2019中考数学总复习第二轮纵向小专题复习专题4一元一次方程课件

合集下载

初三数学复习计划PPT课件

初三数学复习计划PPT课件
明确指导思想
知识技能
数学思考 问题解决 情感态度
知识技能
1.体验从具体情境中抽象出数学符号的过程,理 解有理数、实数、代数式、方程、不等式、函数; 掌握必要的运算(包括估算)技能;探索具体问 题中的数量关系和变化规律,掌握用代数式、方 程、不等式、函数进行表述的方法。 2.探索并掌握相交线、平行线、三角形、四边 形和圆的基本性质与判定,掌握基本的证明方法 和基本的作图技能;探索并理解平面图形的平移、 旋转、轴对称;认识投影与视图;探索并理解平 面直角坐标系,能确定位置。 3.体验数据收集、处理、分析和推断过程,理 解抽样方法,体验用样本估计总体的过程;进一 步认识随机现象,能计算一些简单事件的概率。
情感态度
1.积极参与数学活动,对数学有好奇心和求知 欲。 2.感受成功的快乐,体验独自克服困难、解决 数学问题的过程,有克服困难的勇气,具备学 好数学的信心。 3.在运用数学表述和解决问题的过程中,认识 数学具有抽象、严谨和应用广泛的特点,体会 数学的价值。 4.敢于发表自己的想法、勇于质疑,养成认真 勤奋、独立思考、合作交流等学习习惯,形成 实事求是的科学态度。
12课时序号复习内容课时过关测试内容时间第1课时实数第2课时二次根式第3课时代数式整式运算第4课时因式分解分式第5课时一次方程分式方程一次方程组方程与不等式1课时第6课时一元二次方程第7课时一元一次不等式组1第8课时不等式的应用第9课时函数概念一次函数函数及其图像1课时第10课时反比例函数第11课时二次函数第12课时函数的应用第13课时平行线三角形与证图形的性质1课时第14课时特殊三角形第15课时多边形平行四边形与证明第16课时特殊平行四边形梯形与证明第19课时投影与视图图形与变换第20课时图形的变换图形与变换1课时第21课时相似形第22课时解直角三角形图形与坐标第23课时图形变换与坐标图形与坐标1课时14概率与统3课时第24课时统计概率测试1课时第5课时概率151620201217重视模块之间的联系

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

2019年中考数学专题复习 第二讲整式、因式分解 (共68张PPT)精品物理

2019年中考数学专题复习  第二讲整式、因式分解 (共68张PPT)精品物理
∴原式=2(a-b)-1=2-1=1.
答案:1
(3)由题意可知:m=-1,n=0,c=1, ∴原式=(-1)2015+2016×0+12017=0. 答案:0
【答题关键指导】 整体代入法求代数式值的三种方法 (1)直接整体代入求值:如果已知的代数式与要求的代 数式之间都含有相同的式子,只要把已知式子的值直 接代入到要求的式子中,即可得出结果.
(3)(2017·济宁中考)分解因式: ma2+2mab+mb2=____________.
【思路点拨】(1)先提取公因式,再利用平方差公式进 行分解. (2)通过两次提取公因式,来进行因式分解. (3)先提取公因式,再利用完全平方公式进行分解.
【自主解答】 (1)x3-x=x(x2-1)=x(x+1)(x-1). (2)原式=x(x-2)+(x-2)=(x+1)(x-2). (3)原式=m(a2+2ab+b2)=m(a+b)2.
【答题关键指导】 幂的运算的应用 (1)同底数幂的乘除法应用的前提是底数必须相同,若 底数互为相反数时,要应用积的乘方处理好符号问题, 转化成同底数,再应用法则.
(2)同底数幂的乘法、幂的乘方、积的乘方混合运算 的时候要注意三个方面:一是运算顺序,二是正确选择 法则,三是运算符号.
【变式训练】
2.(2017·潍坊中考)下列计算正确的是 ( )
A.a3×a2=a6
B.a3÷a=a3
C.a2+a2=a4
D.(a2)2=a4
【解析】选D.选项A是同底数幂的乘法,结果为a5,故选 项A错误;选项B是同底数幂的除法,结果为a2,故选项B 错误;选项C是合并同类项,结果为2a2,故选项C错误;选 项D是幂的乘方,底数不变,指数相乘,故选项D正确.

