面向未来应用的金属基复合材料

合集下载

金属基复合材料发展和应用前景

金属基复合材料发展和应用前景

金属基复合材料的发展现状与应用前景金属基复合材料( M MCs) 问世至今已有30 余年。

M MCs 的耐温性较高, 力学性能( 特别是刚度) 比一般金属的好, 此外它还具有导电性以及在高真空条件下不释放小分子的特点, 克服了树脂基复合材料在航宇领域中使用时存在的缺点, 因此受到航空航天部门的青睐。

然而, 尽管MM Cs 在航天飞机以及其他一些尖端技术中已经获得应用, 但用量很小, 不足以推动其发展。

近年来虽然努力在民用领域寻找机遇, 但终因成本偏高而缺乏与金属等其他传统材料竞争的优势。

因此发展MM Cs 的出路在于寻找降低成本的措施, 同时也要探索能充分发挥其特色的应用领域。

鉴于复合材料的成型工艺占其成本的60% ~ 70% , 所以研究发展高效、省时、低能耗、设备简单、能实现近似无余量成型的工艺方法是当务之急。

1、金属基复合材料制备技术1.1各种制备方法简评MMCs 通常按增强体的形式分类, 如连续纤维增强、短纤维或晶须增强、颗粒增强以及片层叠合等。

由于连续纤维增强的MM Cs 必须先制成复合丝或复合片等先驱体, 工艺复杂而成本高, 因此除了极少量有特殊要求的零件(如航天飞机的结构梁)采用外,目前尚看不到有扩大应用的可能性。

本文着重叙述的是颗粒、短纤维或晶须等非连续增强体的MM Cs, 其中, 颗粒增强的M MCs 已具备批量生产条件, 有良好的发展前景。

迄今, 已开发出不少非连续增强体MMCs的制备方法,见表1在表 1 列出的各种制备方法中, 搅拌混合法和挤压铸造法比较成熟,已具备批量生产的条件。

对搅拌混合法工艺已完成了大量研究工作,其中包括对增强体进行表面处理,以改善其与基体金属的浸润性;调整基体合金元素以减轻界面反应对MMCs性能的影响;在设备方面则改进了搅拌桨的形式以改善增强体分布的均匀性,此外,研究了增强体的加入机构,为降低气孔率还制作了施加负压的装置;在工艺条件上则研究了搅拌速度和金属熔体温度对混合均匀度和产生气泡的影响。

