自动控制原理复习

合集下载

自动控制原理复习资料

自动控制原理复习资料

一、单选题(共20题,40分)1、在伯德图中反映系统抗高频干扰能力的是( )(2.0)A、低频段B、中频段C、高频段D、无法反应正确答案: C2、设单位负反馈控制系统的开环传递函数G(s)=,其中K>0,a>0,则闭环控制系统的稳定性与()o(2.0)A、K值的大小有关B、a值的大小有关C、a和K值的大小有关D、a和K值的大小无关正确答案: D3、关于线性系统稳态误差,正确的说法是:( )(2.0)A、一型系统在跟踪斜坡输入信号时无误差B、C、增大系统开环增益K可以减小稳态误差D、增加积分环节可以消除稳态误差,而且不会影响系统稳定性正确答案: C4、传递函数定义线性定常系统在零初始状态下系统输出拉氏变换与输入拉氏变换之()。

(2.0)A、积B、比C、和D、差正确答案: B5、下列系统中属于不稳定的系统是( )。

(2.0)A、闭环极点为的系统B、闭环特征方程为的系统C、阶跃响应为的系统D、脉冲响应为的系统正确答案: D6、系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的()性能无影响。

(2.0)A、动态B、稳态C、相对稳定性D、响应的快速性正确答案: D7、设控制系统的开环传递函数为,该系统为( )(2.0)A、 0型系统B、Ⅰ型系统C、Ⅱ型系统D、Ⅲ型系统正确答案: B8、确定系统根轨迹的充要条件是()。

(2.0)A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次正确答案: C9、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( )(2.0)A、准确度越高B、准确度越低C、响应速度越快D、响应速度越慢正确答案: D10、闭环系统的动态性能主要取决于开环对数幅频特性的( )(2.0)A、低频段B、开环增益C、高频段D、中频段正确答案: D11、Z变换中复变量z的物理含义是什么?(2.0)A、滞后一个采样周期。

B、超前一个采样周期。

C、跟复变量s一样。

D、没有什么物理含义,就是为了计算方便。

自动控制原理总复习

自动控制原理总复习
这部分考试题型参考讲义2.3.4的例题。
3.化简结构图求传递函数 ①结构图化简的方法有:
第二章
1、串联方框的简化 2、并联方框的简化 3、反馈连接方框的简化 4、比较点的移动 5、引出点移动
结构图化简原则
❖多个方框串联原则:总传递函数等于各方框传递函数之积。 ❖多个方框并联原则:总传递函数等于各方框传递函数之代数和。
有源校 正装置
无相移校正装置 相位超前校正装置 相位滞后校正装置 相位滞后—超前校正装置
4. 常用校正装置的特性
无源校正网络:电阻电容元件电路 有源校正网络:电阻电容元件电路+线性集成运算放大器
5. 串联校正的分类
1.串联超前校正:
利用超前网络的相角超前特性进行校正
2.串联滞后校正:
利用滞后网络的高频衰减特性进行校正
3.串联超前—滞后校正
第七章
1.为了从采样信号中不失真地复现原连续信号,采样周期T与频率
分量ωm的关系是:
2
T
2m
2.闭环系统脉冲传递函数形式的证明
闭环脉冲传递函数是闭环离散系统输出信号的Z变换与输入信
号的Z变换之比,即
(z) C(z) R(z)
P.276表7-3列出了典型的闭环离散系统及其输出的Z变换函数
G(s) 2(s 2) (s 1)(s 4)
G(s) (0.5s 1) (s 1)(0.25s 1)
第二章
2.传递函数的相关内容
③ 模态与闭环特征根的关系:e pit
④ 根据给定的零初条件下的系统阶跃响应形式,求得系统的 单位脉冲响应 第一步:根据给定的零初条件下的系统阶跃响应形式,写出闭 环传递函数的表达式; 第二步:得到系统输出s域的表达式; 第三步:对系统输出进行拉式反变换。

