3.1.1 一元一次方程(3)

合集下载

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

《3.1.1 一元一次方程》教案、同步练习、导学案(3篇)

《3.1.1 一元一次方程》教案、同步练习、导学案(3篇)

3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1
解: (1)把m=2分别代入方程的左边和 右边. 左边= 8 , 右边= 4 因为左边 ≠ , 右边,
所以m=2 不是 原方程的解.
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1 解: (2)把m=1分别代入方程的左边和右边 . 左边= 5 ,
一切问题都可以转化为数 学问题,一切数学问题都可以 转化为代数问题,而一切代数 问题又都可以转化为方程。因 此,一旦解决了方程问题,一 切问题将迎刃而解。
——笛卡儿
笛卡儿,1596年3月 31日生于法国都兰城。 笛卡儿是伟大的哲学 家、物理学家、数学 家、生理学家,解析 几何的创始人。
问题7:
根据下列问题,设未知数,列出方程。 (1)环形跑道一周长是400 m,沿跑道跑多少周, 可以跑3000 m? 解:设跑x周,依题意得, 400x=3000 (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元, 用9元钱买了两种铅笔共20支,两种铅笔各买了 多少支? 解:设买甲种铅笔x支,乙种铅笔(20-x)支, 依题意得展
希腊数学家丢番图(公元3–4世纪) 的墓碑上记载着: 他生命的六分之一是幸福的童年; 再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过五年,他有了儿子,感到很幸福; 可是儿子只活了他全部年龄的一半; 儿子死后,他在极度悲痛中过了四年,也与世长辞了。 根据以上信息,你能知道丢番图的寿命吗?
右边= 5 ,
因为左边 = 右边, 所以m=1 是 原方程的解. 使方程中等号左右两边相等的未知数的值, 叫做方程的解
中国人对方程的研究有悠久 的历史,“方程”一词最早出现 于《九章算术》.《九章算术》 全书共分九章,第八章就叫“方 程”. 宋元时期,中国数学家创立 了“天元术” ,即用“天元”表 示未知数进而建立方程,“立天 元一”相当于现在的“设未知数 x”. 14世纪初,我国元朝数学家 朱世杰创立了“四元术”,四元 指天、地、人、物,相当于四个 未知数.

3.1.1一元一次方程教学PPT

3.1.1一元一次方程教学PPT

(6) 2 y 3y 0 , (7)x2 2x 3 0 .
上式中是方程的是(1)(2)(5)(6)(7).
根据实际问题列出方程以及一元一次方程的概念
例1 根据下列问题,设未知数并列方程: (1)用一根长24 cm的铁丝围成一个正方形, 正方形的边长是多少?
解:设正方形的边长为 x,列方程得 4x=24
客车从A地到B地的行驶时间为___70__h_____ 想一想,如何
x
卡车从A地到B地的行驶时间为___6_0_h__
用式子表示两 车的行驶时间
因为客车比卡车早1h经过B地,所以可列 等式为:___6x_0__7_x0__1_____. ①
之间的关系?
(3)对于上面的问题,你还能列出其他的方程吗? 如果能,你依据的是哪个相等关系?
我们知道,方程是含有 未知数的等式.等式①中
的 x 是未知数,这个
等式是一个方程.
(4)列方程时,要先设字母表示未知数,然后根据 问题中的相等关系,写出含有_未__知__数___的_等__式___, 叫做方程.
(1)
1 x
3 0, (2)x 2 y 3 ,(3)2x 3 ,
(4)1 7 3 5 ,(5) 1 2x x 3 ,
(2)一台计算机已使用了1700 h,预计每月使用150 h, 经过多少个月这台计算机使用的时间达到规定的检修时 间2450 h.
解:设 x月后这台计算机的使用时间达到2450 h,
那么在 x月里这台计算机使用了 150x h.
列方程得 1700+150x=2450 .
(3)某校女生占全体学生数的52%,比男生多80人, 这个学校有多少人?
解:设这个学校的学生数为 x ,

3.1.1 一元一次方程

3.1.1 一元一次方程
解:设A,B两地间的路程是 x km, x 客车从A地到B地的行驶时间可以表示为:70 h
x 卡车从A地到B地的行驶时间可以表示为:60 h x x 因为客车比卡车早1 h经过B地,所以 比 小1, 60 70 x x