金属基复合材料

金属基复合材料

现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。

传统的单一材料已经很难满足这种需要。

因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。

其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。

作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。

现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。

金属基复合材料正是为了满足上述要求而诞生的。

1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。

金属基复合材料分为宏观组合型和微观强化型两大类。

前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。

根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。

用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。

(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。

强调具有电、热、磁等功能特性。

(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。

根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。

按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。

2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。

金属基复合材料在航空航天中的应用

金属基复合材料在航空航天中的应用

金属基复合材料在航空航天中的应用金属基复合材料指的是,由金属和合金共同构成的复合型材料。

与聚合物基和陶瓷基复合材料共同被称为现代复合材料。

按照金属和合金的配置不同,可以被分为铝基、镁基、铜基等复合材料。

其中的铝基复合材料应用性能相对较好,为此被大量应用到航空制造,汽车产业和电子工业中。

该种材料最初产生于20世纪60年代。

但在当时的航空事业发展中,由于技术水平限制,并不能保证对新技术和新材料的有效应用。

而在科技水平不断发展的基础上,金属基复合材料才得以被应用到各类生产活动中。

一、在导弹中的应用铝基复合材料在导弹制造中的应用,集中表现在对三叉戟导弹的惯性导向球方面,与以往的铍材相比,表现出了良好的经济优势与性能优势。

从当前的国际市场来看,导弹制造行业的竞争较为激烈,制造公司为了取得竞争优势就需要根据用户的使用需求,对导弹的性能进行改进,使其寿命和全寿命周期得到有效提升。

而对于铝基复合材料的应用,为导弹技术的改进提供了可能。

主要表现在通过替换原有的应用材料可以使导弹的重要结构性能得到明显改善。

就导弹的壁板结构来说,利用铝基复合材料代替原有的壁板材料,可使其自身重量得到有效降低,同时还可使壁板结构的刚度和强度性能得到有效改善。

另外,因结构自重的减轻,也可使导弹的运行速度得到进一步提升。

材料使尾翼和弹翼刚性增强,可减少颤动与弹头偏转,从而改善导弹的制导与精度。

因此,为了适应导弹速度、制导和精度等性能的改进,需开发和应用新材料。

多年来,英国国防部投资,英国国防评估研究局与马特拉BAe动力公司研究了铝基复合材料在导弹零部件中的应用,取得了一些成效。

铝基复合材料适宜制造弹体、尾翼、弹翼、导引头组件、光学组件、推进器组件、制动器组件、发射管、三角架和排气管等导弹零部件。

目前,他们已完成第一阶段、第二阶段计划,正在实施近期研究计划,并制定了未来的研究计划。

二、铝基复合材料在航天制造中的应用美国佛罗里达州的一个材料公司最近开发成功一种新型非连续增强的高强度、高耐热性铝合金复合材料,该合金基复合材料是以Al-Mg-Sc-Gd-Zr成份合金为基体,具有优异的常温强化和低温强化能力。

金属基纳米复合材料

金属基纳米复合材料

金属基纳米复合材料摘要:综述了复合材料的重要作用和金属基纳米复合材料作为复合材料材料中的一种,它的力学和磁学性能,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。

主要指出了金属基纳米复合材料的制备方法,在此基础上提出了研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。

关键字:复合材料;金属基纳米复合材料;微观结构;性能;应用。

1. 引言现代高科技的发展更紧密地依赖于新材料的发展,同时也对材料提出了更高、更苛刻的要求,高温、高压、高强度、低密度、耐磨、柔韧性……。

当前作为单一的金属、陶瓷、聚合物等材料各自固有的局限性而不能满足现代科学技术发展的需要。

复合材料特别是先进复合材料就是为了满足以上高技术发展的需求而开发的高性能的先进材料〔1〕。

复合材料是应现代科学技术而发展出来的具有极大生命力的材料。

复合材料是两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

而金属基纳米复合材料是复合材料中的一种。

纳米材料是由纳米量级的纳米粒子组成的固体材料。

纳米微粒有基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应〔2〕。

因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。

纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。

纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑和超塑性等。

金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。

金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、不吸湿、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。

各种复合新工艺,如压铸、半固态复合铸造,喷射沉和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业。

金属基复合材料的主要特点

金属基复合材料的主要特点

金属基复合材料的主要特点金属基复合材料(Metal Matrix Composites, MMCs)是一种由金属或合金作为基体,与一种或多种其他材料(如陶瓷、石墨、碳纤维等)作为增强相组成的复合材料。