自动控制原理复习

自动控制原理复习

R(s)
G1
H1/G1G4 + H3- H4 G2 H2/G1G2 G3 G4 C(s)
R(s)
-
H1/G1G4 + H3- H4+H2/G1G2 G1G2G3G4 C(s)
G1G 2G3G 4 C(s) = R(s) 1+G 2G3 H1 +G3G 4 H2 +G1G 2G3G 4(H3 -H4 )
解: p (1) a、 1 = 0; p2 = 1.5 + 1.5 j; p3 = 1.5 1.5 j ) 、 b、实轴上根轨迹为 -∞,0]段 、实轴上根轨迹为[- , 段 pi zi (2k ± 1)π π = ± ,π σ= =1 +j c、渐近线 φk = 、 nm 3 nm p2× j2.12 3 2 d、与虚轴交点 D( s) = s + 3s + 1.5s + K 、
解:根据原网络,建立它的S域模型 (R R Cs + R) C (s) = R R(s) 根据原网络,建立它的S , 1 2 1 2
R2 1 R1R2C C (s)s + R1 C (s) = R2 R(s) Cs R2 + 1 R2 Cs = 两边取拉氏逆变换得: C(s) = R(s) 两边取拉氏逆变换得: R RRCs + R dc(t ) 1 1 2 1
3、在系统设计、校正时,通常希望系统的开环对数幅频特性曲 在系统设计、校正时, 线的低频段、中高频和高频段应达到的要求是什么?为什么? 线的低频段、中高频和高频段应达到的要求是什么?为什么? (1).要求低频段有一定的高度 要求低频段有一定的高度( 较大) 解: (1).要求低频段有一定的高度(即K较大)和斜率绝对值要大 即系统型别较高),可以减小系统的稳态误差; ),可以减小系统的稳态误差 (即系统型别较高),可以减小系统的稳态误差; (2).要求中频段有一定的宽度和斜率绝对值要小 要求中频段有一定的宽度和斜率绝对值要小( (2).要求中频段有一定的宽度和斜率绝对值要小(一般为 20dB/dec),可以提高系统的动态性能指标; ),可以提高系统的动态性能指标 -20dB/dec),可以提高系统的动态性能指标; (3).要求高频段的斜率绝对值要大 可以更好地抑制高频干扰。 要求高频段的斜率绝对值要大, (3).要求高频段的斜率绝对值要大,可以更好地抑制高频干扰。 二、改错题 传递函数描述系统的固有特性。其系数和阶次可以是虚数, 1.传递函数描述系统的固有特性。其系数和阶次可以是虚数,即 实数 与系统内部结构参数有关,也与输入量初始条件等外部因素有关。 与系统内部结构参数有关,也与输入量初始条件等外部因素有关。 无关 2.劳斯稳定判据只能判断线性定常系统的稳定性 劳斯稳定判据只能判断线性定常系统的稳定性, 可以 2.劳斯稳定判据只能判断线性定常系统的稳定性,不可以判断相 对稳定性; 对稳定性; 3.命题 命题a 阻尼比决定了超调量的大小。 3.命题a: 阻尼比决定了超调量的大小。 命题b 相位裕量决定了超调量的大小。 命题b:相位裕量决定了超调量的大小。 命题a和命题b 不矛盾 命题a和命题b是矛盾的 4.闭环传递函数中积分环节的个数决定了系统的类型 闭环传递函数中积分环节的个数决定了系统的类型。 4.闭环传递函数中积分环节的个数决定了系统的类型。 开环 5.梅森增益公式适用于线性和非线性定常系统 梅森增益公式适用于线性和非线性定常系统。 5.梅森增益公式适用于线性和非线性定常系统。 线性定常系统

自动控制原理复习

自动控制原理复习

自动控制原理复-习复习题问题1:电能变换电路的有什么特点?机械式开关为什么不适于做电能变换电路中的开关?解答:电能变换电路在输入与输出之间将电压、电流、频率、相位、相数中的一项加以变换。

电能变换电路中理想开关应满足切换时开关时间为零,使用寿命长,而机械开关不能满足这些要求。

问题2:电力电子变换电路包括哪几大类?解答:交流变直流——整流;直流变交流——逆变;直流变直流——斩波;交流变交流——交流调压、变频。

问题3:电力电子器件是如何定义和分类的?解答:电力电子器件是指可直接用于处理电能的主电路中,实现电能变换或控制的电子器件。

按照控制程度分类:不控型器件,半控型器件,全控型器件。

按驱动电路分类:电流驱动型,电压驱动型。

问题4:同处理信息的电子器件相比,电力电子器件的特点是什么?解答:特点:处理的功率大,器件处于开关状态,需要信息电子电路来控制,需要安装散热片。

问题5:使晶闸管导通的条件是什么?解答:两个条件缺一不可:(1)晶闸管阳极与阴极之间施加正向阳极电压。

(2)晶闸管门极和阴极之间必须加上适当的正向脉冲电压和电流。

问题6:维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?解答:维持晶闸管导通的条件是流过晶闸管的电流大于维持电流。

欲使之关断,只需将流过晶间管的电流减小到其维持电流以下,可采用阳极电压反向、减小阳极电压或增大回路阻抗等方式。

问题7:GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?解答:GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计α2较大,使晶体管V2控制灵敏,易于关断GTO。

导通时α1+α2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。

多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。

问题8:试说明IGBT、GTR、GTO和电力MOSFET各自的优缺点。

解答:GTR的容量中等,工作频率一般在10kHz以下,所需驱动功率较大,耐压高,电流大,开关特性好,。

自动控制原理复习

自动控制原理复习
1
2 3
2
E (S ) N1 ( S )
2
N 2 (s)
1
R( s ) N1 ( s )
U (s)
G2
V (s)
N3 (s)
E (s)
C (s)

