反比例函数基础巩固与经典例题
反比例函数(基础)知识讲解+巩固练习题.doc
反比例函数(基础)【学习目标】1.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy = k f或表示为),= *,其中#是不等于零的常数.一般地,形如y = - (k为常数,10)的函数称为反比例函数,其中尤是自变量,》是因变量,定义域是不等于零的一切实数.要点诠释:(1)在y =-中,自变量工是分式*的分母,当工=0时,分式*无意义,X X X所以自变量尤的取值范围是XH0 ,函数)'的取值范围是.故函数图象与X轴、)'轴无交点;(2)y =-(止H O)可以写成W =(上。
0)的形式,自变量尤的指数是-1,在解决有关自变量指数问题时应特别注意系数止H 0这一条件.(3)y =-(上。
0)也可以写成,=止的形式,用它可以迅速地求出反比例函数的比例系数人,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式k 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数>二一中,只有一个待%定系数因此只需要知道一对X、y的对应值或图象上的一个点的坐标,即可求出A的值, 从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y =-(化。
0);x(2)把己知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数A的值;(4)把求得的化值代回所设的函数关系式y =-中.X要点三、反比例函数的象和性质1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与工轴、)'轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(。
北师大版初三数学上册《反比例函数》(基础)巩固练习含解析
北师大版初三数学上册《反比例函数》(基础)巩固练习含解析6. 已知反比例函数1y x =,下列结论中不正确的是( )A. 图象经过点(-1,-1)B. 图象在第一、三象限C. 当1x >时,01y << D . 当0x <时,y 随着x 的增大而增大 二.填空题7. 已知y 与x 成反比例,当y=1时,x=4,则当x=2时,y= . 8. 已知反比例函数102)2(--=m xm y 的图象,在每一象限内y 随x 的增大而减小,则反比例函数的解析式为 .9. 若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数xa y 12--=的图象上的点,并且x 1<0<x 2<x 3,y 1,y 2,y 3的大小关系为 .10. 已知直线mx y =与双曲线xk y =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______. 11. 如图,如果曲线1l 是反比例函数k y x=在第一象限内的图象,且过点A (2,1), 那么与1l 关于x轴对称的曲线2l 的解析式为(0x >).12. 已知正比例函数的图象与双曲线的交点到x轴的距离是1, 到y 轴的距离是2,则双曲线的解析式为_______________. 三.解答题13. 已知反比例函数2m y x=的图象过点(-3,-12),且双曲线m y x =位于第二、四象限,求m 的值.14. 如图,已知反比例函数x m y 21-=(m 为常数)的图象经过□ABOD 的顶点D ,点A 、B 的坐标分别为(0,3),(﹣2,0)(1)求出函数解析式;(2)设点P 是该反比例函数图象上的一点,若OD=OP ,求P 点的坐标.15. 已知点A(m ,2)、B(2,n )都在反比例函数xm y 3+=的图象上.(1)求m 、n 的值;(2)若直线y mx n=-与x轴交于点C,求C关于y 轴对称点C′的坐标.【答案与解析】一.选择题1.【答案】C;【解析】由题意得12=-,故点(-2,6)在函yx数图象上.2.【答案】C.3.【答案】B;【解析】只有②,注意不要错误地选了③,反比例函数的增减性是在每一个象限内讨论的. 4.【答案】A;【解析】函数在二、四象限,y随x的增大而增大,故120->.y y5.【答案】C;6.【答案】D;【解析】D选项应改为,当0x<时,y随着x的增大而减小.二.填空题7.【答案】2.8.【答案】1y=;x【解析】由题意210120m m ⎧-=-⎨->⎩,解得3m =.9.【答案】y 2<y 3<y 1; 10.【答案】 2m = ;2k =; (1,2);【解析】另一个交点坐标与A 点关于原点对称.11.【答案】xy 2-=;12.【答案】2y x =或2y x=-; 【解析】由题意交点横坐标的绝对值为2,交点纵坐标的绝对值为1,故可能是点(2,1)或(-2,-1)或(-2,1)或(2,-1).三.解答题 13.【解析】解:根据点在图象上的含义,只要将(-3,-12)代入2m y x=中,得2123m -=-,∴ m =±6又∵ 双曲线m y x =位于第二、四象限,∴ m <0, ∴ m =-6.14.【解析】解:(1)∵四边形ABOC 为平行四边形,∴AD ∥OB ,AD=OB=2, 而A 点坐标为(0,3), ∴D 点坐标为(2,3), ∴1﹣2m=2×3=6,m=25-, ∴反比例函数解析式为y=x6. (2)∵反比例函数y=的图象关于原点中心对称,∴当点P 与点D 关于原点对称,则OD=OP ,此时P 点坐标为(﹣2,﹣3),∵反比例函数y=的图象关于直线y=x 对称,∴点P 与点D (2,3)关于直线y=x 对称时满足OP=OD ,此时P 点坐标为(3,2),点(3,2)关于原点的对称点也满足OP=OD ,此时P 点坐标为(﹣3,﹣2),综上所述,P 点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2). 15.【解析】解:(1)将点A(m ,2)、B(2,n )的坐标代入x m y 3+=得:32m m +=,解得3m =;333322m n ++===, 所以3m n ==.(2)直线为33y x =-, 令01y x ==,,所以该直线与x 轴的交点坐标为C (1,0), C 关于y 轴对称点C′的坐标为(-1,0).。
《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)
专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
专题26.3 反比例函数(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练
专题26.3 反比例函数(巩固篇)(专项练习)一、单选题1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x2C .y=21x D .y=13x2.若关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根,则反比例函数1m y x+=的图象可能经过点( )A .(3,1)B .(0,3)C .(﹣3,﹣1)D .(﹣3,1)3.若反比例函数ky x=的图象过点(,则不在这个反比例函数图象上的点是( ) A.B.(C.)D .()2,34.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( )A .﹣2B .﹣23C .﹣2或﹣23D .﹣2或﹣325.若点A (a ,b )在反比例函数2y x=的图像上,则代数式ab -4的值为( ) A .0B .-2C .2D .-66.若函数231(1)m m y m x ++=+是反比例函数,则m 的值为( ) A .m =-2 B .m =1 C .m =2或m =1 D .m =-2或m =-1 7.定义:[a ,b ]为反比例函数y=abx (ab ≠0,a ,b 为实数)的“关联数”.反比例函数y=1k x的“关联数”为[m ,m+2],反比例函数y=2k x的“关联数”为[m+1,m+3],若m>0,则 ( ) A .k 1=k 2 B .k 1>k 2 C .k 1<k 2 D .无法比较 8.若点,,在反比例函数的图象上,则的大小关系是( )A .B .C .D .9.已知y =y 1+y 2,其中y 1与1x成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2.若x =-1时,y =0,则k 1,k 2的关系为( )A .k 1+k 2=0B .k 1k 2=1C .k 1k 2=-1D .k 1=k 210.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷 二、填空题 11.已知函数6y x=,当x =﹣2时,y 的值是__. 12.已知函数3(2)m y m x -=-是反比例函数,则m =_________. 13.已知反比例函数y =1k x-的图象经过点(1,2),则k 的值为_____. 14.已知1y x =与y= x -3相交于点(),P a b ,则11a b-的值为__________.15.已知11(,)A x y ,22(,)B x y 都在反比例函数6y x=的图象上,若123x x =-,则12y y 的值为______.16.已知点(),1A a ,()4,B b -在同一个反比例函数的图像上,则a 与b 之间的数量关系是=a _________.17.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)18.在平面直角坐标系中,点(),M m n ()0,0m n ><在双曲线1k y x=上,点M 关于y 轴的对称点N 在双曲线2k y x=上,则12k k +的值为______. 三、解答题19.如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1) 直接写出y 与x 的函数关系式为______;(2) 现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.已知:关于x 的一元二次方程()2kx 4k 1x 3k 30-+++= (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x 1,x 2(其中x 1<x 2),设21y x x 2=--,判断y 是否为变量k 的函数?如果是,请写出函数解析式;若不是,请说明理由.21.当m 取何值时,()2312m m y m x ++=+是关于x 的反比例函数?22.已知点(,)p m n 是反比例函数2y x=图象上一动点,且m n ≠,将代数式22211()m nm n m n m n +÷-+-化简并求值.23.华润苏果超市计划购进甲、乙两种商品,已知甲的进价比乙多20元/件,用2000元购进甲种商品的件数与用1600元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价各是多少元?(2)小丽用960元只购买乙种商品,她购买乙种商品y 件,该商品的销售单价为x 元,列出y 与x 函数关系式?若超市销售乙种商品,至少要获得20%的利润,那么小丽最多可以购买多少件乙种商品?24.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强()kPa p 是气体体积()ml V 的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气体体积为40ml 时,求气体压强的值;(3)若注射器内气体的压强不能超过400kPa ,则其体积V 要控制在什么范围?参考答案1.D【分析】根据反比例函数的定义逐项分析即可. 解:A. 24y x =-,y 是x 的一次函数,故不符合题意; B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x,y 是x 的反比例函数,符合题意;故选:D .【点拨】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.2.D【分析】由方程根的情况可求得m 的取值范围,则可求得反比例函数图象经过的象限,可求得答案.解:∵关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根, ∴Δ<0,即(﹣2)2+4m <0, 解得m <﹣1, ∴m +1<0, ∴反比例函数1m y x+=的图象经过二、四象限, ∴反比例函数1m y x+=的图象可能经过点(﹣3,1), 故选:D .【点拨】本题主要考查反比例函数的性质和一元二次方程根的判别式,根据一元二次方程根的判别式求得m 的取值范围是解题的关键.3.D【分析】由题意得出k 的值,再进行选择即可.解:∵反比例函数y=kx 的图象过点),,∵点A. B. C , ∵点A. B. C 都在这个反比例函数图象上. 故答案选D.【点拨】本题考查了求反比例函数解析式,解题的关键是熟练的掌握待定系数法求反比例函数的解析式.4.A【分析】根据分段函数的解析式分别计算,即可得出结论. 解:若x <2,当y =3时,﹣x +1=3, 解得:x =﹣2;若x ≥2,当y =3时,﹣2x =3,解得:x =﹣23,不合题意舍去; ∵x =﹣2, 故选:A .【点拨】本题考查了反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.5.B解:∵点(a ,b )反比例函数2y x=上, ∵b=2a,即ab=2,∵原式=2-4=-2. 故选B .考点:反比例函数图象上点的坐标特征. 6.A解:根据反比例函数定义可知2311,{10,m m m ++=-+≠解得12,{1,m m m =-=-≠-或 ∵m =-2.故选A . 7.C【分析】利用题中的新定义表示出k 1与k 2,利用作差法比较即可. 解:根据题意得:12213m k m m k m ⎧⎪⎪+⎨+⎪⎪+⎩==,∵m >0,∵k 1-k 2=()()()()2213322232323m m m m m m m m m m m m ++----==-++++++<0, 则k 1<k 2.【点拨】此题考查了反比例函数的定义,弄清题中的新定义是解本题的关键. 8.B 解:把,,分别代入可得,即可得,故选B.9.A【分析】根据y 1与1x成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2,可得k 1的表示,k 2的表示,根据y =y 1+y 2,若x =-1时,y =0,可得答案.解:k 1=y 1·1x,y 2=k 2x ,y 1=k 1x , y =y 1+y 2, x =-1时,-k 1-k 2=0, k 1+k 2=0, 故选:A .【点拨】本题考查反比例函数的定义,解题的关键是先表示出y 1,y 2,再求出答案. 10.D【分析】人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A ,D 错误,再根据函数解析式求出自变量的值与函数值,有可判定C ,B .解:如图所示,人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数关系是反比例函数,它的图象在第一象限,∵y 随x 的增大而减小, ∵A ,B 错误, 设y=kx(k >0,x >0),把x=50时,y=1代入得:k=50, ∵y=50x, 把y=2代入上式得:x=25,∵C 错误,把x=50代入上式得:y=1, ∵D 正确, 故选D. 11.