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。

【注意】A 、B 都是整式,B 中含有字母,且B ≠0。

2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。

3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。

(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。

(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。

(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。

【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。

【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。

4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nn aa-=。

5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

【注意】不论是分式的哪种运算,都要先进行因式分解。

6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
分析 先求出不等式组的解集, 即x的取值范围, 然后根据不等式组 的整数解的个数确定其整数解, 再借助数轴进行直观分析得到b的 取值范围.
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?

数学中考二轮复习专题卷---一元一次方程附答案解析

数学中考二轮复习专题卷---一元一次方程附答案解析

数学中考二轮复习专题卷-一元一次方程学校:___________姓名:___________班级:___________考号:___________一、选择题1.一元一次方程2x=4的解是A .x=1B .x=2C .x=3D .x=42.若代数式x+3的值为2,则x 等于A .1B .1-C .5D .5-3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A .1B .1-C .9D .9- 4.下列方程中,是一元一次方程的是( )A.211=-xB.012=-xC.32=-y xD.213=-x5x=2,其依据是A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质16.下列等式中不是方程的是A .x 2+2x-3=0 B.x+2y=12 C.x+1=3x D. 5+8=137.下列方程中是一元一次方程的是( )A .2x=3yB .7x+5=6(x-1)C .x 2-0.5x=2D .12x x-= 8.王先生到银行存了一笔三年期的定期存款,年利率是 4.25%,若到期后取出得到本息和(本金+利息)33852元。

设王先生存入的本金为x 元,则下面所列方程正确的是A .x+3×4.25%x=33825B .x+4.25%x=33825C .3×4.25%x=33825D .3(x+4.25%x)=338259.把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为A . 70cmB .65cmC .35cmD .35cm 或65cm10.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多A .60元B .80元C .120元D .180元11.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】A .7岁B .8岁C .9岁D .10岁12.下列方程变形正确的是( )A . 方程3x ﹣2=2x ﹣1移项,得3x ﹣2x=﹣1﹣2B . 方程3﹣x=2﹣5(x ﹣1)去括号,得3﹣x=2﹣5x ﹣1C . 方程可化为3x=6 D . 方程系数化为1,得x=﹣113.某人以八折的优惠价购买一套服装省了15元,那么某人购置这套服装时,用了多少( )A . 35元B . 60元C . 75元D . 150元14.哥哥今年的年龄是弟弟的2倍,弟弟说:“六年前,我们俩的年龄和为15岁”,若用x 表示哥哥今年的年龄,则可列方程( )AC 15.若x 为实数,记{x}=x-[x](表示不超过x 的最大整数),则方程:2006x+{x}=20071的实根的个数是( ).A.OB.1C.2D.大于2的整数 16.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A.4x+1-10x+1=1 B. 4x+2-10x-1=1 C. 4x+2-10x-1=6 D. 4x+2-10x+1=617.下列解方程错误的是( )A.由-31x =9得x =-3 B.由7x =6x -1得7x -6x =-1 C.由5x =10得x =2D.由3x =6-x 得3x+x =6 18.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x xC .1263-=-x xD .1233-=-x x19.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A.当k 0=时,方程无解B.当k 1=时,方程有一个实数解C.当k 1=-时,方程有两个相等的实数解D.当k 0≠时,方程总有两个不相等的实数解20.若k 是方程2x+l=3的解,则6k+3的值是( )A .9B .-9C .15D .-3二、填空题21.方程x 27+=的解为 . 22.方程x+1=0的解是 .23.如果x=2是x+a=1的解,那么a 的值是 .24.如果21x y =-⎧⎨=⎩是方程2x-3y =a 的一组解,则a = 。