G1
G2
G3
C ( S ) C ( S ) G1G2G3 1 G1 G1G2G3 R( S ) N1 ( S ) C (S ) G1G3 E ( S ) 1 G1 E ( S ) G1G2G3 E ( S ) G 1 G3 N2 (S ) N2 (S ) N1 ( S ) R( S )
负阻尼(ζ<0)
P、 n n 2 1 12
极点实部大于零,响应发散,系统不稳定。
-1<ζ<0
ζ < -1
振荡发散
单调发散
几点结论: 1)二阶系统的阻尼比ζ决定了其振荡特性:
ζ < 0 时,阶跃响应 发散,系统不稳定; ζ = 0时,出现等幅 振荡 0<ζ<1时,有振荡, ζ愈小,振荡愈严 重,但响应愈快, ζ≥ 1 时,无振荡、 无超调,过渡过程 长;
复习4
1.传递函数的另一种写法:引用复数阻抗直接列写网络的代 数方程,然后求其传递函数。 2.没有负载效应的条件:一般假设网络输出端接有无穷大负 载阻抗,输入内阻为零。 3.系统结构图的绘制方法:根据元部件的信号流向,用信号 线依次连接方框,得结构图。 4.结构图的等效变换:遵守一个原则,即变换前后各变量之 间的传递函数保持不变。 5.串联等效运算规则:两环节串联传递函数等于两传递函数 之积。 6.并联等效运算规则:两环节并联,其等效传递函数等于两 环节传递函数之和。 7.反馈等效运算规则:闭环传递函数等于前向通道传递函数 除以1加(或减)前向通道传递函数乘以反馈通道传递函 数的乘积。

自动控制原理复习(精辟)

自动控制原理复习(精辟)

第二章 控制系统的数学模型复习指南与要点解析要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)一、控制系统3种模型,即时域模型----微分方程;※复域模型——传递函数;频域模型——频率特性。

其中重点为传递函数。

在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。

零初始条件下:如要求传递函数需拉氏变换,这句话必须的。

二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。

1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45)2.结构图基本连接方式只有串联、并联和反馈连接三种。

如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。

其中:※引出点前移在移动支路中乘以()G s 。

(注意:只须记住此,其他根据倒数关系导出即可)引出点后移在移动支路中乘以1/()G s 。

相加点前移在移动支路中乘以1/()G s 。

相加点后移在移动支路中乘以()G s 。

[注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。

在谁的前后移动,()G s 就是谁。

例1:)解法 1:1) 3()G s 前面的引出点后移到3()G s的后面(注:这句话可不写,但是必须绘制出下面的结构图,)2) 消除反馈连接)3) 消除反馈连接4) 得出传递函数123121232123()()()()()1()()()()()()()()()G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。

一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数()()C s R s =。

《自动控制原理》复习提纲

《自动控制原理》复习提纲

《自动控制原理》复习提纲自动控制原理复习提纲第一章:自动控制系统基础1.1自动控制的基本概念1.2自动控制系统的组成1.3自动控制系统的性能指标1.4自动控制系统的数学建模第二章:系统传递函数与频率响应2.1一阶惯性系统传递函数及特性2.2二阶惯性系统传递函数及特性2.3高阶惯性系统传递函数及特性2.4惯性环节与纯时延环节的传递函数2.5开环传递函数与闭环传递函数2.6频率响应曲线及其特性第三章:传递函数的绘制和分析3.1 Bode图的绘制3.2 Bode图的分析方法3.3 Nyquist图的绘制和分析3.4极坐标图的应用3.5稳定性分析方法第四章:闭环控制系统及稳定性分析4.1闭环控制系统4.2稳定性的概念和判据4.3 Nyquist稳定性判据4.4 Bode稳定性判据4.5系统的稳态误差分析第五章:比例、积分和微分控制器5.1比例控制器的原理和特性5.2积分控制器的原理和特性5.3微分控制器的原理和特性5.4比例积分(P)控制系统5.5比例积分微分(PID)控制系统第六章:根轨迹法6.1根轨迹的概念和基本性质6.2根轨迹的绘制方法6.3根轨迹法的稳定性判据6.4根轨迹设计法则6.5根轨迹法的应用案例第七章:频域设计方法7.1频域设计基本思想7.2平衡点反馈控制法7.3频域设计法的应用案例7.4系统频率响应的优化设计7.5频域方法的灵敏度设计第八章:状态空间分析和设计8.1状态空间模型的建立8.2状态空间的矩阵表示8.3状态空间系统的特性8.4状态空间系统的稳定性分析8.5状态空间设计方法和案例第九章:模糊控制系统9.1模糊控制的基本概念9.2模糊控制系统的结构9.3模糊控制器设计方法9.4模糊控制系统的应用案例第十章:遗传算法与控制系统优化10.1遗传算法的基本原理10.2遗传算法在控制系统优化中的应用10.3遗传算法设计方法和案例第十一章:神经网络及其应用11.1神经网络的基本概念和结构11.2神经网络训练算法11.3神经网络在控制系统中的应用11.4神经网络控制系统设计和优化方法第十二章:自适应控制系统12.1自适应控制的基本概念12.2自适应控制系统的结构12.3自适应控制器设计方法12.4自适应控制系统的应用案例第十三章:系统辨识与模型预测控制13.1系统辨识的基本概念13.2建模方法及其应用13.3模型预测控制的原理13.4模型预测控制系统设计和优化方法第十四章:多变量控制系统14.1多变量控制系统的基本概念14.2多变量系统建模方法14.3多变量系统稳定性分析14.4多变量系统控制器设计14.5多变量系统优化控制方法以上是《自动控制原理》的复习提纲,内容覆盖了自动控制系统的基本概念、传递函数与频率响应、传递函数的绘制和分析、闭环控制系统及稳定性分析、比例、积分和微分控制器、根轨迹法、频域设计方法、状态空间分析和设计、模糊控制系统、遗传算法与控制系统优化、神经网络及其应用、自适应控制系统、系统辨识与模型预测控制、多变量控制系统等知识点。

