]+1, ∴131312a -≤-<-+, 解得﹣4≤a<﹣2;(3)∵x ﹣2[x]=74, ∴[x]=1724x -, ∴171712424x x x -≤<-+, ∴7322x -≤<-, 设1724x k -=, 又x =2k+72, ∴7522k -≤<-, ∴整数k =﹣3, ∴x =52-, 又111222m x ≥+=, ∴f (x ,m 2﹣32m ), =2322xm m -+, =252322m m --+, =25234m m -+-, 设y =﹣2m 2+3m ﹣4,则y =﹣2(m 34-)2238-, ∵﹣2<0, ∴当m =34时,y 有最大值是238-,此时f (x ,m 2﹣32m )有最小值,最小值是5238-=﹣4023, 此时最小值为﹣4023. 【点睛】本题考查分式方程的计算和二次函数,解题的关键是读懂题意,掌握分式方程的计算和二次函数的性质.。

2019年云南中考《第19讲解直角三角形》特训方案知识梳理

2019年云南中考《第19讲解直角三角形》特训方案知识梳理

第19讲 解直角三角形1.如图,在Rt △ABC 中,∠B =90°,∠A =30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A ,D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( B )A.312 B.36 C.33 D.322.如图,在正方形ABCD 外作等腰直角△CDE,DE =CE ,连接BE ,则tan ∠EBC =__13__.3.(2019呼和浩特中考)如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30°角的方向,以每分钟40 m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)解:过点C 作CM⊥AB 交AB 的延长线于点M.由题意得: AC =40×10=400(m).在Rt △ACM 中,∵∠A =30° ,∴CM =12AC =200 m ,AM =32AC =200 3 m.在Rt △BCM 中,∵∠CBM =70°,∴∠BCM =20°. ∵tan20°=BM CM, ∴BM =200tan20°,∴AB =AM -BM =2003-200tan20°=200(3-tan20°), 因此A ,B 两地的距离AB 长为200(3-tan20°)m.4.(2019西宁中考)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC 上的A ,B 两点分别对南岸的体育中心D 进行测量,分别测得∠DAC=30°,∠DBC =60°,AB =200 m ,求体育中心D 到湟水河北岸AC 的距离约为多少米.(精确到1 m ,3≈1.732)解:过点D 作DH⊥AC 于点H. ∵∠HBD =∠DAC+∠BDA=60°,而∠DAC=30°,∴∠BDA =∠DAC=30°, ∴AB =DB =200 m. 在Rt △BHD 中,sin60°=DH BD =DH 200=32, ∴DH =1003≈100×1.732≈173 m.答:体育中心D 到湟水河北岸AC 的距离约为173 m.5.如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC =1 200 m ,从飞机上看地平面指挥台B 的俯角α=43°,求飞机A 与指挥台B 的距离.(结果取整数,参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)解:由题意知∠B=α=43°, 在Rt △ABC 中, ∵sinB =AC AB, ∴AB =ACsinB=1 200sin 43°≈1 765(m).答:飞机A 与指挥台B 的距离约为1 765 m.6.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6 m 到达D 处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1 m ,参考数据:sin 48°≈710,tan 48°≈1110,sin 64°≈910,tan 64°≈2)解:根据题意,得∠ADB=64°,∠ACB =48°. 在Rt △ADB 中,tan64°=AB BD, 则BD =AB tan64°≈12AB.在Rt △ACB 中,tan48°=AB CB , 则CB =AB tan48°≈1011AB ,CD =BC -BD ,即6=1011AB -12AB.解得:AB =1329≈14.7(m),∴建筑物的高度约为14.7 m.7.如图,小东在教学楼距地面9 m 高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25 m 处,若国旗随国歌声冉冉升起,并在国歌播放45 s 结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:在Rt △BCD 中,BD =9 m ,∠BCD =45°, 则BD =CD =9 m.在Rt △ACD 中,CD =9 m ,∠ACD =37°, 则AD =CD·tan 37°≈9×0.75=6.75(m). ∴AB =AD +BD =9+6.75=15.75 m ,整个过程中旗子上升高度是:15.75-2.25=13.5(m),∵耗时45 s ,∴上升速度v =13.545=0.3(m/s).答:国旗应以0.3 m/s 的速度匀速上升.8.(2019上海中考)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC 长18 m ,中柱AD 高6 m ,其中D 是BC 的中点,且AD⊥BC.(1)求sinB 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF⊥BC,垂足为点F ,求支架DE 的长. 解:(1)在Rt △ABD 中,∵BD =DC =9,AD =6, ∴AB =BD 2+AD 2=92+62=313, ∴sinB =AD AB =6313=21313; (2)∵EF∥AD,BE =2AE , ∴EF AD =BF BD =BE BA =23, ∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =BD -BF =9-6=3.在Rt △DEF 中,DE =EF 2+DF 2=42+32=5.9.(2019郴州中考)如图所示,C 城市在A 城市正东方向,现计划在A ,C 两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P 在城市A 的北偏东60°方向上,在线段AC 上距A 城市120 km 的B 处测得P 在北偏东30°方向上,已知森林保护区是以P 点为圆心,100 km 为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:3≈1.732) 解:不会.理由如下: 作PH⊥AC 于H.由题意可知:∠EAP=60°,∠FBP =30°, ∴∠PAB =30°,∠PBH =60°.∵∠PBH =∠PAB+∠APB, ∴∠BAP =∠BPA=30°, ∴BA =BP =120 km. ∵在Rt △PBH 中,sin ∠PBH =PH PB, ∴PH =PBsin60°=120×32≈103.92. ∵103.92>100,∴这条高速公路不会穿越保护区.10.(2019常德中考)如图①,②分别是某款篮球架的实物图与示意图,已知底座BC =0.60 m ,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50 m ,篮板顶端F 点到篮框D 的距离FD =1.35 m ,篮板底部支架HE 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离.(精确到0.01 m ,参考数据:cos75°≈0.258 8,sin75°≈0.965 9,tan75°≈3.732,3≈1.732,2≈1.414)解:如图,延长FE 交CB 的延长线于点M ,过A 作AG⊥FM 于点G. 在Rt △ABC 中,tan ∠ACB =AB BC, ∴AB =BC·tan75°≈0.60×3.732≈2.239 2 m , ∴GM =AB =2.239 2 m. ∵在Rt △AGF 中,∠FAG =∠FHE=60°, ∴sin ∠FAG =FGAF ,即sin60°=FG 2.5=32,∴FG ≈2.165,∴DM=FG+GM-DF=2.165+2.239 2-1.35≈3.05 m.答:篮框D到地面的距离大约是3.05 m.2019-2020学年数学中考模拟试卷一、选择题1.太阳的直径约为1 390 000千米,这个数用科学记数法表示为( ) A.0.139×107千米 B.1.39×106千米 C.13.9×105千米D.139×104千米2.下列运算正确的是( ) A .3a 3+a 3=4a 6 B .(a+b )2=a 2+b 2 C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 63.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+-⎩>有且只有4个整数解,且使关于y 的分式方程211ay y+--=3的解为正数,则符合条件的所有整数a 的和为( ) A.﹣2B.0C.3D.64.下列等式一定成立的是( ) A .2a ﹣a =1 B .a 2•a 3=a 5C .(2ab 2)3=2a 3b 6D .x 2﹣2x+4=(x ﹣2)25.如图,AB 是☉O 的直径,弦CD ⊥AB 于点E,点P 在☉O 上,PB 与CD 交于点F,∠PBC=∠C.若∠PBC=22.5°,☉O 的半径R=2,则劣弧AC 的长度为 ()A.πB.C.2πD.π6.如图,已知△ABC 内接于⊙O ,AE 平分∠BAC ,交BC 于D ,交⊙O 于E ,若AB 、AC 的长是方程x 2-ax+12=0的两实根,AD=2,则AE 的长为( )A.5B.6C.7D.87.已知几个相同的小正方体所搭成的几何体的俯视图及左视图如图所示,则构成该几何体的小正方体个数最多是( )A .5个B .7个C .8个D .9个8.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DEDB BC= B .BF EFBC AB= C .AE EC FCDE= D .EF BFAB BC= 9.下列计算正确的是( ) A.a 2⋅a 3=a 6B.a 6÷a 3=a 2C.(ab )2=ab 2D.(﹣a 2)3=﹣a 610.如图,下列条件中,不能判定//AD BC 的是( )A.12∠=∠B.180BAD ADC ︒∠+∠=C.34∠=∠D.180ADC DCB ︒∠+∠=11.如图,正方形ABCD 中,AB =3,点E 是对角线AC 上的一点,连接DE ,过点E 作EF ⊥DE ,交AB 于点F ,连接DF 交AC 于点G ,下列结论:①DE =EF ;②∠ADF =∠AEF ;③DG 2=GE•GC;④若AF =1,则EG =54)A .1B .2C .3D .412.如图,过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF ,若AB =,∠DCF =30°,则EF 的长为( )A.4 B.6 C D.二、填空题13.已知x1,x2是一元二次方程x2+6x+1=0的两实数根,则2x1﹣x1x2+2x2的值为_____.14是同类二次根式,那么a=________。

