线性系统参数估计的最小二乘方法

合集下载

最优估计第二章最小二乘法

最优估计第二章最小二乘法

§2
2.1
线性模型参数的最小二乘估计
问题的提出
考虑 n 阶单输入单输出的 CMA-0 线性系统:
A(q ) y (k ) B(q)u (k ) e(k )
其中 A(q ) 1 a1q an q , B (q ) b1q b2 q bm q ,{e(k )} 是具有均值为零和方差为 e 的
其中 l max{n, m} ,
a (k ) [ y (k 1), y (k 2), , y (k n), u (k 1), u ( k 2), , u (k m)]T
(a1 , a2 , , an , b1 , b2 , , bm )T
记观测向量 y [ y (l 1), y (l 2), , y (l N )] ,数据矩阵 A [a (l 1), a (l 2), , a (l N )] ,干扰
l N 1
y (l 1)
y (l n 1)
l N 1 y 2 (i ) i l l N 1 y (i n 1) y (i ) i l T A A l N 1 u (i ) y (i ) i l l N 1 u (i m 1) y (i ) i l
k T k 2 k T
1
x k 1 x k H k1F ( x k )
公式(1.2.2)与 Newton 公式相似,称为 Gauss-Newton 公式。 类似于阻尼 Newton 公式,我们有阻尼 Gauss-Newton 公式:
(1.2.2)
x k 1 x k k H k1F ( x k )
x * ( AT A) 1 AT b

递推最小二乘法_协方差矩阵_概述说明以及解释

递推最小二乘法_协方差矩阵_概述说明以及解释

递推最小二乘法协方差矩阵概述说明以及解释1. 引言1.1 概述在统计学和计量经济学中,递推最小二乘法(Recursive Least Squares,简称RLS)是一种常用的参数估计方法。

它通过不断更新样本数据进行参数的估计,并且可以适用于非静态数据场景。

协方差矩阵是统计分析中重要的概念,它描述了变量之间的线性关系强度和方向,并且在许多领域具有广泛应用。

1.2 文章结构本文首先介绍递推最小二乘法的定义和原理,在此基础上详细解释算法的步骤以及其应用领域。

接着,我们将引入协方差矩阵的概念并介绍其计算方法,同时探讨了它在实际问题中所起到的作用和应用场景。

最后,我们将对递推最小二乘法与协方差矩阵之间的关系进行解释,并通过实例分析来说明它们如何相互影响。

1.3 目的本文旨在全面介绍递推最小二乘法和协方差矩阵,并深入探讨它们之间的联系。

通过对这两个概念及其应用的理解,我们可以更好地理解参数估计方法和变量间关系的描述与分析。

此外,我们还将展望相关领域未来可能的研究方向,以促进学术和实践的进一步发展。

2. 递推最小二乘法2.1 定义和原理:递推最小二乘法是一种用于估计线性模型参数的方法。

它可以通过历史数据的不断更新来逐步拟合模型,以使得估计值与观测值之间的误差达到最小化。

该方法可以被形式化地描述为以下步骤:1. 初始化模型参数的初始值。

2. 从历史数据中选择一个样本,并使用当前参数估计出该样本对应的输出值。

3. 计算该样本的预测误差。

4. 根据预测误差对参数进行调整,使得预测误差尽量减小。

5. 重复步骤2至4,直到所有样本都被处理过一遍,或者满足终止条件。

递推最小二乘法是基于最小二乘原理,即将真实观测值与模型预测值之间的差异平方求和并最小化这个目标函数。

通过迭代地更新参数,递推最小二乘法可以逐渐优化模型,并获得更准确的参数估计。

2.2 算法步骤:具体而言,在每次迭代中,递推最小二乘法按照以下步骤进行操作:1. 根据历史数据选择一个样本,并根据当前的参数估计出预测值。

_最小二乘法

_最小二乘法
y(1) =θ1x1(1) +θ2x2 (1) +L+θmxm(1) +e(1) y(2) =θ1x1(2) +θ2x2 (2) +L+θmxm(2) +e(2) M M y(n) =θ1x1(n) +θ2x2 (n) +L+θmxm(n) +e(n)