中考数学专题复习课件:整式方程

中考数学专题复习课件:整式方程
( x 2 ) 2 ( x 1 ) 2
的值.
解:根据题意得 x2+4x-5=0,且x2-x-30=0 ∴x=-5或x=1,且x=6或x=-5 ∴x=-5
( x 2 ) 2 ( x 1 ) 2 ( 5 2 ) 2 ( 5 1 ) 2 3
【例5】(2008年· 绍兴)若一个三角形的三边长均满 足x2-6x+8=0,则此三角形周长为 6,10,12 .
课时训练
6.(2008年· 新疆)用配方法解方程x2+6x-7=0. 解:x2+6x-7=0 x2+6x+9=7+9 (x+3)2=16 x+3=±4 x =1,x =-7 1 2
课时训练
1. (2008年·河南省)已知一元二次方程x2-2x=0,它的 解是 ( D ) A.0 B.2 C.0,-2 D.0,2 2. (2008年· 厦门市)一元二次方程x2+x-1=0的根是.
1 5 x 2Байду номын сангаас
3. (2008年·陕西省)方程(x+1)2=9的解是 ( C ) A.x=2 B.x=-4 C.x1=2,x2=-4 D.x1=-2,x2=4
2a
④因式分解法.
课前热身
1. (2008年·黑龙江)如果代数式4y2-2y+5的值为7, 那么代数式2y2-y+1的值等于 ( A ) A.2 B.3 C.-2 D.4 2. (2008年·北京海淀区)若a的值使得x2+4x+a=(x+2)2-1 成立,则a的值为 ( C ) A.5 B.4 C.3 D.2 3.(2008年· 吉林省)已知m是方程x2-x-2=0的一个根,则 2 代数式m2-m的值等于 。

中考数学专题4一元一次方程与二元一次方程(全国通用原卷版)

中考数学专题4一元一次方程与二元一次方程(全国通用原卷版)