60

70
1 .
列方程时,要先设字母表示未知数,然后根 据问题中的相等关系,写出含有未知数的等式— —方程. 通常用x,y,z等字母表示未知 数,法国数学家笛卡儿是最早这样 做的人.我国古代用“天元、地元、 人元、物元”等表示未知数.
知识点1
列方程
问题 一辆客车和一辆卡车同时从A地出发 沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车 早1 h经过B地. A,B两地间的路程是多少? 你会用算术方法解决这个问题吗? 60 70 420 (km) 70 60
客车
A B
卡车
知识点2 一元一次方程 例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形, 正方形的边长是多少? (2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h? (3)某校女生占全体学生人数的52%,比 男生多80人,这个学校有多少学生?
第三章 一元一次方程
3.1.1 一元一次方程
新课导入 同学们,我们在小学数学学习中见过像 2x=50,3x+1=4,5x-7=8这样的简易方程, 那么它叫什么方程?方程有什么作用?怎样 列方程和解方程呢?这是本章要研究的主要 问题,这节课我们通过具体问题感受方程这 一重要数学工具的作用.
推进新课
1 b-7=a+b __________________ 2

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

3.1.1一元一次方程

3.1.1一元一次方程

3.1.1 一元一次方程
栏目索引
知识点二 一元一次方程
定义 条件
一般形式 重要 提示
只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫 做一元一次方程.如2x-3=0,5y+2=9等
(1)只含有一个未知数,如x-y=3含有两个未知数x,y,所以它不是一元一 次方程; (2)未知数的次数都是1,如x2-4=0中,x的次数是2,所以它不是一元一次 方程;
栏目索引
初中数学(人教版)
七年级 上册
第三章 一元一次方程
第三章 一元一次方程
栏目索引
3.1.1 一元一次方程
栏目索引
知识点一 方程的概念
定义 重要提示
知识拓展
含有未知数的等式叫做方程.如:3x-4=5,x2-16=0, 1 (y-1)= 1 (y-2)+1等
2
3
(1)方程必须同时具备两个条件:①等式;②等式中含有未知数,二者缺 一不可. (2)在方程2x+a+1=0中,若x是未知数,a是常数,则该方程叫做关于x的方 程. 方程中的未知数可以是一个,也可以是多个,未知数的次数可以是1次, 也可以是多次.如2x2=3y是方程. 方程中的未知数可以用x,y,z表示,也可以用其他字母表示
点拨 在一元一次方程中,如果未知数的次数或系数中含有某个字母常 数,根据一元一次方程中未知数的次数等于1与未知数的系数不等于0可 以求得这个字母常数.
3.1.1 一元一次方程
栏目索引
题型二 根据一元一次方程的解求值
例2 已知关于x的方程3a-x= x +3的解是x=4,求a2-2a的值.
2
分析 由方程的解的意义可知x=4必使方程左右两边相等,可把x=4代入

初一数学上-第三章:一元一次方程

初一数学上-第三章:一元一次方程

第三章:一元一次方程3.1.1 一元一次方程一、方程的前提:方程首先是一个等式二、方程的定义:含有未知数的等式叫方程三、一元一次方程的定义:只含有一个未知数,且未知数的次数都是1,等号两边都是整式,这样的方程叫一元一次方程注释:未知数叫“元”,有几个未知数就是几元;未知数的次数就是“次”,未知数的最高次数就是这个方程的次数。

例:x+4=-4x (一元一次方程)X+y=4 (二元一次方程)X+y=4 +z (三元一次方程)x2+4=3x-7 (一元二次方程)3.1.2等式的性质一共两个性质:(1)等式的性质1:等式两边加(或减)同一个数(或式子)结果仍相等。