• 线性模型 y = X θ + e 线性模型: 式中: 维输出向量; 维噪声向量; 式中: y 为n维输出向量;e 为n维噪声向量;θ 为m 维输出向量 维噪声向量 维参数向量; 维测量矩阵。 维参数向量;X 为 n × m 维测量矩阵。
足够大,当 只要 α 足够大 当 k > m 后,初值 P (0)、 0) 初值 θ ( 对估计的影响可以忽略. 对估计的影响可以忽略
LS法和 法和RLS法的比较 法和 法的比较
• • • LS法是一次完成算法,适于离线辩识,要记忆全部测 法是一次完成算法,适于离线辩识, 法是一次完成算法 量数据; 量数据; RLS法是递推算法,适于在线辩识和时变过程,只需 法是递推算法, 法是递推算法 适于在线辩识和时变过程, 要记忆n+1步数据; 步数据; 要记忆 步数据 RLS 法用粗糙初值时,如若 N 较小时,估计精度不 法用粗糙初值时, 较小时, 如 LS 法。
以上三式构成一组递推最小二乘估计算式 ^ ^ • 物理意义:新的参数估计 θ N +1是对上次老的估计 θ N 进行 物理意义: 修正而得出的。 修正而得出的。
初值选取方式
• 初值选取一般有两种方法可以考虑 初值选取一般有两种方法可以考虑: 1、先取一批数据,求取 θ ( N ) , P(N)做初值 、先取一批数据 求取 做初值,N>m 做初值

第五章 线性参数最小二乘法处理(1)

第五章 线性参数最小二乘法处理(1)
第五章 线性参数的最小二乘法处理
光电效应
1 E = hν = m υ0 2 + A 2
1 eU 0 = m υ0 2 2
h A U0 = ν e e
2
光电效应
频率νi(×1014Hz) 8.214 7.408 6.879 5.490 5.196 截止电压U0i(V) 1.790 1.436 1.242 0.688 0.560
3
光电效应
SLOPE函数
频率ν i(Hz) 8.214E+14 7.408E+14 6.879E+14 5.490E+14 5.196E+14 截止电压U0i(V) 1.790E+00 1.436E+00 1.242E+00 6.880E-01 5.600E-01
4.02964E-15
2.000E+00 1.800E+00 1.600E+00
1
i 2
e
i 2 ( 2 i 2 )
di
( i 1, 2,
, n)
由概率论可知,各测量数据同时出现在相应区域的概率
为ቤተ መጻሕፍቲ ባይዱ
P Pi
i 1
n
1

1 2 n
2
e n

i 1
n
i 2 (2 i 2 )
d 1d 2
d n
12
第一节 最小二乘原理
1.400E+00
y = 4E-15x - 1.5314
1.200E+00 1.000E+00 8.000E-01 6.000E-01
4.000E-01
2.000E-01 0.000E+00 0.000E+00 5.000E+14 1.000E+15

线性参数的最小二乘法处理

线性参数的最小二乘法处理
2
W1、 +1″, +10″, +1″, +12″,
W2、 +6″, +4″,
W3、
W4„
Wn
+2″ , -3″ , +4″ +12″, +4″ +3″, +4″
+12″, +12″, +12″
W12
2
12

W22
2 2

W32
32
最小值
3
即 ∑(PW2)=(P1W21)+(P2W22)+(P3W32)
的测量结果 yi 最接近真值,最为可靠,即: yi=∠i+Wi 由于改正数 Wi 的二次方之和为最小,因此称为最小二乘法。 二 最小二乘法理 现在我们来证明一下,最小二乘法和概率论中最大似然方法(算术平均值方法) 是一致的。 (一)等精度测量时 (1)最大似然方法 设 x1,x2„xn 为某量 x 的等精度测量列,且服从正态分布,现以最大似然法和最小 二乘法分别求其最或是值(未知量的最佳估计量) 在概率论的大数定律与中心极限定理那一章我们讲过,随着测量次数的增加,测 量值的算术平均值也稳定于一个常数,即
2 i 1
n
曾给出: vi2
i 1
n
n n 1 n 2 ,由此可知 x vi2 / i2 为最小,这就是最小二乘法的基本 i n i 1 i 1
含义。引入权的符号 P ,最小二乘法可以写成下列形式:
Pv
i 1
n
2 i i
最小
在等精度测量中, 1 2 ... , P1 P2 ... Pn 即: 最小二乘法可以写成下列形式:

第3章 线性模型参数的最小二乘估计法

第3章 线性模型参数的最小二乘估计法
| 为由概P率i =论σ可i 1知2π,e各−δi2测(2量σi2 )数dδ据i 同(时i =出1,现2,"在,相n)应区域
的概率为
∏ P =
n i =1
Pi
=
1
σ1σ 2 "σ n
n

∑ − δi2 e i=1
(2σi2 )dδ1dδ 2 "dδ n
1. 最小二乘原理
| 测量值 l1,l2 ,",ln 已经出现,有理由认为这n个测 量值出现于相应区间的概率P为最大。要使P最
ti /0 C
10
20
30
40
50
60
li / mm 2000.36 2000.72 2000.8 2001.07 2001.48 2000.60
| 1)列出误差方程
vi = li − ( y0 + ay0ti )
| 令 y0 = c, ay0 = d为两个待估参量,则误差方程为
vi = li − (c + tid )
x2 ,",
xt
)
⎪⎪ ⎬

vn = ln − fn (x1, x2 ,", xt )⎪⎭
残差方程式
1. 最小二乘原理
| 若 l1,l2 ,",ln 不存在系统误差,相互独立并服从正 态分布,标准差分别为σ1,σ 2 ,",σ n,则l1, l2 ,", ln出
现在相应真值附近 dδ1, dδ2,", dδn 区域内的概率
大,应有
δ12
+
δ
2 2
+"
+
δ
2 n
= 最小
σ12 σ 22

