On Fractional Kinetic Equations

合集下载

算术平均牛顿法的英文

算术平均牛顿法的英文

算术平均牛顿法的英文Arithmetic-Geometric Mean Newton's Method.The arithmetic-geometric mean (AGM) Newton's method is an iterative algorithm used in numerical analysis to approximate the solution of equations, particularly those involving transcendental functions. This method is avariant of the classical Newton's method, which uses the tangent line to the function at a given point to approximate the root of the function. The AGM Newton's method incorporates the arithmetic-geometric mean (AGM) iteration, which is itself a fast converging method for computing the square root of a number.Background on Newton's Method:Newton's method is based on the Taylor series expansion of a function. Given a function f(x) and its derivativef'(x), the method starts with an initial guess x0 and iteratively updates the approximation using the formula:x_{n+1} = x_n f(x_n) / f'(x_n)。

2012 Finite difference methods for fractional differential equations(分数阶扩散方程)

2012 Finite difference methods for fractional differential equations(分数阶扩散方程)

C. Li & Fபைடு நூலகம் Zeng
However, the differences exist in that the fractional derivatives are globally defined compared with the classical one defined in a pointwise manner, which attributes to the difficulties in the construction of numerical methods and analysis (including consistency, convergence and stability) for the FDEs, especially for the nonlinear ones. At the same time, the computation cost and storage are much expensive, since the coefficient matrices derived from the fractional systems can be full. At present, there are several numerical methods to solve FDEs, such as the finite difference method (rigorously speaking, the fractional finite difference method, here we just use it for brevity), the finite element method and the spectral method which are relatively rare [Roop, 2006, 2008; Zheng et al., 2010a, 2010b; Lin & Xu, 2007; Li & Xu, 2009] in literature, while the work on the finite difference method for FDEs are very rich and continues to be developed. This is mainly due to the following reasons. The finite difference method is a powerful tool and widely used to solve the DEs as well as the FDEs in science and engineering, which is also easy to be understood. Meanwhile, the implementation of the finite difference scheme is simple and easy to be put into practice in computer programs. In this paper, we just review almost all the existing FDMs for the FDEs of different types. If some important references have been omitted, we do apologize for those omissions. In recent publications, FDMs for the FDEs almost concentrate on the kinetic equations of diffusion (subdiffusion and superdiffusion [Li & Zhao, 2011a]), diffusion– advection, and Fokker–planck type, etc. with partial fractional derivatives that are derived asymptotically from basic random walk models, the generalized master and Langevin equations. We will outline those numerical schemes for some typical FDEs and their main results (including consistency, stability and convergence). Simultaneously, the unresolved problems are also pointed out. To some extent, some of FDMs for FDEs can be seen as the generalizations of the corresponding methods for classical equations [Yuste, 2006; Meerschaert & Tadjeran, 2006]. The tools, say von Neumann stability analysis [Yuste & Acedo, 2005; Ghazizadeh et al., 2010], Fourier analysis method [Chen et al., 2007; Sousa, 2009] and energy method [Zhuang et al., 2008; Gao & Sun, 2011], which are used for the numerical analysis of the classical PDEs, can be extended to the cases for

对映异构体拆分

对映异构体拆分

4.生物化学处理( Biochemical processes )
• 微生物:有的可能只对对映体中一个异构 体发生作用。
• 寻找适合的微生物是问题关键。
5. 机械分离( Mechanical separation ,手工分 离)
• Pasteur 首创 • Racemic acid——(+)和(-)tartaric acid • Racemic solution ammonium tartrate (外消旋
• Enantiomers have identical physical properties, and consequently cannot be directly separated by conventional methods such as distillation(蒸馏), crystallization, sizing(定量), or chromatography on conventional stationary phases.
• They (diastereomeric derivatives) can be separated by conventional separation methods such as crystallization, or chromatography on silica or other conventional stationary phases.
H OH H
(+) crystal
same crystal form (-) crystal
6.动力学拆分( Kinetic resolution )
• 对映体与手性化合物以不同速度进行反应, 可在完全反应前中止反应,达到部分分离。

统计学专业名词中英对照

统计学专业名词中英对照

统计学专业名词中英对照Lane某y我大学毕业已经多年,这些年来,越发感到外刊的重要性。

读懂外刊要有不错的英语功底,同时,还需要掌握一定的专业词汇。

掌握足够的专业词汇,在国内外期刊的阅读和写作中会游刃有余。

abcia横坐标abencerate缺勤率Abolutedeviation绝对离差Abolutenumber绝对数abolutevalue绝对值Abolutereidual绝对残差accidenterror偶然误差Accelerationarray加速度立体阵Accelerationinanarbitrarydirection任意方向上的加速度Accelerationnormal法向加速度Accelerationpacedimenion加速度空间的维数Accelerationtangential切向加速度Accelerationvector加速度向量Acceptablehypothei可接受假设Accumulation累积Accumulatedfrequency累积频数Accuracy准确度Actualfrequency实际频数Adaptiveetimator自适应估计量Addition相加Additiontheorem加法定理AdditiveNoie加性噪声Additivity可加性Adjutedrate调整率Adjutedvalue校正值Admiibleerror容许误差Aggregation聚集性Alphafactoringα因子法Alternativehypothei备择假设Amonggroup组间Amount总量ANOVA(analyiofvariance)方差分析ANOVAModel方差分析模型ANOVAtableandeta分组计算方差分析Arcing弧/弧旋Arcinetranformation反正弦变换Area区域图Areaunderthecurve曲线面积AREG评估从一个时间点到下一个时间点回归相关时的误差ARIMA季节和非季节性单变量模型的极大似然估计Arithmeticgridpaper算术格纸Arithmeticmean算术平均数Arithmeticweightedmean加权算术均数Arrheniurelation艾恩尼斯关系Aeingfit拟合的评估Aociativelaw结合律Aumedmean假定均数Aymmetricditribution非对称分布Autocorrelationofreidual残差的自相关Average平均数Averageconfidenceintervallength平均置信区间长度averagedeviation平均差Averagegrowthrate平均增长率BBarchart/graph条形图Baeperiod基期Baye'theoremBaye定理Bell-hapedcurve钟形曲线Bernoulliditribution伯努力分布Bet-trimetimator最好切尾估计量Bia偏性Biometric生物统计学Binarylogiticregreion二元逻辑斯蒂回归Binomialditribution二项分布Biquare双平方BivariateCorrelate二变量相关Bivariatenormalditribution双变量正态分布Bivariatenormalpopulation双变量正态总体Biweightinterval双权区间BiweightM-etimator双权M估计量Block区组/配伍组Canonicalcorrelation典型相关Caption纵标目Cartogram统计图Caefatalityrate病死率Cae-controltudy病例对照研究Categoricalvariable分类变量Catenary悬链线Cauchyditribution柯西分布Caue-and-effectrelationhip因果关系Cell单元Cenoring终检cenu普查Centerofymmetry对称中心Centeringandcaling中心化和定标Centraltendency集中趋势Centralvalue中心值CHAID-χ2AutomaticInteractionDetector卡方自动交互检测Chance 机遇Chanceerror随机误差Chancevariable随机变量Characteriticequation特征方程Characteriticroot特征根Characteriticvector特征向量Chebhevcriterionoffit拟合的切比雪夫准则Chernoffface切尔诺夫脸谱图Claifiedvariable分类变量Cluteranalyi聚类分析Cluterampling 整群抽样Code代码Codeddata编码数据Coding编码Coefficientofmultiplecorrelation多重相关系数Coefficientofpartialcorrelation偏相关系数Columneffect列效应Columnfactor列因素Conditionale某pectation条件期望Conditionallikelihood条件似然Conditionalprobability条件概率Conditionallylinear依条件线性Confidenceinterval置信区间Confidencelevel可信水平,置信水平Confidencelimit置信限Confidencelowerlimit置信下限Confidenceupperlimit置信上限ConfirmatoryFactorAnalyi验证性因子分析Confirmatoryreearch 证实性实验研究Confoundingfactor混杂因素Conjoint联合分析Conitency相合性Conitencycheck一致性检验Conitentaymptoticallynormaletimate相合渐近正态估计Conitentetimate相合估计Contituentratio构成比,结构相对数Contrainednonlinearregreion受约束非线性回归Contraint约束Contaminatedditribution污染分布ContaminatedGauian污染高斯分布Contaminatednormalditribution污染正态分布Contamination污染Contaminationmodel污染模型Continuity连续性Contingencytable 列联表Contour边界线Contributionrate贡献率Control对照质量控制图Controlgroup对照组Controllede某periment对照实验Conventionaldepth常规深度Convolution卷积Coordinate坐标Correctedfactor校正因子Correctedmean校正均值Correctioncoefficient校正系数Correctionforcontinuity连续性校正Correctionforgrouping归组校正Correctionnumber校正数Correctionvalue校正值Correctne正确性Equalun-clanumber相等次级组含量Equallylikely等可能Equationoflinearregreion线性回归方程Equivariance同变性Error误差/错误Errorofetimate估计误差Errorofreplication重复误差ErrortypeI 第一类错误ErrortypeII第二类错误Etimand被估量Etimatederrormeanquare估计误差均方Etimatederrorumofquare估计误差平方和Euclideanditance欧式距离Event事件E某ceptionaldatapoint异常数据点E某pectationplane期望平面E某pectationurface期望曲面E某pectedvalue期望值E某periment 实验E某perimentdeign实验设计E某perimenterror实验误差E某perimentalgroup实验组E某perimentalampling试验抽样E某perimentalunit试验单位E某plainedvariance(已说明方差)E某planatoryvariable说明变量E某ploratorydataanalyi探索性数据分析E某ploreSummarize探索-摘要E某ponentialcurve指数曲线E某ponentialgrowth指数式增长E某SMOOTH指数平滑方法E某tendedfit扩充拟合E某traparameter附加参数E某trapolation外推法E某tremeobervation末端观测值E某treme极端值/极值FFditributionF分布FtetF检验Factor因素/因子Factoranalyi因子分析FactorAnalyi因子分析Factorcore因子得分Factorial阶乘Factorialdeign析因试验设计Falenegative假阴性Falenegativeerror假阴性错误Familyofditribution分布族Familyofetimator估计量族Fanning扇面Fatalityrate病死率Fieldinvetigation现场调查Fieldurvey现场调查Finitepopulation有限总体Finite-ample有限样本Firtderivative一阶导数Forecat预测Fourfoldtable四格表Fourth四分点Fractionblow左侧比率Fractionalerror相对误差Frequency频率Freguencyditribution频数分布Frequencypolygon频数多边图Frontierpoint界限点Functionrelationhip泛函关系GGammaditribution伽玛分布Gauincrement高斯增量Gauianditribution高斯分布/正态分布Gau-Newtonincrement高斯-牛顿增量Generalcenu全面普查Generalizedleatquare综合最小平方法GENLOG(Generalizedlinermodel)广义线性模型Geometricmean几何平均数Gini'meandifference基尼均差GLM(Generallinermodel)通用线性模型Goodneoffit拟和优度/配合度Gradientofdeterminant行列式的梯度Graeco-Latinquare希腊拉丁方Grandmean总均值Groerror重大错误Half-life半衰期HampelM-etimator汉佩尔M估计量Happentance偶然事件Harmonicmean调和均数Hazardfunction风险均数Hazardrate风险率Heading标目Heavy-tailedditribution重尾分布Heianarray海森立体阵Heterogeneity不同质Heterogeneityofvariance方差不齐Hierarchicalclaification组内分组Hierarchicalcluteringmethod系统聚类法High-leveragepoint高杠杆率点High-Low低区域图HigherOrderInteractionEffect,高阶交互作用HILOGLINEAR多维列联表的层次对数线性模型Hinge折叶点Hitogram直方图Hitoricalcohorttudy历史性队列研究Hole空洞HOMALS多重响应分析Homogeneityofvariance方差齐性Homogeneitytet齐性检验HuberM-etimator休伯M估计量Hyperbola双曲线Hypotheiteting假设检验Hypotheticalunivere假设总体IImagefactoring多元回归法Impoibleevent不可能事件Independence独立性Independentvariable自变量Inde某指标/指数Indirecttandardization间接标准化法Individual个体Inferenceband推断带Infinitepopulation无限总体Infinitelygreat无穷大Infinitelymall无穷小Influencecurve影响曲线Informationcapacity信息容量Initialcondition初始条件Initialetimate初始估计值Initiallevel最初水平Interaction交互作用Interactionterm交互作用项Intercept截距Interpolation内插法Interquartilerange四分位距Intervaletimation区间估计Intervalofequalprobability等概率区间Intriniccurvature固有曲率Invariance不变性Inverematri某逆矩阵Invereprobability逆概率Invereinetranformation反正弦变换Iteration迭代JJacobiandeterminant雅可比行列式Jointditributionfunction分布函数Jointprobability联合概率Jointprobabilityditribution联合概率分布KK-MeanCluter逐步聚类分析Kmeanmethod逐步聚类法Kaplan-Meier 评估事件的时间长度Kaplan-MerierchartKaplan-Merier图Kendall'rankcorrelationKendall等级相关Kinetic动力学Kolmogorov-Smirnovetet柯尔莫哥洛夫-斯米尔诺夫检验KrukalandWallitetKrukal及Walli检验/多样本的秩和检验/H检验Kurtoi峰度LLackoffit失拟Ladderofpower幂阶梯Lag滞后Largeample大样本Largeampletet大样本检验Latinquare拉丁方Latinquaredeign拉丁方设计Leakage泄漏Leatfavorableconfiguration最不利构形Leatfavorableditribution最不利分布Leatignificantdifference最小显著差法Leatquaremethod最小二乘法LeatSquaredCriterion,最小二乘方准则Leat-abolute-reidualetimate最小绝对残差估计Leat-abolute-reidualfit最小绝对残差拟合Leat-abolute-reidualline最小绝对残差线Legend图例L-etimatorL估计量L-etimatoroflocation位置L估计量L-etimatorofcale尺度L估计量Level水平LeveageCorrection,杠杆率校正Lifee某pectance预期期望寿命Lifetable寿命表Lifetablemethod生命表法Light-tailedditribution轻尾分布Likelihoodfunction似然函数Likelihoodratio似然比linegraph 线图Linearcorrelation直线相关Linearequation线性方程Linearprogramming线性规划Linearregreion直线回归LinearRegreion 线性回归Lineartrend线性趋势Loading载荷Locationandcaleequivariance位置尺度同变性Locationequivariance位置同变性Locationinvariance位置不变性Locationcalefamily位置尺度族Logranktet时序检验Logarithmiccurve 对数曲线Logarithmicnormalditribution对数正态分布Logarithmiccale对数尺度Logarithmictranformation对数变换Logiccheck逻辑检查Logiticditribution逻辑斯特分布LogittranformationLogit转换Outlier极端值OVERALS多组变量的非线性正规相关Overhoot迭代过度PPaireddeign配对设计Pairedample配对样本Pairwielope成对斜率Parabola抛物线Paralleltet平行试验Parameter参数Parametrictatitic参数统计Parametrictet参数检验Pareto直条构成线图(佩尔托图)Partialcorrelation偏相关Partialregreion偏回归Partialorting偏排序Partialreidual偏残差Pattern模式PCA(主成分分析)Pearoncurve皮尔逊曲线Peeling退层Percentbargraph百分条形图Percentage百分比Percentile百分位数Percentilecurve百分位曲线Periodicity周期性Permutation排列P-etimatorP估计量Piegraph 构成图饼图Pitmanetimator皮特曼估计量Pivot枢轴量Planar平坦Planaraumption平面的假设PLANCARDS生成试验的计划卡PLS(偏最小二乘法)Pointetimation点估计Poionditribution泊松分布Polihing 平滑Polledtandarddeviation合并标准差Polledvariance合并方差Polygon多边图Polynomial多项式Polynomialcurve多项式曲线Population总体Probabilitydenity概率密度Productmoment乘积矩/协方差Profiletrace截面迹图Proportion比/构成比Proportionallocationintratifiedrandomampling按比例分层随机抽样Proportionate成比例Proportionateub-clanumber成比例次级组含量Propectivetudy前瞻性调查Pro某imitie亲近性PeudoFtet近似F检验Peudomodel近似模型Peudoigma伪标准差Purpoiveampling有目的抽样QQuantile-quantileplot分位数-分位数图/Q-Q图Quantitativeanalyi定量分析Quartile四分位数QuickCluter快速聚类RRadi某ort基数排序Randomallocation随机化分组Randomblockdeign随机区组设计Randomevent随机事件Randomization随机化Range极差/全距Rankcorrelation等级相关Reciprocaltranformation倒数变换Recording记录Redecendingetimator回降估计量Reducingdimenion降维Re-e某preion重新表达Referenceet标准组Regionofacceptance接受域Regreioncoefficient回归系数Regreionumofquare回归平方和Rejectionpoint拒绝点Relativediperion相对离散度Relativenumber 相对数Reliability可靠性Reparametrization重新设置参数Replication重复ReportSummarie 报告摘要Reidualumofquare剩余平方和reidualvariance(剩余方差)Reitance耐抗性Reitantline耐抗线Reitanttechnique耐抗技术R-etimatoroflocation位置R估计量R-etimatorofcale尺度R估计量Retropectivetudy回顾性调查Ridgetrace岭迹RiditanalyiRidit分析Rotation旋转Rounding舍入Row行Roweffect行效应Rowfactor行因素R某CtableR某C表SSample样本Sampleregreioncoefficient样本回归系数Sampleize样本量Sampletandarddeviation样本标准差Samplingerror抽样误差SAS(Statiticalanalyiytem)SAS统计软件包Scale尺度/量表Scatterdiagram散点图Schematicplot示意图/简图Scoretet计分检验Screening筛检SEASON季节分析Secondderivative二阶导数SEM(Structuralequationmodeling)结构化方程模型Semi-logarithmicgraph半对数图Semi-logarithmicpaper半对数格纸Senitivitycurve敏感度曲线Sequentialanalyi贯序分析Sequence普通序列图Sequentialdataet顺序数据集Sequentialdeign贯序设计Sequentialmethod贯序法Sequentialtet贯序检验法Serialtet系列试验Short-cutmethod简捷法SigmoidcurveS形曲线Signfunction正负号函数Signtet符号检验Signedrank符号秩SignificantLevel显著水平Significancetet显著性检验Significantfigure有效数字Simplecluterampling简单整群抽样Simplecorrelation简单相关Simplerandomampling简单随机抽样Simpleregreion简单回归impletable简单表Sineetimator正弦估计量Single-valuedetimate单值估计Singularmatri某奇异矩阵Skewedditribution偏斜分布Skewne 偏度Slahditribution斜线分布Slope斜率Spearmanrankcorrelation斯皮尔曼等级相关Specificfactor特殊因子Specificfactorvariance特殊因子方差Spectra频谱Sphericalditribution球型正态分布Spread展布SPSS(Statiticalpackagefortheocialcience)Spurioucorrelation 假性相关Squareroottranformation平方根变换Stabilizingvariance稳定方差Standarddeviation标准差Standarderror标准误Standarderrorofdifference差别的标准误Standarderrorofetimate 标准估计误差Standarderrorofrate率的标准误Standardnormalditribution标准正态分布Standardization标准化Startingvalue起始值Statitic统计量Statiticalcontrol统计控制Statiticalgraph统计图Statiticalinference统计推断SPSS统计软件包Statiticaltable统计表Steepetdecent最速下降法Stemandleafdiplay茎叶图Stepfactor步长因子Stepwieregreion逐步回归Storage存Strata层(复数)Stratifiedampling分层抽样Stratifiedampling分层抽样Strength 强度Stringency严密性Structuralrelationhip结构关系Studentizedreidual学生化残差/t化残差Sub-clanumber次级组含量Subdividing分割Sufficienttatitic充分统计量Sumofproduct积和Sumofquare离差平方和Sumofquareaboutregreion回归平方和Sumofquarebetweengroup组间平方和Sumofquareofpartialregreion偏回归平方和Sureevent必然事件Survey调查。