2019中考数学高频考点剖析专题19平面几何之直角三角形问题—解析卷.doc

2019中考数学高频考点剖析专题19平面几何之直角三角形问题—解析卷.doc

备考2019中考数学高频考点剖析专题十九平面几何之直角三角形问题考点扫描☆聚焦中考直角三角形问题,是每年中考的必考重点内容之一,考查的知识点包括直角三角形的性质、勾股定理和解直角三角形三方面,总体來看,难度系数低,以选择填空为主。

关于解直角三角形主要是解析题。

解析题主要以计算为主。

结合2018年全国各地中考的实例,我们从三方血进行直角三角形问题的探讨:(1)直角三角形的性质;(2)勾股定理;(3)解直角三角形.考点剖析☆典型例题頑(2018・玉林)如图,在四边形ABCD中,ZB二ZD二90° , ZA=60° , AB二4,则AD的取值范围是2<AD<8・【分析】如图,延长BC交AD的延长线于E,作BF丄AD于F.解直角三角形求出AE、AF即可判断;【解答】解:如图,延长BC交AD的延长线于E,作BF丄AD于F.在RtAABE 中,VZE=30° , AB=4,AAE=2AB=8,在RtAABF 中,AF二寺AB二2,AAD的取值范围为2<AD<8,故答案为2<AD<8.例2| (2018・盐城)如图,在直角△ABC 中,ZC 二90° , AC 二6, BC 二8, P 、Q 分别为边BC 、AB 上的两个动点,若要使AAPQ 是等腰三角形且Z\BPQ 是直角三角形,则AQ 二 芈或孕. 【分析】分两种情形分别求解:①如图1屮,当AQ 二PQ, ZQPB=90°时,②当AQ 二PQ, ZPQB=90° 时;【解答】解:①如图1中,当AQ=PQ, ZQPB 二90°时,设AQ 二PQ 二x,・.・PQ 〃AC,AABPQ^ABCA,.BQ_PQ・ 10-x = x10 ~_6,・15 rAAQ~. 4②当 AQ 二PQ, ZPQB=90° 时,设 AQ 二PQ 二y.VABQP^ABCA,• PQ.BQ•• A L BC '■ y,10-y飞8 例3| (2018・黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则 蚂蚁从外壁A 处到内壁B 处的最短距离为20 cm (杯壁厚度不计).・・x 二 图1 图?蚂蚁月【分析】将杯子侧面展开,建立A关于EF的对称点A',根据两点之间线段最短可知“ B的长度即为所求.:【解答】解:如图连接A' B,则A' B 即为最短距离,A' B=A/A^D^+BD^A/162+1 2 2=20 (cm).故答案为20.^H| (2018*杭州)如图,在中,ZACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,八D长为半径画弧,交线段AC于点E,连结CD.(1)若ZA=28° ,求ZACD的度数.(2)设BC=a, AC二b.①线段AD的长是方程x2+2ax・b2=0的一个根吗?说明理由.②若AD=EC,求学的值.B【分析】(1)根据三角形内角和定理求出ZB,根据等腰三角形的性质求出ZBCD,计算即可;(2)①根据勾股定理求岀AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1) V ZACB=90° , ZA=28° ,.\ZB=62° ,VBD=BC,・・・ZBCD二ZBDC二59° ,・・・ZACD二90° - ZBCD二31°;(2)①由勾股定理得,A B R AC J BC S/ai2 + b2,AD=Va2 + b2 - a,解方程x2+2ax - b~0 得,x^~2a± V4a2+4b2^ 土需盯予-a,2・・・线段AD的长是方程x2+2ax - b2=0的一个根;② VAD=AE,AAE=EC=4,2 由勾股定理得,a2+b2=(寺b+a)2, 整理得,竿导.b 4巫(2018-遵义)如图,吊车在水平地血上吊起货物时,吊绳BC与地血保持垂直,吊臂AB与水平线的夹角为64。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