自动控制原理复习资料

自动控制原理复习资料

第二章 控制系统的数学模型1、传递函数(线性系统在零初始状态,脉冲输入下的响应)2、计算系统的传递函数1)列写常微分方程,得到输入r(t)与c(t)的常微分方程,再使用拉普拉斯变换为频域形式(记得系统初始状态为零),求取)()(s R s C 。

2)一些最基本的拉普拉斯变换公式as A Ae s A At s A At sA A s R s dtt r d s Y s dtt y d atnnnn+⇔⇔⇔⇔⇔⇔-,21,,),()(),()(322 3)进行反拉普拉斯变换时,即将系统的频域表达式转换成为时域表达式,一般采用部分分式分解的方法,求其中的系数时用到了留数法,见p63例2-35。

4)系统的开环传递函数与闭环传递函数的异同,注意开环传递函数和单位负反馈系统闭环传递函数之间的数学关系。

对单位负反馈系统,即H(s)=1,开环和闭环传递函数关系)()(1)(,)(11)(s s s G s G s ΦΦ-=+=Φ。

3、结构图化简和梅逊增益公式 1)理解一些基本概念比较点,引出点,前向通路,回路2)结构图化简的基本原则:保持前向通路传递函数不变,保持回路传递函数不变3)化简规则包括:引出点的前(后)移动,比较点的前(后)移动,并联相加,串联相减,回路等效(见下图)。

4)根据信号流图使用梅逊增益公式计算传递函数步骤:(a )找出所有回路,并列写回路传递函数i L ;(b)找出所有前向通路,并列写前向通路的传递函数k P ;(c )判断是否存在互不接触的独立回路,并根据公式 (11)-⎪⎪⎭⎫⎝⎛+-=∆∑∑=≠ni n j i j i i L L L 计算分母∆,其中第i 个和第j 个回路互不接触;(d )利用相同的原理计算(a )中与第k 条前向通路不接触的回路的k ∆;(e )根据梅逊增益公式∆∆∑=mk kkP 1计算系统输入到输出的传递函数)()(s R s C 。

第二章 典型习题答案课本的以下典型例题,要认真看一下,最好能试做一下。

自动控制原理重点内容复习总结

自动控制原理重点内容复习总结

N 1 G2 H1 G1G2 H 2
N
-H2 G1
G2
-H1 1
1Y
Y G1G2 R G1G2H2 N 1 G2 H1 G1G2 H2
例2 描述系统的微分方程组如下,已知初始条件全部为零。
画出系统的方块图,并求解Y(s)/R(s)。
x1 x 2
R H1 x 2 G2 x1 x1
线性系统的性质:可叠加性和均匀性(齐次性)。 本学期研究的主要是线性定常系统。
4、建立系统的数学模型的两种方法: (1)机理分析法:(2)实验辨识法:
二、传递函数
控制原理复习总结 第二章 控制系统的数学模型
定义:初始条件为零 的线性定常系统: 输出的拉普拉斯
变换与输入的拉普拉斯变换之比。
基本性质:
R( s)
表2 给定信号输入下的给定稳态误差esr
0 型系统 1 型系统 2 型系统
阶跃输入r(t)=1
1 K 1 Kp=K
0
Kp=∞
0
Kp=∞
斜坡输入r(t)=t 抛物线输入r(t)=1/2t2

Kv=0

1 K
Kv=K

0
Kv=∞
1 K
Ka=0 Ka=0 Ka=K
Kp — 稳态位置偏差系数 Kv — 稳态速度偏差系数 Ka — 稳态加速度偏差系数
Y R
1 s2
1
H1 s
G2 s
G1 s
G2 H1
1 G2s G1S s(s H1 G2H1s)
控制原理复习总结
第三章 控制系统的时域分析方法
主要内容:
1、一阶惯性系统的单位阶跃响应,T、K的物理意义。 2*、标准二阶系统的单位阶跃响应,ζ和ωn、ωd 的物理意义。 3、高阶闭环主导极点的概念 4* 、控制系统单位阶跃响应过程的质量指标,ts,tp,σ,n 5 * 、劳斯稳定判据 6 * 、控制系统稳态误差 7、常规PID调节器的控制规律(调节器的形式和作用的定性分析)

自动控制原理总复习

自动控制原理总复习

四、线性系统的根轨迹法
• 3、根轨迹方程
– 1G (s)H(s)0
m
(s zj)
– K * j1 n
1
(s pi)
i1
– 相角条件和幅值条件
m
n
• (s z j) (s p i) (2 k 1 ),(k 0 , 1 , 2 ,L )
j 1
i 1
n
s pi
K * i1

m
自动控制原理
总复习
一、自动控制的一般概念
• 1、自动控制系统基本控制方式
– 反馈控制(按偏差控制)
• 负反馈 • 正反馈
– 开环控制(按定量控制或按扰动控制) – 复合控制(按偏差和扰动控制)
一、自动控制的一般概念
• 2、对自动控制系统的基本要求
– 稳定性 – 快速性 – 准确性
二、控制系统的数学模型
a0(s p1)(s p2) (s pn)
n
(s pj )
j1
K * b 0 根轨迹增益
a0
j
0 z2 z1
G (s)C (s)b m (1 s 1 )(2 2 s2 222 s 1 )L(is 1 ) R (s) a n(T 1 s 1 )(T 2 2 s2 22 T 2 s 1 )L(T js 1 )
• 非主导极点会增大峰值时间,使系统响应速度变慢 • 零极点作用“对消”
三、线性系统的时域分析法
• 4、系统稳定性
– 稳定性的充要条件:闭环极点位于虚轴左侧 – 劳斯判据
• 5、稳态误差 R(s) esslsi m 0sE(s)lsi m 0s1G (s)H(s)
– 系统类型
• 0型、I型、II型
szj