上半空间高次分数阶Laplace方程解的不存在性

上半空间高次分数阶Laplace方程解的不存在性

上半空间高次分数阶Laplace方程解的不存在性李冬艳;陈文雄【摘要】Nonexistence of positive solutions for equations involving higher order fractional Laplacians with Navier conditions in an upper-half space is considered.Narrow region principle of higher-order fractional Laplacian equations is established by using iterative method.And then with method of moving planes,nonexistence of positive solutions for equations involving higher-order fractional Laplacians with Navier conditions is proved.%研究上半空间中带Navier条件的高次分数阶Laplace方程正解的不存在性.借助迭代法,建立高次分数阶方程的狭窄区域原理;然后结合移动平面法,证明具有Navier条件的高次分数阶方程正解的不存在性.【期刊名称】《纺织高校基础科学学报》【年(卷),期】2017(030)001【总页数】5页(P18-22)【关键词】高次分数阶Laplace方程;Navier条件;狭窄区域极值原理;解不存在性【作者】李冬艳;陈文雄【作者单位】西安工程大学理学院,陕西西安710048;叶史瓦大学,美国纽约10033【正文语种】中文【中图分类】O175分数阶Laplace算子是一个非局部拟微分算子,定义为其中α为0与2之间的任意实数,且近年来,分数阶Laplace方程问题倍受关注,它在描述一系列物理现象中有着重要的作用,如不规则扩散现象[1-2]、气象学中的准地转流[3-4]、湍流模型、分子动力学以及相对量子力学[5-6]等,甚至在金融和概率方面[7-8]也有着广泛的应用.在基础研究方面,对测度椭圆问题、非一致椭圆问题[9]以及势梯度问题[10]也不可或缺.为克服分数阶Laplace的非局部性,Caffarelli-Silvestre引进了延拓法[11],将非局部问题转化成更高维Rn×[0,∞)中的局部问题,从而成为研究带有分数阶Laplace算子方程的有力工具.后来,Chen等[12]提出了一种直接对分数阶方程进行的移动平面法,这种方法对有界区域及无界区域均有效,成为证明分数阶非线性方程正解的对称性、单调性及不存在性的有力工具.在式(1)的基础上,定义如下高次的分数阶Laplace算子.当0<α<2时,式(1)可以等价的写为其中Sr(x)是以x为中心,r为半径的球面.当r充分小且y∈Sr(x)时,因为,做Taylor 展开可得由对称性得从而有显然,该积分当α<2时收敛,当α>2时发散.因此,当2<α<4时,为使积分收敛,定义高次的分数阶Laplace算子为当,类似地,由Taylor展开及对称性,则有该积分当α<4时收敛,当α>4时发散.本文考虑上半空间{x=(x1,x2,…xn)|xn≥0}中具有Navier条件的高次分数阶非线性方程其中,,0<α<2.移动平面法已在证明方程正解对称性[13],不存在性[14]及解的先验估计[15]等方面发挥过重要作用.但目前为止,移动平面法还不能被直接应用到高次分数阶方程上.因此,本文先将高次分数阶方程化成低次方程组,然后再应用移动平面法.为此,需要以下两个引理,其在后续证明中起着重要作用.引理1 设H={x∈Rn|0<xn<λ,λ∈R}是Σ内的一个无界区域.设,且U,V在上下半连续.若其中c(x)<0,且当|x|充分大时,c(x)则存在常数R0>0,使得若那么引理2[16] 设Ω⊂∑λ={x∈Rn|xn<λ}是有界狭窄区域,不失一般性,假设Ω包含在狭窄区域{x∈Rn|λ-l<xn<λ}中,l充分小.考虑方程组其中ci(x)≤0,i=1,2有界,在中下半连续.则当l充分小时,有对无界区域Ω,若U(x),V(x)→0, |x|→∞,式(3)仍成立.并且,若存在一点x0∈Ω,使得U(x0)=0或V(x0)=0,则基于狭窄区域原理,可以沿xn方向做移动平面,证明正解关于xn单调,从而得到以下结论.定理1 设(m>0)是方程(2)的正解,f(t)满足以下条件:(Ⅰ) 关于t单调增且Lipschitz连续;(Ⅱ).则u(x)≡0.为方便证明,采用以下记号.设Tλ={x∈Rn|xn=λ},Σλ={x∈Rn|xn<λ},且xλ={(x1,x2,…,2λ-xn)|x=(x1,x2,…,xn)∈Rn}是点x关于平面Tλ的对称点.定理1的证明令-Δu=v,则方程(2)可以写成如下两个方程:及设uλ(x)=u(xλ), Uλ(x)=uλ(x)-u(x), Vλ(x)=vλ(x)-v(x). 则有Step 1 证明当λ充分小时,有因为取引理2中的Ω为,则当λ充分小时,Ω为狭窄区域,且当λ固定时,当|x|→+∞时,|xλ|→+∞.从而由可知,u(x)→0, |x|→∞且uλ(x)→0, |x|→∞.所以当x∈Σλ时, 同理,可证则由引理2可得其中,c1(x)=-1, c2(x)=c(x).由f(x)为Lipschitz连续性,c2(x)是有界的,而f(x)的单增性保证了c2(x)≤0.Step 2 由式(4),从xn=0附近开始移动平面Tλ,只要Uλ(x)≥0, Vλ(x)≥0成立,则一直沿xn轴移动平面.定义接下来证明利用反证法.如若λ0<+∞,则必有由式(5)可知,平面xn=2λ0是边界关于平面Tλ0的对称平面.由边界条件及uλ0关于Tλ0的对称性知,在xn=2λ0上有u(x)=0,这与u(x)>0矛盾.从而λ0=+∞. 即方程正解u(x)关于变量xn单调增加.这与在无穷远处矛盾,从而方程无正解.现在证明式(5)成立.假设式(5)不成立,则由强极值原理,有则可以继续沿xn方向移动平面Tλ0,说明存在一个ε>0,使得∀λ∈[λ0,λ0+ε),有成立.这与λ0的定义矛盾,从而式(5)成立.接下来证明式(7)成立.假设式(7)不成立,即存在点,使得则从而存在一点,使得由条件(Ⅰ)、(Ⅱ)知,因此,c(x)满足引理1中的条件,从而存在R0,使得固定R0,则对任意小的δ>0,由式(6)知,存在常数C,使得即但由引理2知,在狭窄区域(Σλ\Σλ0-δ)∩BR0(0)内,矛盾,即式(7)成立.定理1证毕.E-mail:************LI Dongyan,CHEN Wenxiong.Nonexistence of positive solutions for higher order fractional Laplacians in an upper-half space[J].Basic Sciences Journal of Textile Universities,2017,30(1):18-22.【相关文献】[1] METZLER R,KLAFTER J.The random walk′s guide to anomalous diffusion:A fractional dynamics approach[J].Physics Reports-Review Section of Physics Letters,2000,339(1):1-77.[2] MELLET A,MISCHLER S,MOUHOT C.Fractional diffusion limit for collisional kinetic equations[J].Archive of Rational Mechanics and Analysis,2011,199(2):493-525.[3] CAFFARELLI L,VASSEUR A.Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation[J].Annals of Mathematics,2010,171(3):1903-1930.[4] CORDOBA D.Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation[J].Annals of Mathematics,1998,148(3):1135-1152.[5] BOUCHARD J P,GEORGES A.Anomalous diffusion in disordered media,statistical mechanics,models and physical applications[J].Physics Reports,1990,195(4/5):127-293. [6] TARASOV V,ZASLASVKY G.Fractional dynamics of systems with long-range interaction[J].Communications in Nonlinear Science & NumericalSimulation,2006,11(8):885-889.[7] APPLEBAUM D.L′evy processes and stochastic calculus[M].2ndedition.Cambridge:Cambridge University Press,2009.[8] CONT R,TANKOV P.Financial modelling with jump processes[M].Boca Raton:Chapman & Hall/CRC Financial Mathematics Series,2004.[9] ESPOSITO L,LEONETTI F,MINGIONE G.Sharp regularity for functionals with (p,q) growth[J].Journal of Differential Equations,2004,204(1):5-55.[10] MINGIONE G.Gradient potential estimates[J].Journal of the European Mathmatical Society,2011,13(2):459-486.[11] CAFFARELLI L,SILVESTRE L.An extension problem related to the fractional Laplacian[J].Communications in Partial Differential Equations,2007,32(8):1245-1260. [12] CHEN Wenxiong,LI Congming,LI Yan.A direct method of moving planes for thefractional Laplacian[J].Advances in Mathematics,2017,308:404-437.[13] ZHANG Lizhi.Symmetry of solutions to semilinear equations involving the fractional Laplacian[J].Communication on Pure and Applied Analysis,2015,14(6):2393-2409. [14] CHEN Wenxiong,FANG Yanqin,YANG Ray.Semilinear equations involving the fractional Laplacian on a half space[J].Advances in Mathematics,2015,274(8):167-198. [15] CHEN Wenxiong,LI Congming.A priori estimates for prescribing scalar curvature equations[J].Annals of Mathematics,1997,145(3):547-564.[16] ZHUO Ran,LI Yan.A Liouville theorem for the higher order fractionalLaplacian[J].arXiv:1609.04105[math.AP].。

放射物理单词

放射物理单词
the fluorescent yield:产生的荧光
vacancy:空的
favored:可能是拼错了
Auger:同锇歇电子
Fraction:部分
Isomer:同质异能素(质子数和中子数都同,核能态不同)
Enunciate:清晰讲述/解释等
Penetrate:穿过
Instructive:指导的
nitrogen 氮
Chapter 4 (2)
1. dosimetry 放射剂量学
2. tissue-air 组织
3. backscatter逆散射
4. depict 描述 描写
5. irradiate 辐射 照射
6. calibration 教标
7. dosimeter 放射剂量计
perturb 扰动 摄动
homogeneous 同类的, 相似的
photon 光子
negligible 可忽略的
perturbation 扰动 摄动
finite 有限的
geometry 几何
composite 组成
equivalent 等效
affix 词缀 使附于
bracket 括号
Cumulate:应该是 accumulate 积累
Hypothetical:假设
Exponentially:指数地
rectangle :长方形
dosage:剂量值
proportional: 正比的
vertical:垂直的
horizontal:水平的
intersection:交叉的
collision 碰撞
bremsstrahlung 轫致(辐射)

专业英语课文翻译

专业英语课文翻译

School of chemical engineering and pharmaceuticaltest tubes 试管test tube holder试管夹test tube brush 试管刷 test tube rack 试管架beaker烧杯 stirring搅拌棒 thermometer 温度计boiling flask长颈烧瓶Florence flask平底烧瓶flask,round bottom,two-neck boiling flask,three-neckconical flask锥形瓶 wide-mouth bottle广口瓶graduated cylinder量筒 gas measuring tube气体检测管volumetric flask容量瓶 transfer pipette移液管Geiser burette(stopcock)酸式滴定管funnel漏斗Mohr burette(with pinchcock)碱式滴定管watch glass表面皿 evaporating dish 蒸发皿 ground joint磨口连接 Petri dish有盖培养皿desiccators干燥皿long-stem funnel长颈漏斗 filter funnel 过滤漏斗Büchner funnel瓷漏斗separatory funnel分液漏斗Hirsh funnel赫尔什漏斗 filter flask 吸滤瓶Thiele melting point tube蒂勒熔点管plastic squeeze bottle塑料洗瓶 medicine dropper药用滴管rubber pipette bulb 吸球 microspatula 微型压舌板pipet吸量管 mortar and pestle 研体及研钵filter paper滤纸 Bunsen burner 煤气灯burette stand滴定管架 support ring 支撑环ring stand环架 distilling head 蒸馏头side-arm distillation flask侧臂蒸馏烧瓶air condenser空气冷凝器 centrifuge tube离心管fractionating column精(分)馏管Graham condenser蛇形冷凝器crucible坩埚crucible tongs坩埚钳beaker tong烧杯钳economy extension clamp经济扩展夹 extension clamp牵引夹utility clamp铁试管夹 hose clamp软管夹burette clamppinchcock;pinch clamp弹簧夹 screw clamp 螺丝钳ring clamp 环形夹goggles护目镜stopcock活塞wire gauze铁丝网analytical balance分析天平分析化学absolute error绝对误差 accuracy准确度assay化验analyte(被)分析物calibration校准constituent成分coefficient of variation变异系数confidence level置信水平detection limit检出限 determination测定estimation 估算equivalent point等当点 gross error总误差impurity杂质indicator指示剂interference干扰internal standard内标level of significance显着性水平 limit of quantitation定量限masking掩蔽matrix基体 precision精确度primary standard原始标准物 purity 纯度qualitative analysis定性分析quantitative analysis定量分析random error偶然误差 reagent试剂relative error相对误差 robustness耐用性sample样品relative standard deviation相对标准偏差selectivity选择性sensitivity灵敏度 specificity专属性titration滴定significant figure有效数字 solubility product溶度积standard addition标准加入法standard deviation标准偏差standardization标定法 stoichiometric point化学计量点systematic error系统误差有机化学acid anhydride 酸酐acyl halide 酰卤alcohol 醇aldehyde 醛aliphatic 脂肪族的alkene 烯烃alkyne炔allyl烯丙基amide氨基化合物amino acid 氨基酸aromatic compound 芳香烃化合物 amine胺butyl 丁基aromatic ring芳环,苯环 branched-chain支链 chain链carbonyl羰基carboxyl羧基chelate螯合chiral center手性中心conformers构象copolymer共聚物derivative 衍生物dextrorotatary右旋性的diazotization重氮化作用 dichloromethane二氯甲烷ester 酯 ethyl乙基 fatty acid脂肪酸functional group 官能团general formula 通式 glycerol 甘油,丙三醇 heptyl 庚基heterocyclie 杂环的hexyl 己基 homolog 同系物hydrocarbon 烃,碳氢化合物hydrophilic 亲水的hydrophobic 疏水的hydroxide 烃基ketone 酮levorotatory左旋性的 methyl 甲基molecular formula分子式monomer单体octyl辛基open chain开链opticalactivity旋光性(度)organic 有机的organic chemistry 有机化学organic compounds有机化合物 pentyl 戊基 phenol苯酚phenyl苯基polymer 聚合物,聚合体 propyl丙基ring-shaped环状结构zwitterion兼性离子saturated compound饱和化合物side chain 侧链straight chain 直链tautomer互变(异构)体structural formula结构式triglyceride甘油三酸脂unsaturated compound不饱和化合物物理化学activation energy活化能 adiabat绝热线amplitude振幅collision theory碰撞理论empirical temperature假定温度enthalpy焓 enthalpy of combustion 燃烧焓enthalpy of fusion熔化热 enthalpy of hydration水合热 enthalpy of reaction反应热enthalpy o f sublimation升华热enthalpy of vaporization汽化热entropy熵first law热力学第一定律 first order reaction一级反应free energy自由能 Hess’s law盖斯定律Gibbs free energy offormation吉布斯生成能heat capacity热容 internal energy内能isobar等压线 isochore等容线isotherm 等温线 kinetic energy动能 latent heat 潜能Planck’s constant普朗克常数potential energy势能quantum量子quantum mechanics量子力学rate law速率定律 specific heat比热 spontaneous自发的standard enthalpy change标准焓变standard entropy of reaction标准反应熵standard molar entropy标准摩尔熵standard pressure标压state function状态函数thermal energy热能thermochemical equation热化学方程式thermodynamic equilibrium热力学平衡uncertainty principle测不准定理zero order reaction零级反应zero point energy零点能课文词汇实验安全及记录:eye wash眼药水 first-aid kit急救箱gas line输气管safety shower紧急冲淋房 water faucet 水龙头flow chart流程图 loose leaf活页单元操作分类:heat transfer传热Liquid-liquid extraction液液萃取liquid-solid leaching过滤vapor pressure蒸气压membrane separation薄膜分离空气污染:carbon dioxide 二氧化碳carbon monoxide 一氧化碳particulate matter颗粒物质photochemical smog光化烟雾primary pollutants一次污染物secondary pollutants二次污染物stratospheric ozone depletion平流层臭氧消耗sulfur dioxide二氧化硫volcanic eruption火山爆发食品化学:amino acid氨基酸,胺 amino group氨基empirical formula实验式,经验式fatty acid脂肪酸peptide bonds肽键 polyphenol oxidase 多酚氧化酶salivary amylase唾液淀粉酶 steroid hormone甾类激素table sugar蔗糖 triacylglycerol三酰甘油,甘油三酯食品添加剂:acesulfame-K乙酰磺胺酸钾,一种甜味剂adrenal gland肾上腺ionizing radiation致电离辐射food additives食品添加剂monosodium glutamate味精,谷氨酸一钠(味精的化学成分) natural flavors天然食用香料,天然食用调料nutrasweet天冬甜素potassium bromide 溴化钾propyl gallate没食子酸丙酯sodium chloride氯化钠sodium nitraten硝酸钠 sodium nitrite亚硝酸钠trans fats 反式脂肪genetic food转基因食品food poisoning 食物中毒hazard analysis and critical control points (HACCP)危害分析关键控制点技术maternal and child health care妇幼保健护理national patriotic health campaign committee(NPHCC) 全国爱国卫生运动委员会 rural health农村卫生管理the state food and drug administration (SFDA)国家食品药品监督管理局光谱:Astronomical Spectroscopy天文光谱学Laser Spectroscopy激光光谱学Mass Spectrometry质谱Atomic Absorption Spectroscopy原子吸收光谱Attenuated Total Reflectance Spectroscopy衰减全反射光谱Electron Paramagnetic Spectroscopy电子顺磁谱Electron Spectroscopy电子光谱Infrared Spectroscopy红外光谱Fourier Transform Spectrosopy傅里叶变换光谱Gamma-ray Spectroscopy伽玛射线光谱Multiplex or Frequency-Modulated Spectroscopy复用或频率调制光谱X-ray SpectroscopyX射线光谱色谱:Gas Chromatography气相色谱High Performance Liquid Chromatography 高效液相色谱Thin-Layer Chromatography 薄层色谱magnesium silicate gel硅酸镁凝胶retention time保留时间mobile phase流动相stationary phase固定相反应类型:agitated tank搅拌槽 catalytic reactor 催化反应器batch stirred tank reactor间歇搅拌反应釜continuous stirred tank 连续搅拌釜exothermic reactions放热反应 pilot plant试验工厂fluidized bed Reactor流动床反应釜multiphase chemical reactions 多相化学反应packed bed reactor填充床反应器redox reaction氧化还原反应reductant-oxidant氧化还原剂 acid base reaction酸碱反应 additionreaction加成反应chemical equation化学方程式 valence electron价电子combination reaction化合反应hybrid orbital 杂化轨道decomposition reaction分解反应substitution reaction取代(置换)反应Lesson5 Classification of Unit Operations单元操作Fluid flow流体流动它涉及的原理是确定任一流体从一个点到另一个点的流动和输送。

THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS

THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS

1 6 10 18 24 27 32 40 45 49 54 58 67
2 FRACTIONAL INTEGRALS A N D FRACTIONAL DERIVATIVES 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 Riemann-Liouville Fractional Integrals and Fractional Derivatives Liouville Fractional Integrals and Fractional Derivatives on the HalfAxis Liouville Fractional Integrals and Fractional Derivatives on the Real Axis Caputo Fractional Derivatives Fractional Integrals and Fractional Derivatives of a Function with Respect to Another Function Erdelyi-Kober Type Fractional Integrals and Fractional Derivatives Hadamard Type Fractional Integrals and Fractional Derivatives . . Griinwald-Letnikov Fractional Derivatives Partial and Mixed Fractional Integrals and Fractional Derivatives Riesz Fractional Integro-Differentiation Comments and Observations