第19讲中考数学总复习(练习题) 解直角三角形的应用

第19讲中考数学总复习(练习题) 解直角三角形的应用
在Rt△ABC中,∵∠ACB=45°,∴AB=BC,
在Rt△ABD中,∵∠ADB=60°,
∴BD=
3
AB=10
3
3 m,
∴CD=BC-BD=(30-10 3)m.
导航
6.(2021·南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距
离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位
于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离
为 25 6 海里(结果保留根号).
导航
解析:过P作PC⊥AB于C,如图所示:
由题意得:∠APC=30°,∠BPC=45°,PA=50海里,
PC
在 Rt△APC 中,cos∠APC=PA,
3
∴PC=PA·cos∠APC=50× =25
2
PC
在 Rt△PCB 中,cos∠BPC= ,
PB
PC
25 3
( D )
(参考数据:sin 50°≈0.77;
cos 50°≈0.64;tan 50°≈1.19)
A.69.2米
B.73.1米
C.80.0米
D.85.7米
导航
解析:∵斜坡CD的坡度(或坡比)为i=1:2.4,
∴DE∶CE=5∶12,
∵DE=50米,∴CE=120米,
∵BC=150米,
∴BE=150-120=30(米),
尝试利用所学知识测量河对岸大
树AB的高度,他在点C处测得大树
顶端A的仰角为45°,再从C点出发
沿斜坡走2 米到达斜坡上D点,在点D处测得树顶端A的仰
角为30°,若斜坡CF的坡比为i=1∶3(点E、C、B在同一水平
线上).
(1)求王刚同学从点C到点D的过程中上升的高度;

初中数学专题特训第十九讲:解直角三角形(含详细参考答案)

初中数学专题特训第十九讲:解直角三角形(含详细参考答案)

中考数学专题复习第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(2012•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB 的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (2012•孝感)计算:cos245°+tan30°•sin60°=.思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(2012•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.6.思路分析:过C 作CD ⊥AB 于D ,求出∠BCD=∠B ,推出BD=CD ,根据含30度角的直角三角形求出CD ,根据勾股定理求出AD ,相加即可求出答案. 解:过C 作CD ⊥AB 于D , ∴∠ADC=∠BDC=90°, ∵∠B=45°,∴∠BCD=∠B=45°, ∴CD=BD ,∵∠A=30°,AC=23, ∴CD=3, ∴BD=CD=3, 由勾股定理得:AD=22AC CD =3,∴AB=AD+BD=3+3, 答:AB 的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目. 对应训练3.(2012•重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理. 专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC ,相加即可求出答案.解答:解:∵△ABD 是等边三角形, ∴∠B=60°, ∵∠BAC=90°, ∴∠C=180°-90°-60°=30°, ∴BC=2AB=4,在Rt △ABC 中,由勾股定理得:AC=22224223BC AB -=-=, ∴△ABC 的周长是AC+BC+AB=23+4+2=6+23. 答:△ABC 的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;23≈1.73 6≈2.45) (2)求∠ACD 的余弦值. 考点:解直角三角形的应用.分析:(1)连接AC ,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45°2千米,再根据∠D=90°利用勾股定理求得AD 的长后即可求周长和面积;(2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB=BC=15千米,∠B=90° ∴∠BAC=∠ACB=45° AC=152千米 又∵∠D=90°∴AD=22 -AC CD =22(152)(32)123-=(千米)∴周长=AB+BC+CD+DA=30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC+18 6 ≈157(平方千米)(2)cos ∠ACD=CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练 6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC 的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(2012•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.专题:网格型.分析:结合图形,根据锐角三角函数的定义即可求解.解答:解:由图形知:tan∠ACB=21 63 ,故选A.点评:本题考查了锐角三角函数的定义,属于基础题,关键是掌握锐角三角函数的定义.2.(2012•滨州)把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A.不变B.缩小为原来的3C.扩大为原来的3倍D.不能确定2.A分析:由于△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,得到锐角A的大小没改变,根据正弦的定义得到锐角A的正弦函数值也不变.解答:解:因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的正弦函数值也不变.故选A.5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

2019年中考专题复习19讲:解直角三角形(答案)

2019年中考专题复习19讲:解直角三角形(答案)

2019年中考数学专题复习第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】对应训练对应训练考点三:化斜三角形为直角三角形对应训练3.(2019•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.考点四:解直角三角形的应用例 4 (2019•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;≈1.73 ≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45°千米,再根据∠D=90°利用勾股定理求得AD的长后即可求周长和面积;(2)直接利用余弦的定义求解即可.解:(1)连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° 又∵∠D=90°∴=∴周长(千米) 面积=S △ABC+18 6 ≈157(平方千米)(2)cos ∠ACD=CD 1AC 5点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练 6.(2019•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题. 分析:(1)由于A 到BC 的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】C.扩大为原来的3倍D.不能确定A.不变B.缩小为原来的32.A分析:由于△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,得到锐角A的大小没改变,根据正弦的定义得到锐角A的正弦函数值也不变.解答:解:因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的正弦函数值也不变.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于它的对边与斜边的比值.也考查了相似三角形的判定与性质.5.(2019•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CDtan30=36.33,在Rt△BDC中,BD=CDtan30=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。

苏州市2019年中考数学讲练第19讲《特殊三角形(2)直角三角形》(含答案)

苏州市2019年中考数学讲练第19讲《特殊三角形(2)直角三角形》(含答案)