第四章线性系统参数估计的最小二乘法

第四章线性系统参数估计的最小二乘法

测得铜导线在温度Ti (o C) 时的电阻 Ri (Ω ) 如表 6-1,求电阻 R 与温度 T 的近似函数关系。
i
1
2
3
4
5
6
7
Ti (o C) Ri (Ω )
19.1 76.30
25.0 77.80
30.1 79.25
36.0 80.80
40.0 82.35
45.1 83.90
50.0 85.10
使用(1,1.8),(2,2.2)两个点得到的方
1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
程为 y=1.4 + 0.4x;使用(1,1.8),(6,3.3)两个点得到的方程为 y=1.5 + 0.3x,而使用(3,3)和(6,3.3)
两个点得到的方程是 y=2.7+0.1x。
(4.1)
其中,θ=(θ1, θ2, …, θn)是一个参数集。在系统辨识中它们是未知的。我们希望通过不同时刻
对Y及X的观测值来估计出它们的数值。
例如,在研究两个变量(x,y)之间的
4
关系时,通常的做法是取一个变量作为自
变量,另一个作为因变量。改变自变量可
3.5
得到相应的因变量。将所得到的一系列数
据对描绘在直角坐标系中,得到一系列的
X T XΘˆ = X TY
(4.7)

Θˆ=( X T X )−1 X TY
(4.8)
这样求得的Θˆ 就称为Θ的最小二乘估计(LSE),在统计学上,方程(4.7)称为正则方程,称ε
为残差。
在前面讨论的例子中,把 6 个数据对分别代入直线方程y=a0 + a1x中可得到 1 个由 6 个直线

最小二乘参数估计

最小二乘参数估计

最小二乘参数估计1 系统辨识的概念 (1)2 最小二乘参数估计法 (1)最小二乘估计的统计特性 (2)加权最小二乘 (2)递推最小二乘估计 (3)相关最小二乘法 (3)1 系统辨识的概念系统辨识是研究建立被控对象或过程数学模型的一种理论和方法。