(完整版)统计学常用英语词汇

(完整版)统计学常用英语词汇

Absolute deviation, 绝对离差Absolute number,绝对数Absolute residuals,绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction,任意方向上的加速度Acceleration normal,法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential,切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator,自适应估计量Addition,相加Addition theorem,加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate,调整率Adjusted value,校正值Admissible error, 容许误差Aggregation,聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation,相关分析Analysis of covariance, 协方差分析Analysis Of Effects,效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance,方差分析Angular transformation, 角转换ANOV A (analysis of variance),方差分析ANOV A Models,方差分析模型ANOV A table and eta,分组计算方差分析Arcing,弧/弧旋Arcsine transformation,反正弦变换Area 区域图Area under the curve, 曲线面积AREG ,评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation,艾恩尼斯关系Assessing fit, 拟合的评估Associative laws,结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance,渐近方差Attributable risk,归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average,平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period,基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator,最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution,二项分布Bisquare, 双平方Bivariate Correlate,二变量相关Bivariate normal distribution,双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval,双权区间Biweight M—estimator, 双权M估计量Block,区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation,典型相关Caption, 纵标目Case—control study, 病例对照研究Categorical variable,分类变量Catenary, 悬链线Cauchy distribution,柯西分布Cause—and—effect relationship,因果关系Cell,单元Censoring,终检Center of symmetry, 对称中心Centering and scaling,中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error,随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root,特征根Characteristic vector, 特征向量Chebshev criterion of fit,拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test,卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value,组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling,整群抽样Code,代码Coded data,编码数据Coding, 编码Coefficient of contingency,列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation,多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation,积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness,偏度系数Coefficient of variation, 变异系数Cohort study,队列研究Column, 列Column effect,列效应Column factor, 列因素Combination pool,合并Combinative table, 组合表Common factor,共性因子Common regression coefficient, 公共回归系数Common value,共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability,可比性Comparison of bathes,批比较Comparison value,比较值Compartment model, 分部模型Compassion,伸缩Complement of an event,补事件Complete association,完全正相关Complete dissociation, 完全不相关Complete statistics,完备统计量Completely randomized design,完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity,凹性Conditional expectation,条件期望Conditional likelihood,条件似然Conditional probability, 条件概率Conditionally linear,依条件线性Confidence interval,置信区间Confidence limit,置信限Confidence lower limit,置信下限Confidence upper limit,置信上限Confirmatory Factor Analysis ,验证性因子分析Confirmatory research, 证实性实验研究Confounding factor,混杂因素Conjoint, 联合分析Consistency,相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution,污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table,列联表Contour, 边界线Contribution rate, 贡献率Control,对照Controlled experiments,对照实验Conventional depth, 常规深度Convolution,卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient,校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index,相关指数Correspondence,对应Counting, 计数Counts,计数/频数Covariance,协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio,临界比Critical region,拒绝域Critical value, 临界值Cross-over design,交叉设计Cross—section analysis, 横断面分析Cross-section survey,横断面调查Crosstabs ,交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability,累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting,曲线拟合Curvilinear regression,曲线回归Curvilinear relation, 曲线关系Cut—and-try method, 尝试法Cycle, 周期Cyclist,周期性D test, D检验Data acquisition,资料收集Data bank, 数据库Data capacity,数据容量Data deficiencies,数据缺乏Data handling,数据处理Data manipulation,数据处理Data processing, 数据处理Data reduction, 数据缩减Data set,数据集Data sources, 数据来源Data transformation, 数据变换Data validity,数据有效性Data-in,数据输入Data-out, 数据输出Dead time,停滞期Degree of freedom,自由度Degree of precision,精密度Degree of reliability,可靠性程度Degression,递减Density function,密度函数Density of data points, 数据点的密度Dependent variable,应变量/依变量/因变量Dependent variable, 因变量Depth,深度Derivative matrix, 导数矩阵Derivative—free methods,无导数方法Design, 设计Determinacy,确定性Determinant, 行列式Determinant, 决定因素Deviation,离差Deviation from average,离均差Diagnostic plot, 诊断图Dichotomous variable,二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT,判断Discriminant analysis, 判别分析Discriminant coefficient,判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional,不成比例的Disproportionate sub—class numbers,不成比例次级组含量Distribution free,分布无关性/免分布Distribution shape,分布形状Distribution—free method,任意分布法Distributive laws,分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method,双盲法Double blind trial,双盲试验Double exponential distribution,双指数分布Double logarithmic,双对数Downward rank,降秩Dual-space plot,对偶空间图DUD,无导数方法Duncan’s new multiple range method, 新复极差法/Duncan新法Effect,实验效应Eigenvalue,特征值Eigenvector,特征向量Ellipse, 椭圆Empirical distribution,经验分布Empirical probability, 经验概率单位Enumeration data,计数资料Equal sun—class number,相等次级组含量Equally likely, 等可能Equivariance, 同变性Error,误差/错误Error of estimate, 估计误差Error type I,第一类错误Error type II,第二类错误Estimand,被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance,欧式距离Event,事件Event,事件Exceptional data point, 异常数据点Expectation plane,期望平面Expectation surface,期望曲面Expected values, 期望值Experiment,实验Experimental sampling,试验抽样Experimental unit,试验单位Explanatory variable,说明变量Exploratory data analysis, 探索性数据分析Explore Summarize,探索-摘要Exponential curve,指数曲线Exponential growth,指数式增长EXSMOOTH, 指数平滑方法Extended fit,扩充拟合Extra parameter,附加参数Extrapolation,外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis,因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design,析因试验设计False negative,假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators,估计量族Fanning, 扇面Fatality rate,病死率Field investigation, 现场调查Field survey, 现场调查Finite population,有限总体Finite—sample, 有限样本First derivative, 一阶导数First principal component,第一主成分First quartile,第一四分位数Fisher information, 费雪信息量Fitted value,拟合值Fitting a curve,曲线拟合Fixed base,定基Fluctuation, 随机起伏Forecast,预测Four fold table,四格表Fourth,四分点Fraction blow, 左侧比率Fractional error,相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point,界限点Function relationship, 泛函关系Gamma distribution,伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯—牛顿增量General census,全面普查GENLOG (Generalized liner models),广义线性模型Geometric mean, 几何平均数Gini’s me an difference,基尼均差GLM (General liner models),通用线性模型Goodness of fit,拟和优度/配合度Gradient of determinant,行列式的梯度Graeco-Latin square,希腊拉丁方Grand mean,总均值Gross errors, 重大错误Gross-error sensitivity,大错敏感度Group averages,分组平均Grouped data,分组资料Guessed mean,假定平均数Half-life, 半衰期Hampel M—estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function,风险均数Hazard rate,风险率Heading, 标目Heavy—tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method,系统聚类法High—leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge,折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance,方差齐性Homogeneity test,齐性检验Huber M—estimators,休伯M估计量Hyperbola,双曲线Hypothesis testing,假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence,独立性Independent variable,自变量Index,指标/指数Indirect standardization, 间接标准化法Individual,个体Inference band, 推断带Infinite population,无限总体Infinitely great,无穷大Infinitely small,无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition,初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction,交互作用Interaction terms, 交互作用项Intercept,截距Interpolation,内插法Interquartile range,四分位距Interval estimation,区间估计Intervals of equal probability,等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix,逆矩阵Inverse probability, 逆概率Inverse sine transformation,反正弦变换Iteration,迭代Jacobian determinant, 雅可比行列式Joint distribution function,分布函数Joint probability, 联合概率Joint probability distribution,联合概率分布K means method, 逐步聚类法Kaplan—Meier, 评估事件的时间长度Kaplan—Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic,动力学Kolmogorov—Smirnove test,柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test,Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis,峰度Lack of fit,失拟Ladder of powers,幂阶梯Lag,滞后Large sample,大样本Large sample test,大样本检验Latin square, 拉丁方Latin square design,拉丁方设计Leakage,泄漏Least favorable configuration,最不利构形Least favorable distribution,最不利分布Least significant difference,最小显著差法Least square method, 最小二乘法Least—absolute—residuals estimates,最小绝对残差估计Least-absolute—residuals fit, 最小绝对残差拟合Least—absolute-residuals line,最小绝对残差线Legend,图例L-estimator, L估计量L-estimator of location,位置L估计量L-estimator of scale,尺度L估计量Level,水平Life expectance, 预期期望寿命Life table, 寿命表Life table method,生命表法Light—tailed distribution,轻尾分布Likelihood function,似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation,直线相关Linear equation, 线性方程Linear programming,线性规划Linear regression,直线回归Linear Regression,线性回归Linear trend, 线性趋势Loading,载荷Location and scale equivariance, 位置尺度同变性Location equivariance,位置同变性Location invariance,位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution,对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function,损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance,最小可达方差LSD,最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function,边缘密度函数Marginal probability,边缘概率Marginal probability distribution,边缘概率分布Matched data,配对资料Matched distribution,匹配过分布Matching of distribution,分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model,数学模型Maximum L-estimator,极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group,组内均方Means (Compare means),均值—均值比较Median, 中位数Median effective dose,半数效量Median lethal dose, 半数致死量Median polish,中位数平滑Median test, 中位数检验Minimal sufficient statistic,最小充分统计量Minimum distance estimation,最小距离估计Minimum effective dose,最小有效量Minimum lethal dose,最小致死量Minimum variance estimator,最小方差估计量MINITAB, 统计软件包Minor heading,宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics ,模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration,最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions,多解Multiplication theorem, 乘法定理Multiresponse,多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution,多元T分布Mutual exclusive, 互不相容Mutual independence,互相独立Natural boundary,自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation,负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman—Keuls method, q检验NK method, q检验No statistical significance,无统计意义Nominal variable,名义变量Nonconstancy of variability,变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test,非参数检验Nonparametric tests,非参数检验Normal deviate,正态离差Normal distribution,正态分布Normal equation,正规方程组Normal ranges,正常范围Normal value,正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable,数值变量Objective function,目标函数Observation unit,观察单位Observed value, 观察值One sided test,单侧检验One—way analysis of variance,单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories,有序分类Ordinal logistic regression ,序数逻辑斯蒂回归Ordinal variable,有序变量Orthogonal basis,正交基Orthogonal design,正交试验设计Orthogonality conditions,正交条件ORTHOPLAN, 正交设计Outlier cutoffs,离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot,迭代过度Paired design, 配对设计Paired sample,配对样本Pairwise slopes,成对斜率Parabola,抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression,偏回归Partial sorting,偏排序Partials residuals,偏残差Pattern,模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph,百分条形图Percentage, 百分比Percentile,百分位数Percentile curves,百分位曲线Periodicity,周期性Permutation,排列P-estimator, P估计量Pie graph,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar,平坦Planar assumption, 平面的假设PLANCARDS,生成试验的计划卡Point estimation,点估计Poisson distribution,泊松分布Polishing,平滑Polled standard deviation,合并标准差Polled variance, 合并方差Polygon,多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population,总体Population attributable risk, 人群归因危险度Positive correlation,正相关Positively skewed,正偏Posterior distribution,后验分布Power of a test, 检验效能Precision, 精密度Predicted value,预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability,先验概率Probabilistic model,概率模型probability,概率Probability density,概率密度Product moment, 乘积矩/协方差Profile trace,截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate,成比例Proportionate sub—class numbers,成比例次级组含量Prospective study,前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma,伪标准差Purposive sampling,有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method,定性方法Quantile—quantile plot, 分位数—分位数图/Q-Q图Quantitative analysis,定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort,基数排序Random allocation,随机化分组Random blocks design,随机区组设计Random event,随机事件Randomization,随机化Range,极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test,秩检验Ranked data,等级资料Rate, 比率Ratio,比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators,回降估计量Reducing dimensions, 降维Re—expression,重新表达Reference set,标准组Region of acceptance,接受域Regression coefficient,回归系数Regression sum of square,回归平方和Rejection point,拒绝点Relative dispersion,相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication,重复Report Summaries, 报告摘要Residual sum of square,剩余平方和Resistance, 耐抗性Resistant line,耐抗线Resistant technique,耐抗技术R—estimator of location,位置R估计量R-estimator of scale, 尺度R估计量Retrospective study,回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row,行Row effects, 行效应Row factor,行因素RXC table, RXC表Sample,样本Sample regression coefficient,样本回归系数Sample size,样本量Sample standard deviation,样本标准差Sampling error,抽样误差SAS(Statistical analysis system ), SAS 统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot,示意图/简图Score test, 计分检验Screening, 筛检SEASON,季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi—logarithmic graph, 半对数图Semi-logarithmic paper,半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis,贯序分析Sequential data set, 顺序数据集Sequential design,贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests,系列试验Short—cut method, 简捷法Sigmoid curve, S形曲线Sign function,正负号函数Sign test,符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure,有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression,简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix,奇异矩阵Skewed distribution,偏斜分布Skewness, 偏度Slash distribution,斜线分布Slope,斜率Smirnov test,斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation,斯皮尔曼等级相关Specific factor,特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution,球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation,假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation,标准差Standard error, 标准误Standard error of difference,差别的标准误Standard error of estimate,标准估计误差Standard error of rate, 率的标准误Standard normal distribution,标准正态分布Standardization, 标准化Starting value,起始值Statistic,统计量Statistical control, 统计控制Statistical graph,统计图Statistical inference, 统计推断Statistical table,统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor,步长因子Stepwise regression, 逐步回归Storage,存Strata,层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength,强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub—class numbers, 次级组含量Subdividing, 分割Sufficient statistic,充分统计量Sum of products, 积和Sum of squares,离差平方和Sum of squares about regression,回归平方和Sum of squares between groups,组间平方和Sum of squares of partial regression, 偏回归平方和Sure event,必然事件Survey,调查Survival,生存分析Survival rate, 生存率Suspended root gram,悬吊根图Symmetry, 对称Systematic error,系统误差Systematic sampling,系统抽样Tags,标签Tail area,尾部面积Tail length, 尾长Tail weight,尾重Tangent line,切线Target distribution, 目标分布Taylor series,泰勒级数Tendency of dispersion,离散趋势Testing of hypotheses,假设检验Theoretical frequency, 理论频数Time series,时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion,扰率Total sum of square,总平方和Total variation,总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method,试错法Tuning constant,细调常数Two sided test, 双向检验Two-stage least squares,二阶最小平方Two—stage sampling, 二阶段抽样Two—tailed test,双侧检验Two-way analysis of variance,双因素方差分析Two—way table,双向表Type I error, 一类错误/α错误Type II error,二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate,无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data,不分组资料Uniform coordinate,均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit,单元Unordered categories,无序分类Upper limit, 上限Upward rank,升秩Vague concept,模糊概念Validity, 有效性VARCOMP (Variance component estimation),方差元素估计Variability,变异性Variable,变量Variance, 方差Variation, 变异Varimax orthogonal rotation,方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution,威布尔分布Weight, 权数Weighted Chi—square test,加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square,加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W—estimation, W估计量W—estimation of location,位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value,野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden’s index, 尤登指数Z test, Z检验Zero correlation, 零相关Z—transformation, Z变换。

对分数阶扩散方程的紧致差分方法

对分数阶扩散方程的紧致差分方法

Article history: Received 28 April 2009 Received in revised form 17 July 2009 Accepted 23 July 2009 Available online 3 August 2009 MSC: 65M06 65M12 65M15 35Q51 35Q53 78M20 Keywords: Fractional diffusion equation Finite difference Compact scheme Padé approximant Stability Convergence Fourier analysis
Journal of Computational Physics 228 (2009) 7792–7804

Contents lists available at ScienceDirect
Journal of Computational Physics
journal homepage: /locate/jcp
E-mail address: mrcui@ 0021-9991/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jcp.2009.07.021
M.R. Cui / Journal of Computational Physics 228 (2009) 7792–7804
1. Introduction Fractional differential equations (FDEs) have attracted increasing attention because they have applications in various fields of science and engineering. For example, they can describe many physical and chemical processes, biological systems, etc. The main physical purpose for investigating diffusion equations of fractional order is to describe phenomena of anomalous diffusion in transport processes through complex and/or disordered systems including fractal media, and fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion, see, for example, the excellent review paper [1]. An overview of the basic theory of fractional differentiation, fractional-order differential equations, methods of their solution and applications can be found in the book [2]. There have been several numerical methods proposed for solving the space and/or time FDEs up to now. Lynch et al. [3] developed two numerical schemes, one explicit and another one semi-implicit, for solving the transport problem with anomalous diffusion modeled by a partial differential equation of fractional order. Meerschaert and Tadjeran [4] studied the onedimensional radial flow model, they found that the fractional derivative describes more accurately the early arrival that cannot be explained by the classical advection–dispersion equations and they presented an implicit Euler method, based on a

微积分介值定理的英文

微积分介值定理的英文

微积分介值定理的英文The Intermediate Value Theorem in CalculusCalculus, a branch of mathematics that has revolutionized the way we understand the world around us, is a vast and intricate subject that encompasses numerous theorems and principles. One such fundamental theorem is the Intermediate Value Theorem, which plays a crucial role in understanding the behavior of continuous functions.The Intermediate Value Theorem, also known as the Bolzano Theorem, states that if a continuous function takes on two different values, then it must also take on all values in between those two values. In other words, if a function is continuous on a closed interval and takes on two different values at the endpoints of that interval, then it must also take on every value in between those two endpoint values.To understand this theorem more clearly, let's consider a simple example. Imagine a function f(x) that represents the height of a mountain as a function of the distance x from the base. If the function f(x) is continuous and the mountain has a peak, then theIntermediate Value Theorem tells us that the function must take on every height value between the base and the peak.Mathematically, the Intermediate Value Theorem can be stated as follows: Let f(x) be a continuous function on a closed interval [a, b]. If f(a) and f(b) have opposite signs, then there exists a point c in the interval (a, b) such that f(c) = 0.The proof of the Intermediate Value Theorem is based on the properties of continuous functions and the completeness of the real number system. The key idea is that if a function changes sign on a closed interval, then it must pass through the value zero somewhere in that interval.One important application of the Intermediate Value Theorem is in the context of finding roots of equations. If a continuous function f(x) changes sign on a closed interval [a, b], then the Intermediate Value Theorem guarantees that there is at least one root (a value of x where f(x) = 0) within that interval. This is a powerful tool in numerical analysis and the study of nonlinear equations.Another application of the Intermediate Value Theorem is in the study of optimization problems. When maximizing or minimizing a continuous function on a closed interval, the Intermediate Value Theorem can be used to establish the existence of a maximum orminimum value within that interval.The Intermediate Value Theorem is also closely related to the concept of connectedness in topology. If a function is continuous on a closed interval, then the image of that interval under the function is a connected set. This means that the function "connects" the values at the endpoints of the interval, without any "gaps" in between.In addition to its theoretical importance, the Intermediate Value Theorem has practical applications in various fields, such as economics, biology, and physics. For example, in economics, the theorem can be used to show the existence of equilibrium prices in a market, where supply and demand curves intersect.In conclusion, the Intermediate Value Theorem is a fundamental result in calculus that has far-reaching implications in both theory and practice. Its ability to guarantee the existence of values between two extremes has made it an indispensable tool in the study of continuous functions and the analysis of complex systems. Understanding and applying this theorem is a crucial step in mastering the powerful concepts of calculus.。

精选数理化学科常考英文词汇

精选数理化学科常考英文词汇

精选数理化学科常考英文词汇work Information Technology Company.2020YEAR数理化学科常考英文词汇汇总数学(107个):词汇释义assume that 假设approximation 近似,近似值absolute value 绝对值acute 锐(角)adjacent angle 邻角alternate angles 内错角angle 角area 面积arithmetic sequence 等差数列assumption 假设asymptote 渐近线at random 随机地average 平均的axis 轴base 底面,底数be inscribed in 内接于binomial 二项式circle 圆circumference 周长clockwise 顺时针的common difference (等差数列的)公差common divisor 公约数common ratio (等比数列的)公比common multiple 公倍数composite number 合数cone 圆锥congruent 全等的constant 不变的;常数coordinate 坐标cube 立方体cube root 立方根cylinder 圆柱体decimal 小数diagonal 对角线digit 数字,位divide 除divisible 可整除的domain 定义域eccentricity 离心率elipse 椭圆equilateral 等边的even 偶的exponent 指数fraction 分数function 函数geometric sequence 等比数列hyperbola 双曲线inequality 不等式infinite 无穷的integer 整数intercept 截距interior angle 内角intersect 相交irrational number 无理数isosceles 等腰的major axis 长轴mean 平均数median 中数minor axis 短轴minus 减mode 众数multiply 乘negative 负的number line 数轴obtuse 钝(角)odd 奇的origin of coordinates 原点parallel 平行的parallelogram 平行四边形perimeter 周长perpendicular 垂直的plus 加polynomial 多项式positive 正的prime number 质数probability 概率product 积proportion 比例quadruple 四倍的quotient 商radian 弧度radius 半径range 值域rational number 有理数reciprocal 倒数rectangle 矩形right 直(角)scalene 不等边的,不等边三角形section 截面sector 扇形segment 线段similar 相似的slope 斜率sphere 球体square 正方形square root 平方根standard deviation 标准差sum 和tangent 相切term 项translate 移动trapezoid 梯形triangle 三角形triple 三倍value 值vector 矢量vertex 顶点物理(127个)词汇释义acceleration 加速度anion 阴离子ammeter 安培表amplitude 振幅band 条,带bar 条,带bombard 轰击cation 阳离子capacitor 电容centripetal force 向心力circuit 电路coherent 相干的coil 线圈collision 碰撞comet 彗星convection 对流converging lens 凸透镜coulomb 库仑critical angle 临界角decay 衰变deflecte 偏转density 密度diffraction 衍射dilation 伸长diminish 减小discrete 离散的,不连续的diverge 分开,分岔diverging lens 凹透镜elastic 弹性的electric generator 发电机electric motor 电动机electromotive force(e.m.f.) 电动势elctron capture 电子捕获emission 散发,发射entropy 熵estimate 估计excited state 激发态exert 施加expansion 膨胀fiber optic 光导纤维focal length 焦距spring(or force) constant (弹簧的)倔强系数frequency 频率frictionless 光滑无摩擦的gravity 重力ground state 基态half-life 半衰期halve 减半的horizontal 水平的hydraulic jack 液压千斤顶impinge 撞击incident ray 入射光index of refraction 折射率induction current 感应电流inertia 惯性initial 初始的interference 干涉internal 内部的isotope 同位素kinetic energy 动能latent heat 潜热lever 杠杆longitudinal wave 纵波magnetic 磁的magnetic flux 磁通量magnify 扩大magnitude 大小mass 质量matter wave 物质波moment 力矩momentum 动量negligible 可忽略的neutron 中子nuclear fission 核裂变nuclear fusion 核聚变optic 光学的oscillate 振动,摇摆parabola 抛物线parallel 并联particle 粒子pendulum 钟摆permanent 永久的photon 光子pitch 音高polarization 偏振positron 正电子potential energy 势能power 功率propagation 传播proton 质子pulley 滑轮radioactive 放射性refracte 折射relativity 相对性resistor 电阻rest 静止revolution 一周rigid 刚性的scalar 标量semiconductor 半导体series 串联sign (电量等的)符号simple harmonic motion 简谐运动simultaneously 同时地slit 狭缝solenoid 螺线管spectrum 光谱,波谱speed 速率sphere 球体spring 弹簧standing wave 驻波superconductor 超导体superimpose 叠加tesla 特斯拉(磁强单位)thermal 热量的thermodynamics 热力学torque 转矩,扭矩total reflection 全反射transition 跃迁transverse wave 横波uniform 均匀的velocity 速度virtual image 虚像voltage 电压voltmeter 电压表wavelength 波长wave-particle duality 波粒二象性化学(156个):词汇释义acid 酸activated complex 活化络合物activation energy 活化能aggregate 聚合alkali metals 碱金属alkaline earth metals 碱土金属alkane 烷烃alkene 烯烃alkyne 炔烃allotropy 同素异形体alloy 合金aluminum 铝ammonia 氨amorphous 非晶体amphoteric 两性的anode 阳极anomalous 不规则的aqueous 水溶液argon 氩Avogadro's law 阿佛加德罗定律barium 钡bauxite 铝土矿bleaching 漂白bond 键boron 硼brass 黄铜bromine 湨buret 滴定管calcium 钙calory 卡路里carbohydrate 碳水化合物carbon dioxide 二氧化碳carbon monoxide 一氧化碳carbonate 碳酸盐carboxylic acid 羧酸catalyst 催化剂cathode reaction 阴极反应cellulose 纤维素chlorine 氯chromium 铬coefficient 系数combination reaction 化合反应combustion 燃烧composition 组成compound 化合物concentrated 浓的concentration 浓度condensation 冷凝covalent bond 共价键cracking 裂解crude oil 原油crystal 晶体deoxyribose 脱氧核糖diatomic molecule 双原子分子diffusion 扩散dilute 稀的displacement reaction 置换反应distillation 蒸馏double bonds 双键dynamic equilibrium 动态平衡electrolysis 电解elcetrolyte 电解质electronic configuration 电子排布element 元素empirical formula 经验式endothermic 吸热的enthalpy 焓erosion 腐蚀ethanoic acid 乙酸ethanol 乙醇ethene 乙烯evaporation 蒸发exothermic 放热的extraction 提炼filtering 过滤flame test 焰色反应fluorine 氟fractional distillation 分馏freezing point 凝固点glucose 葡萄糖glycogen 糖原graphite 石墨greenhouse effect 温室效应Haber process 哈伯法(制氨)halogen 卤素helium 氦homologous series 同系物hydrocarbon 烃hydrogen 氢hydrogen chloride 氯化氢hydrogen peroxide 过氧化氢hydronium ion 水合氢离子hydroxide 氢氧根indicator 指示剂iodine 碘isomerism 同素异形体le Chatelier's principle 勒沙特列原理lead 铅limestone 石灰石linear 直线的lipid 脂质,类脂lithium 锂litmus 石蕊magnesium 镁metalloid 类金属methane 甲烷methanoic acid 甲酸methanol 甲醇monomer 单体neon 氖neutralization 中和nickel 镍nitrate 硝酸盐nitric acid 硝酸nitrogen 氮noble gases 稀有气体oxide 氧化物oxidation agent 氧化剂ozone 臭氧periodic table 元素周期表permanganate 高锰酸petroleum 石油phenolphthalein 酚酞phosphorus 磷planar 平面的platinum 铂polar 极性的polymer 聚合物potassium 钾precipitation 沉淀propane 丙烷propanoic acid 丙酸propanol 丙醇propene 丙烯pure substance 纯净物reactive 活泼的redox 氧化还原reducing agent 还原剂reversible reaction 可逆反应shared paris of electrons 共用电子对silicon 硅sodium钠solvent 溶剂starch 淀粉sublime 升华sulphate 硫酸盐sulphur 硫sulphuric acid 硫酸suspension 悬浮液tetrahedral 四面体titration 滴定torr 托耳(压强单位)triple bonds 三键van der Waals' force 范德华力volatile 易挥发的zinc 锌11。