第2课时直角三角形考试内容考试要求概念有一个角是的三角形叫做直角三角形.A性质如图,在△ABC中,∠C=90°.1.边与边的关系(勾股定理):a2+b2=;2.角与角的关系:∠A+∠B=;3.边与角的关系:①若∠A=30°,则a=12c,b=32c;②若a=12c,则∠A=30°;③若∠A=45°,则a=b=22c;④若a=22c,则∠A=45°;4.斜边上的中线m=12c=R(其中R为三角形外接圆的半径).C 判定1.有一个角是或两个锐角的三角形是直角三角形.2.如果三角形一边上的中线等于这条边的,那么这个三角形为直角三角形.3.勾股定理的逆定理:如果三角形的两边的等于第三边的,那么这个三角形是直角三角形.拓展1.S Rt△ABC=12ch=12ab,其中a、b为两直角边,c为斜边,h为斜边上的高;2.Rt△ABC内切圆半径r=a+b-c2;外接圆半径R=c2,即等于斜边的一半.考试内容考试要求基本方法面积法:用面积法证题是常用的方法之一,使用这种方法时一般是利用某个图形的多种面积求法或面积之间的和差关系列出等式,从而得到要证明的结论.如ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;C1.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米2.(2017·温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=22EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S第1题图第2题图3.(2016·柳州模拟)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.(2016·大连模拟)如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.10 B.11 C.12 D.135.(2016·安顺模拟)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sin B =.第3题图第4题图第5题图【问题】如图,点D是Rt△ABC斜边的中点.(1)你能从图中得到哪些信息?(2)若∠A=40°,则∠DBC=°;(3)若BD=5,AB=8,则BC=.【归纳】通过开放式问题,归纳、疏理直角三角形有关知识.类型一直角三角形的性质与判定例1(1)如图,在Rt△ABC中,∠ACB=90°,①若∠A=46°,则∠B的度数为________;②若∠A=3∠B,则∠B=________;③若∠B=30°,D为线段AB的中点,CD=6,则∠ACD=________;AB=________;BC=________.(2)如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是直角三角形,则此时∠A所有可能的度数为________.第(1)题图第(2)题图【解后感悟】根据直角三角形的性质、以及斜边上中线性质、含30°角的直角三角形性质是解此题的关键,解题时注意分类讨论的运用.1.(1)(2016·黑龙江模拟)已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③(2)(2016·牡丹江模拟)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B 点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°2.(1)(2017·丽水模拟)如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连结CD,若BD=1,则AC的长是____________________.第(1)题图第(2)题图第(3)题图(2)(2017·衢州模拟)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE =5,则CD的长等于.(3)(2015·福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C 逆时针旋转60°,得到△MNC,连结BM,则BM的长是.类型二直角三角形的分类讨论例2(2016·大连模拟)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.【解后感悟】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.3.(2016·山西模拟)如图,在直角坐标系中,抛物线y=x2-x-2过A、B、C三点,在对称轴上存在点P,以P、A、C为顶点的三角形为直角三角形.则点P的坐标是.4.(2016·安定模拟)如图,在△ABC中,AB=AC=10厘米,BC=12厘米,点P从点A出发,沿AB边以1厘米/秒的速度向点B匀速移动;点Q从点B出发,沿BC边以2厘米/秒的速度向点C匀速移动.如果P、Q同时出发,当Q点到达C点时,P点随之停止运动.用t(秒)表示移动的时间(0≤t≤6).(1)当PQ∥AC时,求t的值;(2)当t为何值时,P、B、Q三点构成直角三角形.类型三勾股定理的应用例3(2016·孝感)如图是我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为________.公式求得直角三角形的三边,进一步运用锐角三角函数的定义求解.A.7,24,25 B.4,5,6 C.5,12,13 D.2,1.5,2.5(2)(2016·株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4(3)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为() A.600m B.500m C.400m D.300m(4)如图,四个全等的直角三角形纸片既可以拼成(内角不是直角)的菱形ABCD,也可以拼成正方形EFGH,则菱形ABCD面积和正方形EFGH面积之比为____________________.第(3)题图第(4)题图类型四直角三角形的探究问题例4(2016·桂林模拟)如图1,在△ABC中,∠ACB=90°,AC=BC=2,点D在AC上,点E在BC上,且CD=CE,连结DE.(1)线段BE与AD的数量关系是________,位置关系是________.F,请在本题主要考查了运用已有的知识和经验解决问题的能力,通过添加适当的题.它是中考的热点题型.6.(1)(2016·锦州模拟)如图,两块完全相同的含°角的直角三角板ABC A′B′C′重0°<α≤90°),有以下四个的坐标为(0,4),直线y-3与x上的一个动点,则PM例5(2016·吉林)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM =90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2).(1)当点M落在AB上时,x=________;(2)当点M落在AD上时,x=________;(3)求y关于x的函数解析式,并写出自变量x的取值范围.关键是正确画出图象,学会分类讨论.)6,连结5 2为直1的长度第()题3)题教材母题--浙教版八上第87页,目标与评定第28题.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题进行了认真的探2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?请你将小明对“思考题”的解答补充完整:米,即BB1=xAC-AA1= 2.50.4=2.B1C中,由B1C=A1B21得方程,解方程得x1=,x2=,∴点B将向外移动米.(2)解完“思考题”后,小聪提出了如下两个问题:那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等吗?为什么?请你解答小聪提出的这两个问题.【方法与对策】这题是探究性问题,通过课本中作业完成后,进行引申,用方程的思想继续分析、探究,解决提出的猜想.导向性:一方面要求同学们作业之后要反思,另一方面要求老师进行变式教学,这是中考热点题型.【忽视直角三角形中直角边不明确】(2016·包头模拟)已知直角三角形的两边的长分别是3和4,则第三边长为________.中考真题演练1.(2016苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m(第1题)(第2题)(第3题)2.(2016苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1);B.(3,);C.(3,);D.(3,2)3.(2016苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.34.(2016苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC 上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.(第4题)(第5题)5.(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC 于点F,G为EF的中点,连接DG,则DG的长为.6.★★★(2018•盐城)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =.(写出完整解题过程)参考答案第2课时 直角三角形【考点概要】直角 c 2 90° 直角 互余 一半 平方和 平方【考题体验】1.C 2.C 3.B 4.B 5.713【知识引擎】【解析】(1)如:AB 2+BC 2=AC 2,BD =12AC ,∠A =∠ABD 等; (2)50; (3)6. 【例题精析】 设小正方形EFGH a 2,则大正方形ABCD 的面积是13a 2,∴小正方形,则大正方形ABCD 的面积是13a ,∵图中的四个直角三角形是全等的,∴=DH =x ,在Rt 中,AD 2=AE 2+DE 13a 2=x 2+(x +a)2,解得:1=-3a(舍去),∴AE DE =3a ,∴tan ∠ADE AE DE =2a 3a =23,故答案为:ACB =90°,∴AC ⊥BCE 和△ACD 中,BC AD.∵∠1=∠2,∠,过点C 作CN ⊥AB 于点BCN =45°.∵AF =1+FCN =30°.∴∠BCF =∠-∠FCN =15°.∵∠FCE =90°,∴∠BCE =∠BCF +∠FCE =105°.∴当AF =1+33时,旋转角α为105°.图2 图3例5 (1)当点M 落在AB 上时,四边形AMQP 是正方形,此时点D 与点Q 重合,AP=CP =42,所以x =422=4.故答案为4. (2)如图1中,当点M 落在AD 上时,作PE ⊥QC 于E.∵△MQP ,△PQE ,△PEC 都是等腰直角三角形,MQ =PQ =PC ,∴DQ =QE =EC ,∵PE ∥AD ,∴PA AC =DE DC =23,∵AC =82,∴PA =1623,∴x =1623÷2=163.故答案为163. (3)①当0<x ≤4时,如图2中,设PM 、PQ 分别交AD 于点E 、F ,则重叠部分为△PEF ,∵AP =2x ,∴EF =PE =x ,∴y =S △PEF =12·PE ·EF =12x 2.②当4<x ≤163时,如图3中,设PM 、MQ 分别交AD 于E 、G ,则重叠部分为四边形PEGQ.∵PQ =PC =82-2x ,∴PM=16-2x ,∴ME =PM -PE =16-3x ,∴y =S △PMQ -S △MEG =12(82-2x)2-12(16-3x)2=-7x 2③当16=1PQ 2=12(82⎝⎭3图2 图3 2.(1)23 (2)8 (3)+1⎫7⎛⎫11⎛⎫13ABC ,∴BP BA =BQ BC ,即10); (2)AB =AC ,AD ⊥BC ,∴BD ≠90°,三点构成直角三角形情况有两种:①∠PQB =90∴BP BA =BQ BD,即10-t 10=2t 6,解得t =3013(秒);②∠QPB =90°,而∠ADB =90°,∠B =∠B ,∴△BPQ ∽△BDA ,∴BP BD =BQ BA ,即10-t 6=2t 10,解得t =5011(秒).∴由①、②知,当t 为3013秒或5011秒时,P 、B 、Q 三点构成直角三角形.5.(1)B (2)D (3)B (4)326.(1)①②④ (2)2857.(1)B (2)B (3)21008 【热点题型】【分析与解】(1)(x +0.7)2+22=2.52,0.8,-2.2(舍去),0.8. (2)①不会是0.9米,若AA1=BB1=0.9,则A1C=2.4-0.9=1.5,B1C=0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25.∵B1C2+A1C2≠A1B21,∴该题的答案不会是0.9米.②有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4-x)2=2.52,解得:x=1.7或x=0(舍)∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.【错误警示】①长为3的边是直角边,长为4的边是斜边时,第三边的长为:42-32=7;②长为3、4的边都是直角边时,第三边的长为:42+32=5;综上,第三边的长为:5或7.故答案为:5或7.中考真题演练1.解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.2.解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.第2题第3题3.解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△A B C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.4.解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE, 江南汇教育网第11页(共11页)版权所有@蔡老师数学 ∴△B ′DE 也是边长为4的等边三角形,∴GD =B ′F =2,∵B ′D =4,∴B ′G ===2,∵AB =10,∴AG =10﹣6=4,∴AB ′===2.故答案为:2. (第4题)(第5题)5.解:连接DE ,∵在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点, ∴DE 是△ABC 的中位线,∴DE=2,且DE ∥AC ,BD=BE=EC=2,∵EF ⊥AC 于点F ,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1, 故EF==,∵G 为EF 的中点,∴EG=,∴DG==.6.解:①如图1中,当AQ =PQ ,∠QPB =90°时,设AQ =PQ =x ,∵PQ ∥AC ,∴△BPQ ∽△BCA ,∴=,∴=,∴x =,∴AQ =. ②当AQ =PQ ,∠PQB =90°时,设AQ =PQ =y .∵△BQP ∽△BCA ,∴=,∴=,∴y =. 综上所述,满足条件的AQ 的值为或.。