它是在输入和输出数据的基础上,从一组给定的模型类别中,确定一个与所研究系统等价的数学模型。

数学模型是指用数学形式来描述实际对象或过程行为特性和运动规律,微分方程、差分方程、传递函数和状态方程式常用的数学形式。

建立数学模型的主要方法有机理法和测试法。

而机理法的应用是十分有限的,实践中大量采用的还是测试法。

系统辨识就是一种测试法。

2 最小二乘参数估计法最小二乘估计是一种经典的数据处理方法,最早的应用可以追溯到18世纪,大约在1795年由高斯在他著名的星体运动轨道预报研究工作中提出的。

高斯提出:对于未知的但要求估计的参数的最适宜的值是最可能的值。

他定义:“未知量最可能的值是这样一个数值,它使得实测值与计算值的差的平方乘以测量测量精度后所得的积最小。

”后来,在控制系统的参数估计领域也发现个采用了这种方法,这样,最小二乘法就成了估计离乱的奠基石。

由于最小二乘法原理简单,编制程序也不困难,因而颇受人们重视,应用相当广泛。

目前它已成为动态系统辨识的主要手段。

从计算方法讲,它既可以离线计算,也可以在线递推计算,并可在非线性系统中扩展为迭代计算。

从计算的数学模型看,它既可以用于参数模型估计可以用于非参数模型估计。

最小二乘估计开始用于处理整批数据的静态参数估计,这里称为一般的最小二乘估计,它能提供一个在最小方差意义下与实验数据最好拟合的数学模型。

由最小二乘发获得的估计在一定条件下有最佳的统计特性,即估计的结果是无偏的、一致的和有效的,而经典辨识法中的相关辨识法、频率辨识法等也可以从最小二乘推导演绎而成。

最小二乘估计的统计特性对于一个估计算法除了计算简单和便于应用等要求外,更重要的是所得出的估计值能不能再某种意义下满足估计的精度要求,即满足估计值的优良性。

普通最小二乘法

普通最小二乘法
确定模型类型
选择合适的回归模型,如线性回归、多项式回归等。
设定模型假设
确保满足回归分析的基本假设,如误差项独立同分布、误差项无系统偏差等。
建立模型
利用最小二乘法计算回归参数的最优估计值。
分析估计量的性质,如无偏性、有效性等,确保估计结果可靠。
参数估计
检验估计量性质
计算最小二乘估计量
03
模型选择与优化
普通最小二乘法的历史与发展
02
普通最小二乘法的原理
01
02
03
线性回归模型是一种预测模型,通过找到最佳拟合直线来预测因变量的值。
在线性回归模型中,自变量和因变量之间存在线性关系,即因变量可以表示为自变量的线性组合。
线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + ... + βpxp + ε,其中y是因变量,x1, x2, ..., xp是自变量,β0, β1, β2, ..., βp是参数,ε是误差项。
详细描述
主成分回归是一种基于主成分分析的回归方法,通过提取解释变量中的主要成分,降低数据的维度,提高模型的解释性和稳定性。
总结词
主成分回归首先对解释变量进行主成分分析,提取出解释变量中的主要成分,然后将这些主成分作为新的解释变量进行回归分析。由于主成分能够反映原始变量中的大部分信息,因此这种方法能够减少数据的维度,降低多重共线性的影响,提高模型的稳定性和解释性。
无偏性
普通最小二乘法估计的参数具有无偏性,即估计的期望值等于真实值。
最佳线性无偏估计
普通最小二乘法能得到最佳线性无偏估计,即估计的方差最小。
优点
异方差性
普通最小二乘法对数据的异方差性敏感,可能导致估计结果失真。

各类最小二乘法比较

各类最小二乘法比较

---------------------------------------------------------------最新资料推荐------------------------------------------------------各类最小二乘法比较最小二乘法(LS)最小二乘是一种最基本的辨识方法,最小二乘法可以用于线性系统,也可以用于非线性系统;可用于离线估计和在线估计。

在随机情况下,利用最小二乘法时,并不要求观测数据提供其概率统计方法的信息,而其估计结果,却有相当好的统计特性。

但它具有两方面的缺陷:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的数据饱和现象。

针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。

广义最小二乘法(GLS)广义最小二乘法(GLS)广义最小二乘法的基本思想在于引入一个所谓成形滤波器(白化滤波器),把相关噪声转化成白噪声。

优:能够克服当存在有色噪声干扰时,基本最小二乘估计的有偏性,估计效果较好,在实际中得到较好的应用。

缺:1、计算量大,每个循环要调用两次最小二乘法及一次数据滤波,2、求差分方程的参数估值,是一个非线性最优化问题,不一定总能1 / 3保证算法对最优解的收敛性。

广义最小二乘法本质上是一种逐次逼近法。

对于循环程序的收敛性还没有给出证明。

3、GLS 算法的最小二乘指标函数 J 中可能存在一个以上局部极小值,(特别在信噪比不大时,J 可能是多举的)。

GLS 方法的估计结果往往取决于所选用参数的初始估值。

参数估计初值应选得尽量接近优参数。

在没有验前信息的情况下,最小二乘估值被认为是最好的初始条件。

4、广义最小二乘法的收敛速度不是很高。

递推最小二乘法(RLS)递推最小二乘法(RLS)优点:1、无需存储全部数据,取得一组观测数据便可估计一次参数,而且都能在一个采样周期中完成,所需计算量小,占用的存储空间小。

最小二乘法

最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。

如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。

若将这n对数据代入方程求解a,b之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。

本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。

一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。

丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。

“天文学自古代至18 世纪是应用数学中最发达的领域。

观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。

天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。

” 这也说明了最小二乘法的显著地位。

有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。

尽管当时得到认可,然而事实证明如此计算的结果不太精确。

1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。

欧拉的求解方法繁杂而奇特,只能看作是一次尝试。

第四章参数的最小二乘法估计讲解

第四章参数的最小二乘法估计讲解

第四章 最小二乘法与组合测量§1概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。

对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。

例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。

另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。

最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。

本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。

§2最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。

对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。

测值落入),(dx x x i i +的概率。

dx v P i i ii )2exp(2122σπσ-=根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为n i ii ni i dx v P P )]()(21exp[)2(12∑-∏=∏=σπσ 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即∑=iii Min v 22σ权因子:22o i i w σσ=即权因子i w ∝21iσ,则2[]i i wvv wv Min ==∑再用微分法,得最可信赖值x11ni ii nii w xx w===∑∑ 即加权算术平均值这里为了与概率符号区别,以i ω表示权因子。