fractional diffusion equations

fractional diffusion equations

Weighted average finite difference methods forfractional diffusion equationsS.B.Yuste *Departamento de Fı´sica,Universidad de Extremadura,Avda Elvas s/n,E-06071Badajoz,Spain Received 28September 2005;received in revised form 30November 2005;accepted 2December 2005Available online 18January 2006AbstractA class of finite difference methods for solving fractional diffusion equations is considered.These methods are an exten-sion of the weighted average methods for ordinary (non-fractional)diffusion equations.Their accuracy is of order (D x )2and D t ,except for the fractional version of the Crank–Nicholson method,where the accuracy with respect to the timestep is of order (D t )2if a second-order approximation to the fractional time-derivative is used.Their stability is analyzed by means of a recently proposed procedure akin to the standard von Neumann stability analysis.A simple and accurate sta-bility criterion valid for different discretization schemes of the fractional derivative,arbitrary weight factor,and arbitrary order of the fractional derivative,is found and checked numerically.Some examples are provided in which the new meth-ods’numerical solutions are obtained and compared against exact solutions.Ó2006Elsevier Inc.All rights reserved.PACS:02.70.BfKeywords:Fractional diffusion equation;von Neumann stability analysis;Finite difference methods;Anomalous diffusion1.IntroductionThe number of scientific and engineering problems involving fractional calculus is already very large and still growing.The applications range from control theory to transport problems in fractal structures,from relaxation phenomena in disordered media to anomalous reaction kinetics of subdiffusive reagents [1–4].Recently,fractional diffusion equations have been proposed to describe subdiffusive anomalous transport in the presence of an external field [3–6],ion channel gating dynamics in some proteins [7],tumor development[8],and dynamics of interfaces between nanoparticles and substrates [9],to name just a few.All these devel-opments have stimulated the study of fractional differential equations,a topic that had for many years been a relatively arcane field of mathematics.0021-9991/$-see front matter Ó2006Elsevier Inc.All rights reserved.doi:10.1016/j.jcp.2005.12.006*Tel.:+34924289529;fax:+34924289651.E-mail address:santos@unex.es .URL:http://www.unex.es/eweb/fisteor/santos/sby.html.The fractional diffusion equation for the force-free case is usually written in the following way[3,10–12]:o o t uðx;tÞ¼K0D1Àcto2o x2uðx;tÞ;ð1Þwhere0D1Àctis the fractional derivative defined by the Riemann–Liouville operator,0D1ÀctfðtÞ¼1CðcÞoo tZ td sfðsÞðtÀsÞ;ð2ÞK is the diffusion coefficient and c2(0,1)is the anomalous diffusion exponent.The process is called subdif-fusive becauseh x2ðtÞi$2KCð1þcÞt c;t!1ð3Þis the mean square displacement of a diffusive particle whose probability distribution is governed by(1),so that,when0<c<1,the diffusion is anomalously slow(subdiffusive)compared to the normal diffusion behav-ior,Æx2(t)æµt.There are many analytical techniques for dealing with these fractional equations[3,4,13].But,as also happens with ordinary(non-fractional)partial differential equations,in many cases the initial condition, the boundary conditions,and/or the external force are such that the only reasonable option is to resort to numerical methods.However,although there have been an increasing number of works on this topic during the last few years[14–27],thisfield of applied mathematics is by far much less developed and under-stood than its non-fractional counterpart.Many of the numerical methods for solving fractional partial dif-ferential equations that have been proposed differ essentially in the way in which the normal and fractional derivatives are ually,the ordinary time-derivative o u/o t is discretized using the backward Euler formula and the fractional derivative is discretized by means of convolution formulae[28],so that the resulting methods are implicit[14–19].However,the method proposed in[27]is explicit because o u/ o t is discretized using the forward Euler formula.Another explicit method is discussed in Refs.[20,21], but for a fractional diffusion equation formally different from the one considered in this paper,Eq.(1). The fractional equations in[22,24,25]are also different from Eq.(1)because the fractional derivatives con-sidered in those papers are spatial derivatives.The recent paper by Langlands and Henry[26]is special in the sense that the time fractional derivative is approximated using the L1scheme instead of one of the usual convolution formulae[28].This paper considers a class of numerical methods for solving fractional partial differential equations, which are very close to the weighted average(WA)methods for ordinary(non-fractional)partial differential equations.The fractional explicit method discussed in[27]is a member of this class.The explicit method is particularly interesting because its simplicity makes it well suited to theoretical approaches.Also,it can be trivially extended to d-dimensional problems,which is not such an easy task when implicit methods are con-sidered.However,as also happens with its non-fractional counterpart,it has the problem that the integra-tion timestep must be very small even for not too small values of the spatial mesh for the algorithm to be stable.This problem is especially acute far from the normal diffusion regime,i.e.,for small values of c,in which case the number of steps needed to reach even moderate times may become prohibitively large.For-tunately,we will see that some of the fractional WA methods proposed in this paper do not suffer from this drawback.No numerical algorithm can be considered seriously unless conditions under which it is stable,if any,are not stated.To study the stability of the WA methods presented in this paper I have resorted to the kind of fractional von Neumann stability analysis employed in Ref.[27].I will show that this procedure is also suitable for fractional WA methods,and leads to very good predictions for the stability bounds.The plan of the paper is as follows.In Section2some fractional formulae and,in particular,some discrete versions of the fractional derivative are given.The fractional weighted averaged methods are developed,and their stability and accuracy are discussed in Section3.Numerical solutions and exact analytical solutions of a typical fractional diffusion problem are compared in Section4.The stability condition obtained in Section3is also checked numerically in Section4.The paper ends with some conclusions and remarks in Section5.S.B.Yuste/Journal of Computational Physics216(2006)264–2742652.Discretization formulaeIn finite difference methods the space-time solution’s domain is discretized.I shall use the habitual notation:D t is the temporal mesh or timestep,D x is the spatial mesh,the coordinates of the mesh points are x j =j D xand t m =m D t ,and the values of the solution u (x ,t )on these grid points are u ðx j ;t m Þ u ðm Þj ’U ðm Þj ,where I denote by U ðm Þj the numerical estimate of the exact value of u (x ,t )at the point (x j ,t m ).Two main steps are considered to build the fractional WA difference schemes.In the first step,the ordinary differential operators are discretized using three-point centered difference formulae [29,30]o u o t x j ;t m þD t =2¼d t u ðm þ1=2Þj þO ðD t Þ2;ð4Þwhered t u ðm þ1=2Þj u ðm þ1Þj Àu ðm ÞjD t ð5Þando 2u o x 2 x j ;t m¼d xx u ðm Þj þO ðD x Þ2ð6Þwithd xx u ðm Þj u ðm Þj À1À2u ðm Þj þu ðm Þj þ1ðD x Þ.ð7ÞIn the second step,the Riemann–Liouville operator is discretized0D 1Àc t u ðx ;t Þ x j ;t m¼0d 1Àc t u ðm Þj þO ðh p Þ;ð8Þwhere0d 1Àc t u ðm Þj ¼1h X ½t m =h k ¼0x ð1Àc Þk u ðx j ;t m Àkh Þð9Þand [t m /h ]means the integer part of t m /h .This expression can be conveniently written in terms of u (x ,t )eval-uated at the grid points if one chooses h =D t0d 1Àc t u ðm Þj ¼1ðD t Þð1Àc ÞX m k ¼0x ð1Àc Þk u ðm Àk Þj .ð10ÞThis formula is not unique because there are many different valid choices for x ða Þk [28,31].Let x (z ,a )be the generating function of the coefficients x ða Þk ,i.e.,x ðz ;a Þ¼X 1k ¼0x ða Þk z k .ð11ÞIf the generating function isx ðz ;a Þ¼ð1Àz Þa ð12Þthen (10)leads to the backward difference formula of order p =1(BDF1).This is also called the backward Euler formula of order 1or,simply the Gru ¨nwald–Letnikov formula.The corresponding coefficients x ða Þk ¼ðÀ1Þk a k can be conveniently evaluated by means of the recursive formulae x ða Þ0¼1;x ða Þk ¼1Àa þ1kx ða Þk À1.ð13Þ266S.B.Yuste /Journal of Computational Physics 216(2006)264–274The generating function for the backward difference formula of order p=2(BDF2)isxðz;aÞ¼32À2zþ12z2að14Þand the generating function for the backward difference formula of order p=3(BDF3)isxðz;aÞ¼116À3zþ32z2À13z3a.ð15ÞGenerating functions for higher-order BDF formulae(and other types of discretization formulae such as the Newton–Gregory)can be found in[28,31].The BDF formulae of order p reduce to the usual(p+1)-point backward difference quotient when a=1.For c=1the operator0D1Àct becomes the identity operator so that,the consistency of Eqs.(8)and(9)requires xð0Þ0¼1,and xð0Þk¼0for k P1,which in turns means that x(z,0)=1.One can easily check that thisis true for all the generating functions given above.The coefficients xðaÞk for BDF p formulae with p P2can be calculated using fast Fourier transforms[31].Itis important to note that the error estimate given in(8)is valid only if either t/h)1[31]or u(x,t)is sufficiently smooth at the time origin t=0[32].It is also important to realize that,as Diethelm et al.[33]have shown,the p th order fractional BDF when p P2may‘‘work reasonably well for special choices of c and moderately small step sizes,but in the general situation serious problems may be expected’’.3.Fractional weighted average methodsIn a weighted average method the diffusion equation(1)evaluated at the intermediate(off-lattice)point of the grid(x j,t m+D t/2)o o t uðx;tÞÀK0D1Àcto2o x2uðx;tÞx j;t mþD t=2¼0ð16Þis approximated by means of difference formulae that involve u(x,t)evaluated at the lattice points(x j,t m).The first-order time-derivative is replaced by the three-point centered formula(4)and the second-order space derivative is replaced by a weighted average of the three-point centered formula(6)evaluated at the times t m and t m+1d t uðmþ1=2Þj Àk K0d1Àctd xx uðmÞjþð1ÀkÞK0d1Àctd xx uðmþ1Þjh i¼T mþ1=2jð17Þwith k being the weight factor.Of course,the above replacements give rise to an error,the truncation error,denoted here by T mþ1=2j .Its value will be discussed in Section3.2.Neglecting the truncation error,one gets a computable difference schemed t Uðmþ1=2Þj Àk K0d1Àctd xx UðmÞjþð1ÀkÞK0d1Àctd xx Uðmþ1Þjh i¼0ð18Þthat I call the fractional weighted average difference scheme.Expanding the difference operators by using Eqs.(5),(7),and(10),one getsÀe SUðmþ1ÞjÀ1þð1þ2e SÞUðmþ1ÞjÀe SUðmþ1Þjþ1¼R;ð19aÞwhere e S¼ð1ÀkÞxð1ÀcÞS,S¼K ðD tÞcðD xÞ2;ð19bÞandR¼UðmÞjþSX mk¼0ð1ÀkÞxð1ÀcÞkþ1þkxð1ÀcÞkh iUðmÀkÞjÀ1À2UðmÀkÞjþUðmÀkÞjþ1h i.ð19cÞS.B.Yuste/Journal of Computational Physics216(2006)264–274267Eq.(19)is the fractional weighted average difference scheme considered in this paper.This scheme is,in gen-eral,implicit.Fortunately,Eq.(19a)is a tridiagonal system that can be easily solved using the Thomas algo-rithm[29,30].The scheme is explicit when k=1.Indeed,for this value of k,one recovers the explicit method discussed in Ref.[27].For k=0the WA methods are called fully implicit.When k=1/2one gets the frac-tional version of the Crank–Nicholson method.3.1.Stability analysisOrdinary WA methods are well-known and quite usefulfinite difference methods with well established sta-bility conditions[29]:they are stable for all S when06k61/2,and for S61/[2(2kÀ1)]when1/2<k61. The purpose of this section is tofind a generalization of these stability conditions for the fractional weighted averaged methods given by Eq.(19).In[27]a novel method was used to decide the stability of the fractional explicit scheme.The stability bounds were surprisingly accurate and easy tofind.Thus,a natural question is whether the new stability procedure is able to cope with the general fractional difference scheme(19).We will see in this section that the answer is yes.This kind of von Neumann stability analysis has also been employed recently in Ref.[26].In the(fractional)von Neumann stability procedure,the stability of the fractional WA methods is decided by studying the stability of a single generic subdiffusive mode of the form UðmÞj¼f m e i qj D x.Inserting this expres-sion into the WA difference scheme(19)one gets1þ4ð1ÀkÞS xð1ÀcÞ0sin2q D x2f mþ1¼f mÀ4S sin2q D x2X mr¼0ð1ÀkÞxð1ÀcÞrþ1þkxð1ÀcÞrh if mÀr.ð20ÞThe stability of the mode is determined by the behavior of f m.In the von Neumann method,the stability anal-ysis is carried out using the amplification factor n defined byf mþ1¼nf m.ð21ÞOf course,n depends on m.But let us assume for the moment that,as in Ref.[27],n is independent of time. Then,inserting this expression into Eq.(20)one gets1þ4ð1ÀkÞS xð1ÀcÞ0sin2q D x2n¼1À4S sin2q D x2X mr¼0ð1ÀkÞxð1ÀcÞrþ1þkxð1ÀcÞrh inÀr.ð22ÞThe mode will be stable as long as|n|61.Considering the time-independent limit value n=À1onefinds that the mode is stable when1S sinðq D x=2ÞP1SÂm;ð23Þwhere1 SÂm 2ð2kÀ1ÞX mr¼0ðÀ1Þr xð1ÀcÞrþðÀ1Þm2ðkÀ1Þxð1ÀcÞmþ1.ð24ÞAlthough SÂm depends on m,it turns out that1=SÂmtends quickly towards its limit value1=S lim m!11=SÂm.In this limit,the stability condition becomes1 S Psin2ðq D x=2ÞSÂ.ð25ÞWhen k¼1/2,one can write S·in terms of the generating function x(z,1Àc)of the coefficients xð1ÀcÞm 1S¼2ð2kÀ1ÞxðÀ1;1ÀcÞ.ð26ÞNote that x(À1,1Àc)is always positive(see Section2).Because(26)is negative when k<1/2,then(25)holds for all S[S is always positive,see(19b)].Therefore,any WA method with k<1/2is stable.However,1/S·is 268S.B.Yuste/Journal of Computational Physics216(2006)264–274positive andfinite when k>1/2,so that Eq.(25)tells us that,for any WA method with k>1/2,there alwaysexist values of S for which this WA method is unstable.Finally,from Eq.(24),1=SÂm ¼ðÀ1Þm2ðkÀ1Þxð1ÀcÞmþ1ifk=1/2(Crank–Nicholson method).But xð1ÀcÞm !0for m!1so that1/S·=0,and one concludes from Eq.(25)that the fractional Crank–Nicholson method is stable for allfinite S.Proceeding as usual in the von Neumann method,one can write a simpler and more conservative stability criterion than that given by Eq.(25)replacing sin2(q D x/2)by its highest value,i.e.,making sin2(q D x/2)!1. Then the stability conditions for the fractional WA difference scheme(19)can be summarized in the following way:a WA method with weight factor06k61/2is always stable;when1/2<k61,the method is stable if 1/S P1/S·,with S·given by Eq.(26).Because S is always positive and(2kÀ1)is negative for06k61/2, the foregoing statements can summarized in this simpler way:A WA method,i.e.,a difference scheme defined by(19),is stable if1P1Â2ð2kÀ1ÞxðÀ1;1ÀcÞ.ð27ÞThese stability criteria are similar to those valid for ordinary WA methods mentioned at the beginning of this section.For c!1one recovers those non-fractional(ordinary)results because x(À1,0)=1(see end of Section(2)).For k=1(explicit method)one recovers the result1/S P2x(À1,1Àc)first obtained in [27].3.2.Truncating errorFrom the definition of truncating error given by Eq.(17),one getsT mþ1=2 j ¼d t uðmþ1=2ÞjÀKh1ÀcX mk¼0xð1ÀcÞkð1ÀkÞd xx uðmþ1ÀkÞjþkd xx uðmÀkÞjn oÀKh1Àcð1ÀkÞxð1ÀcÞmþ1d xx uð0Þj.ð28ÞButd xx uðmþ1ÀkÞj ¼u xxþðD xÞ212u xxxxþD t2u xxtþðD xÞ212u xxxxtþÁÁÁ"#þðD tÞ28u xxttþÁÁÁð29Þandd xx uðmÀkÞj ¼u xxþðD xÞ212u xxxxÀD t2u xxtþðD xÞ212u xxxxtþÁÁÁ"#þðD tÞ28u xxttþÁÁÁð30Þwhere the partial derivatives are evaluated at the point(x j,t mÀk+D t/2).Inserting these expressions into Eq.(28)and taking into account Eqs.(1),(8),and(9),one getsT mþ1=2 j ¼Oðh pÞÀ12ÀkD tK0D1Àcsu xxtÀðD xÞ212K0D1Àcsu xxxxþðD tÞ224u tttÀðD tÞ2K0D1Àcsu xxttÀKð1ÀkÞxð1ÀcÞmþ1hd xx uð0ÞjþÁÁÁ¼Oðh pÞþ12ÀkOðD tÞþOðD tÞ2þOðD xÞ2þxð1ÀcÞmþ1hd xx uð0Þjð31Þwith s”t m+D t/2,and where terms of order O[(D t)a(D x)b h p]with a+b+p>2have not been included.Some conclusions may be drawn from this expression.First,if h=D t,it is useless to employ discretization formulae for the Riemann–Liouville derivative of order p higher than two because of the unavoidable presence of an O(D t)2term.Also,one notes that a low-order term proportional to D t is present for all WA methods with k¼1/2.Therefore,the choice of k(as long as k¼1/2)does not affect the precision of the WA method (although it matters for the stability of the numerical scheme,as we have seen in Section3.1).The value k=1/2is special because removes the O(D t)term.I shall name the resulting method the fractional Crank–Nicholson method because for c=1one recovers the usual Crank–Nicholson scheme.In sum,takingS.B.Yuste/Journal of Computational Physics216(2006)264–274269h =D t ,the truncation error is of order (D x )2and (D t )q where q =1if k ¼1/2,and q =2if k =1/2and a sec-ond-order (or higher-order)discretization scheme for the fractional derivative is used.The last term in Eq.(31)does not appear in non-fractional discretization schemes:it is characteristic of fractional methods.It goes to zero for large m for any set of coefficients f x a m g because the series of Eq.(11)converges.For m large enough,the quantity x ð1Àc Þm þ1=h 1Àc becomes of order of,or smaller than,O(D t )2.The particular value of m for which this happens depends on the discretization formula of the Riemann–Liou-ville derivative that is used.However,for the first integration steps (m small)this term,and consequently,the truncation error,is large unless the initial curvature of u (x ,t ),o 2u (x ,t )/o x 2,is small.These difficulties disappear for k =1,i.e.,they are absent in the explicit method.This suggests that a practical integration procedure could be one in which the first integration steps were performed by means of the explicit method (see Ref.[27]for more details on this method),and the subsequent steps were carried out by means of,say,the fractional Crank–Nicholson method.parison with numerical resultsIn this section the WA difference scheme (19)with different values of k is used to solve a fractional diffusion problem which has an analytical solution.The two solutions,numerical and analytical,will be compared for different values of S and c .The problem considered is a typical (sub)diffusion problem on a line with absorbing boundarieso o t u ðx ;t Þ¼K 0D 1Àc t o 2o x 2u ðx ;t Þð32a Þwithu ð0;t Þ¼u ð1;t Þ¼0;ð32b Þand initial conditionu ðx ;t ¼0Þ¼x ð1Àx Þ.ð32c ÞThe exact analytical solution of Eq.(1)is easily found by the method of separation of variablesu ðx ;t Þ¼8p 3X 1n ¼01ð2n þ1Þ3sin ½ð2n þ1Þp x E c ½ÀK ð2n þ1Þ2p 2t c ;ð33Þwhere E c is the Mittag–Leffler function [31].All the numerical calculations in this paper were carried out using the BDF1formula for the coefficients x ða Þk .There are three reasons for this:first,in contrast with other formulae,the BDF1coefficients can be easily computed using the recursive relation (13);second,although this formula is only of order 1,this is not relevant because the truncation error has (except for k =1/2)a term of order D t (see Eq.(31));and,third,because sec-ond-and higher-order BDF formulae involve practical problems that in some cases may lead to completely useless results [33].The stability limit S ·adopts an especially simple form when the BDF1coefficients are usedS ¼2c À22k À1;ð34Þbecause,from Eq.(12),x (À1,1Àc )=21Àc .Figs.1–4compare the exact solution (33)of problem (32)with the numerical solution obtained by means of different WA methods for several values of the anomalous dif-fusion exponent c and,in all cases,for D x =1/20.In Fig.1the explicit method (k =1)for c =3/4with S =0.4is used.Note that this value is smaller than S ·=2À5/4.0.4204...,so that according to Eq.(27)one expects,and Fig.1confirms,that the numerical scheme is stable.The results obtained using the fractional Crank–Nicholson method for c =3/4are shown in Fig.2.The next two figures,Figs.3and 4,show the numerical solutions obtained by means of the WA method with weight factor k =0.8,c =1/2,and two values of S .Note that in this case the stability bound is S ¼5=6ffiffiffi2p ’0:589...Fig.3corresponds to S =0.55<S ·,and one sees that the numerical solutions are in excellent agreement with the exact results.However,Fig.4corresponds270S.B.Yuste /Journal of Computational Physics 216(2006)264–274to S =0.7>S ·,a value that is well inside the unstable region.Now the solution is clearly wrong,showing the typical behavior that appears when unstable numerical schemes are used.4.1.Numerical check of the stability analysisFigs.1–4show some cases where the WA methods are stable and unstable according to the theoretical pre-dictions of Section 3.1,cf.,Eq.(27).Obviously,a more systematic check of this stability bound is desirable.To this end,the boundary problem (32)was solved by means of the WA scheme (19a)with five different values of the weight factor k (k =0.6,0.7,0.8,1.0),for values of c spanning the interval [0,1],and for values of S givenby S =0.95S ·+0.001n with n =0,1,2...The WA scheme is considered unstable when u m À1j =u m j is negative orlarger than 10for some m with m 62000(the results do not change substantially for any other reasonable choices,although,as expected,they improve when the upper limit for m is increased).The smallest value of S for which the WA is unstable according to this criterion is denoted by S min .On the other hand,it is well known that for a lattice with 2N +1points (including the absorbing boundaries)sin 2[(2N À1)p /(4N )]is the maximum value that sin 2(q D x /2)can reach,so that,in this case,the stability condition Eq.(25)becomesS.B.Yuste /Journal of Computational Physics 216(2006)264–274271S ·P S sin 2[(2N À1)p /(4N )].Because the BDF1discretization formula is used in the numerical computations,S ·is given by Eq.(34),and the stability condition finally reads2c À2P ð2k À1ÞS sin 2½ð2N À1Þp =ð4N Þ .ð35ÞThe numerical estimation of the right-hand side of this equation,(2k À1)S min sin 2[(2N À1)p /(4N )],is plotted in Fig.(5)and compared with the theoretical prediction 2c À2(N =10for all simulations,which corresponds to D x =1/20).The agreement is excellent,which confirms the validity of the Fourier–von Neumann type stability analysis of the WA integration schemes carried out in Section 3.1.5.Conclusions and final remarksA class of finite difference methods for solving fractional diffusion equations,akin to the well-known weighted average methods for ordinary diffusion equations,has been constructed.Each method is defined by the value of the weighting parameter k .For k =1one recovers the explicit method discussed in [27],and for k =1/2one obtains a (fractional)generalization of the Crank–Nicholson method.The accuracy of these methods is of order (D x )2and D t ,except for the (fractional)Crank–Nicholson method,wherethe272S.B.Yuste /Journal of Computational Physics 216(2006)264–274accuracy with respect to the timestep can be of order (D t )2if a second-order approximation to the fractional time-derivative is used.The stability of the weighted average methods presented in this paper depends strongly on the value of the weighting parameter k :they are unconditionally stable for 0<k 61/2,and conditionally stable for 1/2<k 61.A very simple and accurate stability criterion,Eq.(27),valid for different discretization schemes of the fractional derivative,arbitrary weight factor k ,and arbitrary order of the fractional derivative c ,was provided.This criterion was obtained,following the von Neumann ideas,by assuming that the solution of the fractional diffusion problem can be decomposed into Fourier modes (subdiffusive modes),and analyz-ing the conditions under which every mode is stable.The convenience of having unconditionally stable methods is especially relevant when integrating subdif-fusion equations because otherwise the stability requirement limits the size of the timesteps to be of order (D x )2/c ,which,for small c ,can become extremely small.The fractional Crank–Nicholson method presented here is especially convenient because it is unconditionally stable,and its accuracy can be of order (D t )2if a second-order approximation to the fractional time-derivative is used.The success of the stability analysis employed in this paper prompts the question of whether its applicability extends to other difference schemes and other kinds of fractional partial differential equations,such as the fractional diffusion equation in the Caputo form [20,34],or the fractional diffusion-wave equation[12,35,36].Preliminary results suggests that it does.AcknowledgmentsPartially supported by the Ministerio de Ciencia y Tecnologı´a (Spain)through Grant No.FIS2004-01399and by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00307,DYGLAGEMEM.References[1]R.Hilfer (Ed.),Applications of Fractional Calculus in Physics,World Scientific,Singapore,2000.[2]I.M.Sokolov,J.Klafter,A.Blumen,Fractional kinetics,Phys.Today 55(2002)48–54.[3]R.Metzler,J.Klafter,The random walk’s guide to anomalous diffusion:a fractional dynamics approach,Phys.Rep.339(2000)1–77.[4]R.Metzler,J.Klafter,The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics,J.Phys.A:Math.Gen.37(2004)R161–R208.S.B.Yuste /Journal of Computational Physics 216(2006)264–274273。