自动控制原理 复习题及答案.概要

自动控制原理  复习题及答案.概要

自动控制原理1一、 单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( )A.系统综合B.系统辨识C.系统分析D.系统设计2. 惯性环节和积分环节的频率特性在( )上相等。

A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( )A.比较元件B.给定元件C.反馈元件D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( )A.比例环节B.微分环节C.积分环节D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( ) A.1 B.2 C.5 D.107. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn ,则可以( )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90°10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( )A.稳定B.临界稳定C.不稳定D.稳定性不确定。

12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s k s G ,当k =( )时,闭环系统临界稳定。

A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( )A.0B.1C.2D.314.单位反馈系统开环传递函数为()s s s s G ++=652,当输入为单位阶跃时,则其位置误差为( )A.2B.0.2C.0.5D.0.0515.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种( ) A.反馈校正 B.相位超前校正C.相位滞后—超前校正D.相位滞后校正16.稳态误差e ss 与误差信号E (s )的函数关系为( )A.)(lim 0s E e s ss →=B.)(lim 0s sE e s ss →= C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→= 17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( )A.减小增益B.超前校正C.滞后校正D.滞后-超前18.相位超前校正装置的奈氏曲线为()A.圆B.上半圆C.下半圆D.45°弧线K,则实轴上的根轨迹为()19.开环传递函数为G(s)H(s)=ss)3(3A.(-3,∞)B.(0,∞)C.(-∞,-3)D.(-3,0)20.在直流电动机调速系统中,霍尔传感器是用作()反馈的传感器。

(完整word版)自动控制原理复习提纲(整理版)

(完整word版)自动控制原理复习提纲(整理版)

(完整word版)自动控制原理复习提纲(整理版)《自动控制原理》课程概念性知识复习提纲详细版第一章:1.自动控制的任务(背):是在没有人直接参与下,利用控制装置操纵被控对象,使被控量等于给定值。

2.自动控制基本方式一.按给定值操纵的开环控制二.按干扰补偿的开环控制三.按偏差调节的闭环控制3.性能要求:稳快准第二章:4.微分方程的建立:课后2.55.传递函数定义(背)线性定常系统(或元件)的传递函数为在零初始条件下,系统(或元件)的输出变量拉氏变换与输入变量拉氏变换之比。

这里的零初始条件包含两方面的意思,一是指输入作用是在t=0以后才加于系统,因此输入量及其各阶导数,在t=0-时的值为零。

二是指输入信号作用于系统之间系统是静止的,即t=0-时,系统的输出量及其各阶导数为零。

这是反映控制系统的实际工作情况的,因为式(2-38)表示的是平衡工作点附近的增量方程,许多情况下传递函数是能完全反映系统的动态性能的。

6.结构图化简:课后2.14(结构图化简一道大题,梅森公式化简一道大题)复习要点7.几种传递函数(要求:懂得原理)一.输入信号r(t)作用下的系统闭环传递函数二.干扰信号n(t)作用下的系统闭环传递函数三.闭环系统的误差传递函数8.阶跃响应,脉冲响应,传递函数之间的关系阶跃响应:H(s)=1s 单位斜坡响应:t C (s )=21s 单位脉冲响应:K(s)=Φ(s) 11()()()H s s K s s s =Φ?=? 211()()()t C s s H s s s=Φ?=? 综合可得 K(s)=sH(s) H(s)=s t C第三章:9.阶跃响应的性能指标有哪些,各个性能指标的意义是什么。

10.从平稳性,快速性和稳态精度三个方面,简述典型二阶欠阻尼系统结构参数,n对阶跃相应的影响。

由于欠阻尼二阶系统具有一对实部为负的共轭复特征根,时间响应呈衰减振荡特性,故又称为振荡环节。

系统闭环传递函数的一般形式为222()()2n n nC s R s s s ωζωω=++ 由于0<ζ<1,所以一对共轭复根为1,2n s j ζωω=-±d j σω-±式中,n σζω=,为特征根实部之模值,具有角频率量纲。

自动控制原理复习资料(相当全)

自动控制原理复习资料(相当全)

总复习第一章的概念1、典型的反馈控制系统基本组成框图:2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。

3、基本要求的提法:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。

第二章要求:1、掌握运用拉氏变换解微分方程的方法;2、牢固掌握传递函数的概念、定义和性质;3、明确传递函数与微分方程之间的关系;4、能熟练地进行结构图等效变换;5、明确结构图与信号流图之间的关系;6、熟练运用梅逊公式求系统的传递函数;例1 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(1211s R s C s R s C ,)()(,)()(2122S R S C s R s C 。