一元一次方程与二元一次方程(组)一、单选题1.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7- 2.(2022·山东滨州)在物理学中,导体中的电流Ⅰ跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R=去分母得IR U =,那么其变形的依据是( ) A .等式的性质1 B .等式的性质2 C .分式的基本性质 D .不等式的性质2 3.(2021·吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( )A .213337x x x ++=B .21133327x x x ++= C .21133327x x x x +++= D .21133372x x x x ++-= 4.(2021·黑龙江牡丹江)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( ) A .不盈不亏 B .盈利20元 C .盈利10元 D .亏损20元 5.(2021·四川绵阳)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹( ) A .60件 B .66件 C .68件 D .72件 6.(2022·江苏苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 7.(2022·湖南岳阳)我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A .25B .75C .81D .908.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( ) A .14 B .15 C .16 D .179.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯10.(2021·广西梧州)在ⅠABC 中,ⅠA =20°,ⅠB =4ⅠC ,则ⅠC 等于( ) A .32° B .36° C .40° D .128°11.(2021·湖南株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A .1.8升B .16升C .18升D .50升 12.(2020·辽宁辽宁)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.223400x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩13.(2020·黑龙江齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种14.(2020·山东临沂)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩15.(2020·浙江嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.Ⅰ×2﹣ⅠB.Ⅰ×(﹣3)﹣ⅠC.Ⅰ×(﹣2)+ⅠD.Ⅰ﹣Ⅰ×3 16.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x根,下等草一捆为y 根,则下列方程正确的是()A.51177255y xy x-=⎧⎨-=⎩B.51177255x yx y+=⎧⎨+=⎩C.51177255x yx y-=⎧⎨-=⎩D.71155257x yx y-=⎧⎨-=⎩17.(2022·山东聊城)关于x,y的方程组2232x y kx y k-=-⎧⎨-=⎩的解中x与y的和不小于5,则k的取值范围为()A .8k ≥B .8k >C .8k ≤D .8k <18.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )A .5B .6C .7D .819.(2022·黑龙江齐齐哈尔)端午节前夕,某食品加工厂准备将生产的粽子装入A 、B 两种食品盒中,A 种食品盒每盒装8个粽子,B 种食品盒每盒装10个粽子,若现将200个粽子分别装入A 、B 两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A .2种B .3种C .4种D .5种20.(2021·四川德阳)关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x a y b =⎧⎨=⎩,若点P (a ,b )总在直线y =x 上方,那么k 的取值范围是( )A .k >1B .k >﹣1C .k <1D .k <﹣1 21.(2021·黑龙江)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180 元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A .5种B .6种C .7种D .8种22.(2021·黑龙江齐齐哈尔)周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A .3种B .4种C .5种D .6种23.(2020·湖南张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232xx -+= C .9232x x +-= D .2932x x -=+ 24.(2020·内蒙古呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( )A .102里B .126里C .192里D .198里 25.(2022·湖北武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1226.(2021·湖北武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A .5h 3 B .3h 2 C .7h 5 D .4h 327.(2020·四川绵阳)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱28.(2020·黑龙江鹤岗)学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种29.(2020·黑龙江牡丹江)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3B.3,-3C3D33 30.(2020·浙江绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二、填空题31.(2020·广西柳州)一元一次方程2x﹣8=0的解是x=_____.32.(2020·湖南永州)方程组422x yx y+=⎧⎨-=⎩的解是_________.33.(2022·辽宁大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为____________.34.(2021·贵州遵义)已知x,y满足的方程组是22237x yx y+=⎧⎨+=⎩,则x+y的值为___.35.(2022·湖北随州)已知二元一次方程组2425x yx y+=⎧⎨+=⎩,则x y-的值为______.36.(2021·黑龙江大庆)某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共________间;37.(2021·湖南邵阳)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.38.(2020·甘肃金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图,请你为广告牌填上原价.原价:_________元39.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.40.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额x x 的函数解析式为为x元,购买量为y千克,则购买量y关于付款金额(10)______.41.(2020·湖北省直辖县级单位)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.42.(2020·黑龙江牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.43.(2022·浙江嘉兴)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).44.(2021·山东日照)关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.45.(2021·山东枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.46.(2021·江苏扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.47.(2020·内蒙古呼和浩特)公司以3元/kg 的成本价购进10000kg 柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为_______(精确到0.1);从而可大约确定每千克柑橘的实际售价为_______元时(精确到0.1),可获得12000元利润. 柑橘总质量/kg n 损坏柑橘质量/kg m 柑橘损坏的频率mn (精确到0.001)…... (250)24.75 0.099 30030.93 0.103 35035.12 0.100 45044.54 0.099 50050.62 0.10148.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.Ⅰ等式两边都减2m ,得222x m mx m -=-.Ⅰ等式两边分别分解因式,得()()()x m x m m x m +-=-.Ⅰ 等式两边都除以x m -,得x m m +=.Ⅰ等式两边都减m ,得x =0.Ⅰ所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.49.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则表示的方程是_______.50.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____.51.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.52.(2021·贵州黔西)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t ,5辆大货车与6辆小货车一次可以运货35t ,则3辆大货车与2辆小货车一次可以运货______t .53.(2021·北京)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n的值为______________. 54.(2022·黑龙江绥化)在长为2,宽为x (12x <<)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为________.55.(2021·山东烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a 的值为____________.56.(2020·湖北)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则=a _____.57.(2020·湖北随州)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.58.(2021·四川绵阳)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省_____元.59.(2021·内蒙古呼伦贝尔)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是3217423x yx y+=⎧⎨+=⎩,类似的,图(2)所示的算筹图用方程组表示出来,就是______________.60.(2022·北京)甲工厂将生产的I号、II号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I号、II号产品的重量如下:包裹编号I号产品重量/吨II号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).61.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=_____.三、解答题62.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?63.(2022·四川德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?64.(2021·黑龙江哈尔滨)君辉中学计划为书法小组购买某种品牌的A、B两种型号的毛笔.若购买3支A种型号的毛笔和1支B种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?65.(2021·广西柳州)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A、B两种品牌的螺蛳粉举行展销活动.若购买20箱A品牌螺蛳粉和30箱B品牌螺蛳粉共需要4400元,购买10箱A品牌螺蛳粉和40箱B品牌螺蛳粉则需要4200元.(1)求A、B品牌螺蛳粉每箱售价各为多少元?(2)小李计划购买A、B品牌螺蛳粉共100箱,预算总费用不超过9200元,则A品牌螺蛳粉最多购买多少箱?66.(2022·湖南永州)受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均()2x+米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均()3x+米/秒的速度滑到B端,用了20秒.(1)求x的值;(2)设小勇从滑雪道A端滑到B瑞的平均速度为v米/秒,所用时间为t秒,请用含t 的代数式表示v(不要求写出t的取值范围).67.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?68.(2022·四川内江)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/400320辆)学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?69.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.Ⅰ刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()Ⅰ刘三姐的姐妹们给出的答案是唯一正确的答案.()Ⅰ该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.70.(2021·贵州黔西)甲、乙两家水果商店,平时以同样的价格出售品质相同的樱桃.春节期间,甲、乙两家商店都让利酬宾,甲商店的樱桃价格为60元/kg;乙商店的樱桃价格为65元/kg.若一次购买2kg以上,超过2kg部分的樱桃价格打8折.(1)设购买樱桃x kg,y甲,y乙(单位:元)分别表示顾客到甲、乙两家商店购买樱桃的付款金额,求y甲,y乙关于x的函数解析式;(2)春节期间,如何选择甲、乙两家商店购买樱桃更省钱?71.(2021·广西桂林)为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:Ⅰ甲队单独完成;Ⅰ乙队单独完成;Ⅰ甲、乙两队全程合作完成.哪一种方案的施工费用最少?72.(2021·广西贺州)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?73.(2021·湖南益阳)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?。