第五章线性参数的最小二乘法处理

第五章线性参数的最小二乘法处理
第5章 线性参数的最小二乘法
5-1
最小二乘法(least square method)
1805年,勒让德(Legendre)应用“最小二乘法”, 确定了慧星的轨道和地球子午线段。 1809年,高斯(Gauss)论证其解的最佳性。
经典最小二乘法(即代数最小二乘法)
现代最小二乘法(即矩阵最小二乘法)
(n=t)
正规方程:误差方程按最小二乘法原理转化得到的 有确定解的代数方程组。
5-18
第二节、正规方程
一、等精度测量线性参数最小二乘法的正规方程 二、不等精度测量线性参数最小二乘法的正规方程 三、非线性参数最小二乘法处理的正规方程(略) 四二节
正规方程
一、等精度测量线性参数最小二乘处理的正规方程
误差方程
a11 , a12 , , a1t a , a ,, a 2t A 21 22 a n1 , a n 2 , , a nt
系数矩阵
误差方程
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )
相应的估计值
y1 a11 x1 a12 x 2 a1t xt y 2 a 21 x1 a 22 x 2 a 2t xt y n a n1 x1 a n 2 x 2 a nt xt
其误差方程:
v1 l1 (a11 x1 a12 x 2 a1t xt ) v 2 l 2 (a 21 x1 a 22 x 2 a 2t xt ) v n l n (a n1 x1 a n 2 x 2 a nt xt )

一文让你彻底搞懂最小二乘法(超详细推导)

一文让你彻底搞懂最小二乘法(超详细推导)

一文让你彻底搞懂最小二乘法(超详细推导)要解决的问题在工程应用中,我们经常会用一组观测数据去估计模型的参数,模型是我们根据先验知识定下的。

比如我们有一组观测数据 ( x i , y i ) (x_i,y_i) (xi,yi)(一维),通过一些数据分析我们猜测 y y y和 x x x之间存在线性关系,那么我们的模型就可以定为: f ( x ) = k x + b f(x)=kx+bf(x)=kx+b这个模型只有两个参数,所以理论上,我们只需要观测两组数据建立两个方程,即可解出两个未知数。

类似的,假如模型有n n n个参数,我们只需要观测 n n n组数据就可求出参数,换句话说,在这种情况下,模型的参数是唯一确定解。

但是在实际应用中,由于我们的观测会存在误差(偶然误差、系统误差等),所以我们总会做多余观测。

比如在上述例子中,尽管只有两个参数,但是我们可能会观测 n n n组数据( x 1 , y 1 ) . . , ( x n , y n ) (x_1, y_1)..,(x_n, y_n) (x1,y1)..,(xn,yn),这会导致我们无法找到一条直线经过所有的点,也就是说,方程无确定解。

于是这就是我们要解决的问题:虽然没有确定解,但是我们能不能求出近似解,使得模型能在各个观测点上达到“最佳“拟合。

那么“最佳”的准则是什么?可以是所有观测点到直线的距离和最小,也可以是所有观测点到直线的误差(真实值-理论值)绝对值和最小,也可以是其它,如果是你面临这个问题你会怎么做?早在19世纪,勒让德就认为让“误差的平方和最小”估计出来的模型是最接近真实情形的。

为什么是误差平方而不是另一个?就连欧拉和拉普拉斯都没能成功回答这个问题。

后来高斯建立了一套误差分析理论,从而证明了系统在误差平方和最小的条件下是最优的。

证明这个理论并不难。

我写了另一篇关于最小二乘法原理理解的博客。

相信你了解后会对最小二乘法有更深的理解。

常用算法分析——最小二乘法

常用算法分析——最小二乘法

常用算法分析——最小二乘法目录1.引言2.普通最小二乘法(OLS)3.OLS实现4.广义最小二乘法(GLS)简介1、引言最小二乘法应该是我们最早接触的一种数值估计算法。

它的特殊形式,一元线性回归,被广泛地应用于多种数值统计分析场合。

例如,在验证欧姆定律(U = IR)时,通常的实验方法是分别测量出多个不同电压Ui下,通过电阻的电流值Ii,然后将这些(Ui, Ii)观测点,代入到一元最小二乘公式(1-1)中,便可计算出\hat{R}。

\begin{cases}a&=&\frac{\sum{xy}-\frac{1}{N}\sum{x}\sum{y}}{\sum{x^2}-\frac{1}{N}(\sum{x})^2}\\b&=&\frac{1}{N}\sum{y}-\frac{a}{N}\sum{x}\end{cases} (1-1)由此可得出线性拟合式(1-2)\hat{y}=a\hat{x}+b (1-2)其中,\hat{y}=\hat{U},\ \hat{x}=\hat{I},\ a=\hat{R},\ b 是残差。

通过此方法将观测点及拟合曲线绘制在同一个直角坐标系中,正常情况下可以直观地看到,观测点会均匀分布在直线附近,且每个点的残差平方和(即方差)最小。

“最小二乘法”由此得名。

2、普通最小二乘法(OLS)最小二乘法显然不只是一元线性回归那么简单,它还可以应用于多元参数的拟合。

本节将对普通最小二乘法(Ordinary Least Squares)的原理进行简单的推导和证明。

2.1、高斯—马尔可夫定理高斯—马尔可夫定理(the Gauss–Markov theorem,简称G-M定理)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量(即Best Linear Unbiased Estimator,简称BLUE)。