串连补偿元件放大元件执行元件被控对象反馈补偿元件测量元件输出量主反馈局部反馈输入量--43213211243211111)()(,1)()()(G G G G G G G s R s C G G G G s G s R s C --=-=例2 某一个控制系统动态结构图如下,试分别求系统的传递函数:)()(,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。

例3:1()i t 2()i t 1()u t ()c t ()r t 1R 2R 1C 2C +_+_+_Ka11C s21C s 21R 1R()R s ()C s 1()U s 1()U s 1()U s 1()I s 1()I s 2()I s 2()I s 2()I s ()C s (b)(t)i R (t)u r(t)111=-⎰-=(t)]dt i (t)[i C 1(t)u 2111(t)i R c(t)(t)u 221=-⎰=(t)dt i C 1c(t)22(s)H(s)(s)G G 1(s)(s)G G R(s)C(s)2121+=(s)H(s)(s)G G 1(s)G -N(s)C(s)212+=将上图汇总得到:例4、一个控制系统动态结构图如下,试求系统的传递函数。

自动控制原理复习资料

自动控制原理复习资料

∑∆∆=i i i s s Q s H )()(1)(第一章:1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用 。

2 典型闭环系统的功能框图。

自动控制 在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。

自动控制系统 由控制器和被控对象组成,能够实现自动控制任务的系统。

被控制量 在控制系统中.按规定的任务需要加以控制的物理量。

控制量 作为被控制量的控制指令而加给系统的输入星.也称控制输入。

扰动量 干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

反馈 通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

负反馈 反馈信号与输人信号相减,其差为偏差信号。

负反馈控制原理 检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

开环控制系统 系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。

开环控制又分为无扰动补偿和有扰动补偿两种。

闭环控制系统 凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。

自动控制原理课程中所讨论的主要是闭环负反馈控制系统。

复合控制系统 复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。

它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。

自动控制系统组成 闭环负反馈控制系统的典型结构如图1.2所示。

组成一个自动控制系统通常包括以下基本元件1.给定元件 给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。

给定元件通常不在闭环回路中。

2.测量元件 测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号。

《自动控制原理》复习参考资料

《自动控制原理》复习参考资料

《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。

2、闭环控制系统又称为反馈控制系统。

3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。

4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。

5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。

6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。

7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。

8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G(s)/(1- G(s)H(s))。

9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。

10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。

11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。

12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面,。

13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。

14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。

16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。

17、对于典型二阶系统,惯性时间常数T 愈大则系统的快速性愈差。

18、应用频域分析法,穿越频率越大,则对应时域指标t s 越小,即快速性越好 19最小相位系统是指S 右半平面不存在系统的开环极点及开环零点。

20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、 补偿校正与复合校正四种。

自动控制原理考试复习资料

自动控制原理考试复习资料

一、单选题1.控制系统的稳态误差反映了系统的()A、稳态控制精度B、相对稳定性C、快速性D、平稳性答案: A2.一阶系统的单位阶跃响应曲线随时间的推移()。

A、上升B、下降C、不变D、无规律变化答案: A3.信号流图中,()的支路称为阱节点。

A、只有信号输入B、只有信号输出C、既有信号输入又有信号输出D、任意答案: B4.小型开关电源中的变压器中传递的交流电流,其频率一般为()A、几十HzB、几百HzC、几千HzD、几万Hz答案: D5.设惯性环节的频率特性为G(jω)=10/(jω+1),当频率ω从0变化至∞时,其幅相频率特性曲线是一个半圆,位于极坐标平面的()A、第一象限B、第二象限C、第三象限D、第四象限答案: D6.适合于应用传递函数描述的系统是()。

A、线性定常系统B、线性时变系统C、非线性时变系统D、非线性定常系统答案: A7.奈奎斯特稳定判据中,Z = P - R,其中R是指()A、对-1+j0点顺时针包围的次数B、对-1+j0点逆时针包围的次数C、对1+j0点顺时针包围的次数D、对1+j0点逆时针包围的次数答案: B8.单相交流调压电路,电源为220V/50Hz正弦交流电,控制角为90°时,输出交流电压有效值为()A、110VB、220VC、156VD、314V答案: C9.系统特征方程式的所有根均在复平面的左半部分是系统稳定的()A、充分条件B、必要条件C、充分必要条件D、以上都不是答案: C10.有一个IGBT,当施加栅极电压时,得到以下结果:UGS=2V时ID=0;UGS=2V时ID=0;UGS=4.5V时ID=2A;UGS=5V时ID=8A。

可以判断其开启电压为()A、>4.5VB、<4.5VC、=2VD、=5V答案: B11.传递函数的零初始条件是指t<0时系统的()。

A、输入为零B、输入、输出及各阶导数为零C、输入、输出为零D、输出及各阶导数为零答案: B12.适合应用传递函数描述的系统是()A、单输入,单输出的线性定常系统B、单输入,单输出的线性时变系统C、单输入,单输出的定常系统D、非线性系统答案: A13.若二阶系统的单位阶跃响应为非周期的趋于稳定,则系统的阻尼比应为()。

自动控制原理总复习资料(完美)

自动控制原理总复习资料(完美)

自动控制原理总复习资料(完美)总复第一章的概念典型的反馈控制系统基本组成框图如下:输出量串连补偿放大执行元被控对元件元件件象--反馈补偿元件测量元件自动控制系统有三种基本控制方式:反馈控制方式、开环控制方式和复合控制方式。