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)

中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。

注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。

2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。

方程的概念:含有未知数的等式叫做方程。

特征:它含有未知数,同时又是—个等式。

一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。

方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。

一元方程的解又叫根。

知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。

表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。

2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。

3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。

知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。

移项把等式一边的某项变号后移到另一边,叫做移项。

(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。

去分母在方程的两边都乘以各自分母的最小公倍数。

去分母时不要漏乘不含分母的项。

当分母中含有小数时,先将小数化成整数。

解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)
2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3

组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5

中考数学复习讲义课件考点解读第二单元 方程(组)与不等式(组) 第9讲 一元二次方程及其应用 (2)

中考数学复习讲义课件考点解读第二单元 方程(组)与不等式(组) 第9讲 一元二次方程及其应用 (2)

一条口罩生产线生产口罩,开工第一天生产10万件,
第三天生产14.4万件,若每天增长的百分率相
同.试回答下列问题:
(1)求每天增长的百分率;
(2)经调查发现,1条生产线最大产能是20万件/天,
若每增加1条生产线,每条生产线的最大产能将减
口罩60万件,在增加产能同时又要节省投入的条件 下(生产线越多,投入越大),应该增加几条生产线? [分析] (1)设每天增长的百分率为x,根据开工第一 天及第三天的产量,即可得出关于x的一元二次方 程,解之取其正值即可得出结论; (2)设应该增加m条生产线,则每条生产线的最大产 能为(20-2m)万件/天,根据每天生产口罩60万件, 即可得出关于m的一元二次方程,解之取其较小值 即可得出结论.
[点评] 本题考查了一元二次方程的应用,找准等 量关系,正确列出一元二次方程是解题的关键.
20000个,1月底因突然爆发新 冠肺变炎式疫训情,市场对口罩需求