频域积分方程法英语

频域积分方程法英语

频域积分方程法英语The frequency domain integral equation method is a powerful tool used to analyze electromagnetic scattering from complex structures. It is a mathematical technique that allows for the solution of the scattered field by expressing the electric field as the sum of incident and scattered fields.Step 1: FormulationThe first step in using this method is to formulate the integral equation that describes the problem. The equation is derived from Maxwell's equations and is expressed in terms of the electric field. The integral equation relates the scattered field to the current distribution on the surface of the scatterer.Step 2: DiscretizationThe surface of the scatterer is discretized into a mesh of small triangles or rectangles. The current on each element is assumed to be constant and is calculated using the incident field and the Green's function.Step 3: SolutionThe discretized integral equation is then solved iteratively using an appropriate numerical method such as the method of moments. The solution provides the current distribution on the surface of the scatterer, which can be used to calculate the scattered field.Step 4: Post-processingAfter the solution is obtained, further analysis can be carried out to obtain important information about thescattering behavior of the structure. For example, the far-field scattering pattern can be calculated, which provides information about the direction and intensity of the scattered field.The frequency domain integral equation method has many advantages over other numerical methods used in electromagnetic analysis. It is particularly well-suited for analyzing large and complex structures, as it allows the modeling of multiple scatterers with complex geometries. It also has excellent numerical stability and accuracy.In conclusion, the frequency domain integral equation method is a powerful and versatile tool for analyzing electromagnetic scattering from complex structures. Its step-by-step formulation, discretization, solution, and post-processing can help to accurately predict scattering behavior and provide valuable insights into the electromagnetic properties of materials and structures.。

非线性泛函的分数漫疗方程解说明书

非线性泛函的分数漫疗方程解说明书

Solution for a Space-time Fractional DiffusionEquationQiyu Liu1, and Longjin Lv2,*1College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China 2Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China*Corresponding authorAbstract—This work focuses on investigating the solutions for a generalized fractional diffusion equation. This equation presents space and time fractional derivatives, includes an absorbent term and a linear external force, takes a time-dependent diffusion coefficient into account, and subjects to the natural boundaries and the general initial condition. We obtain explicit analytical expressions in terms of the Fox H functions for the probability distribution. In addition, we analyze the first passage time and the second movement distribution for the case characterized by the absence of absorbent term and external force for a semi-infinite interval with absorbing boundary condition.Keywords-anomalous diffusion; fractional diffusion; green function; fox functionI.I NTRODUCTIONAnomalous diffusion is one of the most ubiquitous phenomena in nature [1]. It is present in a wide variety of physical situations. For instance, surface growth, transport of fluid in porous media [2], two-dimensional rotating flow [3], subrecoil laser cooling [4], diffusion on fractals [5], or even in multidisciplinary areas such as econophysics [6-8]. The properties concerning these equations have also been investigated. For instance, in [9] boundary values problems for fractional diffusion equations are studied, in [10] a fractional Fokker-Planck equation is derived from a generalized master equation, in [11] the behavior of fractional diffusion at the origin is analyzed and a connection between the Fox H functions and the fractional diffusion equations was investigated in [12]. Also a generalization of Brownian motion to multidimensional anomalous diffusion is considered by using fractional differential equation in [13, 14]. Analytical solution of fractional Navier–Stokes equation is investigated by using modified Laplace decomposition method in [15]. In [16] the maximum principles for solutions of the linear fractional diffusion equations are derived, in [17], the regional controllability for the Riemann–Liouville time fractional diffusion systems is analysed, in [18] a harmonic analysis of random fractional diffusion-wave equations is done, in [19] the Cauchy problem for fractional diffusion equations is discussed, and second order accuracy finite difference methods for space-fractional partial differential equations are proposed in [20]. The space-time fractional nonlinear Schrödinger equation is solved by mean of on the fractional Riccati expansion method [21]. Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system is obtained by using residual power series method [22].In this direction, we dedicate this work to investigate a fractional diffusion equation which employs space and time fractional derivatives by taking a time-dependent diffusion coefficient, an absorbent or sources term and an external force into account. More precisely, we focus our attention on the following equation(,)()(,)[()(,)]()(,)tx t dt D t t x tt xtF x x t dt a t t x txγμρρμρρ∂∂∂∂∂'''=-⎰'''---⎰∂(1)With 01γ<…, 02μ<…, where D(t) is a time dependent diffusion coefficient, F(x) is an external force, a(t) is a time dependent absorbent term, which may be related to a reaction diffusion process. Here we use the Caputo operator for the fractional derivative with respect to time t and the Riesz-Weyl operator for the fractional derivative with respect to spatial x [23] and we work with the positive spatial variable x. Later on, we will extend the results to the entire real x-axis by the use of symmetry (in other words, we are working with /||xμμ∂∂). The presence of the reaction term like the one presents in the above equation may be useful to investigate several situations by choosing an appropriated a(t). For example, catalytic processes in regular, heterogeneous, or disordered systems [24, 25].The plan of this work is to start by considering (1) without external force and absorbent term. Then we consider (1) in the presence of the absorbent term 1()/()a t atββ-=Γwithout external force. After that we incorporate the external force ()F x x=-K in our analysis. In all the above cases, (1) satisfies to the generic initial condition (,0)()x xρρ= (()xρ is a given function), and the natural boundary condition(,)0tρ±∞=. The remainder of this paper goes as follow. In Sec.2, we obtain the exact solutions for the previous cases. In Sec.3, we present our conclusions.II.S OLUTION FOR THE F RACTIONAL D IFFUSION E QUATION Let us start our analysis by considering (1) in the absence of the external force and the absorbent term. Thus (1) reads2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2017)(,)()(,).t x t dt D t t x t t x γμγμρρ'''=-∂∂∂∂⎰ (2)Notice that for 1, 2γμ==, (2) reduces to the usual diffusion equation taking memory effect into account, which can be obtained from a dichotomous random process [26]. By applying the Laplace and Fourier transforms, and employing Riesz representation for the spatial fractional derivatives, we may simplify (2), which is an integral order differential equation, to the following algebraic equation1ˆˆˆ(,)(,0)()||(,),s k s s k D s k k s γγμρρρ--=- (3)where(,){(,)}(,)st x s x t x t e dt ρρρ∞-==⎰ L ,(){()}()st D s D t D t e dt Ds α∞--===⎰L , and ˆ(,){(,)}(,)ikx k t x t x t e dx ρρρ+∞--∞==⎰F . Then, (3) can be solved by the Green function method [27]. So we have(,)(,)(,0).x t dx x x t x ρρ+∞-∞'''=-⎰G(4)Applying the Fourier and Laplace transform in (4), weobtain the solution which is given byˆˆ(,)(,)(,0),k s k s k ρρ= G (5)1(,),()||s k s s Ds k γγμ-=+ G(6)where ˆ(,0)k ρis the Fourier transform of the initial condition and (,)k t Gis the Green function of (2) in the Fourier-Laplace space. Applying the inverse of Laplace transform, we obtain,1(,)(||),k t E D k tμγαγα++=-G (7)where ,()E x αβis the Mittag-Leffler function. In order to perform the inverse of Fourier transform, we express (,)k t Gin the terms of Fox function, i.e. (1)()(1)()(,(1)),,(,())(,(1)),,(,())[|]p q a A a A p m np q b B b B q H x ⋯⋯ [28]. So (7) can be written as follows11(0,1)12(0,1),(0,)(,)[|||].k t H D k t μγαγα++=G (8)This solution recovers the usual one for (,)(2,1)μγ= and for 2μ≠ it extends the results found in [29]. Note that the Mellin transform of the Fourier transform of f (x ) is an even function{[()]()}(){[()]()}()2()(){()}(1).2c f x k z f x k z zz cos f x z π==Γ-M F F M (9)We first evaluate the Mellin transform of (8) to find the Mellin transform of (,)x t G . The Mellin transform then only need to be inverted to find Fourier inverse, (,)x t G . To find the Mellin transform of (8), we note the Mellin transform of a Fox function is given by [30](,)11(,)()11()(1){[|]},(1)()p p q q m na j j j j j j m nzp qb z q p j m j j j n j j b z a z Hax ab z a z αββαβα==-=+=+∏Γ+∏Γ--=∏Γ--∏Γ+M (10)when the following conditions are met110,q mj j j j δβα===->∑∑(11)11110,p qnmj jjj j j n j j m A ααββ==+==+=-+->∑∑∑∑(12)1|()|,2arg a A π<(13)111[()]()[()].jj j m j n jjb a min z min βα≤≤≤≤--<<R R R(14)By applying this procedure, we obtain (see Figure I)11(1,),(1,)2123111111/(0,)(1,)(,)222||(,)[|].2()x x t Dt γαγαμμμμγαμμμ++--+-G(15)FIGURE I. THE BEHAVIOR OF GREEN FUNCTION (,)x t G IN (15) ISILLUSTRATED BY CONSIDERING 1/2)(,)Dt x t γαμ+G VERSUS1/||2()x Dt γαμ+ FOR TYPICAL VALUES OF γα+ AND μIn Figure I, we show the behavior of the above equation for typical values of μ, γ and α. Note that the Green function obtained here leads to an anomalous spreading of the initial condition due to the presence of the spatial and time fractional derivatives and a memory effect. This feature can be verified, for simplicity, by analyzing the second movement of (15) for particular case μ=2. For this case, it is given by202()()(1)t x dt t t D t γγ'''<>=-Γ+⎰ (16)For the initial condition (,0)()x x ρδ=and the diffusion coefficient 1()/()D t Dt αα-=Γ. Figure II shows the behavior of <x 2> versus t , which illustrates how (16) evolves on the time by considering, for simplicity, D =1 for typical values of γ and α.FIGURE II. THE BEHAVIOR OF < X 2> VERSUS TIn Figure II, we can see for small time <x 2> is dominated by the initial distance, and for large time the rate of <x 2> is less than that of the intermediate time. This behaviors are verified in turbulent processes [31]. At this point, by submitting (15) andthe initial condition (,0)()x x ρρ= into (4), we can get thesolution for (2), which is given by11(1,),(1,)2123111111/(0,)(1,)(,222(,)||[|]().2()x t x x dx x Dt γαγαμμμμγαμμμρρ++--+∞+-∞-='-'⎰(17)The result obtained here can be rated to several resultspresented in [10, 12, 32].In this direction, by using the previous result and the method of images [27], we may find the solution when the boundary condition is defined in a semi-infinity interval, i.e.(0,)(,)0t t ρρ=∞=. In particular, the solution taking this boundary condition into account, in the absence of theabsorbent term and external force, is given by11(1,),(1,2123111111/(0,,)(,)22211(1,,)2123111111/(0,)(1,)(,222||(,)[|]2()||[|]2()x x t H Dt x HDt γαγαμμμμγαμμμγαγαμμμμγαμμμξρξ++--+-++--+--=+-(18)For the initial condition (,0)()x x ρδξ=-. This result extends results found in [33, 34] and the first passage time distribution for the system governed by this case, using the definition(,)()x t t dx tρ∞∂=-∂⎰F employed in [35], is given by11(1,),(1,)2123111111/(0,)(1,)(,)222()[|],2()t Dt γαγαμμμμγαμμμξ++--+-=F (19) Which has the asymptotic behavior 1()/()~1/t t γαμ++F forlarge time. In Figure III, the behavior of the first passage time distribution ()t Fin (19) is illustrated by considering [/(2())]()t μγα+F versus 1//(2())Dt γαμξ+, for typical values of γ + α and μ.FIGURE III. THE BEHAVIOR OF THE FIRST PASSAGE TIMEDISTRIBUTION ()t F IN (19)Let us go back to (1) and consider 1()/()a t at ββ-=Γ . Then,(1) reads100(,)()(,)()(,).()t ta x t dt D t t x t dt t t x t t x γμβγμρρρβ-∂∂∂''''''=---Γ∂⎰⎰ (20)By using the Laplace and Fourier transforms, at the same time employing Riesz representation for the spatial fractional derivatives, we have1ˆˆˆˆ(,)(,0)()||(,)()(,),s k s s k D s k k s a s k s γγμρρρρ--=-- (21)where ()D s Ds α-= , ()a s as β-= and ˆ(,0)k ρis the Fourier transform of the initial condition. The solution of this equation,for simplicity, by considering ˆ(,0)1k ρ=, is given by1ˆ(,).()||()s k s s D s k a s γγμρ-=++ (22)Then, we employ the procedure presented in [36], where an explanation of how to get the series expansion in terms of Fox H function can be found. By applying this procedure, we obtain()110()ˆ(,).(||)j j j j a s k s s D k γααβγαμρ++--∞++=-=+∑ (23)Applying the inverse of Laplace transform on the above equation, we can obtain(),()1011(,1)12(0,1)((),)0()ˆ(,)(||)!()[|||].!j j j j j j j j at k t E D k t j at H D k t j βγμγαγαβαβγμγαβγγαρ+∞++-+=+∞+--++=-=--=∑∑ (24)Then, following the same procedure as in the first case tofind the Fourier inverse of ˆ(,)k t ρ, we have 11(1,),(1(),)2123111111/(0,)(1,)(,222(,)||[|].2()j j j j x t x Dt γαγαβγβγμμμμγαμμμρ+++∞-++-++-==(25) Note that the result got here for a bi-fractional reaction diffusion equation recovers the solution for the usual one. Let us incorporate the external force ()F x x =-K into the previous calculations. For this case, (1) reads100(,)()(,)[(,)]()(,).()ttx t t a dt D t t x t x x t dt t t x t x x γγμβμρρρρβ-∂∂∂∂∂∂=''''''-+--Γ⎰⎰K (26)Following the procedure employed above to the casewithout external forces, we also use the Fourier and Laplace transforms to simplify our study. By using these integral transforms, (26) can be simplified to()||101()||ˆ(,)(.!()D s k n n D s k s k s e n s n a s μμγμγρμμ-∞-==++∑ K K K (27)By applying the inverse of Laplace transform on (27) asabove, we can obtain10(0,)11(,1)000(),1[()]||ˆ(,)[|]!! (()).j tn n j j j a t t k k t dt H t n j t E n t t βγμααγγβρμμ+∞∞-==+'--''=''⨯--∑∑⎰D K K (28)Here, we used the property of the Laplace transform ofconvolution formula, i.e. []f g f g *=⋅L , where0()()tf g dt f t t g t '''*=-⎰.In order to get the solution, we need to get the inverse ofFourier transform of (,)k t G. Therefore, we only need to perform the inverse of Fourier transform on10(0,)11(,1)||[|]n D k t H μααμ-'K . Following the same procedure employed in the first case, we have1(1,)(0,)1100,111/11(,1)22111(,)(1,222||||{[|]}[()|]2n n D k t x H Dt αμααμμμαμμ---''K F K (29)and1(1,)(0,)111/221110(,)(1,)00222(),1||(,)[(|]2 (()).j n tn j j j x x t dt Dt E n t t αβγμμμαγγβμρμ+∞∞-==+=''⨯--∑∑⎰K K(30)The above equation in the absence of absorbent term recovers the results found in [37], i.e. a (t )=0. Note that the solution of (26) in the absence of absorbent term is a stationary one given in terms of the L évy distribution. This feature is a characteristic of the presence of the spatial derivatives in the diffusion equation which changes the probability for a jump length (see [38] and references therein).III. S UMMARY AND C ONCLUSIONSWe have worked out a generalized diffusion equation which presents space and time fractional derivatives and takes an absorbent term and the external force into account. We have first analyzed the case characterized by the absence of external forces and the absorbent term. For this case, we have obtained the exact solution and expressed it in terms of a Fox function. Furthermore, we have considered the second moment for this case and obtained the first passage time distribution by taking the boundary conditions (0,)(,)0t t ρρ=∞= into account. Then we consider (2) with an absorbent term a (t )=at β-1/ Γ(β). Subsequently, we have incorporated the external force ()F x x =-K to the previous situations in which the absorbentterm is present. For the third case, we have also discussed the stationary solution which emerges from α(t)=0. In this sense, the present results may be considered as an extension to a broad context of the analysis for the time fractional diffusion equations. Finally, we expect that the results obtained here may be useful to the discussion of the anomalous diffusion systems where fractional diffusion equations play an important role.A CKNOWLEDGMENTWe would like to thank the Natural Science Foundation of Zhejiang (Grant No. LY17A010020) for partial financial support and be grateful to the anonymous referees for useful comments and suggestions.R EFERENCES[1]J. Bouchaud and A. Georges, "Anomalous diffusion in disordered media:statistical mechanisms, models and physical applications," Physics reports, vol. 195, pp. 127-293, 1990.[2]H. Spohn, "Surface dynamics below the roughening transition," Journalde Physique I, vol. 3, pp. 69-81, 1993.[3]T. H. Solomon, E. R. Weeks and H. L. Swinney, "Observation ofanomalous diffusion and Lévy flights in a two-dimensional rotating flow," Phys Rev Lett, vol. 71, p. 3975, 1993.[4] F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and C. Cohen-Tannoudji, "Subrecoil laser cooling and Lévy flights," Phys Rev Lett, vol. 72, p. 203, 1994.[5]J. Stephenson, "Some non-linear diffusion equations and fractaldiffusion," Physica A: Statistical Mechanics and its Applications, vol.222, pp. 234-247, 1995.[6]V. Plerou, P. Gopikrishnan, L. A. N. Amaral, X. Gabaix, and H. E.Stanley, "Economic fluctuations and anomalous diffusion," Phys Rev E, vol. 62, p. R3023, 2000.[7]L. Longjin, F. Ren and W. Qiu, "The application of fractional derivativesin stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, vol. 389, pp. 4809-4818, 2010.[8]L. Lv, J. Xiao, L. Fan, and F. Ren, "Correlated continuous time randomwalk and option pricing," Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 100-107, 2016.[9]R. Metzler and J. Klafter, "The random walk's guide to anomalousdiffusion: a fractional dynamics approach," Physics reports, vol. 339, pp.1-77, 2000.[10]R. Metzler and T. F. Nonnenmacher, "Space-and time-fractionaldiffusion and wave equations, fractional Fokker-Planck equations, and physical motivation," Chem Phys, vol. 284, pp. 67-90, 2002.[11] B. West, M. Bologna and P. Grigolini, Physics of fractal operators:Springer Science & Business Media, 2012.[12] F. Mainardi, G. Pagnini and R. K. Saxena, "Fox H functions in fractionaldiffusion," J Comput Appl Math, vol. 178, pp. 321-331, 2005.[13]V. V. Uchaikin, "Multidimensional symmetric anomalous diffusion,"Chem Phys, vol. 284, pp. 507-520, 2002.[14]L. Lv, F. Ren, J. Wang, and J. Xiao, "Correlated continuous time randomwalk with time averaged waiting time," Physica A: Statistical Mechanics and its Applications, vol. 422, pp. 101-106, 2015.[15]S. Kumar, D. Kumar, S. Abbasbandy, and M. M. Rashidi, "Analyticalsolution of fractional Navier-Stokes equation by using modified Laplace decomposition method," Ain Shams Engineering Journal, vol. 5, pp.569-574, 2014.[16]M. Al-Refai and Y. Luchko, "Maximum principle for the fractionaldiffusion equations with the Riemann-Liouville fractional derivative and its applications," Fract Calc Appl Anal, vol. 17, pp. 483-498, 2014. [17] F. Ge, Y. Chen and C. Kou, "Regional controllability analysis offractional diffusion equations with Riemann-Liouville time fractional derivatives," Automatica, vol. 76, pp. 193-199, 2017. [18]V. V. Anh and N. N. Leonenko, "Harmonic analysis of randomfractional diffusion--wave equations," Appl Math Comput, vol. 141, pp.77-85, 2003.[19]S. D. Eidelman and A. N. Kochubei, "Cauchy problem for fractionaldiffusion equations," J Differ Equations, vol. 199, pp. 211-255, 2004. [20]Y. Takeuchi, Y. Yoshimoto and R. Suda, "Second order accuracy finitedifference methods for space-fractional partial differential equations," J Comput Appl Math, vol. 320, pp. 101-119, 2017.[21] E. A. Abdel-Salam, E. A. Yousif and M. A. El-Aasser, "AnalyticalSolution of the Space-Time Fractional Nonlinear Schrödinger Equation,"Rep Math Phys, vol. 77, pp. 19-34, 2016.[22]H. M. Jaradat, S. Al-Shara, Q. J. Khan, M. Alquran, and K. Al-Khaled,"Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method," IAENG International Journal of Applied Mathematics, vol. 46, pp. 64-70, 2016.[23]I. Podlubny, Fractional differential equations vol. 198: Academic press,1998.[24]P. A. Alemany, D. H. Zanette and H. S. Wio, "Time-dependentreactivity for diffusion-controlled annihilation and coagulation in two dimensions," Phys Rev E, vol. 50, p. 3646, 1994.[25] B. J. West, P. Grigolini, R. Metzler, and T. F. Nonnenmacher,"Fractional diffusion and Lévy stable processes," Phys Rev E, vol. 55, p.99, 1997.[26]P. Allegrini, P. Grigolini and B. J. West, "Dynamical approach to Lévyprocesses," Phys Rev E, vol. 54, p. 4760, 1996.[27]H. Feshbach and P. M. Morse, Methods of theoretical physics: McGraw-Hill Interamericana, 1953.[28] A. M. Mathai and R. K. Saxena, "The H function with applications instatistics and other disciplines," 1978.[29]R. Metzler, E. Barkai and J. Klafter, "Anomalous diffusion andrelaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach," Phys Rev Lett, vol. 82, p. 3563, 1999.[30]H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of oneand two variables, with applications: South Asian Publishers, 1982. [31]G. Boffetta and I. M. Sokolov, "Relative dispersion in fully developedturbulence: the Richardson's law and intermittency corrections," Phys Rev Lett, vol. 88, p. 094501, 2002.[32][32] F. Mainardi, Y. Luchko and G. Pagnini, "The fundamental solutionof the space-time fractional diffusion equation," Fract Calc Appl Anal, vol. 4, pp. 153-192, 2001.[33]G. Rangarajan and M. Ding, "Anomalous diffusion and the first passagetime problem," Phys Rev E, vol. 62, p. 120, 2000.[34]L. Lv, J. Xiao, L. Zhang, and L. Gao, "Solutions for a generalizedfractional anomalous diffusion equation," J Comput Appl Math, vol. 225, pp. 301-308, 2009.[35]H. Risken, Fokker-Planck Equation: Springer, 1996.[36]T. Langlands, "Solution of a modified fractional diffusion equation,"Physica A: Statistical Mechanics and its Applications, vol. 367, pp. 136-144, 2006.[37]R. Metzler, E. Barkai and J. Klafter, "Anomalous transport in disorderedsystems under the influence of external fields," Physica A: Statistical Mechanics and its Applications, vol. 266, pp. 343-350, 1999.[38] A. Schot, M. K. Lenzi, L. R. Evangelista, L. C. Malacarne, R. S. Mendes,and E. K. Lenzi, "Fractional diffusion equation with an absorbent term and a linear external force: Exact solution," Phys Lett A, vol. 366, pp.346-350, 2007.。