通俗说法:等式中,同加同减结果还相等。

(2)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

通俗说法:等式中,同乘同除结果还相等,但除法中不能除以0,要把0除外。

精品题目1.下列方程中是一元一次方程的是()A.x+3=y+2 B.x+3=3﹣x C.=1 D.x2﹣1=02.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=23.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=54.①x﹣2=;②0.3x=1;③x2﹣4x=3;④=5x﹣1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.55.在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个6.已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2 B.m=﹣3 C.m=±3 D.m=17.关于x的一元一次方程x3﹣3n﹣1=0,那么n的值为()A.0 B.1 C.D.8.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数9.如果方程(m﹣1)x2|m|﹣1+2=0是一个关于x的一元一次方程,那么m的值是()A.0 B.1 C.﹣1 D.±110.若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0 B.3﹣a=b﹣1 C.2a=2b+2 D.﹣=111.已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣k B.x+2k=y+2k C.D.kx=kyA.若a=b,则a﹣3=b﹣3 B.若a=3,则a2=3a3.2.1解一元一次方程(一)----合并同类项和移项AB (1)移项:①定义:就是把等式左边的项移动到右边去,或者把右边的项移动到左边来②规则:移项过程中,被移动的每一项都要改变符号。

人教版福建初一数学七年级上册第三章 第31课时3-1-1一元一次方程

人教版福建初一数学七年级上册第三章 第31课时3-1-1一元一次方程

第31课时3.1.1 一元一次方程方程的有关概念(1)方程:含有__未知数__的等式.(这里所说的等式指其中只有一个等号的式子)(2)一元一次方程:只含有__一__个未知数(元),未知数的次数都是__1__,等号两边都是__整式__,这样的方程叫做一元一次方程.(3)方程的解:解方程就是求出使方程中等号左右两边__相等__的未知数的值,这个值就是方程的解.根据数量关系,列出方程:(1)x 比它的34大15; (2)x 的2倍减去1等于x 加上5.【解析】(1)x -34x =15. (2)2x -1=x +5.根据数量关系,列出方程:(1)x 增加3倍后,比它扩大到5倍还少6;(2)甲、乙两人从相距10千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走1千米,设乙的速度为x 千米/小时.【解析】(1)4x =5x -6.(2)2x +2(x -1)=10.根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24 cm的铁丝围成一个正方形,正方形的边长为多少?(2)一台计算机已使用1 700小时,预计每月再使用150小时,经过几个月这台计算机的使用时间达到规定的检修时间2 450小时?(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?【解析】(1)设正方形的边长为x cm,4x=24.(2)设经过x个月这台计算机的使用时间达到规定的检修时间2 450小时,1 700+150x=2 450.(3)设这个学校学生数为x,则女生数为52%x,52%x-(1-52%)x=80.,根据下面实际问题中的数量关系,设未知数列出方程:(1)练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?(2)长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.【解析】(1)设小明买了x本练习本.10-0.8x=4.4.(2)设宽是x cm,则长是(x+2)cm,2(x+2+x)=24.1.下列式子是方程的是( B )A.6x+3B.6m+m=14C.5a-2<53D.3-2=12.如果x=-2是方程2x+m-4=0的解,那么m的值为( D )A.-8 B.0 C.2 D.8,关于x的方程(k-1)x-3k=0是一元一次方程,则k满足( B ) A.任意数B.k≠1C.k=1 D.k>11.写出一个以字母y为未知数且解为-2的方程:__y+2=0(答案不唯一)__.2.方程(a+6)x2+3x-8=7是关于x的一元一次方程,则a=__-6__.3.一个数x的2倍减去7的差,得36,列方程为__2x-7=36__.4.已知数x-5与2x-4的值互为相反数,列出关于x的方程__(x-5)+(2x-4)=0__.5.2x m-2-1=3是表示关于x的一元一次方程,则m=__3__.6.(2021·郫都区期末)如果(4-m)x|m|-3-16=0是关于x的一元一次方程,那么m的值为( D )A.±4 B.4 C.2 D.-47.已知关于x的方程:ax+4-2x=1为一元一次方程,那么系数a应该满足的条件为__a≠2__.8.下列说法:①等式是方程;②x=4是方程5x+20=0的解;③x=-4和x=6都是方程|x-1|=5的解.其中说法正确的是__③__.(填序号) 9.判断下列是不是一元一次方程,是的打“√”,不是的打“×”:①x +3=4.( √ )②-2x +3=1.( √ )③2x +13=6-y.( × )④x 2=0.( √ ) ⑤2x -8>-10.( × )⑥3+4x =7x.( √ )10.检验x =4和x =-1是否为方程2x +1=3(x -1)的解.【解析】把x =4代入方程,左边=9,右边=9,左边=右边, 所以x =4是方程的解.把x =-1代入方程,左边=-1,右边=-6,左边≠右边,所以x =-1不是方程的解.11.用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,小水杯的单价是多少元?(列方程)【解析】设一个小水杯的单价是x 元,则大水杯的单价是(x +5)元.根据买10个大水杯的钱,可以买15个小水杯,可列出方程:10(x +5)=15x.12.已知3a m -1b 2与4a 2bn -1是同类项,判断x =m +n 2是否是方程3x -4=5的解.【解析】因为3a m -1b 2与4a 2b n -1是同类项,所以m -1=2,n -1=2.解得m=3,n =3.把m =3,n =3代入x =m +n 2 ,得x =3+32=3.把x =3代入方程3x -4=5,得左边=3×3-4=5=右边,所以x =m +n 2是方程3x -4=5的解.(1)已知关于x的方程ax+6=5x-b有无数个解,试求a2+b的值;(2)已知a是非零整数,关于x的方程ax|a|+x-2=0是一元一次方程,求a的值.【解析】(1)由题意得,a=5,b=-6,所以a2+b=25-6=19.(2)因为关于x的方程ax|a|+x-2=0是一元一次方程,所以|a|=1,所以a=±1.当a=-1时,-2=0不成立,所以a=-1舍去.所以a=1.。