基本要求可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。

第二章要求:1.掌握运用拉普拉斯变换解微分方程的方法。

2.牢固掌握传递函数的概念、定义和性质。

3.明确传递函数与微分方程之间的关系。

4.能熟练地进行结构图等效变换。

5.明确结构图与信号流图之间的关系。

6.熟练运用梅森公式求系统的传递函数。

例1:某一个控制系统动态结构图如下,求系统的传递函数。

C1(s)C2(s)C(s)C1(s)G1(s)G2(s)G3(s)R1(s)R2(s)R1(s)R2(s)传递函数为:C(s) = G1(s)C1(s) / [1 -G1(s)G2(s)G3(s)R1(s)R2(s)]例2:某一个控制系统动态结构图如下,求系统的传递函数。

C(s)C(s)E(s)E(s)R(s)N(s)R(s)N(s)C(s)G1(s)G2(s)-G2(s)传递函数为:C(s) = G1(s)C(s) / [1 + G1(s)G2(s)H(s)N(s)]例3:i1(t)R1 i2(t)R2R(s)+u1(t) c1(t)C1 C2 r(t)I1(s)+U1(s)112+I2(s)将上图汇总得到:R1I1(s)U1(s)C1s r(t)-u(t) = i(t) R U1(s)u(t) = [i(t) - i(t)]dt Cu(t) - c(t) = i(t)Rc(t) = i(t)dtCI2(s)R2KaC(s)1C2s(b)C(s) R(s)+R1C1sR2C2s1Ui(s)1/R11/C1sIC(s)1/R21/C2s10rad/s,试求系统的传递函数、特征方程、极点位置以及阻尼比和固有频率的物理意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1 解:1. 绘制根轨迹图:①.特征方程: G( s ) H ( s ) s
③.分离点及对应的a值:
1 1 1 解得: 1 7, 2 3( 舍去) 2 j4 2 j4 4 2 将s=1 7 代入特征方程 s 4 s 20 a( s 4) 0
一、简答题:
1.简要画出二阶系统特征根的位置与单位阶跃响应曲线之间的关系。 等幅振荡 振荡收敛 解: 振荡发散
单调收敛
单调发散 2.减小系统在给定信号或扰动信号作用下的稳态误差的方法 主要有那些? 解:
①、保证系统中各环节(或元件)的参数具有一定的精度及线性性; ②、适当增加开环增益;③、增大扰动作用前系统前向通道的增益; ④、适当增加系统前向通道中积分环节的数目; ⑤、采用前馈控制(或复合控制)


解出 s 2.12 j; e、出射角为
K 13.5
-1 p3×
p1 ×
+1
p 2 135 90 45 , p 3 45
(2)、当K>13.5时,系统不稳定
-j2.12
20 二、已知系统的开环传递函数 G ( s ) H ( s ) ,1.绘制以a为 ( s 4)( s a ) 参数的根轨迹图。2.试判断a处在什么范围系统稳定?a处在什
ess essr essn 0
二、如图所示的单位反馈随动系统。K=16,T=0.25,试求1.满足 1 加入速度反馈后系统阻尼比 0.5 时的τ值; 2.当输入 r ( t )时, r (t ) 2 时,求 2t 2t 2 求系统输出的超调量和调节时间;3.当输入 系统的稳态误差 C(s) ess R(s) K K s(Ts 1) 解:(1) s Ts 1 s K s 1 1 s s Ts 1 K 2
R(s)
G1
H1/G1G4 + H3- H4 G2 H2/G1G2 G3 G4 C(s)
R(s)
-
H1/G1G4 + H3- H4+H2/G1G2 G1G2G3G4 C(s)
G 1G 2 G 3 G 4 C(s) R(s) 1+G 2 G 3 H1 +G 3 G 4 H 2 +G1G 2 G 3 G 4(H3 -H 4 )
Ra La s ( s ) ML( s ) JLa s 2 JRa s C e C M K a K f C M
三、根据方框图的简化规则,求下图所示系统的传递函数 C ( s ) R( s ) H1 C(s) R(s) G1 G3 G2 G4 H2 + H3 解: H4 简化步骤如下: 1/G1 H1 1/G4 C(s) R(s) G1 G3 G2 G4 H2 H3- H4 R(s) G1 H1/G1G4 + H3- H4 G2 G3 H2 G4 C(s)
Mp e