这种材料结合了金属和非金属材料的优点,具有许多独特的性能特点。

以下将详细阐述金属基复合材料的主要特点,包括其力学性能、热稳定性、耐磨性、抗腐蚀性以及设计灵活性等方面。

一、优异的力学性能金属基复合材料最显著的特点之一是其优异的力学性能。

由于金属基体具有良好的韧性和塑性,而增强相则具有高强度和高刚度,因此金属基复合材料在保持金属基体良好塑性的同时,能够显著提高材料的强度和刚度。

这种优异的力学性能使得金属基复合材料在航空航天、汽车、机械等领域具有广泛的应用前景。

二、良好的热稳定性金属基复合材料通常具有良好的热稳定性,能够在高温环境下保持较好的力学性能。

这是因为金属基体本身具有较好的导热性和热膨胀性,而增强相则能够有效地阻碍热裂纹的扩展。

因此,金属基复合材料在高温环境下具有较好的结构稳定性和耐久性,适用于高温工况下的结构件和零部件。

三、出色的耐磨性由于增强相的加入,金属基复合材料的硬度和耐磨性得到了显著提高。

在摩擦过程中,增强相能够有效地承受和分散载荷,减少磨损和剥落。

因此,金属基复合材料在摩擦磨损严重的场合(如轴承、齿轮等)具有广泛的应用前景。

四、优异的抗腐蚀性金属基复合材料中的增强相通常具有较好的化学稳定性,能够有效地提高材料的抗腐蚀性能。

此外,通过合理的成分设计和表面处理,还可以进一步提高金属基复合材料的耐腐蚀性能。

这使得金属基复合材料在化工、海洋等腐蚀环境中具有广阔的应用前景。

五、设计灵活性高金属基复合材料的设计灵活性较高,可以通过调整基体和增强相的成分、含量和分布来实现对材料性能的定制和优化。

例如,通过改变增强相的种类、形状和取向,可以调整材料的强度和刚度;通过调整基体的成分和处理工艺,可以改善材料的塑性和韧性。

高性能金属基复合材料迎来发展新机遇

高性能金属基复合材料迎来发展新机遇
经 过 数 十 年 的 发 展,针 对 金 属 基复合材料的制备方法已经形成了 多种体系,包括固相法、液相法、气态 法、原 位 生 成 法 等(如 图 3所 示)。其 中,放电等离子烧结法(S P S)是将金 属 和 增 强 体 粉 末 混 合、压 制 后,施 加 脉冲电流产生等离子体进行加热烧 结的制备方法,属于粉末冶金法的一 种,具有快速、组织结构可控、节能环 保等优势 ;原位生成法是利用液态金 属和金属盐在高温下原位,均具备
金属基复合材料研发的机构数量较 强大的产业竞争力。中国、美国高性
多,包括北京科技大学、哈尔滨工业 能金属基复材企业多为军工服务,在
大学、国防科技大学、中南大学、北方 成本控制上处于劣势,在民用领域的
工业大学和上海交通大学等高校,北 发展上还存在一定的瓶颈。
金属基复合材料制备方法
固态法
液态法
气态法
粉末冶金法
放电等离子烧结法 喷射沉积法 (固液两相)
搅拌鋳造法 压力浸渗法(真空 压力浸渗、自排气
压力浸渗)
真空吸铸法
气相沉积法(化 学气相沉积、物 理气相沉积)
图 3 金属基复合材料制备方法
其他先进技术
原位合成法 增材制造 搅拌摩擦焊
升,高性能金属基复合材料及器件的 (Advanced Composite)和联合材
1 性能优势显著,金属基复材 助力新一代热管理方案
金属基复合材料(Metal Matrix C o m p o s i t e s,M M C)是以金属为基 体,无机非金属的纤维、晶须、颗粒或 纳 米 颗 粒 等 为 增 强 体,经 复 合 而 成 的 新 材 料。根 据 基 体 材 料 不 同,金 属
铝、铜、镁 因 其 相 对 较 高 的 热 导 率、较低的密度以及优异的加工性,目 前已经成为热管理用金属基复材的 主流基体(如图 1)。其中,Al/S i C、镁 (M g)/ S i C体 系 具 有 密 度 低、热 导 率 高、热 膨 胀 系 数 可 调 等 优 势,在 航 空航天和电子封装领域已有成熟应 用 ;铝石墨(Al/Gr)、铜石墨(Cu/Gr) 体 系 除 具 有 密 度 低、热 导 率 高、热 膨 胀 系 数 可 调 等 优 势 外,还 具 有 成 本 低、易 加 工 的 显 著 优 势,更 具 产 业 化 潜力 ;铝金刚石(A l / D i a)、铜金刚石 (Cu/Dia)体系具有最高的热导率〔> 700W /(m·K)〕,在一些高附加值产 业领域如雷达TR组件、功率半导体器 件上有望大面积推广。