-3【分析】根据函数图像与点的关系,代入计算即可 解:当x =﹣2时,则6632y x ===--. 故答案为:-3.【点拨】本题考查了反比例函数的解析式与点的关系,把问题转化为代数式的值的问题求解是解题的关键.12.-2【分析】让x 的指数为-1,系数不为0列式求值即可. 解:依题意得31m -=-且20m -≠, 解得2m =-. 故答案为:-2.【点拨】考查反比例函数的定义;反比例函数解析式的一般形式y =kx(k≠0),也可转化为y=kx -1(k≠0)的形式,特别注意不要忽略k≠0这个条件.13.3【分析】列等式k -1=1×2=2,计算即可. 解:∵反比例函数y =1k x-的图象经过点(1,2), ∵2=11k -, ∵k -1=1×2=2, ∵k =3, 故答案为:3.【点拨】本题考查了反比例函数图像与点的关系,熟记图像过点,点的坐标满足函数的解析式是解题的关键.14.-3【分析】利用反比例函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出1b a =,3b a =-,进而可得出1ab =,3b a -=-,再将其代入11a b-中即可求出结论. 解:∵1y x=与3y x =-相交于点(),P a b , ∵1b a=,3b a =-, ∵1ab =,3b a -=-, ∵113b a a b ab--==-. 故答案为:-3.【点拨】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及分式的加减法,利用反比例函数图象上点的坐标特征及一次函数图象上点的坐标特征,找出1ab =,3b a -=-是解题的关键.15.12-【分析】把A 、B 两点的坐标代入解析式,再根据123x x =-即可求解. 解:把11(,)A x y ,22(,)B x y 代入6y x=得: 121266,y y x x∵123x x =- ∵12123612y y x x故答案为-12【点拨】本题考查的是反比例函数,整体代入思想是解答本题的关键. 16.4b -【分析】设反比例函数解析式为ky x=,根据题意将点,A B 代入解析式即可求解. 解:∵点(),1A a ,()4,B b -在同一个反比例函数的图像上, 设反比例函数解析式为k y x=, ∵14k a b =⨯=-, 即4a b =-, 故答案为:4b -.【点拨】本题考查了反比例函数的性质,掌握反比例函数的性质是解题的关键. 17.100y x=解:根据题意得xy =0.25×400=100,∵100y x=. 18.0【分析】由点M(m ,n)(m >0,n <0)在双曲线1k y x=上,可得k 1=mn ,由点M 与点N 关于y 轴对称,可得到点N 的坐标,进而表示出k 2,然后得出答案.解:∵点M(m ,n)(m >0,n <0)在双曲线1k y x=上, ∵k 1=mn ,又∵点M 与点N 关于y 轴对称, ∵N(-m ,n), ∵点N 在双曲线2k y x=上, ∵k 2=-mn ,∵k 1+k 2=mn+(-mn )=0, 故答案为:0.【点拨】本题考查反比例函数图象上的点坐标的特征,关于y 轴对称的点的坐标的特征以及互为相反数的和为0的性质.19.(1)60y x=(2)22m【分析】(1))利用矩形的面积计算公式可得出xy = 60,变形后即可得出结论; (2)利用反比例函数图象上点的坐标特征可求出当x = 5和x = 6时的y 值,结合墙长11m 即可得出应选x = 6的设计方案,再将其代入2x + y 中即可求出此栅栏的总长.(1)解:根据题意得:60xy =, ∵y 与x 的函数关系式为:60y x=,故答案为:60y x=;(2)解:当x = 5时,60125y ,∵1211>,∵不符合题意,舍去;当x =6时,60106y ==, ∵1011<, ∵符合题意,此栅栏总长为:2261022x y ;答:应选择x = 6的设计方案,此栅栏总长为22m .【点拨】本题考查了反比例函数的应用,解题的关键是:(1)根据各数量之间的关系,找出y 与x 的函数关系式;(2)利用反比例函数图象上点的坐标特征,求出x =5和x =6时的y 值.20.(1)见分析(2)y 是变量k 的函数.【分析】(1)根据一元二次方程定义得k ≠0,再计算△得()22k 1∆=-,而k 是整数,则2k -1≠0,得到△>0,根据△的意义即可得到方程有两个不相等的实数根,(2)先根据求根公式求出一元二次方程()2kx 4k 1x 3k 30-+++=的解为x =3或x =11k+,而k 是整数,x 1<x 2,则有x 1=11k+,x 2=3,代入得到21y x x 2=--即可得出结论, 解:(1)方程()2kx 4k 1x 3k 30-+++=是一元二次方程,∵k ≠0,()()()224k 14k 3k 32k 1∆=+-+=-, ∵k 是整数,∵k ≠12,2k -1≠0, ∵()22k 1∆=->0,∵方程有两个不相等的实数根;(2)y 是k 的函数,解方程得:x =∵x =3或x =11k+, ∵k 是整数,∵1k ≤1,∵11k+≤2<3, 又∵x 1<x 2,∵x 1=11k+,x 2=3, ∵2111y x x 2312k k ⎛⎫=--=-+-=- ⎪⎝⎭, ∵y 是变量k 的函数.21.-1【分析】根据反比例函数的定义即可求解.解:∵()2312m m y m x ++=+是关于x 的反比例函数,∵231120.m m m ⎧++=-⎨+≠⎩, 解得122m m m =-=-⎧⎨≠-⎩或, ∵1m =-,故答案为:-1.【点拨】本题考查了反比例函数的定义,关键要注意x 的指数为-1,系数不等于0要同时成立.22.2mn,1. 【分析】根据P 点在反比例函数上可得2mn =,再将分式化简后将值代入计算即可.解:原式=22222m n m n m n m n m n++-÷-- =222222m m n m n m n-⋅- =2mn, ∵点(,)p m n 是反比例函数2y x=图象上一动点, ∵2n m =,即2mn =, 将2mn =代入,原式=212=. 【点拨】本题考查反比例函数上点的坐标特征,分式的化简求值.熟练掌握分式的混合运算的运算顺序和运算法则是解题关键.23.(1)甲商品的进价为100元/件,乙商品的进价为80元/件;(2)960y x=;小丽最多可以购买10件乙种商品. 【分析】(1)设乙商品的进价为x 元/件,根据用2000元购进甲种商品的件数=用1600元购进乙种商品的件数即可列出关于x 的方程,解方程并检验即得结果;(2)根据购买乙种商品的数量=960除以该商品的销售单价即得y 与x 的函数关系式;由超市销售乙种商品,至少要获得20%的利润可得关于x 的不等式,解不等式即可求出x 的范围,进一步即可求出结果.解:(1)设乙商品的进价为x 元/件,则甲商品的进价为(x +20)元/件, 根据题意,得:2000160020x x =+, 解得:x =80,经检验:x =80是所列方程的解,x +20=100,答:甲商品的进价为100元/件,乙商品的进价为80元/件.(2)y 与x 的函数关系式为960y x=; 根据题意,得:808020%x -≥⨯,解得:96x ≥,∵10y ≤,即小丽最多可以购买10件乙种商品.【点拨】本题考查了分式方程的应用、一元一次不等式的应用和列出实际问题中的反比例函数关系式,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.24.(1)6000p V=(2)气体压强为150kPa (3)体积V 应不少于15ml 【分析】(1)利用待定系数法进行求解即可;(2)把40ml V =代入反比例函数解析式求解即可;(3)把400kPa p =代入反比例函数解析式求解即可.(1)解:设k p V=, 由图可得,反比例函数图象过()30,200,20030k ∴=, 解得6000k =,∵反比例函数的解析式为6000p V=; (2)当40ml V =时,6000p==,15040∵气体压强为150kPa;p=时,(3)当400kPa6000400=,VV=,解得15∵体积V应不少于15ml.【点拨】本题考查了反比例函数的应用,熟练掌握知识点是解题的关键.。
(word完整版)初中数学反比例函数知识点及经典例题,文档
反比率函数一、基础知识1. 定义:一般地,形如 yk〔 k 为常数, k o 〕的函数称为反比率函数。
ykxx还可以够写成 y kx 12. 反比率函数剖析式的特色:⑴等号左边是函数 y ,等号右边是一个分式。
分子是不为零的常数 k 〔也叫做比率系数 k 〕,分母中含有自变量 x ,且指数为 1. ⑵比率系数 k 0⑶自变量 x 的取值为所有非零实数。
⑷函数 y 的取值是所有非零实数。
3. 反比率函数的图像⑴图像的画法:描点法① 列表〔应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数〕 ② 描点〔有小到大的序次〕③ 连线〔从左到右圆滑的曲线〕 ⑵反比率函数的图像是双曲线,yk〔 k 为常数, k 0 〕中自变量 x 0 ,x函数值 y0 ,所以双曲线是不经过原点, 断开的两个分支, 延伸局部逐渐凑近坐标轴,但是永远不与坐标轴订交。
⑶反比率函数的图像是是轴对称图形〔对称轴是y x 或 y x 〕。
⑷反比率函数 yk〔 k 0 〕中比率系数 k 的几何意义是:过双曲线 ykxx〔 k 0 〕上任意引 x 轴 y 轴的垂线,所得矩形面积为 k 。
4.反比率函数性质以下表:k 的取值 图像所在象限函数的增减性ko 一、三象限在每个象限内, y 值随 x 的增大而减小ko二、四象限在每个象限内, y 值随 x 的增大而增大5. 反比率函数剖析式确实定:利用待定系数法〔只需一对对应值或图像上一个点的坐标即可求出 k 〕6.“反比率关系〞与“反比率函数〞 :成反比率的关系式不用然是反比率函数 ,但是反比率函数 y k中的两个变量必成反比率关系。
x7. 反比率函数的应用二、例题【例 1】若是函数 y kx2k2k 2的图像是双曲线,且在第二,四象限内,那么的值是多少?【剖析】有函数图像为双曲线那么此函数为反比率函数y k,〔 k0〕即y kx1 x(k 0 〕又在第二,四象限内,那么 k 0能够求出的值【答案】由反比率函数的定义,得:2k 2k21解得 k1或 k12 k0k0k1k1时函数 y kx2 k2k 2为 y1x【例 2】在反比率函数 y 1 的图像上有三点x1, y1, x2, y2, x3, y3。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。
二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。
三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。
四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。
五、经典例题1.小明开车从A地到B地,全程360公里。
如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。
设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。
2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。
根据题意可知,放水的时间t和装满水箱的时间成反比。
所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。
3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。
解答:设新圆的半径为r,则原圆的半径为(1/3)r。
原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。
2022年人教版初中数学9年级下册反比例函数(基础)巩固练习及答案及答案
2022年人教版初中数学9年级下册【巩固练习】一.选择题1.点(3,-4)在反比例函数ky x=的图象上,则在此图象上的是点().A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)2.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是().A.-1B.3C.0D.-33.下列四个函数中:①5y x =;②5y x =-;③5y x =;④5y x=-.y 随x 的增大而减小的函数有().A.0个B.1个C.2个D.3个4.在反比例函数()0ky k x=<的图象上有两点()11,y x A ,()22,y x B ,且021>>x x ,则12y y -的值为()A.正数B.负数C.非正数D.非负数5.(2020•潮南区一模)已知一次函数y=kx+k ﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()6.已知反比例函数1y x=,下列结论中不正确的是()A.图象经过点(-1,-1)B.图象在第一、三象限C.当1x >时,01y << D.当0x <时,y 随着x 的增大而增大二.填空题7.若y 是x 的反比例函数,x 是z 的正比例函数,则y 是z 的_________函数.8.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,则反比例函数的解析式为.9.(2020•和平区模拟)若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数y=的图象上的点,并且x 1<0<x 2<x 3,y 1,y 2,y 3的大小关系为.10.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.11.如图,如果曲线1l 是反比例函数ky x=在第一象限内的图象,且过点A (2,1),那么与1l 关于x 轴对称的曲线2l 的解析式为(0x >).12.已知正比例函数的图象与双曲线的交点到x 轴的距离是1,到y 轴的距离是2,则双曲线的解析式为_______________.三.解答题13.已知反比例函数2m y x=的图象过点(-3,-12),且双曲线m y x =位于第二、四象限,求m 的值.14.(2020秋•龙安区月考)如图,已知反比例函数y=(m 为常数)的图象经过□ABOD 的顶点D ,点A 、B 的坐标分别为(0,3),(﹣2,0)(1)求出函数解析式;(2)设点P 是该反比例函数图象上的一点,若OD=OP ,求P 点的坐标.15.已知点A(m ,2)、B(2,n )都在反比例函数xm y 3+=的图象上.(1)求m 、n 的值;(2)若直线y mx n =-与x 轴交于点C,求C 关于y 轴对称点C′的坐标.【答案与解析】一.选择题1.【答案】C;【解析】由题意得12y x=-,故点(-2,6)在函数图象上.2.【答案】B;【解析】由题意知k -1>0,k >1,故选B.3.【答案】B;【解析】只有②,注意不要错误地选了③,反比例函数的增减性是在每一个象限内讨论的.4.【答案】A;【解析】函数在二、四象限,y 随x 的增大而增大,故120y y ->.5.