2019年全国中考真题分类汇编(解直角三角形)

2019年全国中考真题分类汇编(解直角三角形)

第19讲解直角三角形知识点1 锐角三角函数的定义知识点2 特殊角的三角函数值知识点3 解直角三角形知识点4 解直角三角形的实际应用(除解答题)知识点1 锐角三角函数的定义(2019·天水)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC 边上的点F处,那么sin∠EFC的值为.(2019·自贡)(2019·潍坊)(2018·台州)(2019·烟台)(2019·咸宁)答案:D(2018·宜昌)答案:D(2019·眉山)如图,在Rt △ABC 中,∠B =900,AB =5,BC =12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为23.(2019·张家界)如图,正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD= .知识点2 特殊角的三角函数值(2019·天津)答案:C(2019·怀化)知识点3 解直角三角形(2019·绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=(A)A.B.C.D.(2019·湘西)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8(2019·北京)(2019·盐城)(2019·柳州)(2019·齐齐哈尔)答案:(2019·金华)答案:C(2019·凉山州)(2019·杭州)(2019·乐山)如图6,在△ABC 中,︒=∠30B ,2=AC ,53cos =C ,则AB 边的长为 516 .(2019·淄博)(2019·广安)答案:(2019·临沂)(2019·枣庄)(2019·黔东南)三角板是我们学习数学的好帮手.将一对直角三角板如图20放置,点C在FD的延长线上,点B在ED 上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.(2019·毕节)知识点4 解直角三角形的实际应用(除解答题)(2019·仙桃)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为m.(2019·广西北部湾)答案:C(2019·长春)答案:A(2019·益阳)答案:C(2019·孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P 到建筑物的距离为PD=20米,则BC= 米.(2019·咸宁)答案:69(2019·河北)答案:B(2019·黄石)答案:(2019·广州)如图1,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若52tan =∠BAC ,则次斜坡的水平距离AC 为( A )(A )75m (B )50m (C )30m (D )12m(2019·广东中考)如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 (15+15√3) 米(结果保留根号).(2019·杭州)(2019·荆州)(2019·长沙)答案:D(2019·温州)答案:B(2019·温州)答案:(2019·湖州)答案:120(2019·威海)(2019·宁波)答案:566α=时,人字梯顶端离地面的高度AD是(2019·衢州)如图,人字梯AB,AC的长都为2米.当50≈≈≈).米(结果精确到0.1m.参考数据:sin500.77,cos500.64,tan50 1.19(2019·绍兴)答案:A(2019·泰安)(2019·重庆A卷)(2019·重庆B卷)(2019·德州)答案:1.02(2019·枣庄)。

中考数学第19讲 解直角三角形及其应用

中考数学第19讲 解直角三角形及其应用

例3 (2019·孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的 仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米, 则BC=____2_0___3__-__2_0___米.
例 4 (2020·岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污 水系统综合治理项目,需要从如图 A,B 两地向 C 地新建 AC,BC 两条笔直的污 水收集管道,现测得 C 地在 A 地北偏东 45°方向上,在 B 地北偏西 68°向上,AB 的距离为 7 km,求新建管道的总长度.(结果精确到 0.1 km,sin 22°≈0.37,cos 22 °≈0.93,tan 22°≈0.40, 2 ≈1.41)
例 1 如图,在 Rt△ABC 中,∠C=90°,BC∶AB=5∶13, 则下列等式正确的是( C )
A. tan A=152
B. sin A=152
C. cos A=1123
D. tan A=153
1. 在 Rt△ABC 中,∠C=90°,AB=5,AC=3,则下列等式正确的是( B )
A. sinA=35
5. (2019·黄石)如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船 沿正南方向以15海里/小时的速度匀速航行2小时后到达N处,再观测灯塔P位 于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时 轮船与灯塔之间的距离PT为___1__5__3_海里(结果保留根号).
6. (2020·成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地 游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数 学兴趣小组在电视塔附近一建筑物楼顶D处测得塔A处的仰角为45°,塔底部 B 处 的 俯 角 为 22°. 已 知 建 筑 物 的 高 CD 约 为 61 米 , 请 计 算 观 景 台 的 高 AB 的 值.(结果精确到1米;参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)