金属基复合材料应用举例

金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。

金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。

以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。

在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。

2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。

例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。

3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。

在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。

4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。

在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。

5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。

在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。

6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。

在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。

7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。

在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。

8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。

镁基复合材料的应用及发展

镁基复合材料的应用及发展

镁基复合材料的应用及发展镁基复合材料是一种由镁合金基体和其他增强材料组成的复合材料。

镁合金具有低密度、高比强度和良好的机械性能等优点,但其在高温和腐蚀环境下的性能较差。

通过将其他增强材料与镁合金基体结合,可以改善镁合金的性能,并拓展其应用领域。

以下将详细介绍镁基复合材料的应用及发展。

一、航空航天领域镁基复合材料在航空航天领域有着广泛的应用。

由于镁合金具有低密度和高比强度,可以减轻飞机和航天器的重量,提高其燃油效率和载荷能力。

同时,镁基复合材料还具有良好的耐腐蚀性能,可以在恶劣的环境下使用。

目前,镁基复合材料已经成功应用于飞机结构、发动机零部件、导弹和航天器等领域。

二、汽车工业镁基复合材料在汽车工业中也有着广泛的应用前景。

由于镁合金具有低密度和良好的机械性能,可以减轻汽车的重量,提高燃油效率和行驶性能。

此外,镁基复合材料还具有良好的吸能性能,可以提高汽车的碰撞安全性。

目前,一些汽车制造商已经开始使用镁基复合材料制造车身和零部件,以实现轻量化和节能减排的目标。

三、电子领域镁基复合材料在电子领域也有着广泛的应用。

由于镁合金具有良好的导电性能和热传导性能,可以用于制造电子器件和散热器等。

此外,镁基复合材料还具有良好的抗电磁干扰性能,可以提高电子设备的稳定性和可靠性。

目前,一些电子产品中已经开始使用镁基复合材料,如手机、平板电脑和电视等。

四、医疗领域镁基复合材料在医疗领域也有着潜在的应用价值。

由于镁合金具有良好的生物相容性和生物降解性,可以用于制造骨科植入物和修复器械等。

此外,镁基复合材料还具有良好的抗菌性能,可以预防感染和促进伤口愈合。

目前,一些医疗器械制造商已经开始研发和应用镁基复合材料,以提高医疗器械的性能和安全性。

随着科学技术的不断进步,镁基复合材料的应用领域还将不断拓展。

未来,随着材料制备技术的改进和材料性能的提高,镁基复合材料有望在更多领域发挥重要作用。

同时,还需要进一步研究镁基复合材料的制备工艺、性能测试和应用评价等方面的问题,以推动其在实际应用中的发展。

金属复合材料的优势和应用前景

金属复合材料的优势和应用前景

金属复合材料的优势和应用前景金属复合材料(metal matrix composites,MMC)是一种由金属基体和增强相组成的复合材料。

与传统的金属材料相比,金属复合材料具有许多优势,如高强度、高刚度、良好的耐磨性和热稳定性等。

这些优势使得金属复合材料在诸多领域具有广泛的应用前景。

一、金属复合材料的优势1. 高强度和高刚度:金属复合材料采用增强相(如纤维、颗粒等)与金属基体的复合结构,能够显著提高材料的强度和刚度。