【答案】C;【解析】当k >0时,反比例函数y=的图象在一、三象限,一次函数y=kx+k ﹣1的图象过一、三、四象限,或者一、二、四象限,A 、B 选项正确;当k <0时,反比例函数y=的图象在二,四象限,一次函数y=kx+k ﹣1的图象过一、三、四象限,选项D 正确,C 不正确;故选C .6.【答案】D;【解析】D 选项应改为,当0x <时,y 随着x 的增大而减小.二.填空题7.【答案】反比例;【解析】由题意12,k y x k z x ==,代入求得12ky k z=,故y 是z 的反比例函数.8.【答案】1y x=;【解析】由题意210120m m ⎧-=-⎨->⎩,解得3m =.9.【答案】y 2<y 3<y 1;【解析】∵﹣a 2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y 随x的增大而增大,∵x 1<0<x 2<x 3,∴y 2<y 3<y 1.10.【答案】2m =;2k =;(1,2);【解析】另一个交点坐标与A 点关于原点对称.11.【答案】x y 2-=;12.【答案】2y x =或2y x=-;【解析】由题意交点横坐标的绝对值为2,交点纵坐标的绝对值为1,故可能是点(2,1)或(-2,-1)或(-2,1)或(2,-1).三.解答题13.【解析】解:根据点在图象上的含义,只要将(-3,-12)代入2m y x =中,得2123m -=-,∴m =±6又∵双曲线my x=位于第二、四象限,∴m <0,∴m =-6.14.【解析】解:(1)∵四边形ABOC 为平行四边形,∴AD ∥OB ,AD=OB=2,而A 点坐标为(0,3),∴D 点坐标为(2,3),∴1﹣2m=2×3=6,m=﹣,∴反比例函数解析式为y=.(2)∵反比例函数y=的图象关于原点中心对称,∴当点P 与点D 关于原点对称,则OD=OP ,此时P 点坐标为(﹣2,﹣3),∵反比例函数y=的图象关于直线y=x 对称,∴点P 与点D (2,3)关于直线y=x 对称时满足OP=OD ,此时P 点坐标为(3,2),点(3,2)关于原点的对称点也满足OP=OD ,此时P 点坐标为(﹣3,﹣2),综上所述,P 点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2).15.【解析】解:(1)将点A(m ,2)、B(2,n )的坐标代入xm y 3+=得:32m m +=,解得3m =;333322m n ++===,所以3m n ==.(2)直线为33y x =-,令01y x ==,,所以该直线与x 轴的交点坐标为C(1,0),C 关于y 轴对称点C′的坐标为(-1,0).2022年人教版初中数学9年级下册反比例函数(基础)【学习目标】1.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4.会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为ky x=,其中k 是不等于零的常数.一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:ky x=(0k ≠);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式ky x=中.要点三、反比例函数的图象和性质1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以O 为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点四:反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ≠)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .过双曲线xky =(0k ≠)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数的定义1、(2020春•惠山区校级期中)下列函数:①y=2x ,②y=,③y=x ﹣1,④y=.其中,是反比例函数的有().A.0个 B.1个 C.2个 D.3个【答案】C;【解析】解:①y 是x 正比例函数;②y 是x 反比例函数;③y 是x 反比例函数;④y 是x+1的反比例函数.故选:C .【总结升华】本题考查了反比例函数的定义,重点是将一般(0k y k x=≠)转化为y=kx ﹣1(k≠0)的形式.类型二、确定反比例函数的解析式2、已知正比例函数y kx =和反比例函数3y x=的图象都过点A(m ,1).求此正比例函数的关系式及另一个交点的坐标.【思路点拨】点A 的坐标(m ,1)同时满足函数y kx =和3y x=,所以可求出m 的值,进而求出A 点坐标,将其代入y kx =中求得k ,再令两关系式相等,从而求得另一个交点的坐标.【答案与解析】解:因为3y x =的图象经过点A(m ,1),则31m=,所以m =3.把A(3,1)代入y kx =中,得13k =,所以13k =.所以正比例函数关系式为13y x =.由1,33,y x y x ⎧=⎪⎪⎨⎪=⎪⎩得3x =±.当3x =时,1y =;当3x =-时,1y =-.所以另一个交点的坐标为(-3,-1).【总结升华】确定解析式的方法是待定系数法,由于正比例函数y kx =中有一个待定系数,因此只需一对对应值即可.举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?【答案】解:设ky x =,当6x =-时,4y =,所以46k=-,则k =-24,所以有24y x-=.当2x =时,24122y -==-.类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点(11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y y ,,的大小关系是().A.231y y y <<B.321y y y <<C.123y y y <<D.312y y y <<【答案】D;【解析】解:因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数ky x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x=,当x =-1时,y =-2,当x =1时,y =2,自变量由-1到1,函数值y 由-2到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.举一反三:【变式1】已知2(3)m y m x-=-的图象是双曲线,且在第二、四象限,(1)求m 的值.(2)若点(-2,1y )、(-1,2y )、(1,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:(1)由已知条件可知:此函数为反比例函数,且2130m m -=-⎧⎨-≠⎩,∴1m =.(2)由(1)得此函数解析式为:2y x=-.∵(-2,1y )、(-1,2y )在第二象限,-2<-1,∴120y y <<.而(1,3y )在第四象限,30y <.∴312y y y <<【变式2】(2020秋•娄底月考)对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限;B.它的图象与坐标轴没有交点;C.它的图象既是轴对称图形,又是中心对称图形;D.当x <0时,y 的值随x 的增大而增大.【答案】D;解:A 、k=2>0,图象位于一、三象限,正确;B 、因为x 、y 均不能为0,所以它的图象与坐标轴没有交点,正确;C 、它的图象关于y=﹣x 成轴对称,关于原点成中心对称,正确;D ,当x <0时,y 的值随x 的增大而减小,故选:D .类型四、反比例函数综合4、已知点A(0,2)和点B(0,-2),点P 在函数1y x=-的图象上,如果△PAB 的面积是6,求P 点的坐标.【思路点拨】由已知的点A 、B 的坐标,可求得AB =4,再由△PAB 的面积是6,可知P 点到y 轴的距离为3,因此可求P 的横坐标为±3,由于点P 在1y x=-的图象上,则由横坐标为±3可求其纵坐标.【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC⊥y 轴于点C.∵A(0,2)、B(0,-2),∴AB=4.又∵0||PC x =且6PAB S =△,∴01||462x = ,∴0||3x =,∴03x =±.又∵00(,)P x y 在曲线1y x =-上,∴当03x =时,013y =-;当03x =-时,013y =.∴P 的坐标为113,3P ⎛⎫- ⎪⎝⎭或213,3P ⎛⎫- ⎪⎝⎭.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.举一反三:【变式】已知:如图所示,反比例函数ky x=的图象与正比例函数y mx =的图象交于A、B,作AC⊥y 轴于C,连BC,则△ABC 的面积为3,求反比例函数的解析式.【答案】解:由双曲线与正比例函数y mx =的对称性可知AO=OB,则1322AOC ABC S S ==△△.设A 点坐标为(A x ,A y ),而AC=|A x |,OC=|A y |,于是1113||||2222AOC A A A A S AC OC x y x y ===-= △,∴3A A x y =- ,而由A Aky x =得A A x y k = ,所以3k =-,所以反比例函数解析式为3y x-=.【巩固练习】一.选择题1.在反比例函数12my x-=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是()A.0m <B.0m >C.12m <D.12m >2.如图所示的图象上的函数关系式只能是().A.y x= B.1y x=C.21y x =+ D.1||y x =3.已知0ab <,点P(a b ,)在反比例函数ay x=的图像上,则直线y ax b =+不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限4.在函数21a y x --=(a 为常数)的图象上有三个点1(1)y -,,21()4y -,,31()2y ,,则函数值1y 、2y 、3y 的大小关系是().A.2y <3y <1y B.3y <2y <1y C.1y <2y <3y D.3y <1y <2y5.(2020•历下区模拟)如图,直线x=t (t >0)与反比例函数y=(x >0)、y=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为()A.2B.3C.4D.56.如图,已知双曲线ky x=(0k <)经过直角三角形OAB 斜边OA 的中点D,且与直角边AB 相交于点C.若点A 的坐标为(﹣6,4),则△AOC 的面积为()A.12B.9C.6D.4二.填空题7.如图所示是三个反比例函数x k y 1=、x ky 2=、xk y 3=的图象,由此观察得到1k 、2k 、3k 的大小关系是____________________(用“<”连接).8.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数6y x=(x >0)的图象上,则点C 的坐标为_________.9.(2020春•江都市校级期末)已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为.10.已知A(11,x y ),B (22,x y )都在6y x=图象上.若123x x =-,则12y y 的值为_________.11.如图,正比例函数3y x =的图象与反比例函数ky x=k >0)的图象交于点A,若k 取1,2,3…20,对应的Rt△AOB 的面积分别为12320,,....,S S S S ,则1220....S S S +++=________.12.如图所示,点1A ,2A ,3A 在x 轴上,且11223OA A A A A ==,分别过点1A ,2A ,3A 作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别于y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为____________.三.解答题13.如图所示,已知一次函数y kx b =+的图象与x 轴、y 轴分别交于A、B 两点,且与反比例函数my x=的图象在第一象限交于点C,CD 垂直于x 轴,垂足为D,且OA=OB=OD=1.(1)求点A,B,D 的坐标;(2)求一次函数和反比例函数的表达式.14.如图所示,已知双曲线k y x =与直线14y x =相交于A、B 两点.第一象限上的点M(m ,n )(在A 点左侧)是双曲线ky x =上的动点.过点B 作BD∥y 轴交于x 轴于点D.过N(0,-n )作NC∥x 轴交双曲线ky x=于点E,交BD 于点C.(1)若点D 坐标是(-8,0),求A、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.15.(2020春•耒阳市校级月考)如图,已知点A (﹣8,n ),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积,(3)求方程kx+b ﹣mx=0的解(请直接写出答案);(4)求不等式kx+b ﹣mx>0的解集(请直接写出答案).【答案与解析】一.选择题1.【答案】C;【解析】由题意画出图象,只能在一、三象限,故120m ->.2.【答案】D;【解析】画出1y x=的图象,再把x 轴下方的图象翻折上去.3.【答案】C;【解析】由题意0ab a =<,故b >0,直线y ax b =+经过一、二、四象限.4.【答案】D;【解析】210a --<,故图象在二、四象限,画出图象,比较大小得D 答案.5.【答案】D;【解析】解:由题意得,点C 的坐标(t ,﹣),点B 的坐标(t ,),BC=+,则(+)×t=3,解得k=5,故选:D .6.【答案】B;【解析】由题意,D 点坐标为(-3,2),故6y x=-,求得C 点坐标为(-6,1),△AOC 的面积为116461922⨯⨯-⨯⨯=.二.填空题7.【答案】123k k k <<;8.【答案】(3,6);【解析】由题意B 点的坐标为(1,6),D 点的坐标为(3,2),因为ABCD 是矩形,故C点的坐标为(3,6).9.【答案】9;【解析】设y 1=k 1x ,y 2=,则y=y 1+y 2=k 1x+,将(1,2)、(2,)代入得:,解得:∴8k 1+5k 2==9.故答案为9.10.【答案】-12;【解析】由题意11226,6,x y x y ==所以121236x x y y =,因为123x x =-,所以12y y =-12.11.【答案】105;【解析】△AOB 的面积始终为2k ,故1220....S S S +++=12320 (1052222)++++=.12.【答案】499;【解析】1B (8,m m )第一个阴影部分面积等于4;2B (42,m m),用待定系数法求出直线2OB 的解析式22y x m =,再求出11A B 与2OB 的交点坐标为(2,m m ),第二个阴影面积为142()2m m m ⨯⨯-=1;3B (83,3m m),求出直线3OB 的解析式289y x m =,再求出22A B 与3OB 的交点坐标为(162,9m m ),第三个阴影部分面积为18164()2399m m m ⨯⨯-=,所以阴影部分面积之和为4494199++=.三.解答题13.