中考数学专题复习_第十九讲__解直角三角形(含详细参考答案)

中考数学专题复习_第十九讲__解直角三角形(含详细参考答案)

第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们统称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< ,cosA< ,tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A()⑵若∠A+∠B=900,则sinA= ,tanA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt∠ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinBcosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=tanα=hl。

铅直水平线⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示OD表示(也可称东南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数学问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点,选取合适的锐角三角函数去解直角三角形⑶解出数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.513B.1213C.512D.1251.(2013•宿迁)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( )A .23B .32C D1.B2.(2013•重庆)计算6tan45°-2cos60°的结果是()A.B.4 C.D.52.D考点三:化斜三角形为直角三角形3.(2013•陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)3.考点四:解直角三角形的应用例4 (2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).思路分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);如图,校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.对应训练【聚焦山东高考】1.2A.12 B.C.米D.米2.A3.(2013•潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A./小时B.30海里/小时C./小时D.海里/小时3.D4.(2013•东营)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.4.9tan11°≈0.19)4【备考真题过关】一、选择题1.(2013•天津)tan60°的值等于()A.1 B C D.21.C2.(2013•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.34B.43C.35D.452.CA.12B.13C.3D.133.DA.5B.4C.5D.34.AA.B.0 C.D.25.BA.30°B.45°C.60°D.90°6.D7.(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.B.25m C.m D m7.A8.(2013•山西)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m 到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()mA. m B. m C.m D.38.A二、填空题10.(2013•淮安)sin30°的值为.110.11.412.(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB 的值等于.12.1213.14.215.(2013•荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA= 35,则DE= .15.15 416.(2013•成都)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米.16.10017.(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.17.18.(2013•荆州)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号)- 21 -。

中考数学点对点-解直角三角形问题(解析版)

中考数学点对点-解直角三角形问题(解析版)
在Rt△ABD中,AB=20,∠ABD=30°,
∴AD=AB×sin30°=20 10(海里),
BD=AB×cos30°=20 10 10×1.73=17.3,
∵BD⊥AC,BF⊥CE,CE⊥AC,
∴∠BDC=∠DCF=∠BFC=90°,
∴四边形BDCF为矩形,
∴DC=BF﹣9.7,FC=BD=17.3,
如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是 ,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC ,
∵AC=2,BC=3,
∴AB ,
∴sin∠ABC ,
∴sin∠ADC .
【例题3】(2020•荆门)如图,海岛B在海岛A的北偏东30方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东75°方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(2)在Rt△BEF中,解直角三角形求出EF,BF,在Rt△ABD中,解直角三角形求出AD,BD,证明四边形BDCF为矩形,得出DC,FC,求出CE的长,则可得出答案.
【解析】(1)过点B作BD⊥AC于点D,作BF⊥CE于点E,
由题意得,∠NAB=30°,∠GBE=75°,
∵AN∥BD,
∴∠ABD=∠NAB=30°,
∠B=90°-∠A,a=c·sinA, b=c·cosA
五、特殊值的三角函数
三角函数

30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

2019年全国各地中考数学解析汇编19 锐角三角函数及解直角三角形

2019年全国各地中考数学解析汇编19 锐角三角函数及解直角三角形

锐角三角函数及解直角三角形29.1 锐角三角函数以及特殊角(2018江苏省无锡市,2,3′)sin45°的值是( ) A. 12B. 2D.1 【解析】sin45°【答案】B 【点评】本题主要考查常见锐角三角函数值。

需要学生记忆,这是对基础知识的考查,属于容易题。

(2018四川内江,11,3分)如图4所示,△ABC 的顶点是正方形格的格点,则sinA 的值为A .12 BCD【解析】欲求sinA ,需先寻找∠A 所在的直角三角形,而图形中∠A 所在的△ABC 并不是直角三角形,所以需要作高.观察格点图形发现连接CD (如下图所示),恰好可证得CD ⊥AB ,于是有sinA =CD AC【答案】B【点评】在斜三角形中求三角函数值时往往需要作高构造直角三角形,将这类问题以格点图形为背景展现时,要注意利用格点之间连线的特殊位置灵活构造.解决这类问题,一要注意构造出直角三角形,二要熟练掌握三角函数的定义.29.2 三角函数的有关计算(2018福州,9,4分,)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )图4图4A .200米B.C.D. 1)米解析:由题意,∠A=30°,∠B=45°,则tan ,tan CD CD A B AD DB ==,又CD=100,因此AB=AD+DB=00100100100tan tan tan 30tan 45CD CD A B +=+=。

答案:D点评:本题考查了俯角概念、30°、45°的正切三角函数值,考察了用三角函数模型解决实际问题的能力,难度中等。

( 2019年浙江省宁波市,8,3)如图,Rt △ABC,∠C=900,AB=6,cosB=23,则BC 的长为(A )4 (B)2 5 (C) 18 1313 (D) 121313【解析】由三角函数余弦的定义cosB=BC AB =23,又∵AB=6∴BC=4,故选A 【答案】A【点评】本题考查三角函数的定义,比较容易.(2018福州,15,4分,)如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是.(结果保留根号)8题图 A B C解析:由已知条件,可知△BDC 、△ADB 是等腰三角形,且DA=DB=BC ,可证△BDC ∽△ABC ,则有BC DC AC BC =,设BC=x ,则DC=1-x ,因此21,101x x x x x-=+-=即,解方程得,1211,22x x ==(不合题意,舍去),即AD=12; 又cosA=2ABAD ===点评:本题考查了等腰三角形的判定、性质,三角形相似的判定和性质,一元二次方程的解法,二次根式的化简,构造直角三角形求非特殊角的三角函数值等,涉及知识点较为广泛,具有较强的综合性,难度较大。

2019届中考数学总复习总结知识点聚焦:第19章-解直角三角形.docx

2019届中考数学总复习总结知识点聚焦:第19章-解直角三角形.docx

第十九章解直角三角形知能图谱勾股定理缠拼图法刿断直角三角形勾股数[实际探究与应用第44讲勾股定理知能解读(一)勾股定理及其验证方法八(1)勾股定理:如果直角三角形的两条直角边长分别为d, b ,斜边长为c,那么cr +b2 = c2.(2)勾股定理的验证。