1 2
ts
3
100% 35.14%,
n
1.5 s
n2 40 s 2 2 2 s 4 s 40 s 2 n s n
(3) .
40 K P lim G ( s ) H ( s ) lim s0 s 0 s( s 4) 1 essr 0 1 KP 4 s s 4 ( 1 ) 0 essn lim s0 40 s 1 s( s 4)
第三章 复习题 一、系统结构图如下图所示,试求(1).应用劳斯判据,判断该系统 的稳定性.(2).当输入 r (t ) 1, n(t ) 0 时,求系统输出的超调量和调 节时间(误差取±5%);(3).当输入 r (t ) 1, n(t ) 1 时,求系统的稳 态误差e ss N(s) 10 4 C(s) 解:(1)令N(S)=0,求闭环传 R(s) s s4 (2) 递函数:
2 2 2 ess 0 0.5 1 K P KV 4
第四章 复习题 一、已知系统的开环传递函数 G ( s ) 范围,会导致系统不稳定?
K 。1.绘制系统 2 s( s 3 s 4.5) 的根轨迹。(绘制过程尽量详细、关键点要计算); 2.K处在什么
解: p (1) a、 1 0; p2 1.5 1.5 j; p3 1.5 1.5 j b、实轴上根轨迹为[-∞,0]段 pi zi (2k 1) 1 +j , c、渐近线 k nm 3 nm p2× j2.12 3 2 d、与虚轴交点 D( s ) s 3 s 1.5 s K
R1 R2C C ( s )s R1 C ( s ) R2 R( s ) Cs R2 1 R2 Cs C ( s) R( s ) 两边取拉氏逆变换得: R1 R1 R2Cs R1 dc(t )
R2 1
R2 C ( s) G( s) R( s ) R1 R2Cs R1
G( s) 40 s 2 1 G( s ) H ( s ) s 4 s 40
特征方程为: D s s 2 4s 40 () 列劳斯表为: s2 1 40 S1 4 0 S0 40 由劳斯表可知,系统稳定 (2).
n 2 40, n 6.32, 2n 4 0.316,
么范围系统为欠阻尼二阶系统?a处在什么范围系统为过阻尼
二阶系统?
as 4s 4a 20 0, a( s 4) a( s 4) 2 / / s 4s 20 a( s 4) 0,1 2 0, G ( s) H ( s) 2 s 4s 20 s 4s 20 z ②.开环零极点: 1 4, p1 2 j 4, p2 2 j 4
n 1
0.8, n 4.946
(3)、H(S)=1
24.46 K P lim G( s ) H ( s ) lim , s0 s 0 s( S 6.014)
24.46 K v lim sG ( s ) H ( s ) lim s 4 s0 s 0 s( S 6.014)
得:a=13.7
④、根轨迹图:见下图 (2) 判断 a处在(0,∞)范围内系统稳定; a处在(0,13.7)范围内系统为欠阻尼二阶系统; a处在(13.7,∞)范围内系统为过阻尼二阶系统。
a=13.7 a=0 +j 4
-7
-4
-2
0 +1 -4
a=0
第五章 复习题 一、设系统开环幅相特性曲线如下,p为开环传递函数在s右半 平面极点个数,v为积分环节个数。试用奈奎斯特判据判定系统 +j 稳定性。 +j ω=0 ω= ∞ -1 v = 3 +1 p=0 -1
3、在系统设计、校正时,通常希望系统的开环对数幅频特性曲 线的低频段、中高频和高频段应达到的要求是什么?为什么? 解: (1).要求低频段有一定的高度(即K较大)和斜率绝对值要大 (即系统型别较高),可以减小系统的稳态误差; (2).要求中频段有一定的宽度和斜率绝对值要小(一般为 -20dB/dec),可以提高系统的动态性能指标; (3).要求高频段的斜率绝对值要大,可以更好地抑制高频干扰。 二、改错题 1.传递函数描述系统的固有特性。其系数和阶次可以是虚数,即 实数 与系统内部结构参数有关,也与输入量初始条件等外部因素有关。 无关 2.劳斯稳定判据只能判断线性定常系统的稳定性,不可以判断相 可以 对稳定性; 3.命题a: 阻尼比决定了超调量的大小。 命题b:相位裕量决定了超调量的大小。 命题a和命题b是矛盾的 不矛盾 4.闭环传递函数中积分环节的个数决定了系统的类型。 开环 5.梅森增益公式适用于线性和非线性定常系统。 线性定常系统
2 2
2 2 4 2 ess 0 1 K P KV K a 16
三、已知一单位负反馈系统的阶跃响应曲线如下图所示,求(1)、 系统的闭环传递函数;(2)、系统的开环传递函数 ;(3)、当输 ess r (t ) 2时,求系统的稳态误差 2t 入 C(t) Cmax C ( ) 1.09 100% 解:(1) M P 1 C ( H s K s( s 4) 1 s s Ts 1
K
64 64 K P lim G ( s ) H ( s ) lim K v lim sG( s ) H ( s ) lim s 16 s0 s 0 s( s 4) s0 s 0 s( s 4) 64 K a lim s G ( s ) H ( s ) lim s 0 s0 s0 s( s 4)
第二章
复习题
一、下图为运算放大器构成的网络,(1)求其传递函数G(s); (2)设电容电压的初始值为零,写出c(t)与r(t)的微分方程。
C r(t) R1
R2 c(t) R(s) R1 + R2
1/Cs R(s)
+
S域模型
解:根据原网络,建立它的S域模型 (R R Cs R) C ( s ) R R( s ), 1 2 1 2
(2)
n T 2 s 2 n s n2 2 1 K s s K T T 1 K 1 16 K 0.5 0.0625 s n 8, ζ T 2 KT 2 16 0.25
Mp e
ζ 1 1 2 ζ
4 ζ 1 s 2% n 100% 16%, t s 3 0.75 s 5% ζ n
ω= ∞ +1 v=1 p=0
图a
解:在图a的Nyquist图的ω=0 处逆时针补做2700半径为无 限大的弧线

1.09 1 100% e 1 0.608 t P
相关文档
最新文档