【解析】解:(1)∵OA=OB=OD=1,∴点A、B、D 的坐标分别为A(-1,0),B(0,1),D(1,0).(2)∵点A、B 在一次函数y kx b =+的图象上,∴0,1,k b b =-+⎧⎨=⎩解得1,1k b =⎧⎨=⎩所以一次函数的表达式是1y x =+.又∵点C 在一次函数1y x =+的图象上,且CD⊥x 轴,∴C 点坐标为(1,2),又∵点C 在反比例函数my x =的图象上,∴m =2.∴反比例函数的表达式为2y x=.14.【解析】解:(1)∵D(-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2.∴B 点坐标为(-8,-2).而A、B 两点关于原点对称,∴A(8,2).从而k =8×2=16.(2)∵N(0,-n ),B 是CD 的中点,A、B、M、E 四点均在双曲线上,∴mn k =,(2,)2nB m --,C(-2m ,-n ),E(-m ,-n ).22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△,∴DBO OEN DCNO OBCE S S S S k =--=△△矩形四边形.∴k =4.由直线14y x =及双曲线4y x=,得A(4,1),B(-4,-1),∴C(-4,-2),M(2,2).设直线CM 的解析式是y ax b =+,由C、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩解得23a b ==.∴直线CM 的解析式是2233y x =+.15.【解析】解:(1)∵B (3,﹣8)在反比例函数my x=图象上,∴﹣8=3m,m=﹣24,反比例函数的解析式为y=﹣,把A (﹣8,n )代入y=﹣,n=3,设一次函数解析式为y=kx+b ,,解得,,一次函数解析式为y=﹣x ﹣5.(2)﹣x ﹣5=0,x=﹣5,点C 的坐标为(﹣5,0),△AOB 的面积=△AOC 的面积+△BOC 的面积=×5×3+×5×8=.(3)点A (﹣8,3),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点,方程kx+b ﹣mx=0的解是:x 1=﹣8,x 2=3,(4)由图象可知,当x <﹣8或0<x <3时,kx+b >m x,∴不等式kx+b ﹣mx>0的解集为:x <﹣8或0<x <3.反比例函数(提高)【学习目标】1.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4.会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:ky x=(0k ≠);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式ky x=中.要点三、反比例函数的图象和性质1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点四:反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ≠)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .过双曲线xky =(0k ≠)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数定义1、当k 为何值时22(1)k y k x-=-是反比例函数?【思路点拨】根据反比例函数解析式(0)ky k x=≠,也可以写成1(0)y kx k -=≠的形式,后一种表达方法中x 的次数为-1,由此可知函数是反比例函数,要具备的两个条件为221k -=-且10k -≠,二者必须同时满足,缺一不可.【答案与解析】解:令221,10,k k ⎧-=-⎨-≠⎩①②由①得,k =±1,由②得,k ≠1.综上,k =-1,即k =-1时,22(1)k y k x-=-是反比例函数.【总结升华】反比例函数解析式的三种形式:①k y x=;②1y kx -=;③.(0)xy k k =≠.类型二、确定反比例函数解析式2、(2020春•裕民县校级期中)正比例函数y=2x 与双曲线的一个交点坐标为A (2,m ).(1)求出点A 的坐标;(2)求反比例函数关系式.【答案与解析】解:(1)将A 点坐标是(2,m )代入正比例y=2x 中,得:m=4,则A (2,4);(2)将A (2,4)代入反比例解析式中,得:4=,即k=8,则反比例函数解析式y=.【总结升华】此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.举一反三:【变式】已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x =1时,y =7;当x =2时,y =8.(1)y 与x 之间的函数关系式;(2)自变量的取值范围;(3)当x =4时,y 的值.【答案】解:(1)∵1y 与x 成正比例,∴设111(0)y k x k =≠.∵2y 与x 成反比例,∴设222(0)k y k x =≠.∴2121k y y y k x x=+=+.把17x y =⎧⎨=⎩与28x y =⎧⎨=⎩分别代入上式,得12217,28.2k k k k +=⎧⎪⎨+=⎪⎩∴123,4.k k =⎧⎨=⎩所以y 与x 的函数解析式为43y x x =+.(2)自变量的取值范围是x ≠0.(3)当x =4时,434134y =⨯+=.类型三、反比例函数的图象和性质3、若A(1x ,1y )、B(2x ,2y )在函数12y x =的图象上,当1x 、2x 满足________时,12y y >.【答案】120x x <<或120x x <<或210x x <<;【解析】12y x=的图象在一、三象限,在每个象限内,随着x 的增大,函数值y 减小,所以120x x <<或120x x <<时,12y y >.当B 点在三象限,A 点在一象限,即210x x <<,也满足12y y >.【总结升华】反比例函数的增减性是在每个象限内讨论的,A、B 两点要分成同在一象限、同在三象限和分属一、三象限讨论,这样才能把情况考虑完整.举一反三:【变式】(2014春•邓州市校级期中)已知四个函数y=﹣x+1,y=2x ﹣1,y=﹣,y=,其中y 随x 的增大而减小的有()个.A.4 B.3 C.2 D.1【答案】D;提示:解:y=﹣x+1中k=﹣1<0,所以y 随x 的增大而减小,正确;y=2x ﹣1中k=2>0,所以y 随x 的增大而增大,故本选项,错误;y=﹣是反比例函数,其增减性必须强调在双曲线的每一支上,故错误;y=是反比例函数,其增减性必须强调在双曲线的每一支上,故错误.故选D .类型四、反比例函数综合4、如图所示,反比例函数的图象与一次函数y ax b =+的图象交于M(2,m ),N(-1,-4)两点.(1)求反比例函数和一次函数的关系式;(2)根据图象写出使反比例函数的值大于一次函数值的x 的取值范围.【思路点拨】(1)由点N 的坐标为(-1,-4),根据待定系数法可求反比例函数的关系式.从而求出点M 的坐标.再根据M、N 的坐标,用待定系数法可求出一次函数的关系式;(2)结合图象位置和两交点的坐标,可得到使反比例函数大于一次函数的值的x 的取值范围.【答案与解析】解:(1)设反比例函数的关系式为k y x =.由N(-1,-4),得41k -=-,∴k =4.∴反比例函数的关系式为4y x =.∵点M(2,m )在双曲线4y x =上,∴422m ==.∴点M(2,2).设一次函数的关系式为y ax b =+,由M(2,2)、N(-1,-4),得22,4.a b a b +=⎧⎨-+=-⎩解得2,2.a b =⎧⎨=-⎩∴一次函数的关系式为22y x =-.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.【总结升华】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式.也考查了待定系数法确定函数解析式以及观察函数图象的能力.举一反三:【变式】如图所示,已知正比例函数y ax =的图象与反比例函数k y x=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)M(m n ,)是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B;过点A 作直线AC∥y 轴交x 轴于点C,交直线MB 于点D.当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.【答案】解:(1)将A(3,2)分别代入k y x =,y ax =中,得23k =,3a =2.∴k =6,23a =.∴反比例函数的表达式为6y x =,正比例函数的表达式为23y x =.(2)观察图象,在第一象限内,当0<x <3时,反比例函数的值大于正比例函数的值.(3)BM=DM.理由:∵1||32OMB OAC S S k ==⨯=△△,∴63312OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形,即OC·OB=12.∵OC=3,∴OB=4,即n =4.∴632m n ==.∴32MB =,33322MD =-=.∴MB=MD.。
反比例函数基础知识巩固
反比例函数基础知识巩固一:填空题:1.已知S与P成反比,当p=3时,S=2,那么P=2时,S= 。
2.u与yt成反比,且当u=6时,t=81,这个函数解析式为 。
3.y=-x3的图像叫数 ,图像位于 象限,在每一象限内,当x增大时,则y 。
4.函数y=-2x 和函数y=x2的图像有 个交点。
5.已知y与x 成反比,当y=1时,x=2时,y= 。
6.反比例函数y=x k 的图像经过(-23,5)点、(a,-3)及(10,b)点, 则k= ,a= ,b= 。
二:选择题1)下列函数中,反比例函数是( )A :x(y -1)=1B :y=11+xC :y=21xD :y=x 31 2)已知反比例函数的图像经过点(a,b),则它的图像一定也经过( )A :(-a,-b)B :(a,-b)C :(-a,b)D :(0,0)3)如果反比例函数y=xk 的图像经过点(-3,-4),那么函数的图像应在( ) A :第一、三象限 B :第一、二象限 C :第二、四象限 D :第三、四象限 4)若y与-3x成反比例,x与z4成正比例,则y是z的( ) A :正比例函数 B :反比例函数 C :一次函数 D :不能确定 5)若反比例函数y=(2m-1)22-m x的图像在第二、四象限,则m的值是( ) A :-1或1 B :小于21 的任意实数 C :-1 D:不能确定 三:已知y=y 1-y 2,y 1与x成反比例,y 2与x-2成正比例,且x=1时,y=-1;x=3时,y=5,求x=5时y的值。
四:已知y 1是正比例函数,y 2是反比例函数,并且当自变量取1时,y 1=y 2;当自变量取2时,y 1-y 2=9,求y 1和y 2的解析式。
精选-北师大版初三数学上册《反比例函数全章复习与巩固》(基础)巩固练习含解析[5页]
反比例函数全章复习与巩固(基础)巩固练习【巩固练习】一.选择题1. 若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( )A .(2,3)B .(3,2)C .(﹣2,3)D .(﹣2,﹣3)2. 函数y x m =+与(0)m y m x =≠在同一坐标系内的图象可以是( ) 3. 反比例函数是y=x2的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 4. 数22(1)m y m x -=-是反比例函数,则m 的值是( )A .±1B .1CD .-15. 如图所示,直线2y x =+与双曲线k y x=相交于点A ,点A 的纵坐标为3,k 的值为( ) A .1 B .2 C .3 D .46. 点(-1,1y ),(2,2y ),(3,3y )在反比例函数21k y x--=的图象上.下列结论中正确的是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >>7. 已知111(,)P x y 、222(,)P x y 、333(,)P x y 是反比例函数2y x=图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y <<8. 如图所示,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ',则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .5(0)y x x =->B .5(0)y x x =>C .6(0)y x x =->D .6(0)y x x=> 二.填空题9. 若反比例函数的图象过点(3,﹣2),则其函数表达式为 .10. 若函数y=x m 2-的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围___________.11. 反比例函数)0(≠=k xk y 的图象叫做__________.当0k >时,图象分居第__________象限,在每个象限内y 随x 的增大而_______;当0k <时,图象分居第________象限,在每个象限内y 随x 的增大而__________.12. 若点A(m ,-2)在反比例函数4y x =的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________.13. 若变量y 与x 成反比例,且2x =时,3y =-,则y 与x 之间的函数关系式是________,在每个象限内函数值y 随x 的增大而_________. 14. 已知函数x m y =,当21-=x 时,6=y ,则函数的解析式是__________. 15.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数x k y =的图象上,另三点在坐标轴上,则_______k =.16. 在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为53m 时,密度是1.43/kg m ,则ρ与V 的函数关系式为_______________.三.解答题17. 一辆汽车匀速通过某段公路,所需时间t(h )与行驶速度v(/km h )满足函数关系:k t v =,其图象为如图所示的一段曲线且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60/km h ,则汽车通过该路段最少需要多少时间? 18. 在压力不变的情况下,某物体承受的压强P (Pa )是它的受力面积S ()的反比例函数,其图象如图所示.(1) 求P 与S 之间的函数关系式;(2) 求当S =0.5时物体承受的压强P . 19. 如图,直线y=34x 与双曲线y=(x >0)交于点A ,将直线y=34x 向下平移个6单位后,与双曲线y=xk (x >0)交于点B ,与x 轴交于点C. (1)求C 点的坐标.(2)若BCAO =2,则k 的值为? 20. 如图所示,一次函数112y k x =+与反比例函数22k y x =的图象交于点A(4,m )和B(-8,-2),与y 轴交于点C .