G-M定理共对OLS普通线性方程提出5个假设:假设1(线性关系):要求所有的母集团参数(population parameters)为常数,用来保证模型为线性关系。

线性回归模型的总体最小二乘平差算法及其应用研究

线性回归模型的总体最小二乘平差算法及其应用研究

线性回归模型的总体最小二乘平差算法及其应用研究一、本文概述本文旨在深入研究和探讨线性回归模型的总体最小二乘平差算法及其应用。

线性回归模型是统计学中一种重要的预测和解释工具,它用于描述和预测两个或多个变量之间的关系。

然而,在实际应用中,由于数据误差、异常值等因素的存在,传统的最小二乘法往往不能得到最优的估计结果。

因此,本文引入总体最小二乘平差算法,以期提高线性回归模型的稳定性和准确性。

总体最小二乘平差算法是一种基于总体误差最小化的优化方法,它同时考虑了自变量和因变量的误差,避免了传统最小二乘法中可能出现的模型偏差。

本文首先介绍了线性回归模型和最小二乘法的基本原理,然后详细阐述了总体最小二乘平差算法的理论基础和计算方法。

在应用方面,本文探讨了总体最小二乘平差算法在多个领域的应用,包括经济学、医学、工程学等。

通过实证分析和案例研究,本文验证了总体最小二乘平差算法在改善线性回归模型预测精度和稳定性方面的有效性。

本文还讨论了算法在实际应用中可能遇到的挑战和问题,并提出了相应的解决策略。

本文的研究不仅为线性回归模型的优化提供了新的思路和方法,也为相关领域的实证研究提供了有益的参考和借鉴。

未来,我们将继续深入研究总体最小二乘平差算法的理论和应用,以期在更广泛的领域发挥其作用。

二、线性回归模型的基本理论线性回归模型是一种经典的统计预测方法,其基本理论建立在数理统计和最小二乘法的基础上。

其核心思想是通过寻找一条最佳拟合直线,使得这条直线与一组观测数据点的误差平方和最小。

线性回归模型的基本形式为 (Y = \beta_0 + \beta_1 +\varepsilon),其中 (Y) 是因变量,() 是自变量,(\beta_0) 和(\beta_1) 是回归系数,(\varepsilon) 是随机误差项。

这个模型假设因变量与自变量之间存在线性关系,并通过最小二乘法来估计回归系数。

最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

最小二乘法简介

最小二乘法简介

高斯

设一组数据(xi ,yi)(i=1,2,...,n),现用近似 曲线y=φ(xi)拟合这组数据,“拟合得最好”的标 准是所选择的φ(xi)在xi处的函数值 φ(x i ) ( i=1,2,...,n ) 与实际值 y i 的偏差(也称残 差)φ(xi)-yi(i=1,2,...,n)最小,使偏差之和Σ[φ(xi)yi ]最小来保证每个偏差都很小。但偏差有正有 负,在求和的时候可能相互抵消。为了避免这种 情况,选择使“偏差平方和Σ[φ(xi)-yi]2最小”的 原则来保证每个偏差的绝对值都很小,从而得到 最佳拟合曲线y=φ(xi)。
2 i 1 n
s s 令 0, 0 a b
四、最小二乘法应用
利用实际试验采集到的数据,建立 回归模型,运用最小二乘估计进行趋势 分析及预测,比如经济趋势预测,工业 产量控制等等。
5.1 加权原理


在等方差条件下,偏差平方和S中每一项 的地位是相同的;在异方差条件下,误 差项方差σi2大的在S中的作用偏大。 加权最小二乘估计(WLS,weighted least square )的方法是在平方和中加 入一适当的权数 ω i,以调整各项在平方 和中的作用。
5.2 权数的取定
1、一元线性拟合
已知实测到的一组数据(xi ,yi)(i=1,2,...,n), 设线性关系式为y=a+bx,最小二乘法求出a,b。
s (yi a bxi)
2 i 1 n
n s =-2 ( yi a bxi )=0 a i 1 n s =-2 ( y a bx ) x =0 i i i i 1 b
二、创立思想
最小二乘法(OLSE)的思想就是要使得观测点和 估计点的距离平方和达到最小,在各方程的误差之 间建立一种平衡,从而防止某一极端误差,对决定 参数的估计值取得支配地位,有助于揭示系统的更 接近真实的状态。 在最小二乘法的创立过程中有两位科学家为它 的创立及发展作出了杰出的贡献。