物理化学概念与术语-双语学习

物理化学概念与术语-双语学习

物理化学概念与术语-双语学习物理化学概念与术语BET公式BET formulaDLVO理论DLVO theoryHLB法hydrophile-lipophile balance method pVT性质pVT propertyζ电势zeta potential阿伏加德罗常数Avogadro's number阿伏加德罗定律Avogadro law阿累尼乌斯电离理论Arrhenius ionization theory 阿累尼乌斯⽅程Arrhenius equation阿累尼乌斯活化能Arrhenius activation energy 阿马格定律Amagat law艾林⽅程Erying equation爱因斯坦光化当量定律Einstein's law of photochemical equivalence爱因斯坦-斯托克斯⽅程Einstein-Stokes equation安托万常数Antoine constant安托万⽅程Antoine equation盎萨格电导理论Onsager's theory of conductance半电池half cell半衰期half time period饱和液体saturated liquids饱和蒸⽓saturated vapor饱和吸附量saturated extent of adsorption饱和蒸⽓压saturated vapor pressure爆炸界限explosion limits⽐表⾯功specific surface work⽐表⾯吉布斯函数specific surface Gibbs function⽐浓粘度reduced viscosity标准电动势standard electromotive force标准电极电势standard electrode potential标准摩尔反应焓standard molar reaction enthalpy标准摩尔反应吉布斯函数standard Gibbs function of molar reaction标准摩尔反应熵standard molar reaction entropy /'entr?pi/标准摩尔焓函数standard molar enthalpy function [?enθ?lpi, en?θ?lpi]标准摩尔吉布斯⾃由能函数standard molar Gibbs free energy function 标准摩尔燃烧焓standard molar combustion enthalpy 标准摩尔熵standard molar entropy标准摩尔⽣成焓standard molar formation enthalpy标准摩尔⽣成吉布斯函数standard molar formation Gibbs function标准平衡常数standard equilibrium constant标准氢电极standard hydrogen electrode标准态standard state标准熵standard entropy标准压⼒standard pressure标准状况standard condition表观活化能apparent activation energy表观摩尔质量apparent molecular weight表观迁移数apparent transference number 表⾯surfaces表⾯过程控制surface process control表⾯活性剂surfactants表⾯吸附量surface excess表⾯张⼒surface tension表⾯质量作⽤定律surface mass action law波义尔定律Boyle law波义尔温度Boyle temperature波义尔点Boyle point玻尔兹曼常数Boltzmann constant玻尔兹曼分布Boltzmann distribution玻尔兹曼公式Boltzmann formula玻尔兹曼熵定理Boltzmann entropy theorem 玻⾊-爱因斯坦统计Bose-Einstein statistics 泊Poise不可逆过程irreversible process不可逆过程热⼒学thermodynamics of irreversible processes不可逆相变化irreversible phase change布朗运动Brownian movement查理定律Charle's law产率yield敞开系统open system超电势over potential沉降sedimentation沉降电势sedimentation potential沉降平衡sedimentation equilibrium触变thixotropy粗分散系统thick disperse system催化剂catalyst单分⼦层吸附理论mono molecule layer adsorption单分⼦反应unimolecular reaction单链反应straight chain reactions弹式量热计bomb calorimeter道尔顿定律Dalton law道尔顿分压定律Dalton partial pressure law德拜和法尔肯哈根效应Debye and Falkenhagen effect德拜⽴⽅公式Debye cubic formula德拜-休克尔极限公式Debye-Huckel's limiting equation等焓过程isenthalpic process等焓线isenthalpic line等⼏率定理theorem of equal probability等温等容位Helmholtz free energy等温等压位Gibbs free energy等温⽅程equation at constant temperature低共熔点eutectic point低共熔混合物eutectic mixture低会溶点lower consolute point低熔冰盐合晶cryohydric第⼆类永动机perpetual machine of the second kind第三定律熵third-law entropy第⼀类永动机perpetual machine of the first kind缔合化学吸附association chemical adsorption 电池常数cell constant 电池电动势electromotive force of cells电池反应cell reaction电导conductance电导率conductivity电动势的温度系数temperature coefficient of electromotive force电动电势zeta potential电动现象electrokinetic phenomena电功electric work电化学electrochemistry电化学极化electrochemical polarization电极电势electrode potential电极反应reactions on the electrode 电极种类type of electrodes电解池electrolytic cell电量计coulometer电流效率current efficiency电迁移electro migration电迁移率electromobility电渗electroosmosis电渗析electrodialysis电泳electrophoresis丁达尔效应Dyndall effect定容摩尔热容molar heat capacity under constant volume定容温度计Constant volume thermometer定压摩尔热容molar heat capacity under constant pressure定压温度计constant pressure thermometer定域⼦系统localized particle system动⼒学⽅程kinetic equations动⼒学控制kinetics control独⽴⼦系统independent particle system对⽐摩尔体积reduced mole volume对⽐体积reduced volume对⽐温度reduced temperature对⽐压⼒reduced pressure对称数symmetry number对⾏反应reversible reactions对应状态原理principle of corresponding state 多⽅过程polytropic process 多分⼦层吸附理论adsorption theory of multi-molecular layers⼆级反应second order reaction⼆级相变second order phase change法拉第常数faraday constant法拉第定律Faraday's law法扬思-帕尼思规则Fajans- Pancth's rule反电动势back E.M.F.反渗透reverse osmosis反应分⼦数molecularity反应级数reaction orders反应进度extent of reaction反应热heat of reaction反应速率rate of reaction反应速率常数constant of reaction rate范德华常数van der Waals constant范德华⽅程van der Waals equation范德华⼒van der Waals force范德华⽓体van der Waals gases范特霍夫⽅程van't Hoff equation范特霍夫规则van't Hoff rule范特霍夫渗透压公式van't Hoff equation of osmotic pressure⾮基元反应non-elementary reactions⾮体积功non-volume work⾮依时计量学反应time independent stoichiometric reactions菲克扩散第⼀定律Fick's first law of diffusion 沸点boiling point沸点升⾼elevation of boiling point费⽶-狄拉克统计Fermi-Dirac statistics分布distribution分布数distribution numbers分解电压decomposition voltage分配定律distribution law分散系统disperse system分散相dispersion phase分体积partial volume分体积定律partial volume law分压partial pressure分压定律partial pressure law分⼦反应⼒学mechanics of molecular reactions分⼦间⼒intermolecular force分⼦蒸馏molecular distillation封闭系统closed system附加压⼒excess pressure弗罗因德利希吸附经验式Freundlich empirical formula of adsorption 负极negative pole负吸附negative adsorption复合反应composite reaction盖·吕萨克定律Gay-Lussac law盖斯定律Hess law⽢汞电极calomel electrode感胶离⼦序lyotropic series杠杆规则lever rule⾼分⼦溶液macromolecular solution⾼会溶点upper consolute point隔离法the isolation method 格罗塞斯-德雷珀定律Grotthus-Draoer's law 隔离系统isolated system 根均⽅速率root-mean-square speed功work功函work content共轭溶液conjugate solution共沸温度azeotropic temperature构型熵configurational entropy孤⽴系统isolated system固溶胶solid sol固态混合物solid solution固相线solid phase line光反应photoreaction光化学第⼆定律the second law of actinochemistry光化学第⼀定律the first law of actinochemistry光敏反应photosensitized reactions光谱熵spectrum entropy⼴度性质extensive property⼴延量extensive quantity⼴延性质extensive property规定熵stipulated entropy过饱和溶液oversaturated solution过饱和蒸⽓oversaturated vapor过程process过渡状态理论transition state theory过冷⽔super-cooled water过冷液体overcooled liquid过热液体overheated liquid亥姆霍兹函数Helmholtz function亥姆霍兹函数判据Helmholtz function criterion 亥姆霍兹⾃由能Helmholtz free energy 亥⽒函数Helmholtz function焓enthalpy亨利常数Henry constant亨利定律Henry law恒沸混合物constant boiling mixture恒容摩尔热容molar heat capacity at constant volume恒容热heat at constant volume恒外压constant external pressure恒压摩尔热容molar heat capacity at constant pressure恒压热heat at constant pressure化学动⼒学chemical kinetics化学反应计量式stoichiometric equation of chemical reaction化学反应计量系数stoichiometric coefficient of chemical reaction化学反应进度extent of chemical reaction化学亲合势chemical affinity化学热⼒学chemical thermodynamics化学势chemical potential化学势判据chemical potential criterion化学吸附chemisorptions环境environment环境熵变entropy change in environment挥发度volatility混合熵entropy of mixing混合物mixture活度activity活化控制activation control活化络合物理论activated complex theory活化能activation energy霍根-华森图Hougen-Watson Chart基态能级energy level at ground state基希霍夫公式Kirchhoff formula基元反应elementary reactions积分溶解热integration heat of dissolution吉布斯-杜亥姆⽅程Gibbs-Duhem equation吉布斯-亥姆霍兹⽅程Gibbs-Helmhotz equation吉布斯函数Gibbs function吉布斯函数判据Gibbs function criterion吉布斯吸附公式Gibbs adsorption formula吉布斯⾃由能Gibbs free energy吉⽒函数Gibbs function极化电极电势polarization potential of electrode极化曲线polarization curves极化作⽤polarization极限摩尔电导率limiting molar conductivity⼏率因⼦steric factor(空间位阻因数,空间因⼦) 计量式stoichiometric equation 计量系数stoichiometric coefficient价数规则rule of valence简并度degeneracy 键焓bond enthalpy胶冻broth jelly胶核colloidal nucleus胶凝作⽤demulsification胶束micelle胶体colloid胶体分散系统dispersion system of colloid胶体化学collochemistry胶体粒⼦colloidal particles胶团micelle焦⽿Joule焦⽿-汤姆⽣实验Joule-Thomson experiment焦⽿-汤姆⽣系数Joule-Thomson coefficient焦⽿-汤姆⽣效应Joule-Thomson effect焦⽿定律Joule's law接触电势contact potential接触⾓contact angle节流过程throttling process节流膨胀throttling expansion节流膨胀系数coefficient of throttling expansion结线tie line结晶热heat of crystallization解离化学吸附dissociation chemical adsorption 界⾯interfaces界⾯张⼒surface tension浸湿immersion wetting浸湿功immersion wetting work精馏rectify聚(合)电解质polyelectrolyte聚沉coagulation聚沉值coagulation value绝对反应速率理论absolute reaction rate theory绝对熵absolute entropy绝对温标absolute temperature scale绝热过程adiabatic process绝热量热计adiabatic calorimeter绝热指数adiabatic index卡诺定理Carnot theorem卡诺循环Carnot cycle开尔⽂公式Kelvin formula柯诺⽡洛夫-吉布斯定律Konovalov-Gibbs law 科尔劳施离⼦独⽴运动定律Kohlrausch's Law of Independent Migration of Ions可能的电解质potential electrolyte可逆电池reversible cell可逆过程reversible process可逆过程⽅程reversible process equation可逆体积功reversible volume work可逆相变reversible phase change克拉佩龙⽅程Clapeyron equation克劳修斯不等式Clausius inequality克劳修斯-克拉佩龙⽅程Clausius-Clapeyron equation控制步骤control step库仑计coulometer扩散控制diffusion controlled拉普拉斯⽅程Laplace's equation拉乌尔定律Raoult law兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式Langmuir adsorption isotherm formula雷利公式Rayleigh equation冷冻系数coefficient of refrigeration冷却曲线cooling curve离解热heat of dissociation离解压⼒dissociation pressure离域⼦系统non-localized particle systems离⼦的标准摩尔⽣成焓standard molar formation of ion离⼦的电迁移率mobility of ions离⼦的迁移数transport number of ions离⼦独⽴运动定律law of the independent migration of ions离⼦氛ionic atmosphere离⼦强度ionic strength理想混合物perfect mixture理想⽓体ideal gas理想⽓体的绝热指数adiabatic index of ideal gases理想⽓体的微观模型micro-model of ideal gas 理想⽓体反应的等温⽅程isothermal equation of ideal gaseous reactions 理想⽓体绝热可逆过程⽅程adiabatic reversible process equation of ideal gases理想⽓体状态⽅程state equation of ideal gas 理想溶液ideal solutions理想稀溶液ideal dilute solution理想液态混合物perfect liquid mixture粒⼦particles粒⼦的配分函数partition function of particles 连串反应consecutive reactions链的传递物chain carrier链反应chain reactions量热熵calorimetric entropy量⼦统计quantum statistics量⼦效率quantum yield临界参数critical parameter临界常数critical constant临界点critical point临界胶束浓度critical micelle concentration临界摩尔体积critical molar volume临界温度critical temperature临界压⼒critical pressure临界状态critical state零级反应zero order reaction流动电势streaming potential流动功flow work笼罩效应cage effect路易斯-兰德尔逸度规则Lewis-Randall rule of fugacity露点dew point露点线dew point line麦克斯韦关系式Maxwell relations麦克斯韦速率分布Maxwell distribution of speeds麦克斯韦能量分布Maxwell distribution of energy ⽑细管凝结condensation in capillary ⽑细现象capillary phenomena⽶凯利斯常数Michaelis constant摩尔电导率molar conductivity摩尔反应焓molar reaction enthalpy摩尔混合熵mole entropy of mixing摩尔⽓体常数molar gas constant摩尔热容molar heat capacity摩尔溶解焓mole dissolution enthalpy摩尔稀释焓mole dilution enthalpy内扩散控制internal diffusions control内能internal energy内压⼒internal pressure能级energy levels能级分布energy level distribution能量均分原理principle of the equipartition of energy能斯特⽅程Nernst equation能斯特热定理Nernst heat theorem凝固点freezing point凝固点降低lowering of freezing point凝固点曲线freezing point curve凝胶gelatin凝聚态condensed state凝聚相condensed phase浓差超电势concentration over-potential浓差极化concentration polarization浓差电池concentration cells帕斯卡pascal泡点bubble point泡点线bubble point line配分函数partition function配分函数的析因⼦性质property that partition function to be expressed as a product of the separate partition functions for each kind of state 碰撞截⾯collision cross section碰撞数the number of collisions偏摩尔量partial mole quantities平衡常数(理想⽓体反应)equilibrium constants for reactions of ideal gases平动配分函数partition function of translation 平衡分布equilibrium distribution平衡态equilibrium state平衡态近似法equilibrium state approximation 平衡状态图equilibrium state diagram平均活度mean activity平均活度系统mean activity coefficient平均摩尔热容mean molar heat capacity平均质量摩尔浓度mean mass molarity平均⾃由程mean free path平⾏反应parallel reactions破乳demulsification铺展spreading普遍化范德华⽅程universal van der Waals equation其它功the other work⽓化热heat of vaporization ⽓溶胶aerosol⽓体常数gas constant⽓体分⼦运动论kinetic theory of gases⽓体分⼦运动论的基本⽅程foundamental equation of kinetic theory of gases⽓溶胶aerosol⽓相线vapor line迁移数transport number潜热latent heat强度量intensive quantity强度性质intensive property亲液溶胶hydrophilic sol氢电极hydrogen electrodes区域熔化zone melting热heat热爆炸heat explosion热泵heat pump热功当量mechanical equivalent of heat热函heat content热化学thermochemistry热化学⽅程thermochemical equation热机heat engine热机效率efficiency of heat engine热⼒学thermodynamics热⼒学第⼆定律the second law of thermodynamics热⼒学第三定律the third law of thermodynamics热⼒学第⼀定律the first law of thermodynamics热⼒学基本⽅程fundamental equation of thermodynamics 热⼒学⼏率thermodynamic probability热⼒学能thermodynamic energy热⼒学特性函数characteristic thermodynamic function热⼒学温标thermodynamic scale of temperature热⼒学温度thermodynamic temperature热熵thermal entropy热效应heat effect熔点曲线melting point curve熔化热heat of fusion溶胶colloidal sol溶解焓dissolution enthalpy溶液solution溶胀swelling乳化剂emulsifier乳状液emulsion润湿wetting润湿⾓wetting angle萨克尔-泰特洛德⽅程Sackur-Tetrode equation三相点triple point三相平衡线triple-phase line熵entropy熵判据entropy criterion熵增原理principle of entropy increase渗透压osmotic pressure渗析法dialytic process⽣成反应formation reaction升华热heat of sublimation实际⽓体real gas舒尔采-哈迪规则Schulze-Hardy rule松驰⼒relaxation force松驰时间time of relaxation速度常数reaction rate constant速率⽅程rate equations速率控制步骤rate determining step塔费尔公式Tafel equation态-态反应state-state reactions唐南平衡Donnan equilibrium淌度mobility特鲁顿规则Trouton rule特性粘度intrinsic viscosity体积功volume work统计权重statistical weight统计热⼒学statistic thermodynamics统计熵statistic entropy途径path途径函数path function外扩散控制external diffusion control完美晶体perfect crystalline完全⽓体perfect gas微观状态microstate微态microstate韦斯顿标准电池Weston standard battery维恩效应Wien effect 维⾥⽅程virial equation 维⾥系数virial coefficient稳流过程steady flow process稳态近似法stationary state approximation⽆热溶液athermal solution⽆限稀溶液solutions in the limit of extreme dilution物理化学Physical Chemistry物理吸附physisorptions吸附adsorption吸附等量线adsorption isostere吸附等温线adsorption isotherm吸附等压线adsorption isobar吸附剂adsorbent吸附量extent of adsorption吸附热heat of adsorption吸附质adsorbate析出电势evolution or deposition potential析因⼦性质property that partition function to be expressed as a product of the separate partition functions for each kind of state稀溶液的依数性colligative properties of dilute solutions稀释焓dilution enthalpy系统system系统点system point系统的环境environment of system相phase相变phase change相变焓enthalpy of phase change相变化phase change相变热heat of phase change相点phase point相对挥发度relative volatility相对粘度relative viscosity相律phase rule相平衡热容heat capacity in phase equilibrium 相图phase diagram相倚⼦系统system of dependent particles悬浮液suspension循环过程cyclic process压⼒商pressure quotient压缩因⼦compressibility factor压缩因⼦图diagram of compressibility factor亚稳状态metastable state盐桥salt bridge盐析salting out阳极anode杨⽒⽅程Young's equation液体接界电势liquid junction potential液相线liquid phase lines⼀级反应first order reaction⼀级相变first order phase change依时计量学反应time dependent stoichiometric reactions 逸度fugacity逸度系数coefficient of fugacity阴极cathode荧光fluorescence永动机perpetual motion machine永久⽓体Permanent gas有效能available energy原电池primary cell原盐效应salt effect增⽐粘度specific viscosity憎液溶胶lyophobic sol沾湿adhesional wetting沾湿功the work of adhesional wetting折射率index of refraction真溶液true solution真实电解质real electrolyte真实⽓体real gas真实迁移数true transference number振动配分函数partition function of vibration振动特征温度characteristic temperature of vibration蒸⽓压下降depression of vapor pressure正常沸点normal point正吸附positive adsorption⽀链反应branched chain reactions直链反应straight chain reactions指前因⼦pre-exponential factor质量作⽤定律mass action law制冷系数coefficient of refrigeration中和热heat of neutralization轴功shaft work转动配分函数partition function of rotation转动特征温度characteristic temperature of vibration转化率convert ratio转化温度conversion temperature状态state状态⽅程state equation状态分布state distribution状态函数state function准静态过程quasi-static process准⼀级反应pseudo first order reaction⾃动催化作⽤auto-catalysis⾃发过程spontaneous process⾃由度degree of freedom⾃由度数number of degree of freedom⾃由焓free enthalpy⾃由能free energy⾃由膨胀free expansion组分数component number最低恒沸点lower azeotropic point最⾼恒沸点upper azeotropic point最佳反应温度optimal reaction temperature 最可⼏分布most probable distribution 最可⼏速率most propable speed。