(1)1k = ________,2k =________;(2)根据函数图象可知,当12y y >时,x 的取值范围是________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当31ODE ODAC S S =△四边形::时,求点P 的坐标.【答案与解析】一.选择题1.【答案】D ;【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(﹣2,﹣3).故选:D .2.【答案】B ;【解析】分m >0,和m <0分别画出图象,只有B 选项是正确的.3.【答案】B .4.【答案】D ;【解析】由反比例函数的意义可得:2102 1.m m -≠⎧⎨-=-⎩解得,m =-1. 5.【答案】C ;【解析】把y =3代入2y x =+,得1x =.∴ A(1,3).把点A 的坐标代入k y x=,得3k xy ==.6.【答案】B ; 【解析】∵ 221(1)0k k --=-+<,∴ 反比例函数21k y x --=的图象位于第二、四象限,画出函数图象的简图,并在图象上表示出已知各点,易知132y y y >>.7.【答案】C ;【解析】观察图象如图所示.8.【答案】D ;【解析】 由点P 的横坐标为2,可得点P 的纵坐标为12. ∴ 12,2P ⎛⎫ ⎪⎝⎭.由题意可得点34,2P ⎛⎫' ⎪⎝⎭. ∴ 在第一象限内,经过点P '的反比例函数图象的解析式为6(0)y x x =>.故选D 项. 二.填空题9.【答案】y=﹣x6. 10.【答案】m <2;11.【答案】双曲线;一、三;减小;二、四;增大;12.【答案】x ≤-2或0x >;【解析】结合图象考虑反比例函数增减性.13.【答案】x y 6-=;增大 ; 14.【答案】3y x =-; 15.【答案】-3;【解析】由矩形OABC 的面积=3,可得B 点的横坐标与纵坐标的乘积的绝对值=3,又因为图象在第四象限,所以反比例函数的0k <.16.【答案】7V ρ=. 三.解答题17.【解析】解:(1)将(40,1)代入k t v =,得140k =,解得k =40. ∴ 该函数解析式为40t v=. ∴ 当t =0.5时,400.5m=,解得m =80, ∴ k =40,m =80.(2)令v =60,得402603t ==, 结合函数图象可知,汽车通过该路段最少需要23小时. 18.【解析】 解:(1)设所求函数解析式为k p s =,把(0.25,1000)代入解析式, 得1000=0.25k , 解得k =250 ∴所求函数解析式为250p s=(s >0) (2)当s =0.5时,P =500(Pa)19.【解析】 解:(1)∵将直线y=34x 向下平移个6单位后得到直线BC , ∴直线BC 解析式为:y=34x ﹣6, 令y=0,得34x ﹣6=0, ∴C 点坐标为(29,0); (2)∵直线y=34x 与双曲线y=x k (x >0)交于点A , ∴A (23k ,332k ),又∵直线y=34x ﹣6与双曲线y=x k (x >0)交于点B ,且BC AO =2, ∴B (4329k +,33k ),将B 的坐标代入y=x k 中, 解得k=12.20.【解析】解:(1)12,16; (2)-8<x <0或x >4;(3)由(1)知,1122y x =+,216y x=. ∴ m =4,点C 的坐标是(0,2),点A 的坐标是(4,4). ∴ CO =2,AD =OD =4. 即142OD DE =,∴ DE =2.∴ 点E 的坐标为(4,2). 又点E 在直线OP 上,∴ DE =2.∴ 点E 的坐标为(4,2). 由16,1,2y x y x ⎧=⎪⎪⎨⎪=⎪⎩得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=-⎪⎨=-⎪⎩(不合题意舍去) ∴ P的坐标为.。
反比例函数知识点及典型例题
反比例函数知识点及考点:(一)反比例函数的概念: 知识要点:1、一般地,形如 y =xk( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式: (A )y =xk (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=ax a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2 (3)若函数11-=m x y (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x=≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由(6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
(完整word版)反比例函数知识点及经典例题
反比率函数一、基础知识1. 定义:一般地,形如yk ( k 为常数, ko )的函数称为反比率函数。
x( 自变量x 的取值 :xo )2. 反比率函数的等价形式: ① y k( k o ) ② y kx 1 ( k o) ③xy=k( ko)x3. 反比率函数的图像⑴图像的画法:描点法① 列表(应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数)② 描点(有小到大的次序) ③ 连线(从左到右圆滑的曲线) ⑵反比率函数的图像 :①反比率函数的图像是双曲线,由两条曲线构成。
②双曲线永久不与坐标轴订交,但无穷凑近坐标轴。
③反比率函数的图像是轴对称图形 (对称轴是 y x 或 y x ),也是中心对称图形(原点)。
4.反比率函数性质以下表:k 的取值 图像所在象限函数的增减性ko 一、三象限在每个象限内 , y 值随 x 的增大而减小ko二、四象限在每个象限内 , y 值随 x 的增大而增大5. 反比率函数分析式确实定:① 利用待定系数法(只要一对对应值或图像上一个点的坐标即可求出 k )② k 的几何意义。
6.反比率函数 yk( k0 )中比率系数 k 的几何意义是: 过双曲线 ykxx( k 0)上随意引 x 轴 y 轴的垂线,所得矩形面积为 k 。
7.反比率函数的应用二、例题【例 1】假如函数 y kx2k2k 2的图像是双曲线,且在第二,四象限内,那么的值是多少?【分析】有函数图像为双曲线则此函数为反比率函数y k,( k0)即y kx1 x(k 0 )又在第二,四象限内,则 k 0能够求出的值【答案】由反比率函数的定义,得:2k 2k21解得 k1或 k12 k 0k0k1k1时函数 y kx2 k2k 2为 y1x【例 2】在反比率函数 y 1 的图像上有三点x1, y1, x2, y2, x3, y3。
x若 x1x20x3则以下各式正确的选项是()A.y3y1y2B. y3y2y1C. y1 y2 y3 D .y1y3y2【分析】可直接以数的角度比较大小,也可用图像法,还可取特别值法。
人教版九年级下册数学第二十六章《反比例函数》基础巩固练习题(有答案).docx
【巩固练习】一.选择题k1•点(3,—4)在反比例函数y二一的图象上,则在此图象上的是点()•xA. (3, 4)B. (—2, —6)C. (—2, 6)D. (—3, —4)12.若反比例函数y= —的图象在其每个象限内,y随无的增大而减小,则£的值可以是x()・A. 一1B. 3 C・ 0 D. 一33.下列四个函数中:®y = 5x;②y = -5x;®y = —;® y = . y随兀的增大而减x x小的函数有().A. 0个B. 1个C. 2个D. 3个4.在反比例函数y = '(£<0)的图象上有两点人(兀],.卄),凤兀2,)勺),且兀]〉兀2 >0,则y}-y2的值为()A.正数B.负数C.非正数D.非负数5.(2015*潮南区一模)己知一次函数y=kx+k - 1和反比例函数y二上,则这两个函数在同11.如图,如果曲线人是反比例函数y =-在第一象限内的图象,且过点A (2, 1),那么x与厶关于兀轴对称的曲线12的解析式为____________ (%>0).12.已知正比例函数的图彖与双曲线的交点到x轴的距离是1,到丿轴的距离是2,则双曲线的解析式为_______________ .三•解答题213.已知反比例函数y =—的图象过点(一3, —12),且双曲线y =—位于第二、四象限,求加的值.14.(2015秋•龙安区月考)如图,已知反比例函数y二UB (m为常数)的图彖经过x口ABOD的顶点D,点A、B的坐标分别为(0, 3),(・2, 0)(1)求出函数解析式;(2)设点P是该反比例函数图象上的一点,若OD二OP,求P点的坐标.15.----------------------------------------------------------------------- 已知点A(加,2)、B(2,斤)都在反比例函数歹= ------------------------------------- 的图象上.x(1)求加、兀的值;(2)若直线y = mx-n与兀轴交于点C,求C关于y轴对称点C'的坐标.【答案与解析】一.选择题1.【答案】C;12【解析】由题意得》=-一,故点(一2, 6)在函数图象上.x2.【答案】B;【解析】由题意知鸟一1>0, k>\,故选B.3.【答案】B;【解析】只有②,注意不要错误地选了③,反比例函数的增减性是在每一个象限内讨论的.4.【答案】A;【解析】函数在二、四象限,随兀的增大而增大,故刃一%>°・5.【答案】C;【解析】当k>0吋,反比例函数y二上的图象在一、三象限,一次函数y=kx+k - 1的图象X过一、三、四象限,或者一、二、四彖限,A、B选项正确;当kVO时,反比例函数y」的x 图象在二,四象限,一次函数y=kx+k・1的图象过一、三、四象限,选项D正确,C不正确;故选C.6.【答案】D;【解析】D选项应改为,当x<0时,y随着X的增大而减小.二.填空题7.【答案】反比例;k k【解析】由题意y = ^,x = k 2z,代入求得丿=亠,故丿是z 的反比例函数.x k 2z 8. 【答案】y =—;X加2 _]0 = _]m-2 > 09. 【答案】y2<y3<yi ;【解析】T ■ a?・1 <0,・・・反比例函数图象位于二、四象限,如图在每个象限内,y 随x 的增大而增大,Vxi<o<x2<x 3. y2<y3<yi- 10. 【答案】m = 2 : k = 2;(1, 2);【解析】另一个交点坐标与A 点关于原点对称.211. 【答案】y =—X •♦2 212. 【答案】y =—或y =—;x x【解析】由题意交点横坐标的绝对值为2,交点纵坐标的绝对值为1,故可能是点(2, 1) 或(一2, -1)或(一2, 1)或(2, -1). 三•解答题13. 【解析】2 2解:根据点在图象上的含义,只要将(一3, —12)代入y =—中,得-12 = — ,x —3m = ± 6m又・・・双曲线y =-位于第二、四象限,xm <0, /. m =—6.14. 【解析】解:(1) I 四边形ABOC 为平行四边形,・・・AD 〃OB, AD=OB=2, 而A 点坐标为(0, 3),{・・・D点坐标为(2, 3),・:1 - 2m二2x3=6, m=-―,2・・・反比例函数解析式为y」・x(2)・・•反比例函数y二的图象关于原点中心对称,.・・当点P与点D关于原点对称,则OD=OP,此时P点坐标为(・2, -3),・・•反比例函数y二的图彖关于直线y二x对称,・••点P与点D (2, 3)关于直线y二x对称时满足OP二OD,此时P点坐标为(3, 2), 点(3, 2)关于原点的对称点也满足OP=OD,此时P点坐标为(-3, -2), 综上所述,P 点的坐标为(・2,・3), (3, 2),(・3,・2).15.【解析】解:(1)将点A(m, 2)、B(2,刃)的坐标代入y = m +Xzn o 加+ 3 购妲Q 加+ 3 3 + 3得:2 = --------- ,解得加=3;n =----------- = ------- = 3,m 2 2所以m = n = 3.(2)直线为y = 3兀一3,令y = 0, x = 1,所以该直线与兀轴的交点坐标为C (1,0), C关于),轴对称点C'的坐标为(一1, 0).6. 己知反比例函数y = ~,下列结论中不正确的是()xA.图象经过点(一1, -1)B.图彖在第一、三象限C.当兀〉1吋,OvyvlD.当xvO吋,y随着兀的增大而增大二.填空题7. 若y是兀的反比例函数,x是z的正比例函数,则y是z的________________ 函数.&已知反比例函数y = (m-2K2-6 7 * 9 10的图象,在每一象限内y随兀的增大而减小,则反比例函数的解析式为___________________ .-2 _x 9. (2015•和平区模拟)若点(xi,yQ、(X2,y?)>(X3,y3)都是反比例函数y二--X的图象上的点,并且xi<0<X2<X3,yi,y?, y3的大小关系为_________________________ . 10. 已知直线y = nvc与双曲线y =—的一个交点A的坐标为(一1, 一2)•则加= _______ ;k=;它们的另一个交点坐标是 __________ .。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
专题. 反比例函数(动点问题)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.30反比例函数(动点问题)(巩固篇)(专项练习)一、单选题1.如图,点M 是反比例函数y =4x(x <0)图象上一点,MN ⊥y 轴于点N .若P 为x 轴上的一个动点,则△MNP 的面积为()A .2B .4C .6D .无法确定2.如图,点A 是双曲线3y x =在第一象限上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.下列结论:①连接OC ,则AB OC ⊥;②点C 在函数()90y x x =->上运动.则()A .①对②错B .①错②对C .①②都对D .①②都错3.如图,过双曲线(0)ky x x =>上的动点A 作AB x ⊥轴于点B ,P 是直线AB 上的点,且满足2AP AB =,过点P 作x 轴的平行线交此双曲线于点C .如果APC △的面积为8,则k 的值为()A .10B .8C .16D .124.如图,矩形OABC 的顶点О与坐标原点重合,边OA ,OC 分别落在x 轴和y 轴上,点B 的坐标为()42,,点D 是边BC 上一动点,函数()0ky x x=>的图像经过点D ,且与边AB 交于点E ,连接OB 、OD .若线段OB 平分AOD ∠,则点E 的纵坐标为()A .12B .34C .1D .325.如图,A 、B 是函数y =12x上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴.若S △BOP =3.6,则S △ABP =()A .3.6B .4.8C .5.4D .66.如图,在平面直角坐标系中,A (8,0),点B 为一次函数y x =图像上的动点,以OB 为边作正方形OBCD ,当AB 最小时,点D 恰好落在反比例函数k y x =的图像上,则k =()A .-9B .-12C .-16D .-257.如图,线段AB 是直线y =x +1的一部分,其中点A 在y 轴上,点B 横坐标为2,曲线BC 是双曲线k y x=(0k ≠)的一部分,由点C 开始不断重复“A−B−C”的过程,形成一组波浪线,点P(2019,m )与Q(2025,n )均在该波浪线上,G 为x 轴上一动点,则△PQG 周长的最小值为()A .16B .6+C .6+D .98.