第五章参数的最小二乘法估计

第五章参数的最小二乘法估计
a 式中, j , y 分别为如下列向量
第二节 线性参数的最小二乘法
a1 j a2 j aj a nj
y1 y2 y y n
第二节 线性参数的最小二乘法
[al ak ] 和 [a j y ]分别为如下两列向量的内积:
如为精密测定1号、2号和3号电容器的电容量
x1 x2 x3
待求量 测得值
为了获得更可靠 的结果,测量次 数总要多于未知 参数的数目
y1
y3 y2
0.3 ( y1 )
y4
待解的数学模型
x1 x2 x1
0.4 ( y2 )
x3 0.5 ( y3 ) x2 x3 0.3 ( y4 )
• (1)最小绝对残差和法: • (2)最小最大残差法: • (3)最小广义极差法:
v
i
Min
max vi Min
maxvi minvi Min
主要内容
• 最小二乘法原理 • 线性测量方程组中参数的最小 二乘法 • 非线性测量方程组中参数的最 小二乘法 • 组合测量
第二节 线性参数的最小二乘法
v1 v2 V vn
l1 l2 L= ln
和n×t阶矩阵
第二节 线性参数的最小二乘法
a11a12 a1t A a21a22 a2t a a a nt n1 n 2
第二节 线性参数的最小二乘法
测量方程组系数与正规方程组系数
y1 a11 x1 a12 x2 a1t xt y2 a21 x1 a22 x2 a2t xt yn an1 x1 an 2 x2 ant xt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C (q )e(k ) (k ) ,其中 C (q ) 1 ci q i ,{ (k )}为白噪声,
1
1 i 1
A(q 1 ) y (k ) B (q 1 )u (k )
(k )
C (q 1 )
即 C (q 1 ) A(q 1 ) y(k ) C (q 1 ) B(q 1 )u (k ) (k )
T P ( k ) K ( k 1) x (k 1) P (k )
1
一般取值 0.9 0.999。 当 1时候, 算法退化为一般递推算法, 越小跟踪性能越好, 但是参数可能出现不希望的跳跃, 而 越
大,估计所得的参数的变化越平滑。
17
限定记忆的递推最小二乘法
3
将系统方程改写成
y (k ) ai y (k i ) biu (k i ) e(k )
i 1 i 1 n n
利用测得的数据,建立 N 个观测方程 y (n 1) a1 y (n) a2 y (n 2) an y (1) b u (n) b u (1) e(n 1) 1 n y (n 2) a1 y (n 1) a2 y (n 1) an y (2) b1u (n 1) bnu (2) e(n 2) y (n N ) a1 y (n N ) an y ( N ) b u (n N ) b u ( N ) e( n N ) 1 n
1
13
根据矩阵求逆辅助公式
[ A BCD]1 A1 A1 B(C 1 DA1 B) 1 DA1
令 A P 1 (k ) , B x(k 1), C 1, D xT (k 1) ,则得到
P(k ) x(k 1) xT (k 1) P(k ) P(k 1) P(k ) 1 xT (k 1) P(k ) x(k 1)
ˆ(0) 的选取 关于 P(0)和 ˆ( N ) 做初值, N 2n 1. 任选一批数据,可取 P( N ) 和 ˆ(0) ,而令 P(0) I ,其中 105 1010 , I 为单位矩 2. 任取
阵。
15
普通递推最小二乘算法的缺点是数据饱和,同时不能跟踪参 数变化
P(k ) xT (k 1) x(k 1) P(k ) P(k ) P(k 1) 0 T 1 x (k 1) P(k ) x(k 1)
同时得到
ˆ(k 1) P(k 1)[ X T (k ) y (k ) x(k 1) y (k 1)]
14
整理可得
P(k ) x(k 1) K (k 1) 1 xT (k 1) P (k ) x (k 1) ˆ(k 1) ˆ(k ) K (k 1)[ y (k 1) xT (k 1) ˆ (k )] P(k 1) P (k ) K (k 1) xT (k 1)P (k )
x2 (k ) u 2 (k ) ,
则可得
y (k ) a0 a1 x1 (k ) a2 x2 (k ) e(k )
这是线性方程,可以使用最小二乘法。
9
3. 自回归方程的参数估计
y (k ) ai y (k i ) e( k )
i 1 n
4. 线性系统的权序列辨识
y ( k ) hi u ( k i ) e( k )
i 1 n
写成矩阵形式
y ( p ) [u ( p ) h(0) h(1) e (k ) u (0)] h ( p )
从而写成
y Uh e
10
最小二乘法的缺点 1. 数据增加时,要求计算机的 存储空间增加 2. 每增加一组数据 [u(i), y(i)] ,就要作一次求逆,导致计算量 增加 目标:寻求一种递推算法,使得 1. 不保留全部数据 2. 避免求逆
20
辅助变量法
y (k ) ai y (k i ) biu (k i ) e(k )
i 1 i 1 n n
传统做法是由
X T X X T y X T e
得到
ˆ ( X T X )1 X T y ( X T X )1 X T e ,
ˆ。 如果 X 与 e 不相关,则 E ( )
因此有 P(k ) P(k 1) , 可见当 k 时, P(k ) 0, K (k 1) , 从而失去修正作用。
16
渐消记忆的递推最小二乘法
目标:
ˆ(k ))2 minJ k i ( y (i ) T (i )
i 1 k
得到递推算法为
P (k ) x(k 1) K (k 1) xT (k 1) P (k ) x (k 1) ˆ(k 1) ˆ(k ) K (k 1)[ y (k 1) xT (k 1) ˆ (k )] P (k 1)
线性系统参数估计的 最小二乘法
1
简介
最小二乘方法是用于参数估计的数学方法, 它使得数学模 型在误差平方和最小的意义上拟合实验数据。 LS 方法是一种涉及较少数学知识而又被大量采用的一种 基本方法。最早由高斯提出。当时(1795 年) ,高斯为了解决 从观测到的行星轨道数据推算行星轨道的参数而提出的。此 后,最小二乘法成了处理观测所得实验数据的有力工具,为 工程技术人员广泛采用。 在系统辨识领域中,它是应用最广泛的基本方法, 许多方 法都是在它的基础上发展起来的。
从中可以解得
ˆ (T )1 T y
6
最小二乘法的应用
原则:只要能把输出和被辨识参数的关系描述为线性方程,则 可以使用最小二乘法。 1. 多输入单输出系统的辨识 y (k ) b0 b1u1 (k ) b2u2 (k )
{ui ( k )}和{ y(k )}, k 1,2,
2
基本原理
给定 SISO 线性、定常,随机系统的数学模型为
y (k ) ai y (k i ) biu (k i ) e(k )
i 1 i 1 n n
已经得到{u(k )}和{ y(k )}序列, k 1,2,3,
n
对于这样的系统,辨识需要解决两个问题: 1. 首先需要确定系统阶数 n ,这是系统结构辨识的问题 2. 在阶数 n 确定了以后,求参数 ai 和 bi ,这是参数辨识问题
如果 X 与 e 相关,构造与 X 同维的与 e 不相关的矩阵 Z ,令
Z T X Z T y Z T e
从而
( Z T X )1 Z T y
21
增广最小二乘法
A(q 1 ) y (k ) B(q 1 )u (k ) C (q 1 ) (k )
其中 A(q ) 1 ai q , B(q ) bi q , C (q ) 1 ci q i