勾股定理的验证方法常见于小考命题。

勾股定理的验证方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明,其中拼图法是最常见的一种方法,验证如下:现有四块直角边长为d, b ,斜边长为c的直角三角形纸板,请从中取出若干块进行拼图(需画11!所拼的图形),证明勾股定理。

证法1:如图所示,边与边的关系勾股定理的逆定理勾股定理的应用'直接应用间接应用,构造直角三角形角与角的关系两锐角互余(正弦'余弦正切边与角的关系二•角函数特殊角的三角函数值两角、互余的角的三角函数关系'定义:rti直角三角形中的已知元素求出其余未知元素的过程叫做解直角三角形依据边的关系:角的关系:Cl2 +b2 = c2ZA+ZB =90°解直角三角形边角关系:常见类型sinA=— = cos B,sin B = —= cos A, tan A =—c c b己知两直角边,解直角三角形已知一直角边和斜边,解直角三角形已知一锐角和一直角边,解直角三角形己知一锐角和斜边,解直角三角形•* S大正方形=4S三角形+ S小正方形,c2 = 4xgab + (b・a)2, /. c2 = a2 +b2o证法2:如图所示,・• S梯形=2S小三角形+ S大三角形‘— (<7= 2x —6//? + —C22 2 2整理,得cr+b2=c\ 证法3:如图所示,•" S大正方形-4S三角形+ S小正方形,;(a + b)~ = 4><*肪+(?2,整理,^a2 +b2 = c2o知能解读(二)勾股定理的应用勾股定理揭示了直角三角形的三边关系,其应用有:(1)已知两边求第三边;(2)证明三角形中的某些线段的平方关系;(3)作长为乔的线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学专题复习第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们统称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< ,cosA< ,tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A()⑵若∠A+∠B=900,则sinA= ,tanA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的 个已知元素,求出另外 个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt ∠ABC 中,∠C=900 三边分别为a 、b 、c ⑴三边关系: ⑵两锐角关系⑶边角之间的关系:sinA cosA tanA sinB cosB tanB 【名师提醒:解直角三角形中已知的两个元素应至少有一个是 当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】 3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角⑵坡度坡角:如图:斜坡AB 的垂直度h 和水平宽度l 的比叫做坡度,用i 表示,即i= 坡面与水平面得夹角为 用字母α表示,则i=tanα=h l 。

⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA 表示 OB 表示铅直水平线视线OC 表示OD 表示 (也可称东南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数学问题(画出平面图形,转化为解直角三角形的问题) ⑵根据条件特点,选取合适的锐角三角函数去解直角三角形 ⑶解出数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】 【重点考点例析】考点一:锐角三角函数的概念例1 (2018•孝感)如图,在Rt△ABC 中,∠C=90°,AB=10,AC=8,则sinA 等于( )A .35B .45C .34D .43【思路分析】先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 【解答】解:在Rt△ABC 中,∵AB=10、AC=8, ∴22221086BC AB AC =-=-= , ∴63105BC sinA AB === , 故选:A .【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.考点二:特殊角的三角函数值例2 (2018•大庆)2cos60°=()A.1 B.3C.2D.12【思路分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:2cos60°=2×12=1.故选:A.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.考点三:解直角三角形例3 (2018•香坊区)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC 内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为.【思路分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=10a ,AG=CH=a+10a,根据AM=AG+MG,列方程可得结论.【解答】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM 于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴AMCM=2,∴AM=2a,由勾股定理得:AC=5a,S△BDC=12BC•DH=10,12•2a•DH=10,DH=10a,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵90AGD CHDADG CDHAD CD∠∠︒∠∠⎧⎪⎨⎪⎩====,考点四:解直角三角形的应用例4(2018•随州)随州市新㵐水一桥(如图1)设计灵感来源于市花--兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.【思路分析】(1)根据等腰直角三角形的性质计算DE的长;(2)作AH⊥BC于H,如图2,由于BD=DE=32,则AB=3BD=152,在Rt△ABH中,根据等腰直角三角形的性质可计算出BH=AH=15,然后在Rt△ACH中利用含30度的直角三角形三边的关系即可得到AC的长.【解答】解:(1)∵∠ABC=∠DEB=45°,∴△BDE为等腰直角三角形,∴DE=22BE=22×6=32.答:最短的斜拉索DE的长为32m;(2)作AH⊥BC于H,如图2,∵BD=DE=32,∴AB=3BD=5×32=152,在Rt△ABH中,∵∠B=45°,∴BH=AH=22AB=22×152=15,在Rt△ACH中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC的长为30m.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).【备考真题过关】一、选择题1.(2018•云南)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.10D.3102.(2018•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.32D33.(2018•滨州)在△ABC中,∠C=90°,若tanA=12,则sinB= .4.(2018•天津)cos30°的值等于()A.22B.32C.1 D35. (2018•宜昌)如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC=100米,∠PCA=35°,则小河宽PA 等于( )A .100sin35°米B .100sin55°米C .100tan35°米D .100tan55°米6. (2018•金华)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A . tan tan αβB . sin sin βαC . sin sin αβD .cos cos βα7. (2018•威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x-12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:28. (2018•淄博)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.9. (2018•重庆)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米二、填空题10. (2018•自贡)如图,在△ABC中,BC=12,tanA=3,∠B=30°;求AC4和AB的长.11.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .12.(2018•枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】13.(2018•广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)。