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =k x上(k >0,x >0),则k 的值为()A .B .C .9D .9.如图,已知点A 是直线y=x 与反比例函数y=(k >0,x >0)的交点,B 是y=图象上的另一点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C ,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为()A .B .C .D .10.如图,反比例函数2y x =和正比例函数12y x =的图象交于点M ,N ,动点(),0P m 在x 轴上.若PMN 为直角三角形,则m 的值为()A .2m =5B .52m =52C .2m =±或52D .52m =±或5二、填空题11.如图,点()2,2A -在反比例函数k y x=的图象上,点M 在x 轴的正半轴上,点N 在y 轴的负半轴上,且5OM ON ==.点(),P x y 是线段MN 上一动点,过点A 和P 分别作x 轴的垂线,垂足为点D 和E ,连接OA 、OP .当OAD OPE S S < 时,x 的取值范围是________.12.如图,已知点A 是反比例函数3y x=-(0x <)的图像上的一个动点,连接OA ,若将线段OA 绕点O 顺时针旋转90°得到线段OB ,则点B 所在反比例图像的函数关系式是____.13.如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____.14.如图,A 、B 是函数y =12x图象上两点,P 为一动点.作PB ∥y 轴.PA ∥x 轴,下列说法中:①AOP BOP ≌△△;②AOP BOP S S =;③若OA =OB ,则OP 平分∠AOB ;④若4BOP S =,则16ABP S =.正确的序号是___.15.如图,点A 为反比例函数k y x=图象上的一点,过点A 作AB ⊥y 轴于B ,点C 为x 轴上的一个动点,△ABC 的面积为3,则k 的值为________.16.如图,点A 、B 是反比例函数y 12x =图象上的两个动点,过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y 3x=-图象于点C 、D ,得四边形ACBD 是平行四边形.当点A 、B 不断运动时,现有以,结论:①▱ACBD 可能是菱形;②▱ACBD 不可能是矩形;③▱ACBD 可能是正方形;④▱ACBD 不可能是正方形.其中正确的是_____.(写出所有正确结论的序号)17.如图,函数112y x =+与函数(0)k y x x =>图像的交于点P ,点P 的纵坐标为4,PB x ⊥轴,垂足为点B ,点M 是函数(0)ky x x =>图像上一动点(不与P 点重合),过点M 作MD AP⊥于点D ,若45PMD ∠=︒,点M 的坐标是________.18.如图,点A 是反比例函数()280y x x=>的图象上的一动点,过点A 分别作x 轴、y 轴的平行线,与反比例函数1k y x=(0k ≠,0x >)的图象交于点B 、点C ,连接OB ,OC .若四边形OBAC 的面积为5,则k =________.三、解答题19.如图,一次函数114y k x =+与反比例函数22k y x=的图象交于点()2,A m 和()6,2B --,与y 轴交于点C .(1)1k =,2k =;(2)过点A 作AD x ⊥轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP与线段AD 交于点E ,当:4:1ODE ODAC S S ∆=四边形时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形ABMN 是矩形时,求出点M 的坐标.20.如图,反比例函数1k y x=的图像与一次函数2y mx n =+的图像相交于(),1A a -,()1,3B -两点.(1)求反比例函数和一次函数的解析式;(2)点P 在线段AB 上,且:1:2AOP BOP S S = ,直接写出点P 的坐标;(3)设直线AB 交y 轴于点C ,点(),0N t 是x 轴正半轴上的一个动点,过点N 作NM x ⊥轴交反比例函数1k y x=的图像于点M ,连接CN ,OM .若S 四边形COMN >3,直接写出t 的取值范围.21.如图,在平面直角坐标系中,直线y x =与反比例函数图象交于点(),A a a ,点1,22B a a ⎛⎫ ⎪⎝⎭为反比例函数()0k y x x =>图象上的点,连接OB ,AB ,且AOB S ∆为3.(1)求反比例函数的解析式;(2)点P 为y 轴上一动点,当ABP 的周长最小时,直接写出点P 的坐标.22.一次函数2y x =--的图象与反比例函数k y x=的图象相交于()3,A m -,(),3B n -两点.(1)求这个反比例函数的解析式;(2)根据图象写出使一次函数值不大于反比例函数值的x 的取值范围.(3)若动点E 在y 轴上,且6EBA S =△,求动点E 的坐标.23.如图,一次函数()110y k x b k =+≠的图象与反比例函数()220k y k x=≠的图象交于点()14A ,,()4B n -,两点.(1)求一次函数和反比例函数的表达式;(2)连接AO 并延长交双曲线于点C ,点D 为y 轴上一动点,点E 为直线AB 上一动点,连接CD ,DE ,求当CD DE +最小时点D 的坐标;24.如图,点A 在反比例函数(00)m y m x x =>>,的图像上,点A 的纵坐标为3.过点A 作x 轴的平行线交反比例函数(0)n y n m x x=>>,的图像于点C .点P 为线段AC 上一动点,过点P 作AC 的垂线,分别交反比例函数m y x =和n y x =的图像于点B ,D .(1)当416m n ==,时,①若点P 的横坐标为4(如图1),求直线AB 的函数表达式;②若点P 是AC 的中点(如图2),试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,说明理由.参考答案1.A 【分析】根据1()2MNP P M S MN y y ∆=⋅-求解.解:设点M 坐标为(,)a b ,点M 在反比例函数图象上,4ab ∴=,111()()()2222MNP P M S MN y y a b ab ∆∴=⋅-=⨯--==.故选:A .【点拨】本题考查反比例函数系数k 的几何意义,解题关键是掌握xy k =,掌握坐标系内求图形面积的方法.2.C【分析】设点A 的坐标为(a ,3a),连接OC ,则OC ⊥AB ,表示出OC ,过点C 作CD ⊥x 轴于点D ,设出点C 坐标,在Rt △OCD 中,利用勾股定理可得出x 2的值,进而得出结论.解:如图,设A (a ,3a ),点C 始终在双曲线()0k y x x=->上运动,∵点A 与点B 关于原点对称,∴OA =OB ,∵△ABC 为等边三角形,∴AB ⊥OC ,OC,∵AO =∴CO 过点C 作CD ⊥x 轴于点D ,则可得∠AOD =∠OCD (都是∠COD 的余角),设点C 的坐标为(x ,y ),则tan ∠AOD =tan ∠OCD ,即3x a a y =-,解得23a y x =-.在Rt △COD 中,CD 2+OD 2=OC 2,即2222273y x a a +=+,将23a y x =-代入,可得:2227x a =,故23a x y x ==-=,则xy =-9,即k =-9,所以,点C 在函数()90y x x=->上运动.所以,①②都对,故选:C .【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.D【分析】设AB =a ,则PB =3a ,从而得到B kx a =,3C k x a =,根据矩形的性质,得到PC =AD =BE =B C x x -,利用三角形面积为载体建立等式计算即可.解:设AB =a ,则PB =3a ,过点C 作CE ⊥x 轴,垂足为E ,过点A 作AD ∥x 轴,交CE 于点D ,则四边形APCD 是矩形,四边形BPCE 是矩形,∴CE =PB =3a ,∵点A 、点C 都在函数(0)k y x x =>的图像上,∴A B k x x a==,3C k x a =,根据矩形的性质,得到PC =AD =BE =B C x x -=3kk a a -,∵APC △的面积为8,∴1(2823kk a a a-⨯=,解得k =12,故选D .【点拨】本题考查了反比例函数的图像及其性质,矩形的判定和性质,三角形面积计算,熟练掌握反比例函数的性质是解题的关键.4.B【分析】先根据矩形的性质,角平分线定义得出DBO DOB ∠=∠,然后根据等腰三角形的判定得出BD OD =,在Rt COD 中根据勾股定理可求出CD ,从而求出点D 的坐标,根据待定系数法求出反比例函数解析式,最后把4x =代入求解即可.解:解∶∵OB 平分AOD ∠,∴AOB DOB ∠=∠,∵四边形ABCD 是矩形,()42B ,,∴BC OA ∥,4BC AO ==,2==OC AB ,90BCO ∠=︒,∴DBO AOB ∠=∠,∴DBO DOB ∠=∠,∴BD OD =,设BD OD a ==,则4CD BC BD a =-=-,在Rt COD 中,222CO CD OD +=,∴()22242a a -+=,解得52a =,∴32CD =,∴3,22D ⎛⎫ ⎪⎝⎭,∴3232k =⨯=,∴3y x =,当4x =时,34y =,∴点E 的纵坐标为34.故选:B .【点拨】本题考查了矩形的性质,等腰三角形的判定,勾股定理,待定系数法等知识,正确求出点D 的坐标是解题的关键.5.C【分析】延长BP ,交x 轴于点C ,由题意可设点1212,,,A a B b a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则有1212,,AP a b BP OC b b a=-=-=,然后由S △BOP =3.6可进行求解问题.解:延长BP ,交x 轴于点C ,如图所示:∵PB ∥y 轴,PA ∥x 轴,∴AP BP ⊥,BC x ⊥轴,由题意可设点1212,,,A a B b a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则有1212,,AP a b BP OC b b a =-=-=,∵S △BOP =3.6,∴1 3.62BP OC ⋅=,即12127.2b b a ⎛⎫-= ⎪⎝⎭,解得:25b a =,∴()111212130123 5.42225APB S AP BP a b a b a a a ⎛⎫⎛⎫=⋅=--=⨯-⨯= ⎪ ⎪⎝⎭⎝⎭ ;故选C .【点拨】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数的性质及几何意义是解题的关键.6.C【分析】根据垂线段最短可得,当AB 垂直直线y x =时AB 最短,此时△AOB 是等腰直角三角形,易求OB =42D 作DE ⊥x 轴于点E ,知△DEO 为等腰直角三角形,求出DE ,OE 的长即可得到结论.解:根据垂线段最短可得,当AB 垂直直线y x =时AB 最短,∵∠AOB =45°∴∠BAO =45°∴△AOB 是等腰直角三角形,∵点A 的坐标为(8,0)∴OA =8∴42BO BA ==∵四边形OBCD 是正方形,∴90DO BO DOB ==∠=︒∴45DOC BOC ∠=∠=︒过点D 作DE ⊥x 轴于点E ,∴45ODE DOE ∠=∠=︒∴△DEO 为等腰直角三角形,∴4DE OE ==∵点D 在第二象限,∴D (-4,4)又点D 在反比例函数k y x=的图像上∴(4)416k =-⨯=-故选:C .【点拨】本题考查了最短路径问题、待定系数法求函数解析式、正方形的性质等知识,解答此题的关键是正确求出点D 的坐标.7.B【分析】由点B 在直线y=x+1上,点B 横坐标为2,可求纵坐标,确定点B 的坐标,进而求出反比例函数的关系式,再确定点C 的坐标,由点C 开始不断重复“A-B-C”的过程,可以推断点P (2019,m )与Q (2025,n )具体所在的位置,再依据对称,求线段的和最小的方法求出答案.解:当x=2时,y=x+1=2+1=3,∴B (2,3)∵B (2,3)在双曲线k y x =上,∴k=6把x=6代入6y x=得:y=1,∴C (6,1)∵2019÷6=336……3,2025÷6=337……3,∴点P 落在第337个“A-B-C”的P 处,而点Q 落在第338个“A-B-C”的Q 处,示意如图:把3x =代入6,y x =2,y ∴=∴P (2019,2),Q (2025,2),PQG 周长的最小,PQ=6定值,∴只要GP+GQ 最小即可,过Q 作QH x ⊥轴,使Q,H 关于x 轴对称,连接HP 交x 轴于,G ()2025,2,H ∴-6,4,PQ QH ∴==由勾股定理得:PH =∴PQG 周长的最小值为PQ+GP+GQ=6PH PQ +=+故选B .【点拨】考查反比例函数、一次函数的图象和性质,轴对称性质的应用,根据规律推断出点P 、Q 的位置,找出点G 的位置,依据勾股定理求出线段的长,是解决问题的关键.8.D【分析】根据等边三角形的性质表示出D ,C 点坐标,进而利用反比例函数图象上点的坐标特征得出答案.解:过点D 作DE ⊥x 轴于点E ,过C 作CF ⊥x 轴于点F ,如图所示.可得:∠ODE =30°,∠BCD =30°,设OE =a ,则OD =2a ,DE a ,∴BD =OB ﹣OD =10﹣2a ,BC =2BD =20﹣4a ,AC =AB ﹣BC =4a ﹣10,∴AF =12AC =2a ﹣5,CF AF 2a ﹣5),OF =OA ﹣AF =15﹣2a ,∴点D (a a ),点C [15﹣2a 2a ﹣5)].∵点C 、D 都在双曲线y =k x 上(k >0,x >0),∴a a =(15﹣2a )2a ﹣5),解得:a =3或a =5.当a =5时,DO =OB ,AC =AB ,点C 、D 与点B 重合,不符合题意,∴a =5舍去.∴点D (3,∴k =故选D .【点拨】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D 、C 的坐标.9.B解:设点P 的运动速度为v ,①由于点A 在直线y=x 上,故点P 在OA 上时,四边形OMPN 为正方形,四边形OMPN 的面积S=(vt )2,②点P 在反比例函数图象AB 时,由反比例函数系数几何意义,四边形OMPN 的面积S=k ;③点P 在BC 段时,设点P 到点C 的总路程为a ,则四边形OMPN 的面积=OC•(a ﹣vt )=﹣2OC v ⋅t+2OC a ⋅,只有B 选项图形符合.故选B .考点:动点问题的函数图象.10.D 【分析】联立方程组212y x y x ⎧=⎪⎪⎨⎪=⎪⎩并求解,得到(2,1),(2,1)M N --,由两点间距离公式求出,,PM PN MN 的长,再分90,90,90PMN PNM MPN ∠=︒∠=︒∠=︒三种情况依据勾股定理列出方程求解即可解:联立方程组得212y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得,21x y =-⎧⎨=-⎩或21x y =⎧⎨=⎩,(2,1),(2,1)M N ∴--∵(),0P m ∴[][]2222(2)0(1)45,PN m m m =--+--=++222(22)(11)20,MN =--+--=2222(2)(01)45,PM m m m =-+-=-+①若90PNM ∠=︒时,则有222PN MN PM +=,22452045m m m m ∴+++=-+,5,2m \=-②若90MPN ∠=︒时,则有222PM PN MN +=,22454520.m m m m ∴-++++=,m ∴=③若90PMN ∠=︒时,则有222PM MN PN +=,22452045m m m m ∴-++=++,52m ∴=;综上所述,m 的值为52±或故选:D .