量大增,为满足市场需求,工
厂决定从2月份起扩大产能,3
月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长
率;
解:(1)设口罩日产量的月平均增长率为x,根据题 意,得20000(1+x)2=24200, 解得x1=-2.1(舍去),x2=0.1=10%. 答:口罩日产量的月平均增长率为10%. (2)24200(1+0.1)=26620(个). 答:预计4月份平均日产量为26620个.来自有实数根A,则m的值可以为()
A.-1
1 4
B.-
C.0
D.1
命题点3一元二次方程根的判别
式(10年1考)
8.(20A15·衡阳)若关于x的方程x2
+3x+a=0有一个根为-1,则

中考数学专题复习课件 --- 第六讲一元一次方程与分式方程

中考数学专题复习课件 --- 第六讲一元一次方程与分式方程
3
【解析】选A.把x=2代入方程2x+3m-1=0,解得m=-1.
2.(2010 ·东营中考)分式方程 (A)-3 (B)2 (C)3
1 3 的解是( x2 x
)
(D)-2
【解析】选C.原方程去分母,得x=3x-6,解得x=3,经检验x=3是
原方程的根,或者把选项代入原方程检验即可.
3.(2010·河北中考)小悦买书需用48元钱,付款时恰好用了 1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,
去分母,得(2x-8)-4=8, 去括号,得2x-8-4=8, 移项,合并同类项,得2x=20, 系数化为1,得x=10.
【纠错空间】上述解题过程出现了三个常见错误: (1)不会利用分式的符号法则对分式进行等值变形,这个法则 是“分式的分子、分母和分式本身的符号,任意改变两处, 分式的值不变”,按此法则,下列变形应该是:
3
检验:当 x 26 时,x-7≠0,且原方程的左右两边相等,
∴原方程的解为 x 26 .
3
3
x 1.(2010·江西中考)解方程: 2 x2
4 1. x2 4
【解析】 去分母,得(x-2)2+4=x2-4, 解得x=3. 检验:当x=3时,x2-4≠0, ∴x=3是原方程的解.
【解析】设原计划每天修水渠 x 米.
3 根据题意得: 600 3 600 20, x 1.8x
解得:x=80, 经检验:x=80是原分式方程的解. 答:原计划每天修水渠80米.
解分式方程常见的错误
【例】解分式方程 2x 8 4 8.
x7 7x 2x 8 4Байду номын сангаас【错误解析】变形,得 8 , x 7 x 7

中考数学复习分类精品课件:第二单元《方程与不等式》

中考数学复习分类精品课件:第二单元《方程与不等式》


(2)已知 A,B 两件服装的成本共 500 元,鑫洋服装店老板分别以 30% 和 20%的利润率定价后进行销售,该服装店共获利 130 元,问 A,B 两件 服装的成本各是多少元?
解:设 A 服装的成本为 x 元,根据题意,得 30%x+20%(500-x)=130.解得 x=300. 则 500-x=200. 答:A,B 两件服装的成本分别为 300 元,200 元.
的关系;
(2)设:设关键未知数(可设直接或间接未知数);
(3)列:根据题意寻找⑲ 等量关系
列方程(组);
(4)解:解方程(组);
(5)验:检验所解答案是否正确,是否符合题意和实际情况;
(6)答:规范作答,注意单位名称.
2.常见的应用题类型及基本数量关系:
常见类型
基本数量关系
路程=速度×时间
相遇

甲走的路程+乙走的路程=两地距离.
(2)面积问题常见图形:
(3)利润问题; (4)握手问题.
7.(1)某药品经过两次降价,每瓶零售价由 100 元降为 81 元.已知两 次降价的百分率都为 x,那么 x 满足的方程是 100(1-x)2=81 ;
(2)某机械厂七月份营业额为 1 000 万元,第三季度总的营业额为 3 990 万元.设该厂八、九月份平均每月的营业额增长率为 x,那么 x 满足的方程 是1 000+1 000(1+x)+1 000(1+x)2=3 990 .
3.解下列方程: (1)2(x+3)=5x; 解:去括号,得 2x+6=5x. 移项,得 2x-5x=-6. 合并同类项,得-3x=-6. 系数化为 1,得 x=2.
(2)x+2 1-2=x4. 解:去分母,得 2(x+1)-8=x. 去括号,得 2x+2-8=x. 移项,得 2x-x=8-2. 合并同类项,得 x=6.