一元一次方程 (3)

一元一次方程 (3)

一元一次方程(4)一、知识归纳(一)、概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1(次),这样的方程叫做一元一次方程.(二)规律1.等式的基本性质(1)等式的两边同时加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.(2)等式的两边同时乘以同一个数(或除以同一个不为0的数),所得的结果仍是等式.2.移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边.34.列方程解应用题的一般步骤(1)审:弄清题意和题目中的数量关系;(2)设:用字母表示题目中的一个未知数;(3)找出能够表示应用题全部含义的一个相等关系;(4)根据这个相等关系列出重要的代数式,从而列出方程;(5)检验根是否符合实际情况;(6)写出答案.可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.二、思想方法新教材中大量增加了一些工农业生产、科技生活方面的实际问题,这就引入了方程的思想,如本章编写的方程,强化了应用思想,培养学生的应用意识和创造意识,提高了学生的发现问题、分析问题和解决问题的能力.1.方程的思想方程思想就是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算,这就是一种狠重要的数学思想方法,有很多问题都可以转化为方程去解决.2.数形结合的思想数形结合的思想是指在研究问题的过程中,由数想形、由形想数,把数与形结合起来,分析问题的思想方法,本章在列方程解应用题时常用这种方法分析问题.三、易混、易错点提示1.概念性错误(1)等式的基本性质应用错误(2)误用等号连接(3)移项不变号(4)混淆分数的性质与等式的性质 2.方法错误(1)去括号不按法则 (2)去分母时漏乘 3.结果错误(1)系数化1时错除(2)忽视分数线的“括号”作用四、典型例题分析例1.判断下列各式是不是方程:(1)3t-1≠1-t ; (2)2-(-3)=-1+6; (3)2y +2y =4y-4; (4)3x-y =0; (5)3x+7 (6)x =2。