【点拨】本题考查了一次函数与反比例函数的交点问题,正确进行分类讨论是解题的关键.11.14x <<【分析】先求出反比例函数的解析式,再求出线段MN 的解析式,最后联立两个解析式求出B 和C 两个点的坐标,再根据k 的几何意义,确定P 点位置,即可得到相应的x 的取值范围.解:∵点()2,2A -∴()224k =⨯-=-,所以反比例函数的解析式为:4y x=-,因为5OM ON ==,∴()()5,0,0,5M N -,设线段MN 解析式为:()05y px q x =+≤≤,∴505p q q +=⎧⎨=-⎩,∴15p q =⎧⎨=-⎩,∴线段MN 解析式为:()505y x x =-≤≤,联立以上两个解析式得:54y x y x =-⎧⎪⎨=-⎪⎩,解得:14x y =⎧⎨=-⎩或41x y =⎧⎨=-⎩,经检验,符合题意;由图可知,两个函数的图像交点分别为点B 和点C ,∴()1,4B -,()4,1C -,∵OAD OPE S S < ,∴P 点应位于B 和C 两点之间,∴14x <<,故答案为:14x <<.【点拨】本题涉及到了动点问题,考查了反比例函数的图像与性质、k 的几何意义、待定系数法等内容,解决本题的关键是牢记反比例函数的图像与性质,理解k 的几何意义,以及能联立两个函数的解析式求交点坐标等,本题蕴含了数形结合的思想方法等.12.3y x=【分析】如图,设A (m ,n ),过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,得到AC =n ,OC =-m ,根据反比例函数图象上点的坐标特征可得3=-mn ,根据平角的定义及角的和差关系可得∠OAC =∠BOD ,根据旋转的性质可得OB =OA ,利用AAS 可证明△ACO ≌△ODB ,根据全等三角形的性质得到AC =OD =n ,CO =BD =-m ,可得点B 坐标,利用待定系数法即可得答案.解:如图,设A (m ,n ),过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 是反比例函数3y x=-(0x <)的图像上的一个动点,∴3=-mn ,AC =n ,OC =-m ,∵将线段OA 绕点O 顺时针旋转90°得到线段OB ,∴∠AOB =90°,OA =OB ,∴∠OAC +∠AOC =∠BOD +∠AOC =90°,∴∠OAC =∠BOD ,在△ACO 和△ODB 中,ACO BDO OAC BOD OA OB ∠=⎧⎪∠=∠⎨⎪=⎩,∴△ACO ≌△ODB ,∴AC =OD =n ,CO =BD =-m ,∴B (n ,-m ),设过点B 的反比例函数的解析式为k y x=,∴3k mn =-=,∴点B 所在反比例图像的函数关系式为3y x =,故答案为:3y x=【点拨】本题考查了坐标与图形变化-旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.13.y =-4x【分析】连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,如图,设A 点坐标为4,a a骣琪琪桫,再证明△COD ≌△OAE (AAS ),表示C 点坐标为4,a a骣琪-琪桫,从而可得答案.解:连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,如图,设A 点坐标为4,a a骣琪琪桫,∵A 点、B 点是正比例函数图象与双曲线4y x =的交点,∴点A 与点B 关于原点对称,∴OA =OB∵△ABC 为等腰直角三角形,∴OC =OA ,OC ⊥OA ,∴∠DOC +∠AOE =90°,∵∠DOC +∠DCO =90°,∴∠DCO =∠AOE ,∵在△COD 和△OAE 中CDO OEA DCO EOA CO OAìÐ=ÐïïÐ=Ðíï=ïî∴△COD ≌△OAE (AAS ),∴OD =AE =4a,CD =OE =a ,∴C 点坐标为4,a a骣琪-琪桫,∵44a a -=-g ,∴点C 在反比例函数4y x =-图象上.故答案为:4y x=-【点拨】本题考查的是等腰直角三角形的性质,三角形全等的判定与性质,反比例函数的图象与性质,利用三角形的全等确定C 的坐标是解本题的关键.14.②③##③②【分析】由点P 是动点,可判断出①错误,设出点P 的坐标,求出AP 、BP 的长,再利用三角形面积公式计算即可判断出②;利用角平分线定理的逆定理可判断③;先求出矩形OMPN 的面积为4,进而得出mn =4,最后用三角形的面积公式解答即可.解:∵点P 是动点,∴BP 与AP 不一定相等,∴BOP △与AOP 不一定全等,故①不正确;设P (m ,n ),∵BP ∥y 轴,∴B (m ,12m ),A (12n ,n )∴AP =|12n-m |∴S △AOP =12·|12n-m |n =12|12-mn |同理:S △BOP =12·|12m -n |m =12|12-mn |∴S △AOP =S △BOP ;故②正确;如图1,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴BOP S =12OB ·PE ,AOP S =12OA ·PF∵BOP AOP S S = ,∴OB ·PE =OA ·PF∵OA =OB ,∴PE =PF ,∵PE ⊥OB ,PF ⊥OA∴OP 是∠AOB 的平分线,故③正确;如图2,延长BP 交x 轴于N ,延长AP 交轴于M ,∵AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y =12x 上,∴6AMO ONB S S == ,∵4BOP S = ,∴2PMO PNO S S == ,∴S 矩形OMPN =4,∴mn =4,∴m =4n ∴12|3|2||BP n n n n m=-=-=,8||12AP m n n =-=∴1182||822||APBS AP BP n n ∆=⨯=⨯⨯=故④不正确;故答案为②③.【点拨】本题属于反比例函数与几何综合题,主要考查了反比例函数的性质、三角形面积公式、角平分线定理逆定理、矩形的判定和性质等知识点,正确作出辅助线并灵活应用所学知识是解答本题的关键.15.6【分析】连接OA ,可得S △ABO =S △ABC =3,根据反比例函数k 的几何意义,可求出k 的值.解:连接OA ,∵AB ⊥y 轴,∴AB ∥x 轴,∴S △ABO =S △ABC =3,即:12|k |=3,∴k =6或k =-6,∵在第二象限,∴k =-6,故答案为:-6.【点拨】考查反比例函数的图象和性质,理解反比例函数k 的几何意义以及同底等高的三角形的面积相等,是解决问题的前提.16.①②④【分析】设A(a,12a),B(b,12b),则C(a,-3a),D(b,-3b),由平行四边形的性质AC=BD列出方程求得a、b的关系,进而得B、C的坐标,根据坐标可以判断BC不与x轴平行,从而判断AC与BD垂直,进而判断③错误;②④正确;根据随着|a|不断变小,AC越来越大,BC越来越小,可以判断AC有可能与BC相等,进而判断①的正误.解:设A(a,12a),B(b,12b),则C(a,-3a),D(b,-3b),∵AC=BD,∴-15a=15b,∴a=-b,∴yC=-3a=3b≠yB=12b,∴BC不与x轴平行,∴AC与BC不可能垂直,∴▱ACBD不可能是矩形,▱ACBD不可能是正方形.故③错误;②④正确;∵随着|a|不断变小,AC越来越大,BC越来越小,∴AC有可能与BC相等,故①正确;故答案为①②④.【点拨】本题主要考查了反比例函数的图象与性质,平行四边形的性质,菱形的判定,矩形、正方形的判定,解题的关键是由平行四边形的对边相等,得出a、b的关系.17.(12,2)【分析】过点D作GH⊥PB,交BP的延长线于G,作MH⊥HG于H,证得△PGD≅△DHM(AAS),得PG=DH,DG=MH,设D(m,112m ),表示出点M的坐标,从而得出m的方程,解方程即可.解:过点D作GH⊥PB,交BP的延长线于G,作MH⊥HG于H,如图所示,∵△PMD 是等腰直角三角形,∴PD =DM ,∵∠PDG +∠MDH =90°,∠PDG +∠DPG =90°,∴∠DPG =∠MDH ,∵∠G =∠H ,∴△PGD ≅△DHM (AAS),∴PG =DH ,DG =MH ,∵点P 的纵坐标为4,∴将y =4代入112y x =+,得x =6,∴P 点坐标为(6,4),将P (6,4),代入(0)k y x x =>,得:k =24,∴反比例函数解析式为:24(0)y x x=>设D (m ,112m +),∴DG =m -6,PG =132m -,∴MH =m -6,DH =132m -,∴M (332m -,172m -),∵点M 在反比例24y x=的图象上,∴31372422m m ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭ ,解得16m =,210m =,当m =6时,M (6,4)(舍去),当m =10时,M (12,2),故答案为:(12,2).【点拨】本题是反比例函数与一次函数图象的交点问题,主要考查了函数图象上点的坐标的特征,等腰直角三角形的性质,全等三角形的判定与性质,构造全等三角形表示出点M 的坐标是解题的关键.18.3【分析】延长,AB AC 分别交y 轴,x 轴于点,E D ,易得四边形OBAC 的面积等于8k -,即可得解.解:延长,AB AC 分别交y 轴,x 轴于点,E D ,∵AB x 轴,AC y 轴,则:四边形AEOD 为矩形,,OBE ODC 为直角三角形,∵点A 在反比例函数()280y x x=>的图象上,点B 、点C 在反比例函数1k y x =(0k ≠,0x >)上,∴8AEOD S =矩形,2OBE ODC k S S ==,∴四边形OBAC 的面积85OBE ODC AEOD S S S k =--=-= 矩形,∴3k =;故答案为:3.【点拨】本题考查一直图形面积求k 值.熟练掌握k 值的几何意义,是解题的关键.19.(1)1,12;(2)⎝;(3)()0,8-或()8,0-.【分析】(1)根据点B 的坐标,利用待定系数法即可求出1k 、2k 的值;(2)根据一次函数图象上点的坐标特征求出点A 、C 的坐标,根据梯形的面积公式求出ODAC S 四边形的值,进而即可得出ODE S ∆的值,结合三角形的面积公式即可得出点E 的坐标,利用待定系数法即可求出直线OP 的解析式,再联立直线OP 与双曲线的解析式成方程组,通过解方程组求出点P 的坐标;(3)过点B 作直线12M M AB ⊥交x 轴于点2M 交y 轴于点1M ,作出符合题意的图形,利用待定系数法求出直线12M M 的解析式,再求出1M 、2M 的坐标即可.(1)解:将点()6,2B --代入114y k x =+,1264k -=-+,解得:11k =,故一次函数的解析式为;14y x =+,将点()6,2B --代入22k y x =,226k -=-,解得:212k =,故反比例函数的解析式为12y x =;故答案为:1,12(2)解:依照题意,画出图形,如图所示.当2x =时,246m =+=,∴点A 的坐标为()2,6;当0x =时,14044y x =+=+=,∴点C 的坐标为()0,4,∵()114621022()ODAC S OC AD OD =+⋅=⨯+⨯=四边形,:4:1ODE ODAC S S ∆=四边形,∴111210224ODE S OD DE DE =⋅=⨯=⨯ ,∴52DE =,即点E 的坐标为52,2⎛⎫ ⎪⎝⎭,设直线OP 的解析式为y kx =,将点52,2E ⎛⎫ ⎪⎝⎭代入y kx =,得522k =,解得:54k =,∴直线OP 的解析式为54y x =,联立得1254y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得:11x y ⎧⎪⎨⎪⎩22x y ⎧=⎪⎨⎪=⎩,∵点P 在第一象限,∴点P的坐标为⎝;(3)解:过点B 作直线12M M AB ⊥交x 轴于点2M 交y 轴于点1M ,依照题意画出图形,如图所示.则1290CBM CBM ∠=∠=︒时,四边形11ABM N 与22ABM N 是满足题意的矩形,∵直线AB 的解析式为4y x =+,∴可设直线12M M 的解析式为y x b =-+,把点()6,2B --代入y x b =-+得到26b -=+,解得8b =-,直线12M M 的解析式为8y x =--,当0x =时,8088y x =--=-=-,当0y =时,08x =--,解得8x =-,∴()10,8M -,()28,0M -,故点M 的坐标为()0,8-或()8,0-.【点拨】本题考查了待定系数法求出一次函数及反比例函数解析式、一次函数图象上点的坐标特征、梯形(三角形)的面积公式、矩形的性质,解题的关键是根据题意画出图形,作出辅助线.20.(1)反比例函数的解析式为3y x-=,一次函数解析式为2y x =-+;(2)点P 的坐标为(53,13);(3)t >32【分析】(1)将点B ,点A 坐标代入反比例函数的解析式,可求a 和k 的值,利用待定系数法可求一次函数解析式;(2)连接OA ,OB ,OP ,求得OC 的长,根据AOB AOC BOC S S S =+ ,:1:2AOP BOP S S = ,求得BOP BOC POC S S S =+ 进而求得点P 的坐标;(3)先求出点C 坐标,由面积关系可求解.解:(1)∵反比例函数k y x=的图像与一次函数y mx n =+的图像相交于(),1A a -,()1,3B -两点,∴()131k a =-⨯=⨯-,∴3,3k a =-=,∴点()3,1A -,∴反比例函数的解析式为3y x-=,由题意可得:313m n m n =-+⎧⎨-=+⎩,解得:12m n =-⎧⎨=⎩,∴一次函数解析式为2y x =-+;(2)连接OA ,OB ,OP ,令0x =代入22y x =-+,解得22y =,∴一次函数与y 轴的交点C 坐标为()0,2,∴2OC =,∵点P 在线段AB 上,∴设点P 为(),2m m -+,∵点A ()3,1-,点B ()1,3-,∴4AOB AOC BOC S S S =+= ,∵:1:2AOP BOP S S = ,∴2833BOP AOB S S == ,∵1BOP BOC POC S S S m =+=+ ,∴813m +=,解得53m =,∴123m -+=,∴点P 的坐标为51,33⎛⎫ ⎪⎝⎭;(3)∵直线AB 交y 轴于点C ,∴点C ()0,2,∴31222OMN OCN COMN S S S t =+=+⨯⨯ 四边形,∵3COMN S >四边形,∴312322t +⨯⨯>,∴32t >.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,反比例函数的性质等知识,求出两个解析式是解题的关键.21.(1)4y x =;(2)100,3P ⎛⎫ ⎪⎝⎭.