14.(2018•荆州)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(3≈1.73,结果精确到0.1).15.(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD 竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)三、解答题16.(2018•莱芜)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D 测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)17.(2018•娄底)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量,高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=2425在顶端E点测得A的仰角为45°,求发射塔AB的高度.18.(2018•天津)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60..19.(2016•连云港)如图,在△AB C中,∠C=150°,AC=4,tanB=18(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:2=1.4,3=1.7,5=2.2)20.(2018•盘锦)两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.21.(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?22.(2018•邵阳)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度,(结果精确到0.lm.温馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27)23.(2018•泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P 处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C 距F处至少多远?24. (2018•达州)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)2019年中考数学专题复习第十九讲 解直角三角形参考答案【备考真题过关】 一、选择题1.【思路分析】根据锐角三角函数的定义求出即可. 【解答】解:∵在Rt△ABC 中,∠C=90°,AC=1,BC=3, ∴∠A 的正切值为331BC AC == , 故选:A .【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.2.【思路分析】连接BC ,由网格求出AB ,BC ,AC 的长,利用勾股定理的逆定理得到△ABC 为等腰直角三角形,即可求出所求. 【解答】解:连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选:B .【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.3.【思路分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,tanA=12, ∴设BC=x ,则AC=2x ,故AB=5 x ,则sinB=2 5AC x AB x =255.故答案为:255. 【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.4.【思路分析】根据特殊角的三角函数值直接解答即可.8.【思路分析】先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:150.15100BC sinA AC === , 所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A .【点评】本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.9.【思路分析】作BM ⊥ED 交ED 的延长线于M ,CN ⊥DM 于N .首先解直角三角形Rt△CDN,求出CN ,DN ,再根据24AM tan EM︒=,构建方程即可解决问题;【解答】解:作BM ⊥ED 交ED 的延长线于M ,CN ⊥DM 于N .在Rt△CDN 中,∵14 0.753CN DN == ,设CN=4k ,DN=3k , ∴CD=10,∴(3k )2+(4k )2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC 是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM 中,24AM tan EM ︒=, ∴80.4566AB +=, ∴AB=21.7(米),故选:A .【点评】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题10.【思路分析】如图作CH ⊥AB 于H .在Rt△求出CH 、BH ,这种Rt△ACH 中求出AH 、AC 即可解决问题;【解答】解:如图作CH ⊥AB 于H .在Rt△BCH 中,∵BC=12,∠B=30°,∴CH=12BC=6,2263BH BC CH =-= , 在Rt△ACH 中,34CH tanA AH== , ∴AH=8,13.【思路分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系得出答案.【解答】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt△ADC 中,3303CD tan CDA tan AD ∠=︒== , 解得:CD=403(m ),故答案为:403.【点评】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CD AD是解题关键.14.【思路分析】设CD 为塔身的高,延长AB 交CD 于E ,则CD=40,DE=7,进而得出BE=CE=33,AE=a+33,在Rt△ACE 中,依据CE tanA AE = ,即可得到a 的值.【解答】解:如图,设CD 为塔身的高,延长AB 交CD 于E ,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE ,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵CE tanA AE= , ∴333033tan a ︒=+ ,即333 =a+33, 解得a=33(3-1)≈24.1,∴a 的值约为24.1米,故答案为:24.1.【点评】此题考查了解直角三角形的应用,关键是根据在直角三角形中三角函数的定义列出算式,得出关于a 的方程.15.【思路分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D 作DE ⊥AB ,∵在D 处测得旗杆顶端A 的仰角为53°,∴∠ADE=53°,∵BC=DE=6m ,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m, 故答案为:9.5【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.三、解答题16.【思路分析】过点B 作BF ⊥AC 于F ,BG ⊥CD 于G ,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B 作BF ⊥AC 于F ,BG ⊥CD 于G ,在Rt△BAF 中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB 是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD ,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE 中,∠AEC=50°,4 3.331.2AC CE tan AEC =≈∠= ,∴DE=CD-CE=5.04-3.33=1.71≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用-仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.17.【思路分析】作EH⊥AC于H,设AC=24x,根据正弦的定义求出AD,根据勾股定理求出CD,根据题意列出方程求出x,结合图形计算即可.【解答】解:作EH⊥AC于H,则四边形EDCH为矩形,∴EH=CD,设AC=24x,,在Rt△ADC中,sinα=2425∴AD=25x,由勾股定理得,227=-=,CD AD AC x∴EH=7x,在Rt△AEH中,∠AEH=45°,∴AH=EH=7x,由题意得,24x=7x+340,解得,x=20,则AC=24x=480,∴AB=AC-BC=480-452=28,答:发射塔AB的高度为28m.【点评】本题考查的是解直角三角形的应用-仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.18.【思路分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AE•tan58°≈125(m)在RtAED中,DE=AE•tan48°,∴CD=EC-DE=AE•tan58°-AE•tan48°=78×1.6-78×1.11≈38(m),答:甲、乙建筑物的高度AB为125m,DC为38m.【点评】本题考查的是解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.19.【思路分析】(1)过A 作AD ⊥BC ,交BC 的延长线于点D ,由含30°的直角三角形性质得AD=12AC=2,由三角函数求出CD=23,在Rt△ABD 中,由三角函数求出BD=16,即可得出结果;(2)在BC 边上取一点M ,使得CM=AC ,连接AM ,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=AD MD即可得出结果. 【解答】解:(1)过A 作AD ⊥BC ,交BC 的延长线于点D ,如图1所示:在Rt△ADC 中,AC=4,∵∠C=150°,∴∠ACD=30°,∴AD=12AC=2, CD=AC•cos30°=4×32=23, 在Rt△ABD 中,tanB=21 8AD BD BD == , ∴BD=16,∴BC=BD-CD=16-23;(2)在BC 边上取一点M ,使得CM=AC ,连接AM ,如图2所示:∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD=21 230.270.342323AD MD ===-≈≈++ . 【点评】本题考查了锐角三角函数、含30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;熟练掌握三角函数运算是解决问题的关键.20.【思路分析】(1)延长BG ,交AC 于点F ,过F 作FH ⊥BD 于H ,利用直角三角形的性质和三角函数解答即可;(2)连接BC ,利用利用直角三角形的性质和三角函数解答即可.【解答】解:(1)延长BG ,交AC 于点F ,过F 作FH ⊥BD 于H ,由图可知,FH=CD=30m ,∵∠BFH=∠α=30°,在Rt△BFH 中,BH=33FH =103≈17.32,17.32 3 ≈5.8, 答:此刻B 楼的影子落在A 楼的第5层;(2)连接BC ,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B 楼的影子刚好落在A 楼的底部.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是利用利用直角三角形的性质和三角函数解答.21.【思路分析】过B作BD⊥AC于D,解直角三角形求出AD=3xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=3BD=3xm,∵AC=2(3+1)m,∴x+3x=2(3+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形的应用,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.∴225EF EH FH x =+= ,∵EF=15,∴5x=15,x=3,∴FH=3x=9.即山坡EF 的水平宽度FH 为9m ;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H 1=0.9,∴日照间距系数=1131334.50.933.6CF CF L H H ++-==-:() , ∵该楼的日照间距系数不低于1.25,∴13 1.2533.6CF +≥ , ∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C 距F 处29m 远.【点评】本题考查了解直角三角形的应用-坡度坡角问题,勾股定理,将实际问题转化为数学问题是解题的关键.24.【思路分析】过点C 作CD ⊥AB ,设CD=x ,由∠CBD=45°知BD=CD=x 米,根据CD tanA AD= 列出关于x 的方程,解之可得.【解答】解:如图,过点C 作CD ⊥AB ,交AB 延长线于点D ,设CD=x 米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x 米,∵∠A=30°,AD=AB+BD=4+x ,∴CD tanA AD = ,即334x x=+ , 解得:x=2+23,答:该雕塑的高度为(2+23)米.【点评】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.。

相关文档
最新文档