3.1.1 一元一次方程

3.1.1 一元一次方程

课堂作业
⑦ 1 4x
x
一元一次方程:③④⑥
只含有一个未知数,
2.什么是一元一次方程的解?
使方程中等号左右两边相等得未知数的值, 叫做一元一次方程的解.
检测题
一、列方程表示:
1.比a大5的数等于8; 2.b的三分之一等于9; 3.x的2倍与10的和等于18; 4.X的三分之一减y的差等于6; 5.比a的3倍大5的数等于a的4倍; 6.比b的一半小7的数等于a与b的和.
3.1.1 一元一次方程
学习目标
1.理解并识记一元一次方程的概念, 会列一元一次方程解决实际问题; 2.理解并识记方程的解的概念,会 判断一个数是不是方程的解.
自学指导
认真看课本(第三章章前图—P80练习前).要求:
1.看问题思考还能列出其它方程吗?依据是哪个 等量关系?
2.看例1思考所列方程的相等关系分别是什么,理 解并识记所列方程为什么是一元一次方程,它满 足哪三个条件;
二.方程2x+1=5的解是( ) A. x=-2 B.x=0 C.x=2
要求: 1.过程规范,书写工整; 2.5分钟独立完成.
拓展
1.已知(a-1)x2-ax+5=0是关于x的一元一次 方程,a的值是_1__.
2. axb-1+2=0是一元一次方程,那么a ≠0 ,b =2 .
课堂小结:
1、含有未知数的等式叫做方程. 2、只含有一个未知数,未知数的次数都是1, 等号两边都是整式,这样的方程叫做一元一 次方程. 3、使方程中等号左右两边相等的未知数的 值,叫做方程的解.
3.理解并识记什么是方程的解,思考如何判断
一个数是方程的解.
如有疑问,可小声问同学或举手问老师.
7分钟后,比谁能熟背什么是一元一次方程、各式哪些是一元一次方程?为什么?

七年级上册数学第三章《一元一次方程》教案

七年级上册数学第三章《一元一次方程》教案

数学七年级上册第三章《一元一次方程》教案课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.2 解一元一次方程(2)──合并同类项与移项课型:新授本课(节)第4课时本期总第课时【学习目标】:运用方程解决实际问题,会用移项法则解方程;【学习重点】:运用方程解决实际问题,会用移项法则解方程;【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系;【导学指导】一、知识链接解方程:(1)3x-2x=7;(2)14x+12x=3;二、自主探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等;根据这一相等关系,列方程: __________________;本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20即 3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.3x+20=4x-25↓移项3x-4x=-25-20↓合并同类项-x=-45↓系数化为1x=45由此可知这个班共有45个学生.例3 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】:1.解方程:(1)6x-7=4x -5 (2)12x-6 =34x (3)3x+5=4x+1 (4)9-3y=5y+5【要点归纳】:上面解方程中“移项”的作用很重要:“移项”使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x=a形式.在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”;【拓展训练】火眼金睛:下列移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得3x=6;课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.4实际问题与一元一次方程(4)课型:新授本课(节)第10课时本期总第课时【学习目标】1、掌握用分类讨论法解决电话计费问题,提高独立解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
当堂练习
1. x =1是下列哪个方程的解
(B)
A.1 x 2 C. x 1 x 2
2
B. 2x 1 4 3x
D. x 4 5x 2
2. 若 x =1是方程x2 -2mx +1=0的一个解,则m的值为 (C)
A. 0
B. 2
C. 1
D. -1
3. 下列方程:
①x 2 1;②3x 11;③ x 5x 1;④y2 4 y 3;
x
2
⑤x 2 y 1 .
其中是方程的是 ①②③④⑤ ,是一元一次方程的 是 ②③ .(填序号)
4. 根据下列问题,找出等量关系,设未知数列出方程, 并指出其是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可 以跑3000 m?
一周长 周数 总路程
解:设沿跑道跑x周. 400x=3000, 是一元一次方程.
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用 9 元钱买了两种铅笔共20 支,两种铅笔各买 了多少支? 买甲种共用的钱 买乙种共用的钱 9元
5. 已知方程 (m 2)x( m 1) 3 m 5 是关于x的一元一 次方程,求m的值,并写出其方程.
解:因为方程 (m 2)x( m 1) 3 m 5 是关于x的一元 一次方程,
所以|m|-1 = 1,且m-2≠0,得m = -2.
所以原方程为-4x+3 = -7.
课堂小结
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
甲种支数 乙种支数20-x)支.
0.3x+0.6(20-x)=9, 是一元一次方程.
(3)一个梯形的下底比上底多2 cm,高是5 cm,面 积是40 cm2,求上底.
1 2 (上底+下底)×高=梯形面积
解:设上底为x cm,则下底为(x+2)cm. 1 (x x 2)5 40 , 是一元一次方程. 2
2. 方程的解: 解方程就是求出使方程中等号两边相等的未知 数的值,这个值就是方程的解.
相关文档
最新文档