【分析】(1)先求出直线OA 的解析式为y x =,直线OB 的解析式为4y x =,过点A作AC x ∥轴,交OB 于C ,在求出1,4C a a ⎛⎫ ⎪⎝⎭,进而得出1344AC a a a =-=,根据21313324244AOB AOC ABC S S S a a a a a =+=⨯⨯+⨯⨯= ,再根据面积即可得出a 的值,求出()2,2A ,即可得出答案;(2)根据(1)可得:()2,2A ,()1,4B ,由于点D 与点A 关于y 轴对称,可知当PA PB +的值最小,即B ,P ,D 三点在同一直线上时ABP 的周长最小,求出直线BD 的解析式为21033y x =+,即可得出答案.(1)解:∵设直线OA 的解析式为1y k x =,将(),A a a 代入,得出:11k =,∴直线OA 的解析式为y x =,设直线OB 的解析式为2y k x =,将1,22B a a ⎛⎫ ⎪⎝⎭代入,得出:24k =,∴直线OB 的解析式为4y x =,过点A 作AC x ∥轴,交OB 于C ,∵(),A a a ,∴点C 的纵坐标为a ,∵点C 在直线OB 上,∴点c 的横坐标为:14a ,∴1,4C a a ⎛⎫ ⎪⎝⎭,∴1344AC a a a =-=,∴21313324244AOB AOC ABC S S S a a a a a =+=⨯⨯+⨯⨯= ,∴2334a =,解得:12a =,22a =-(舍去),∴()2,2A ,∴224k =⨯=,∴反比例函数的解析式为:4y x=;(2)解:根据(1)可得:()2,2A ,()1,4B ,∵点D 与点A 关于y 轴对称,∴PA PD =,∴AB PA PB AB PD PB ++=++,∵AB 为定值,∴当PA PB +的值最小,即B ,P ,D 三点在同一直线上时ABP 的周长最小,∴()2,2D -,设直线BD 的解析式为y ax b =+,将()1,4B ,()2,2D -,代入得:422a b a b +=⎧⎨-+=⎩,解得:23103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BD 的解析式为21033y x =+,当0x =时,103y =,∴100,3P ⎛⎫ ⎪⎝⎭.【点拨】本题考查反比例函数与一次函数,轴对称的性质,正确得出反比例函数解析式是解题的关键.22.(1)3y x=-;(2)-<3≤0x 或1x ≥;(3)()0,5-或()0,1【分析】(1)将点A 坐标代入直线表达式,求出m ,得到具体坐标,再将点A 坐标代入反比例函数表达式,求出k 值可;(2)求出点B 坐标,结合图像可得结果;(3)设点E 坐标为()0,a ,求出直线AB 与y 轴交点F 的坐标,再根据6EBA S =△,列出方程,解之可得.(1)解:将()3,A m -代入2y x =--得:()321m =---=,∴()3,1A -,代入k y x=中,得:()313k =-⨯=-,∴3y x=-;(2)将(),3B n -代入2y x =--中,得32n -=--,解得:1n =,∴()1,3B -,由图像可知:当一次函数图像在反比例函数图像下方时,对应的x 为-<3≤0x 或1x >,∴使一次函数值不大于反比例函数值的x 的取值范围是-<3≤0x 或1x ≥.(3)设点E 坐标为()0,a ,直线AB 与y 轴交于点F ,在2y x =--中,令0x =,则=2y -,∴()0,2F -,∵6EBA S =△,∴()162B A EF x x ⨯⨯-=,即12462a ⨯--⨯=,解得:5a =-或1a =,∴点E 的坐标为()0,5-或()0,1.【点拨】本题考查了一次函数与反比例函数交点问题,用待定系数法确定反比例函数的解析式;要能够熟练掌握待定系数法,学会表示交点形成的三角形面积是解题的关键.23.(1)一次函数解析式为3y x =+,反比例函数解析式为4y x=;(2)()03D -,【分析】(1)先把点A 坐标代入反比例函数解析式中求出反比例函数解析式,进而求出点B 的坐标,再把A 、B 的坐标代入一次函数解析式中求出一次函数解析式即可;(2)设直线AB 与x 轴,y 轴分别交于N ,M ,作点C 关于y 轴的对称点H ,连接CH 交y 轴于G ,连接HD ,推出当H D E 、、三点共线且HD AB ⊥时,HD DE +最小,即CD DE +最小;求出()()3003N M -,,,,进而证明45OMN ONM ∠=∠=︒,即可退出45GHD GDH =︒=∠∠,得到DG HG =;由对称性可知()14C --,,则()14H -,,由此求出3OD =,则()03D -,.(1)解:把()14A ,代入到反比例函数()220k y k x=≠中得:241k =,∴24k =,∴反比例函数解析式为4y x =,把()4B n -,代入到()4B n -,4y x=中得:414n ==--,∴()41B --,;把()14A ,,()41B --,代入到一次函数()110y k x b k =+≠中得:11441k b k b +=⎧⎨-+=-⎩,∴113k b =⎧⎨=⎩,∴一次函数解析式为3y x =+;(2)解:设直线AB 与x 轴,y 轴分别交于N ,M ,作点C 关于y 轴的对称点H ,连接CH 交y 轴于G ,连接HD ,∴CD HD =,∴CD DE HD DE +=+,∴当H D E 、、三点共线且HD AB ⊥时,HD DE +最小,即CD DE +最小;在3y x =+中,令0x =,则3y =,令0y =,则3x =-,∴()()3003N M -,,,,∴3OM ON ==,∴45OMN ONM ∠=∠=︒,∴45GDH EDM ==︒∠∠,∴45GHD GDH =︒=∠∠,∴DG HG =;由对称性可知()14C --,,∴()14H -,,∴41OG DG HG ===,,∴3OD =,∴()03D -,.【点拨】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,等腰直角三角形的性质与判定,正确作出辅助线确定当H D E 、、三点共线且HD AB ⊥时,HD DE+最小,即CD DE +最小是解题的关键.24.(1)①直线AB 的解析式为344y x =-+;②四边形ABCD 是菱形,理由见分析;(2)四边形ABCD 能成为正方形,9m n +=.【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PD PB ,,即可得出结论;(2)先确定出33m A ⎛⎫ ⎪⎝⎭,,33n C ⎛⎫ ⎪⎝⎭,进而求出点P 的坐标,再求出B ,D 坐标,最后用BD AC =,即可得出结论.(1)解:①∵4m =,∴反比例函数为4y x=,当4x =时,1y =,∴()41B ,,当3y =时,∴43x =,∴43x =,∴433A ⎛⎫ ⎪⎝⎭,设直线AB 的解析式为y kx b =+,∴43341k b k b ⎧+=⎪⎨⎪+=⎩,解得344k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为344y x =-+;②四边形ABCD 是菱形,理由如下:由①知,433A ⎛⎫ ⎪⎝⎭,∵AC x ∥轴,∴1633C ⎛⎫ ⎪⎝⎭,,∵点P 是线段AC 的中点,∴1033P ⎛⎫ ⎪⎝⎭,,当103x =时,由4y x =得,65y =,由16y x =得,245y =,∴56359PB =-=,355249PD =-=,∴PB PD =,∵PA PC =,∴四边形ABCD 为平行四边形,∵BD AC ⊥,∴四边形ABCD 是菱形;(2)解:四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC BD ,的交点为P ,P 为AC 的中点,∴BD AC =,当3y =时,由m y x =得,3m x =,由n y x=得,3n x =,∴33m A ⎛⎫ ⎪⎝⎭,,33n C ⎛⎫ ⎪⎝⎭,∴36m n P +⎛⎫ ⎪⎝⎭,∴66m n m B m n +⎛⎫ +⎝⎭,,66m n n D m n +⎛⎫ ⎪+⎝⎭,,∵BD AC =,∴6633n m n m m n m n -=-++,∴18m n +=.【点拨】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.。
反比例函数知识点及经典例题
C、 y1 y2 y3
D、 y1 y3 y2
知识点五:反比例函数 y 在反比例函数 y
k ( k 为常数, k o )中 k 的几何意义 x
k ( k o )的图象上任取一点,过这一点分别作 x 轴、y x
轴的平行线,与坐标轴围成的矩形面积总是等于常量 k
2
反比例函数知识点总结及典型练习
7. 如图所示,一次函数 y=ax+b 的图象与反比例函数 y= 的图象交于 A、B 1 两点,与 x 轴交于点 C.已知点 A 的坐标为(-2,1) ,点 B 的坐标为( ,m) . 2 (1)求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的 x 的取值范围.
的图象交 A、B 两
C.k =2,m =2
D.k =1,m =1
3
反比例函数知识点总结及典型练习
练习题
2 1.反比例函数 y 的图像位于( ) x A.第一、二象限 B.第一、三象限 C.第二、三象限
D.第二、四象限 ) D、不能确定
2.若 y 与 x 成反比例, x 与 z 成正比例,则 y 是 z 的( A、正比例函数 B、反比例函数 C、一次函数
1 m 的图象如图,则 m 的取值范围是___________. x
3 的图象上有三点 x1 , y1 , x2 , y2 , x3 , y3 ,若x1 x2 0 x3 , x 则下列各式正确的是( )
例 6: 在反比例函数 y
A、 y3 y1 y2
B、 y3 y2 y1
2
m1
是关于 x 的反比例函数?并求其表达
知识点二:反比例函数表达式的确定 求反比例函数表达式可用待定系数法,由于只有一个参数 k,因此只需要利 用一组对应值,就可以求出 k 的值。 k 例 3:已知反比例函数 y 的图象经过点(2,-2) ,求 k 的值。 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数基础巩固与经典例题
知识点归纳
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.
(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.
越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当时,图象的两支分别位于一、三象限;
在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;
在每个象限内,y随x的增大而增大.
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,
则(,)在双曲线的另一支上.
图象关于直线对称,即若(a,b)在双曲线的一支上,
则(,)和(,)在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB ⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是
).
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.
图1
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.
(2)直线与双曲线的关系:
当时,两图象没有交点;
当时,两图象必有两个交点,且这两个交点关于原点成中心对称.
(四)充分利用数形结合的思想解决问题.
例题分析
1.反比例函数的概念
(1)下列函数中,y是x的反比例函数的是().
A.y=3x B. C.3xy=1 D.
(2)下列函数中,y是x的反比例函数的是().
A.B. C.
D.2.图象和性质
(1)已知函数是反比例函数,
①若它的图象在第二、四象限内,那么k=_________
②若y随x的增大而减小,那么k=___________.
(2)已知一次函数y=ax+b的图象经过第一、二、四象限,
则函数的图
象位于第________象限.
(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.
(4)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
(5)已知函数和(k≠0),它们在同一坐标系内的图象大致是().
A.B. C.D.
3.函数的增减性
(1)在反比例函数的图象上有两点,,且
,则的值为().
A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,
,则函数值、、的大小关系是().
A.<< B.<<
C.<< D.<<
(3)下列四个函数中:①;②;③;④. y随x的增大而减小的函数有().
A.0个 B.1个C.2个D.3个
4.解析式的确定
(1)若与成反比例,与成正比例,则y是z的().
A.正比例函数 B.反比例函数C.一次函数D.不能确定
(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.
(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.
(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x0,3).
①求x0的值;②求一次函数和反比例函数的解析式.
5.面积计算
(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、
、,则().
A.B.C.D.
第(1)题图第(2)题图
(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,则().
A.S=1 B.1<S<2 C.S=2 D.S>2 (3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.
第(3)题图
4如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.
第(4)题图第(6)题图
(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象
限的交点,AB⊥x轴于B且S△ABO=.
①求这两个函数的解析式;
②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、
y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数
(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.
①求B点坐标和k的值;
②当时,求点P的坐标;
③写出S关于m的函数关系式.
6.综合应用
(1)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).
①求反比例函数和一次函数的解析式;
②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
(2)如图所示,已知一次函数(k≠0)的图
象与x 轴、y轴分别交于A、B两点,且与反比例函数
(m≠0)的图象在第一象限交于C点,CD垂直于
x轴,垂足为D,若OA=OB=OD=1.
①求点A、B、D的坐标;
②求一次函数和反比例函数的解析式.。