中考数学复习:专题2-4 方程应用的误区

中考数学复习:专题2-4 方程应用的误区

专题04 方程的应用误区分析【专题综述】一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣 以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

【方法解读】一、 审题不清楚,等量关系找不准 例1 一车间人数比二车间人数的54少30人,如从二车间调10人到一车间去,那么一车间人数就是二车间人数的,43求两车间的原有人数.【解读】造成错误的原因是题意分析不清,把二车间调出去10人,没有给一车间人数加上去.【举一反三】 2012年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队战胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张? 【来源】宁夏回族自治区银川六中2017-2018学年第一学期七年级上册数学期末试卷 解:设每张300元的门票买了x 张,则每张400元的门票买了(8-x)张, 由题意,得300x+400(8-x)=2700, 解得:x=5,所以买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张. 二、 列方程时,方程各项的单位名称不统一例2 一队学生到校外进行军事野营训练,他们以5km/h 的速度行走,走了18min 的时候,学校要把一个紧急通知传给队长,通讯员从学校出发,骑自行车以14km/h 的速度按原路追上去,通讯员要用多少时间才能追上学生队伍?解: 设xh 后通讯员追上学生队伍,根据题意,得 5×6018+5x=14x. 解这个方程得x=.61 答:61h, 通讯员可以追上学生队伍.学@科%网 【解读】:本题告诉学生队伍的速度是5km/h,通讯员的速度是14km/h,而学生队伍先走的时间却用分表示,所以要解此题,先必须把单位化统一,即18min=.6018h 【举一反三】妈妈用2万元为小明存了一个6年期的教育储蓄,6年后,共能得23456元,则这种教育储蓄的年利率为?【来源】浙江省嘉兴市秀洲区高照实验学校2017-2018学年七年级12月月考数学试题 解:设这种教育储蓄的年利率为x ,则有: 20000+6×20000x=23456 解得x=0.0288=2.88%,三、 当求得的是负数时,认为是不符合题意,原方程无解.例3 父亲今年38对,女儿今年14岁,哪一年父亲的年龄是女儿年龄的7倍?【解读】其实在类似的题中出现负值并不是无意义,这里的负数其实指的是10年前,也就是说只有在10年前,父亲的年龄才是女儿年龄的7倍.【举一反三】 .幼儿园智慧树班某次能力测验有人参加,这次测验共有五道题,并且每人至少做对了一道题每道题至少有一人做对,只做对一道题的有8人,五道题全做对的有27人,只做对两道题的人数是只做三道题的人数的2倍.(1)答对四道题的有n 人,那么只做对三道题的人数可以用含m 与n 的代数式表示为____________; (2)(1)中的m=42,那么n 可以是多少?请说明理由; (3)统计了每道题做错的人数如下表: 题 号12345做错的人数 5 8 14 23 45若m=73,请根据上表求n.【来源】湖北省襄阳市襄城区2016-2017学年度上学期期末考试七年级数学试卷∴n 只能取1或4. (3)由题意得:()27335733548325814234533n n n ----⨯+⨯+⨯+=++++. 解得23n =.答:当73m =时, 23n =.四、 间接设元时,到了最后不去求所要求的量,只要求出未知数的值,就认为万事大吉了例4 甲、乙两站的路程是708km ,一辆慢车从甲站开往乙站,慢车走了一个半小时之后,另有一辆快车从乙站开往甲站,已知慢车每小时走92 km ,快车每小时走136 km ,问两车各走几小时后相遇? 解: 设两车相遇时快车走了x km.根据题意列方程,得136922392708x x =⎪⎭⎫⎝⎛+⨯- 解这个方程得x=340快车所用时间为212136340=(h). 慢车所用时间为).(4211212h =+答:快车走了4h 后,快车走了h 212,两车相遇.【解读】本题要求计算两车相遇时各走的时间,而在解时却应用了间接设元的方法,所以求得x=340只是快车走过的路程,并不是快车所走的时间,要求时间还必须用路程÷速度.【举一反三】 将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.这个班共有多少名小朋友?这堆糖果有多少颗?【来源】山东省滨州市无棣县2017-2018学年七年级(上)期中数学试卷 解:设共有x 位小朋友, 由题意得: 28312x x +=-, 解得: 20x =.220848⨯+=答:这个班共有20名小朋友,这堆糖果有48颗.学..科0.0网【强化训练】1. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【来源】江苏省丹阳市第三中学2017-2018学年七年级12月月考数学试题 【答案】打开丙管后3013小时可注满水池. 【解析】设打开丙管后x 小时可注满水池.等量关系为:甲注水量+乙注水量-丙排水量=1. 据此列出方程并解答.2. 课外阅读课上.老师将一批书分给各小组.若每小组8本.则还剩余3本:若每小组9本.则还缺2本.问有几个小组.(根据题意设未知数,只列出方程即可)【来源】河北省唐山市路北区2017-2018学年七年级(上)期末复习数学试卷 【答案】8x+3=9x ﹣2.【解析】试题分析:设有x 个小组,则课外书的本数为83x +,或表示为92x -,由此联立得出方程即可. 试题解析:设有x 个小组,根据题意可得:8392x x +=-.3.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(列方程计算) 【来源】山东省莒县第四协作区2017-2018学年度上学期第二次月考七年级数学试题 【答案】用160张制盒身,120张制盒底.试题解析:解:设用x 张制盒身,则用(280﹣x )张制盒底,由题意得: 2×15x=40(280﹣x ), 解得:x=160, 280﹣x=120.答:用160张制盒身,120张制盒底.4. 某班一次数学竞赛共出了20道题,现抽出了4份试卷进行分析如下表: (1)问答对一题得多少分,不答或答错一题扣多少分? (2)一位同学说他得了65分,请问可能吗?请说明理由。