On Generalized Fractional Kinetic Equations

On Generalized Fractional Kinetic Equations

a rXiv:mat h-ph/04646v122J un24On generalized fractional kinetic equations R.K.Saxena Department of Mathematics and Statistics,Jai Narain Vyas University Jodhpur 342001,INDIA A.M.Mathai Department of Mathematics and Statistics,McGill University,805Sherbooke Street West,Montreal,CANADA H3A 2K6H.J.Haubold Office for Outer Space Affairs,United Nations,P.O.Box 500,A-1400Vienna,AUSTRIA Abstract In a recent paper,Saxena et al.[1]developed the solutions of three gen-eralized fractional kinetic equations in terms of the Mittag-Leffler functions.The object of the present paper is to further derive the solution of further generalized fractional kinetic equations.The results are obtained in a com-pact form in terms of generalized Mittag-Leffler functions.Their relation to fundamental laws of physics is briefly discussed.1Introduction The fundamental laws of physics are written as equations for the time evo-lution of a quantity X (t ),dX (t )/dt =−AX ,where this could be Maxwell’s equations or Schr¨o dinger’s equation (if A is limited to linear operators),or it could be Newton’s law of motion or Einstein’s equations for geodesics (if A may also be a nonlinear operator [2,3,27]).The mathematical solution (for linear operators A)is X (t )=X (0)exp {−At }.In thermodynamical or statistical applications one is mostly interested in mean values of the quantity <X (t )>.In this case,A is a characteristic time scale A −1=τin the evolution equation for <X (t )>.It then follows that <X (t )>decays exponentially toward equilibrium <X (t )>=<(X (0)>exp {−t/τ}.1In1988,Tsallis[4]generalized the entropic function of Boltzmann-Gibbs statistical mechanics,s=− dxp(x)lnp(x),to nonextensive statistical me-chanics with S q[p]={1− dx[p(x)]q}/(q−1)that leads to q-exponential distributions p q(x)∝[1−(1−q)x2/kT]1/(1−q).Such a distribution reduces to Gaussian distribution for q=1and for q=2to a Cauchy-Lorentz dis-tribution,to name two examples.In an attempt to incorporate L´e vy dis-tribution into statistical mechanics,Tsallis has also shown that the above distribution becomes a L´e vy distribution for q>5/3.Recently,Tsallis[4] used the mathematical simplicity of reaction-type equations,dX/dY=Y q, to emphasize the natural outcome of the above distribution function p q(x) which corresponds exactly to the solution of the reaction equation of non-linear type.The solution has power-law behavior.In the following we show that the fractional generalization of the linear reaction-type equation also leads to power-law behavior.In both cases,solutions can be expressed in terms of generalized Mittag-Leffler functions.2Generalized Mittag-Leffler functionA generalization of the Mittag-Leffler function[5,6]Eα(z):=∞ n=0z nΓ(αn+β)(α,β∈C,Re(α)>0)(2) was introduced by Prabhakar[7]in terms of the series representationEγα,β(z):=∞n=0(γ)n z nIt is an entire function of orderρ=[Re(α)]−1[7].This function has been studied by Wiman[8,9],Agarwal[10],Humbert[11]and Humbert and Agar-wal[12]and several others.Some special cases of(3)are given below:(i)Eα(z)=E1α,1(z),(5)(ii)Eα,β(z)=E1α,β(z),(6) (iii)Φ(β,γ;z)=1F1(β;γ;z)=Γ(γ)Eβ1,γ(z),(7) whereΦ(β,γ;z)is Kummer’s confluent hypergeometric function defined in Erd´e lyi et al.([13],p.248,eq.1]).Mellin-Barnes integral representation for the function defined by(3)follows from the integralEγα,β(z)=1Γ(β+sα)ds,(8)whereω=(−1)1/2.The contourΩis a straight line parallel to the imaginary axis separating the poles ofΓ(−s)at the points s=ν(ν=0,1,2,...)from those ofΓ(γ+s)at the points s=−γ−ν(ν=0,1,2,...).The poles of the integrand of(8)are assumed to be simple.(8)can be established by calculating the residues at the poles ofΓ(−s)at the points,s=ν(ν= 0,1,2,...,).It follows from(8)that Eγα,β(z)can be represented in the form Eγα,β(z)=1Γ(γ)1Ψ1 (γ,1)β,α);z ,(10) where1Ψ1(z)is a special case of Wright’s generalized hypergeometric function pΨq(z)[15,16];also see,Erd´e lyi et al.([13],Section4.1),defined byp Ψq (a1,A1),...,(a p,A p)(b1,B1),...,(b q,B q);z =∞ n=0 p j=1Γ(a j+A j n)(n)!,(11)3where1+ q j=1B j− p j=1A j≥0(equality only holds for appropriately bounded z).Whenγ=1,(9)and(10)give rise to(12)and(13)givenbelow:Eα,β(z)=1Ψ1 (1,1)(β,α);z ,(12)=H1,11,2 −z (0,1)(0,1),(1−β,α) ,(13) where Re(α)>0;α,β,γ∈C.If we further takeβ=1in(12)and(13)wefind thatEα(z)=1Ψ1 (1,1)(1,α);z ,(14)=H1,11,2 −z|(0,1)(0,1),(0,α) ,(15) for Re(α)>0,z∈C.The following integral gives the Laplace transform ofEγα,β(z).∞0e−pt tβ−1Eγα,β(atα)dt=p−β(1−ap−α)−γ,(16) where Re(p)>|a|1,Re(p)>0,Re(ρ)>0.(17)pρForγ=1,(16)reduces to an elegant formula∞0e−pt tβ−1Eα,β(atα)dt=p−β(1−ap−α)−1,(18) where Re(β)>0,Re(p)>0,|p|>|a|1,Re(q)>0,(19)Γ(nq+q)=t q−1E q,q(−at q).(20)4This function has been studied earlier by Robotnov[18,19]in connection with hereditary integrals for application to continuum mechanics.The Laplace transform of this function is given byL[F q(a;t)]=1Γ[(n+1)ν−µ],t>c>0(22)=(t−c)ν−µ−1Eν,ν−µ[a(t−c)ν],t>c>0.(23) The Laplace transform of the R-function is derived by Lorenzo and Hartley [20]in the formL{Rν,µ(a,c,t)}=e−cp pµpν−a,Re(ν−µ)>0,Re(p)>0.(25)Finally we recall the definition of Riemann-Liouville operator of fractional integration in the form0D−νt f(t)=1is obtained,Haubold and Mathai[24]asN(t)=N0∞k=0(−1)k(ct)kνΓ(ν) L{f(t)},(33)=p−νF(p),(34) where F(p)= ∞0e−pu f(u)du,Re(p)>0.Projecting the equation(31)to Laplace transform,we obtainN(t)=L[N(t);p]=N0p−µ[1+(p/c)−ν]−γOn using the formula(16),wefind thatL−1[p−µ 1+(p/c)−ν −(γ+1)]=tµ−1Eγ+1ν,µ(−cνtν).(36) The result(32)now readily follows from(36).If we setγ=1then(n)!is cancelled.Then in view of the formulaβE2β,γ(z)=Eβ,γ−1(z)+(1−γ+β)Eβ,γ(z),(37) which follows from the definition of Eγα,β(z)given by(3),we arrive at Corollary1.1.If c>0,µ>0,ν>0,then for the solution ofN(t)−N0tµ−1Eν,µ[−cνtν]=−cν0D−νt N(t),(38) there holds the formulaN(t)=N0tµ−12β2[Eβ,γ−2(z)+(3β+3−2γ)Eβ,γ−1(z)+ 2β2+γ2+3β−2γ−3βγ+1 Eβ,γ(z)],(40) which follows as a consequence of the definition(3),we obtainCorollary1.2.If c>0,ν>0,µ>0,then for the solution ofN(t)−N0tµ−1E2ν,µ[−cνtν]=−cν0D−νt N(t),(41) there holds the relationN(t)=N0tµ−1E3ν,µ(−cνtν),(42) =N0tµ−1Γ(µ),we arriveat another result given by Saxena et al.[1].7Theorem 2.If c >0,b ≥0,Re (p )>0,ν>µ+1,then for the solution ofN (t )−N 0R ν,µ(−c ν,b,t )=−c ν0D −νt N (t ),(44)there holds the formulaN (t )=N 0{1+(c ν/p ν)}2=N 0L −1 e −bp p µ−ν∞ n =0(2)n p ν)n=N 0∞ n =0(2)n (−c )nν(n )!Γ(nν+ν−µ)=N 0Γ(nν+ν−µ)=N 0Γ(nν+ν−µ−1)+(µ+1)∞ n =0{−c ν(t −b )ν}n ν(t −b )ν−µ−1[E ν,ν−µ−1{−c ν(t −b )ν}+(µ+1)E ν,ν−µ{−c ν(t −b )ν}],which is same as (45).This completes the proof of theorem 2.If we set µ=0,theorem 2reduces toCorollary 2.1.If c >0,b ≥0,ν>1,then for the solution ofN (t )−N 0R ν,0(−c ν,b,t )=−c ν0D −νt N (t ),(46)there holds the formulaN (t )=N 0Corollary2.2.If c>0,ν>µ+1,then for the solution ofN(t)−N0Rν,µ(−cν,0,t)=−cν0D−νt N(t),(48) there holds the formulaN0N(t)=[Eν,ν−1(−cνtν)+Eν,ν(−cνtν)].(51)νReferences[1]R.K.Saxena,A.M.Mathai,H.J.Haubold,Astrophys.andSpace Sci.,282(2002)281.[2]J.Jorgenson,ng,in:Mathematics Unlimited-2001and Beyond,Eds.B.Engquist,W.Schmid,Springer-Verlag,Berlin and Heidelberg2001,655.[3]R.Hilfer,in:Applications of Fractional Calculus in Physics,Ed.R.Hilfer,World Scientific,Singapore2000,1.[4]C.Tsallis,in:Nonextensive Entropy:Interdisciplinary Applications,Eds.M.Gell-Mann,C.Tsallis,Oxford University Press,New York2003,1.[5]G.M.Mittag-Leffler,C.R.Acad.Sci.Paris(Ser.II)137(1903)554.[6]G.M.Mittag-Leffler,Acta Math.29(1905)101.[7]T.R.Prabhakar,Yokohama Math.J.19(1971)7.[8]A.Wiman,Acta Math.29(1905)191.[9]A.Wiman,Acta Math.29(1905)217.[10]R.P.Agarwal,C.R.Acad.Sci.Paris236(1953)2031.[11]P.Humbert,C.R.Acad.Sci.Paris236(1953)1467.[12]P.Humbert,R.P.Agarwal,Bull.Sci.Math.(Ser.II)77(1953)180.9[13]A.Erd´e lyi,W.Magnus,F.Oberhettinger,F.G.Tricomi,HigherTranscendental Functions,Vol.1,McGraw-Hill,New York,Toronto and London1953.[14]A.M.Mathai,R.K.Saxena,The H-function with Applicationsin Statistics and Other Disciplines,Halsted Press,John Wiley&Sons, New York-London-Sydney-Toronto1978.[15]E.M.Wright,J.London Math.Soc.10(1935)286.[16]E.M.Wright,Proc.London Math.Soc.46(1940)389.[17]T.T.Hartley,C.F.Lorenzo,NASA1999/TP-1998-208693(1998)1.[18]Y.N.Robotnov,Tables of a Fractional Exponential Function ofNegative Parameters and its Integral(in Russian),Nauka,Russia1969.[19]Y.N.Robotnov,Elements of Hereditary Solid Mechanics(in English),MIR Publishers,Moscow1980.[20]C.F.Lorenzo,T.T.Hartley,NASA/TP-1999-209424(1999)1.[21]K.B.Oldham,J.Spanier,The Fractional Calculus:Theoryand Applications of Differentiation and Integration to Arbitrary Order, Academic Press,New York1974.[22]S.G.Samko,A.A.Kilbas,O.I.Marichev,Fractional Integralsand Derivatives.Theory and Applications,Gordon and Breach,Sci.Publ.,New York1990.[23]ler,B.Ross,An Introduction to the FractionalCalculus and Fractional Differential Equations,John Wiley&Sons, New York1993.[24]H.J.Haubold,A.M.Mathai,Astrophys.Space Sci.327(2000)53.[25]H.M.Srivastava,R.K.Saxena,put.118(2001)1.[26]A.Erd´e lyi,W.Magnus,F.Oberhettinger,F.G.Tricomi,Tables of Integral Transforms,Vol.1,McGraw-Hill,New York,Toronto and London1954.[27]R.Metzler,J.Klafter,Phys.Rep.339(2000)1.10。

高等数学中定义定理的英文表达

高等数学中定义定理的英文表达

高等数学中定义定理的英文表达Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点TTangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分SSaddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称RRadius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、QParabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、OMaximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的LLaplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数IImplicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分HHigher mathematics 高等数学/高数E、F、G、HEllipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面DDecreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分CCalculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标图片一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、BAbsolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数。

中英文力学对准

中英文力学对准

一般力学类:分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿-雅可比方程 Hamilton-Jacobi equation作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of -phase component超调量 overshoot 参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system 相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu- bov-Mitropol'skii method马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system优势频率 dominant frequency模态分析 modal analysis固有模态natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB methodWKB方法Wentzel-Kramers-Brillouin method缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振surge摆振shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance 姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support- foundation system静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl固体力学类:弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress 应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk 楔wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff- Muskhelishvili method基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforcedPlate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱Wrinkle塑性全量理论 Total theory of plasticity滑动 Sliding微滑Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation 格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透Perforation层裂Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem载荷因子load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment 累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material极限分析 limit analysis极限设计 limit design极限面limit surface上限定理 upper bound theorem上屈服点upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section 沙堆比拟 sand heap analogy屈服Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissibleField流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory ofPlasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis 结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method屈曲模态 buckling mode复合材料力学 mechanics of composites 复合材料composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料foamed composite颗粒复合材料 particulate composite层板Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片Ply多胞固体 cellular solid膨胀 Expansion压实Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion 达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracturemechanics, LEFM弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack 短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle,CTOA裂尖张开位移 crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth 裂纹[扩展]减速 crack retardation止裂crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区heat affected zone, HAZ延脆转变温度 brittle-ductile transitiontemperature剪切带shear band剪切唇shear lip无损检测 non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen单边缺口试件 single edge notchedspecimen, SEN specimen三点弯曲试件 three point bendingspecimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen中心裂纹板试件 center cracked panelspecimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic riskassessment, PRA损伤力学 damage mechanics损伤Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening 损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片crack gage裂纹扩展 crack growth, crack Propagation裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stressAnalysis工作[应变]片 active[strain] gage基底材料 backing material应力计stress gage零[点]飘移zero shift, zero drift应变测量 strain measurement应变计strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage 直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor 横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage 平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计 bonded wire gage 桥路平衡 bridge balancing电容应变计 capacitance strain gage 补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage半导体应变计 semiconductor strain Gage集流器slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage 光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equalDisplacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe 光程差optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method光弹性夹片法 photoelastic sandwich Method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity 应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope 实时全息干涉法 real-time holographicinterfero - metry网格法 grid method全息光弹性法 holo-photoelasticity全息图Hologram全息照相 Holograph全息干涉法 holographic interferometry 全息云纹法 holographic moire technique 全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑Speckle错位散斑干涉法 speckle-shearinginterferometry, shearography散斑图Specklegram白光散斑法white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation ofCoordinates计算结构力学 computational structuralmecha-nics加权残量法weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle 赫林格-赖斯纳原理 Hellinger-Reissner Principle修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable 节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffnessMatrices载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices 单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode 节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法determinant search method逐步法 step-by-step method纽马克法Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体动力学类:流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics 液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowskicondition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线stream line流面 stream surface流管stream tube迹线path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow 浮体 floating body定倾中心metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源source汇sink速度[水]头 velocity head拐角流 corner flow空泡流cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速stall脱体激波detached shock wave 波阻wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波normal shock wave斜激波oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列wave train波群 wave group波能wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波tidal wave涌波surge wave破碎波 breaking wave船波ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number 空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪ripple消能 energy dissipation海洋水动力学 marine hydrodynamics谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流density current, gravity flow堰流weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity 泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown 涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition 壁剪应力 skin friction, frictional drag壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication 浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度 displacement thickness动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法smoke wire method丝线法 tuft method。