P(k ) [ X T (k ) X (k )]1

X (k ) T P(k 1) X (k ) x(k 1) T x (k ) [ X T (k ) X (k ) x(k 1) xT (k 1)]1 [ P 1 x(k 1) xT (k 1)]1
y X e
un (1) un (2) un ( N )
从而 ˆ ( X T X )1 X T y 如何推广到 MIMO 系统?
8
2. 非线性系统的辨识
y(k ) a0 a1u (k ) a2u 2 (k ) e(k )
选取
x1 ( k ) u (k )
得新解
ˆ(k 1) [ X T (k 1) X (k 1)]1 X T (k 1) y (k 1)
12
其中
X (k ) y (k ) , y (k 1) , X (k 1) T x (k 1) y (k 1)
限定每次估计的只有 N 方程,每得到一个新方程,则去掉一个 老方程,数据就像用一个矩形框框住。
18
最小二乘算法的估计特性
1. 无偏性 2. 一致性 3. 有效性
19
广义最小二乘法
设系统的方程为
y (k ) ai y (k i ) biu (k i ) e(k ) 其中 e( k ) ( k ) ai ( k i )
bnun (k ) e(k ) , bn ?
进行 N ( N n 1)次观测以后,得到多输入多输出观测数据 如何求解 b0 , b1 , ,N, i 1,2, , n ,
7
根据观测数据,建立观测方程组。令 y [ y (1) y ( N )]T 1 u1 (1) 1 u (2) [b0 bn ]T 1 X e [e(1) e( N )]T 1 u1 ( N ) 于是
4
令 T [a1 , a2 , , an , b1 , b2 , bn ]和
T (n i) [ y(n i 1), y (n i 2), , y (i), u (n i 1), , u (i)]
则有 y (n i) T (n i) e(n i) 或写成 y(k ) = φT (k )θ +e(k ) 如果定义
则可得到矩阵形式
y ( N ) T ( N ) e( N )
因此从观测方程中可以求解出参数 θ
5
1. 如果 N 2n ,此时相当于从 2 n 个观测方程中求解 2 n 个参数, ˆ 1 ( N ) y( N ) ,而实际上,e( N ) 0 ,因此 如令 e( N ) 0 ,则
相关文档
最新文档