中考数学复习讲义课件 专题4 数与代数实际应用

中考数学复习讲义课件 专题4 数与代数实际应用

(2)若该公司购进 A 商品 200 件,B 商品 300 件,准备把这些商品全部运往 甲、乙两地销售.已知每件 A 商品运往甲、乙两地的运费分别为 20 元和 25 元;每件 B 商品运往甲、乙两地的运费分别为 15 元和 24 元.若运往甲地 的商品共 240 件,运往乙地的商品共 260 件. ①设运往甲地的 A 商品为 x(件),投资总运费为 y(元),请写出 y 与 x 的函数 关系式; ②怎样调运 A,B 两种商品可使投资总费用最少?最少费用是多少元?(投 资总费用=购进商品的费用+运费)
考法示例
方程(组)应用型 ☞示例 1 (2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、小 两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大 垃圾桶和 8 个小垃圾桶共需 1560 元. (1)求大、小两种垃圾桶的单价; [解答] 解:设大垃圾桶的单价为 x 元/个,小垃圾桶的单价为 y 元/个. 依题意,得62xx++84yy==1650600,. 解得xy==6108.0, 答:大垃圾桶的单价为 180 元/个,小垃圾桶的单价为 60 元/个.
1.(2021·西藏)列方程(组)解应用题 为振兴农村经济,某县决定购买 A,B 两种药材幼苗发给农民栽种,已知购 买 2 棵 A 种药材幼苗和 3 棵 B 种药材幼苗共需 41 元;购买 8 棵 A 种药材 幼苗和 9 棵 B 种药材幼苗共需 137 元.问每棵 A 种药材幼苗和每棵 B 种药 材幼苗的价格分别是多少元?
解:设乙工程队每天能完成 x 平方米的绿化改造面积,则甲工程队每天能 完成(x+200)平方米的绿化改造面积.依题意,得 x+200+x=800.解得 x=300. ∴x+200=300+200=500.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档