高分子英文词汇

高分子英文词汇

第一章高分子链的结构aeolotropy 各向异性anti-configuration 反型;反式构型atactic polymer 无规(立构)聚合物average root-mean-square 均方根backbone 主链backbone motion 主链运动backbone structure 主链结构branched polymer 支化聚合物carbon chain 碳链chain conformation 链构象chain element 链单元;链节cis-configuration 顺式构型cis-isomer 顺式异构体cis-isomerism 顺式异构现象cis-stereoisomer 顺式立体异构体cis-trans isomerism 顺-反(式)异构现象cis-trans isomerization 顺反异构化characterization [1]表征;表征法[2]检定;检定法configuration 构型conformation 构象covalent bond 共价键cross link 交联;交联键cross linkage 交联crosslinked network 交联网crosslinked polymer 交联聚合物differential thermal analysis 差热分析differential thermogravimetric analysis 微分热重分析differential thermogravimetrie curve 微分热重曲线degree of isotacticity 全同(立构)规整度degree of order 有序度degree of syndiotacticity 间同(立构)规整度degree of tacticity 构型规整度diisotactic 双全同立构的direction of orientation 取向方向end-to-end distance 末端距fork chain 支链fork group 支基quitactic polymer 全同间同(立构)等量聚合物erythro-diisotactic 叠(同)双重全同立构eutacticity 理想的构型规整性ditactic 构型的双中心规整性;degree of isomerization 异构化flexibility 柔性;柔顺性free internal rotation 自由内旋转freely jointed chain 自由连接链functional group 功能基;官能团Gauss chain 高斯链Gauss distribution 高斯分布Gaussian chain 高斯链Gaussian distribution 高斯分布Gaussian network 高斯网络non-Gaussian Chain 非高斯链non-Gaussian distribution 非高斯分布geometrical isomer 几何异构体geometrical regularity 几何规整度graft 接枝物graft block copolymer 接枝嵌段共聚物graft copolymer 接枝共聚物graft copolymerization 接枝共聚graftomer 接枝聚合物graft polymerization 接枝聚合head-tail sequence 头尾顺序head-to-head 头-头接head-to-head polymer 头-头接聚合物head-to-tail polymer 头-尾接聚合物hot setting resin 热固性树脂isotactic 全同立构;等规立构isotactic chain 全同立构链isotactic configuration 全同立构型isotacticity 全同立构规整度isotactic polymer 全同立构聚合物iso-trans-tactic 反式全同立构linear chain 直链linear chain polymer 直链聚合物linear copolymer 线形共聚物linear macromolecule 线形大分子linear molecule 线形分子linear polymer 线形聚合物high polymer 高聚物half polymer 低聚物highly branched chain 高度支化链heat of crystallization 结晶热flexible linear macromolecule 柔性线形大分子flexible side group 柔性侧基interpolymer 共聚体long chain branching 长链支化long chain molecule 长链分子holotactic 全规整macromolecular 大分子的;高分子的macromolecular compound 大分子化合物;高分子化合物macromolecule 大分子;高分子main chain 主链main polymer chain 聚合物主链molecular bond 分子键molecular configuration 分子构型monomer 单体mutamer 旋光异构体mean square end to end distance 均方末端距nonlinear polymer 非线型聚合物net structure 网状结构network polymer 网状聚合物network structure 网状结构optical isomer 旋光异构体;旋光异构物ordered structure 有序结构random copolymer 无规共聚物polymer chain 聚合物链;高分子链polymer single crystal 聚合物primary structure 一级结构;初级结构regularity 规则性;整齐度distance 均方根末端距rotamerism 几何异构现象;旋转异构现象rigid chain 刚性链rigid macromolecule 刚性大分子straight-chain polymer 直链聚合物secondary structure 二级结构syndiotactic 间同立构的syndiotactic polymer 间同立构聚合物stability 稳定性star polymer 星形聚合物statistical copolymer 无规共聚物spatial structure 空间结构sub-chain motion 链段运动trans isomerism 反式异构(现tertiary structure 三级结构unperturbed chain dimension 未受扰分子链尺寸;无扰分子链尺寸valence bond 价键valence distance (=bond length) 键长;键距laevo-configuration 左旋构型microstructure of polymer 聚合物的微结构microtacticity 微观规整性short range structure 近程结构molecular motion 分子运动molecular model 分子模型第二章高分子的聚集态结构intermolecular attraction 分子间引力hydrogen bond 氢键amorphous 非晶的;无定形的amorphous birefringence 非晶双折射amorphous material 非晶材料;无定形材料amorphous phase 非晶相amorphous polymer 非晶态聚合物amorphous region 非晶区;无定形区axial orientation 沿轴取向auto-orientation mechanism 自取向机理biaxial orientation 双轴取向biaxial stretch 双轴拉伸crystal 结晶;晶体crystal angle 晶角crystal defect 晶体缺陷crystal diffraction 晶体衍射crystal grain 晶粒crystal lattice 晶格crystalline copolymer 结晶共聚物crystalline orientation 晶体取向crystalline polymer 结晶聚合物crystalline portion 结晶部分crystalline region 晶区crystalline structure 晶体结构crystallinity 结晶性;结晶度crystallite 微晶;晶粒crystallite dimension 晶粒尺寸crystallite size distribution 晶粒大小分布crystallizable polymer (能)结晶聚合物crystallization 结晶(作用)crystallization rate 结晶速率crystallization temperature 结晶温度crystallize 结晶cubic system 立方晶系chain folding 链折叠chain-folded lamellae 折叠链片晶degree of crystallinity 结晶度程度degree of orientation 取向度diffraction 衍射diffraction angle 衍射角diffraction pattern 衍射图形;衍射花样diffractometer 衍射仪extended chain crystal 伸直链electron microscope 电子显微镜expanded material 发泡材料; 晶体birefringence 双折射density crystallinity 密度结晶度folded chain 折叠链folded chain crystal 折叠链晶体folded chain lamellae 折叠链晶片folded chain model 折叠链模型folded configuration 折叠构型folding length 折叠链长度liquid crystal 液晶lamellae 片晶lamellae structure 片晶结构lattice 晶格;点阵lattice constant 晶格常数lattice energy 晶格能lattice model 晶格模型lattice structure 晶格结构monoclinic 单斜(晶)的mono-crystalline 单晶的morphological structure 形态结构molecular orientation 分子取向non-crystallizable polymer 不结晶聚合物one-way orientation 单向取向orientated polymer 取向聚合物orientated polymerization 取向聚合orientation 取向orthorhombic unit cell 斜方晶胞platelets 片晶polarize 起偏(振)镜;起偏光镜polarizing microscope 偏(振)光显微镜polaroid (人造)偏振片[物];起偏振片single crystal 单晶small angle scattering 小角散射第三章高分子溶液viscometry 粘度法gelatination 胶凝(作用);胶凝化gel point 凝胶点coacervation 凝聚coagulation point 凝固点;凝结点equilibrium swelling 平衡溶胀heat of solution 溶解热gel 凝胶;冻胶ideal solution 理想溶液fractional precipitation 分级沉淀fractional solution 分级溶解fractionation 分级non-ideal solution 非理想溶液solubility 溶解性;可溶性solubility parameter 溶度参数soluble polymer 可溶性聚合物dilute solution 稀溶液dilute solution theory 稀溶液理论dilution free energy 稀释自由能dilution heat 稀释热dilution viscometer 稀释粘度计free energy 自由能free energy of mixing 混合自由能entropy of mixing 混合熵polar polymer 极性聚合物第四章高聚物的分子量和分子量分布average molecular weight 平均分子量Z-average molecular weight Z均分子量Z-average molecular weight Z均分子量weight average molecular weight 重(量平)均分子量apparent molecular weight 表观分子量critical entanglement molecular weight 临界缠结分子量end effect 末端效应end group 端基end group method 端基法[测分子量]intrinsic viscosity 特性粘数intrinsic viscosity number 特性粘数narrow molecular weight distribution 窄分子量分布mean molecular weight 平均分子量molecular weight 分子量molecular weight determination 分子量测定molecular weight distribution 分子量分布molecular weight distribution curve 分子量分布曲线number average molecular weight 数均分子量scattering angle 散射角relative viscosity 相对粘度viscometric average molecular weight 粘均分子量viscosity 粘度viscosity-average molecular weight 粘均分子量viscous 粘的;粘性的logarithmic viscosity number 比浓对数粘度kinematic viscosity 比密粘度non-polar polymer 非极性聚合物interfacial tension 界面张力density gradient column 密度梯度管density gradient sedimentation 密度梯度沉降法density gradient tube 密度梯度管concentration gradient 浓度梯度第五章聚合物的转变与松弛stress relaxation 应力松弛stress-strain curve 应力-应变曲线deformability 变形性deformation 形变;变形deformation band (滑移)形变带continuous stress relaxation 连续应力松弛characteristic relaxation time 特征松弛时间discrete relaxation time 离散松弛时间epitaxy 外延;取向生长glasslike polymer 类玻璃聚合物glass point 玻璃点glass temperature 玻璃化(转变)温度glass transition 玻璃化转变glass transition region 玻璃化转变区glass transition temperature 玻璃化转变温度glassy compliance 玻璃态柔量glassy modulus 玻璃态模量glassy polymer 玻璃态聚合物glassy state 玻璃态half-crystallization time 半结晶期half life period 半衰期fractional free volume 自由体积分数free volume 自由体积noncrystalline 非晶的noncrystalline region 非晶区kinetic of crystallization 结晶动力学nuclei [复]核;晶核nucleus ([复] nuclei)核;晶核nucleus formation (晶)核生成(作用)rubbery plateau zone 橡胶高弹区rubbery state 橡胶态rubbery plateau zone 橡胶高弹区rubbery state 橡胶态rate of crystal growth 晶体生长速率transition zone 转变区compression deformation 压缩变形compression modulus 压缩模量heterogeneous nucleation 异相成核dimensionless glass transition 无量纲玻璃化转变thermo-mechanical curve 热机(械)曲线;温度形变曲线permanent deformation 永久变形non-reversible deformation 不可逆形变;永久形变thermal deformation 热变形thermal degradation 热降解thermal dilation 热膨胀compression set 压缩变形initial modulus 起始模量initial tangent modulus 起始切线模量instantaneous compliance 瞬时柔量instantaneous deformation 瞬时形变instantaneous elasticity 瞬时弹性instantaneous elastic recovery 瞬时弹性回复instantaneous modulus 瞬时模量dynamic mechanical double glass transition 动态力学双重玻璃化转变delayed deformation 延迟形变recrystallization 再结晶(作用)relative deformation 相对形变relative elongation 相对伸长thermogravimetric curve 热重(分析)曲线;温度重量曲线第六章橡胶弹性anisotropic 各向异性的anisotropy 各向异性(现象)blend [1]共混物[2]共混blending polymer 共混聚合物dynamic elasticity 动态弹性delayed elasticity 延迟弹性elastic 弹性的elastic anisotropy 弹性各向异性elastic compliance 弹性柔量elastic constant 弹性常数elastic deformation 弹性形变elastic elongation 弹性伸长elastic extension 弹性延伸elastic isotropy 弹性各向同性elasticity 弹性elasticity modulus 弹性模量elastic property 高弹性elastomer 高弹体;弹性体elastomeric state 橡胶高弹态;高弹态high elastic deformation 高弹形变high elasticity 高弹性high elastic rubber 高弹性橡胶long range elasticity 高弹性ideal elasticity 理想弹性ideal elastomer 理想弹性体non-elastic deformation 非弹性形变initial elasticity 初弹性;瞬时弹性perfect elastic body 理想弹性体modulus of elasticity 弹性模量modulus of rigidity 刚性模量temporary set(高)弹性形变dynamic resilience 动态弹性回复dynamic rigidity 动态刚度;动态刚性rubber elastic behavior 橡胶弹性行为;高弹行为entropic deformation mechanism 熵变形机理entropy-elastic deformation 熵弹形变entropy elasticity 熵弹性entropy spring 熵弹簧nature rubber 天然橡胶non-Hookean elasticity 非虎克弹性natural cis-polyisoprene 天然顺式聚异戊二烯;天然橡胶natural draw ratio 固有拉伸比;自然拉伸比one-way drawing 单向牵伸draw 拉伸draw ratio 拉伸比Poisson’s ratio 泊松比第七章聚合物的粘弹性anelasticity 滞弹性dynamic compliance 动态柔量dynamic creep 动态蠕变dynamic mechanical behavior 动态力学行为dynamic mechanical property 动态力学性能dynamic mechanical test 动态力学试验boltzmann superposition principle 波尔兹曼叠加原理relaxation phenomenon 松弛现象relaxation spectra 松弛(时间)谱relaxation time 松弛时间retardation time 推迟时间retarded elasticity 推迟弹性superposition principle 叠加原理nature time (=relaxation itme) 松弛时间;自然时间non-linear viscoelasticity 非线性粘弹性recovery creep 回复蠕变principle of superposition 叠加原理time of relaxation 松驰时间time-temperature equivalent principle 时-温等效原理time-temperature superposition principle 时-温叠加原理creep 蠕变creep compliance 蠕变柔量creep curve 蠕变曲线dashpot 粘壶dynamic modulus 动态模量dynamics 动力学dynamic state 动态dynamic viscoelastometer 动态粘弹谱仪dynamic viscosity 动态粘度;动力粘度elastoviscometer 弹性粘度计elasto-viscous system 弹粘体系elastoviscous polymer 弹粘性聚合物distribution of retardation times 推迟时间分布Hookean elasticity 虎克弹性Hookean spring 虎克弹簧immediate set 瞬时变形initial creep 起始蠕变mechanical relaxation 力学松弛viscous elasticity 粘弹性stickiness 粘性compression stress relaxation 压缩应力松弛maximum relaxation time 极大松弛时间distribution of relaxation times 松弛时间分布stretch(ing) 拉伸tangent of the loss angle 损耗角正切mechanical loss factor 力学损耗因子loss angle 损耗角loss factor 损耗因子loss modulus 损耗模量loss tangent 损耗角正切intermittent stress relaxation 间断应力松弛discrete viscoelastic spectra 离散粘弹谱lastics [1]塑料[2]弹塑料;弹塑(性)体damping 阻尼;减幅damping factor 阻尼因子distortion 扭变;畸变;双定向的第八章聚合物的屈服和断裂work-to-break 断裂功yield 屈服yield strength 屈服强度yield stress 屈服应力Y oung’s modulus 杨氏模量root-mean-square end-to-end rupture mechanism 断裂机理;破坏机理modulus of rupture (=flexural strength) 抗弯弹度;挠曲强度unnotched Izod impact strength 无缺口悬臂梁式抗冲击强度impact strength 冲击强度crack [1]裂缝;龟裂;裂纹[2]裂化craze 银纹load-elongation curve 载荷-伸长曲线fissure 裂缝;裂隙flexing resistance 抗挠性;耐屈挠性flexural modulus 挠曲模量flexural strength 挠曲强度fluid resin 液态树脂fracture 断裂;破裂fracture energy 断裂能fracture mechanism 断裂机理fracture surface energy 断裂表面能fracture toughness 断裂韧性fragility 脆性;易碎性friability 脆性;易碎性friction 摩擦frictional damping 摩擦阻尼fringe 条纹elongation 伸长extended length 伸展长度extension 伸长;延伸extension at break 断裂伸长extension modulus 拉伸模量extension ratio 拉伸比fabricability 加工性failure 破裂;破坏fatigue 疲劳fatigue cracking 疲劳龟裂fatigue curve 疲劳曲线fatigue failure 疲劳破坏fatigue strength 疲劳强度fatigue test 疲劳试验faying surface 接触面bending modulus 弯曲(弹性)模量bend(ing) strength 弯曲强度bend(ing) stress 弯曲应力breaking elongation 断裂伸长第九章聚合物的流变性rheology 流变学rheometer 流变仪anti-swelling 抗溶胀性anti-thixotropy 非触变性;非摇溶(现象)apparent area 表观面积apparent density 表观密度apparent fluidity 表观流度apparent viscosity 表观粘度die swell(ing) 挤出胀大;模口胀大die swell ratio 挤出胀大比dilatability 膨胀性dilatate 膨胀dynamic (=dynamical) [1]动态的[2]动力学的dynamic chemorheology 动态化学流变学flowability 流动性flow behavior 流动行为;流动特性flow birefringence 流动双折射flow curve 流动曲线flow diagram 流动图flow index 流动指数flow line 流线flow temperature 流动温度fluid 流体fluid mechanics 流体力学hydrodynamics 流体力学hydronamic orientation 流体力学取向non-recoverable flow 不可逆流动;塑性流动pseudo-plastic fluid 假塑性流体pseudo-plasticity 假塑性;非宾汉塑料pseudo-viscosity 假粘度;非牛顿粘度pure viscous flow 纯粘性流动rate of shear 剪切(变)速率melt crystallization 熔融结晶melt elasticity 熔体弹性melten polymer 熔融聚合物melt flow index 熔体流动指数melt fracture 熔体破裂melt index 熔体指数melting temperature 熔融温度melting viscosity 熔融粘度melt rheology 熔体流变学melt viscosity 熔体粘度telescopic flow 层流viscous flow 粘流drag flow 粘性流动Bingham body 宾汉体Bingham flow 宾汉流动Bingham model 宾汉模型Bingham plastic fluid 宾汉塑性流体Bingham’s yield value 宾汉屈服值Bingham viscometer 宾汉粘度计extrude 挤出;挤压;压出extruding machine 挤出机extrusion 挤出;挤压extrusion molding 挤出成形extrusion swelling 挤出胀大capillary extrusion rheometer 毛细管挤出流变计necking (cold drawing) 颈缩(冷拉);细颈现象Newtonian behavior 牛顿行为Newtonian flow 牛顿流动[纯粘性流动] Newtonian liquid 牛顿液体Newtonian viscosity 牛顿粘度non-homogeneous 不均匀的non-Newtonian behavior 非牛顿行为non-Newtonian liquid 非牛顿液体shear 剪切;切变shear-banding 剪切带shear deformation 剪切形变shear elasticity (=shear modulus) 剪切模量shear stress 剪切应力shear viscosity 剪切粘度plastic flow 塑性流动plastic fluid 塑性液体torsional moment 扭矩torsional pendulum 扭摆torsional vibration rheometer 扭转振动流变仪smelting 熔炼;熔化softening 软化softening temperature 软化温度;软化点fusion heat 熔化热laminar flow 层流polymer melt 聚合物熔体molten polymer 熔融聚合物molten state 熔融状态swelling ratio 溶胀比;胀大比phase equilibrium 相平衡phase transition 相转变第十章聚合物的电学性能\热性能\光学性能\以及表面与界面性能ageing process 老化过程ageing property 老化性能;耐老化性ageing resistance 耐老化性;抗老化性ageing time 老化时间;老成时间air permeability 透气性dielectric 电介质;介电的dielectric anisotropy 介电各向异性dielectric breakdown 介电击穿dielectric constant 介电系数;介电常数dielectrie dissipation factor 介电损耗因子;介电损耗角正切dielectric heating 介电加热dielectric loss 介电损耗dielectric loss factor 介电损耗因子dielectric loss tangent 介电损耗(角)正切dielectric property 介电性质dielectric polarization 介电极化dielectric relaxation 介电松弛dielectric spectra 介电谱conductive polymer 导电聚合物flame resistance 阻燃性flame retardant 阻燃剂flammability 可燃性heat endurance 耐热性heat expansion 热膨胀heat resistance 耐热性high-temperature stability 高温稳定性heat-resistant polymer 耐热聚合物thermal conductivity [1]热导率;导热系数[2]导热性high polymeric polyelectrolyte 高聚物电解质insulating property 绝缘性质low temperature brittleness 低温脆性thermoplastic [1]热塑性塑料[2]热塑性的thermoplasticity 热塑性thermoset plastic 热固性塑料thermosetting plastic 热固性塑料thermosetting resin 热固性树脂thermostability 热稳定性;耐热性stanslucency 半透明性;半透明度transparency [1]透明性[2]透光度triboelectricity 静电作用;摩擦生电true melting point 真熔点true strain 真应变true stress 真应力vicat softening point 维卡软化点voltage breakdown 击穿电压wearability 耐磨性wear resistance 耐磨性weatherability 耐候性;耐老化性wettability 吸湿性;润湿性solidness 硬度;硬性strength 强度mechanical property 力学性能;机械性能thermal coefficient of expansion 热膨胀系数gas proofness 不透气性;气密性gas tight 不透气的;气密的anti-static 抗静电的breakdown strength 击穿强度doping 掺杂electric breakdown 电击穿electrodialysis 电渗析聚合物名称单词ABS resin ABS树脂aldehyde polymer 醛类聚合物aidehyde resin 缩醛树脂;聚醛树脂aldol condensation 醛醇缩合aldol resin 醛醇树脂chemical fibers 化学纤维composite 复合材料composite material 复合材料conjugate fiber 组合纤维;复合纤维high-density polyethylene 高密度聚乙烯low density polyethylene 低密度聚乙烯low molecular polymer 低聚物;低分子量聚合物low pressure rocessed polyethylene 低压法聚乙烯medium-density polyethylene 中密度聚乙烯phenol-aldehyde plastics 酚醛塑料phenol-aldehyde resin 醛醛树脂phenolic plastics 醛醛塑料polyacrylonitrile 聚丙烯腈polybutadiene 聚丁二烯polybutene 聚丁烯polycarbonate 聚碳酸酯polychlorovinyl 聚氯乙烯poly(ethylene terephthalate) 聚对苯二甲酸乙二醇酯poly(methyl methacrylate) 聚甲基丙烯酸甲酯poly(1-phenylethylene) 聚1-苯基亚乙基;聚苯乙烯polyvinyl formal 聚乙烯醇缩甲醛poly(phenylene ether) 聚苯醚polypropylene 聚丙烯synthetic resin 合成树脂synthetic rubber 合成橡胶synthon 合成纤维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :m a t h /0206240v 1 [m a t h .C A ] 23 J u n 2002ON FRACTIONAL KINETIC EQUATIONSR.K.SAXENADepartment of Mathematics and Statistics,Jai Narain Vyas UniversityJodhpur 342001,INDIAA.M.MATHAIDepartment of Mathematics and Statistics,McGill University,805Sherbooke Street West,Montreal,CANADA H3A 2K6H.J.HAUBOLDOffice for Outer Space Affairs,United Nations,P.O.Box 500,A-1400Vienna,AUSTRIAAbstract.The subject of this paper is to derive the solution of general-ized fractional kinetic equations.The results are obtained in a compact form containing the Mittag-Leffler function,which naturally occurs whenever one is dealing with fractional integral equations.The results derived in this paper provide an extension of a result given by Haubold and Mathai in a recent paper (Haubold and Mathai,2000).1Introduction and PreliminariesIn terms of Pochammer’s symbol(α)n =1,n =0α(α+1)...(α+n −1),n ∈Nwe can express the binomial series as(1−x )−α=∞r =0(α)r x rΓ(αn +1),(2)1This function was defined and studied by Mittag-Leffler(Mittag-Leffler,1902, 1905).We note that this function is a direct generalization of an exponential function,sinceE1(z):=exp(z).It also includes the error functions and other related functions,for we haveE1/2(±z1/2)=e z[1+erf(±z1/2)]=e z erfc(∓z1/2),(3)whereerf(z):=2Γ(αn+β)(5) gives a generalization of the Mittag-Leffler function.This generalization was studied by Wiman(1905),Agarwal(1953),Humbert(1953)and Humbert and Agarwal(1953)and several others.Whenβ=1,(5)reduces to(2).Both the functions defined by(2)and(5)are entire functions of order1/αand type1.A detailed account of these functions is available from the monograph of Erd´e lyi et al.(1955).The Laplace transform of Eα,β(z)follows from the integral ∞e−pt tβ−1Eα,β(λatα)dt=p−β(1−ap−α)−1,(6) where Re(p)>|a|1/α,Re(β)>0,which can be established by means of the Laplace integral ∞e−pt tρ−1dt=Γ(ρ)/pρ,(7) where Re(p)>0,Re(ρ)>0.The Riemann-Liouville operator of fractional integration is defined asa D−νt f(t)=1dtN i(t)=−c i N i(t),(c i>0),(9)2it is derived that(Haubold and Mathai,2000)N i(t)−N0=−c i0D−1t N i(t),(10) where0D−1t is the standard Riemann integral operator.Here we recall that, in the original paper of Haubold and Mathai(2000),the number density of species i,N i=N i(t),is a function of time and N i(t=0)=N0is the number density of species i at time t=0.By dropping the index i in(10),the solution of its generalized formN(t)−N0=−cν0D−νt N(t),(11) is obtained(Haubold and Mathai,2000)asN(t)=N0∞k=0(−1)k(ct)νkwhereF (p )=∞u =0e −puf (u )du.(17)Projecting the equation (14)to Laplace transform,it givesN (p )=L {N (t );p }=N 0Γ(µ)Γ(ρ),Re (ρ)>0,(19)it is found thatL −1N 0Γ(µ)(r )!=N 0Γ(µ)∞r =0(−1)r c νrL −1p−µ−νr=N 0Γ(µ)∞ r =0(−1)r crνt µ+rν−1c ν−d ν[E ν,µ−ν(−d νt ν)−E ν,µ−ν(−c νt ν)].(22)Proof.Projecting (21)to Laplace transform and using (5)and (16),we obtain N (p )=L {N (t );p }=N 0p −µ[1+(p/d )−ν]−1c ν−d ν∞r =0(−1)r (1)r (d/p )rν(r )!4HenceL−1{N(p)}=N(t)=N0cν−dν ∞ r=0(−1)r d rνtµ+rν−ν−1Γ(rν+µ−ν)=N0tµ−ν−1cν−dν[Eν(−dνtν)−Eν(−cνtν)].(24)On the other hand if d→0in(22),we arrive atCorollary2.2.If c>0,ν>0,µ>0,Re(p)>|d|ν/α,then for the solution ofN(t)−N0tµ−1cν 1Γ(ν+1)=−cν0D−νt N(t),(27) there holds the formulaN(t)=N0where c>0,ν>0.The case c=d is given byTheorem3.If c>0,ν>0,µ>0,then for the solution of the equationN(t)−N0tµ−1Eν,µ(−cνtν)=−cν0D−νt,(29) the following result holdsN(t)=N0(r)!=N0tµ−1∞r=0(−1)r(r+1)ν{(rν+µ−1)+(1+ν−µ)}(ct)rνν ∞ r=0(−cνtν)rΓ(rν+µ)=R.H.S.of(30).3ConclusionsThe fractional kinetic equation(11)has been extended to generalized frac-tional equations(14),(21),(23),and(29).Their respective solutions are given in terms of the ordinary Mittag-Leffler function and their generaliza-tion,which can also be represented as FOX’s H-functions.The ordinary and generalized Mittag-Leffler functions interpolate between a purely exponen-tial law and power-like behavior of phenomena governed by ordinary kinetic equations and their fractional counterparts,respectively(Lang,1999;Hil-fer,2000).A specific example for such behavior is the application of Tsallis statistics(Tsallis,2002)to phenomena that may arise fromfluctuations of temperature or energy dissipation rate(Lavagno and Quarati,2002).The application of fractional kinetic equations to describe such phenomena has not been fully developed yet.6ReferencesAgarwal,R.P.:1953,A propos d’une note de M.Pierre Humbert,C.R.Acad.Sci.Paris236,2031-2032.Erd´e lyi,A.,Magnus,W.,Oberhettinger,F.,and Tricomi,F.G.:1953, Higher Transcendental Functions,Vol.1,McGraw-Hill,New York-Toronto-London.Erd´e lyi,A.,Magnus,W.,Oberhettinger,F.,and Tricomi,F.G.:1954,Tables of Integral Transforms,Vol.1,McGraw-Hill,New York-Toronto-London. Erd´e lyi,A.,Magnus,W.,Oberhettinger,F.,and Tricomi,F.G.:1955,Higher Transcendental Functions,Vol.3,McGraw-Hill,New York-Toronto-London. Haubold,H.J.and Mathai,A.M.:2000,The fractional kinetic equation and thermonuclear functions,Astrophysics and Space Science327,53-63. Hilfer,R.(ed.):2000,Applications of Fractional Calculus in Physics,World Scientific,Singapore.Humbert,P.:1953,Quelques resultats relatifs a’la fonction de Mittag-Leffler,C.R.Acad.Sci.Paris236,1467-1468.Humbert,P.and Agarwal,R.P.:1953,Sur la fonction de Mittag-Leffler et quelques-unes de ses generalisations,Bull.Sci.Math.(Ser.II)77,180-185.Lang,K.R.:1999,Astrophysical Formulae Vol.I(Radiation,Gas Processes and High Energy Astrophysics)and Vol.II(Space,Time,Matter and Cosmology),Springer-Verlag,Berlin-Heidelberg.Lavagno,A.and Quarati,P.:2002,Classical and quantum non-extensive statistics effects in nuclear many-body problems,Chaos,Solitons andFractals13,569-580.Miller,K.S.and Ross,B.:1993,An Introduciton to the Fractional Calculus and Fractional Differential Equations,John Wiley and Sons,New York. Mittag-Leffler,G.M.:1903,Sur la nouvelle fonction Eα(x),C.R.Acad.Sci.Paris,(Ser.II)137,554-558.Mittag-Leffler,G.M.:1905,Sur la representatin analytique d’une branche uniforme d’une fonciton monogene,Acta Math.29,101-181.Oldham,K.B.and Spanier,J.:1974,The Fractional Calculus: Theory and Applications of Differentation and Integration to Arbitrary Order,Academic Press,New York.7Srivastava,H.M.and Saxena,R.K.:2001,Operators of fractional integration and their applications,Applied Mathematics and Computation118,1-52. Tsallis,C.:2002,Entropic nonextensivity:A possible measure of complexity, Chaos,Solitons and Fractals13,371-391.Wiman,A.:1905,Ueber den Fundamentalsatz in der Theorie der Funktionen Eα(x),Acta Math.29,191-201.Wiman,A.:1905,Ueber die Nullstellen der Funktionen Eα(x),Acta Math.29,217-234.8。

相关文档
最新文档