这使得金属复合材料在需要承受大应力和重载情况下具有优越的性能。

2. 良好的耐磨性:金属复合材料中的增强相能够有效地抵抗磨损和磨削,这使得金属复合材料在摩擦、磨损和磨削严重的环境下具有较长的使用寿命。

3. 耐高温性能:金属复合材料中的增强相通常具有良好的耐高温性能,可以在高温环境下保持较好的力学性能和稳定性。

这使得金属复合材料在航空航天、汽车发动机等高温应用领域有着广泛的应用前景。

4. 良好的导热性和导电性:金属基体具有良好的导热性和导电性,而增强相通常也具有较高的导热性和导电性。

这使得金属复合材料能够在需要良好导热性和导电性的领域中发挥重要作用,如电子器件散热和电磁屏蔽。

二、金属复合材料的应用前景1. 航空航天领域:金属复合材料由于其高强度、高刚度和耐高温的特点,在航空航天领域具有广泛的应用前景。

例如,金属复合材料可以用于制造飞机结构件、发动机零部件和航天器热防护材料等。

2. 汽车工业:随着汽车行业对轻量化和节能环保要求的提升,金属复合材料作为一种重要的替代材料,其在汽车工业中的应用也越来越广泛。

金属复合材料可以应用于汽车发动机、底盘和车身结构等部件,以减轻整车重量、提高燃油效率和降低尾气排放。

3. 电子行业:金属复合材料具有良好的导热性和导电性,因此在电子行业中具有广泛的应用前景。

金属复合材料可以用于制造散热片、电磁屏蔽材料、半导体基底等,以提高电子器件的性能和稳定性。

4. 能源领域:金属复合材料的高强度、良好的耐高温性能和导热性,使其在能源领域具有潜在的应用前景。

2024年金属复合材料市场前景分析

2024年金属复合材料市场前景分析

2024年金属复合材料市场前景分析1. 引言金属复合材料是一种由金属材料与其他非金属材料(如陶瓷、聚合物等)制成的复合材料。

它具有金属的强度和刚性,同时又兼具非金属材料的轻质和耐腐蚀性。

随着科技的不断发展和应用领域的扩大,金属复合材料市场呈现出较好的前景。

本文将对金属复合材料市场的发展趋势进行分析,以期为相关产业提供参考。

2. 金属复合材料市场的现状目前,金属复合材料已经广泛应用于航空航天、汽车制造、建筑材料等领域。

随着大规模工业化生产的实现,金属复合材料的生产成本逐渐降低,市场需求不断增加。

金属复合材料的高强度、轻质和优异的耐腐蚀性,使其在工程结构和技术器件领域具有广泛的应用前景。

3. 金属复合材料市场的发展趋势3.1 技术创新推动市场发展随着科技不断进步,金属复合材料的制备技术也在不断创新。

新的生产工艺和材料配方的应用,使得金属复合材料的性能进一步提升。

例如,采用纳米技术和复合材料增材制造技术可以提高材料的强度和韧性,从而拓宽金属复合材料的应用领域。

3.2 环保意识促进金属复合材料替代传统材料传统的材料如钢铁等在生产、使用和废弃过程中会对环境造成污染。

而金属复合材料由于具有轻质、耐腐蚀等特性,被视为传统材料的替代品。

随着环保意识的不断提升,金属复合材料在汽车制造、建筑材料等领域的应用将逐渐增多。

3.3 产业链完善推动金属复合材料市场发展金属复合材料的生产需要多个环节的配套设备和技术支持。

随着金属复合材料产业链的逐渐完善,生产成本进一步下降。

同时,相关产业中的技术累积和人才培养也推动金属复合材料市场的发展。

4. 金属复合材料市场面临的挑战4.1 生产成本仍然较高尽管金属复合材料的生产成本在不断降低,但与传统材料相比仍然较高。

这限制了金属复合材料在一些领域的广泛应用。

因此,降低金属复合材料的生产成本是一个亟待解决的挑战。

4.2 技术壁垒对市场发展的制约金属复合材料的制备技术相对复杂,需要高端的设备和专业的技术支持。

难熔金属基复合材料在航空航天领域的应用

难熔金属基复合材料在航空航天领域的应用

难熔金属基复合材料在航空航天领域的应用难熔金属基复合材料是一种具有优越性能的先进材料,广泛应用于航空航天领域。

它由金属基体和另一种或多种添加剂组成,通过粉末冶金等制备工艺得到。

难熔金属基复合材料具有高强度、高温性能、抗腐蚀性和优异的耐磨性等优点,因此在航空航天领域具有重要的应用前景。

首先,难熔金属基复合材料在航空航天领域的应用可以提高飞机的性能和安全性。

该材料的高强度和耐磨性使得它可以替代传统材料,如钢和铝合金,在飞机的结构件和发动机部件等关键部位使用。

这不仅可以减轻飞机的重量,提高飞行速度和燃油效率,还可以增加飞机的耐久性和抗腐蚀性,从而提高了航空器的整体性能,确保了航空安全。

其次,难熔金属基复合材料在航空航天领域的应用可以扩展空间探索的可能性。

航天器经历极端的温度变化、高速冲击和辐射等严酷的环境条件,因此需要具备卓越的耐热、耐腐蚀和抗辐射能力。

难熔金属基复合材料因其独特的性能,在航天器的结构件、热防护系统和燃烧室等关键部位得到广泛应用。

这种材料能够承受极高的温度和压力,具备良好的抗氧化和隔热性能,从而保证了航天器在极端环境下的稳定运行和安全返回。

除此之外,难熔金属基复合材料在航空航天领域的应用还可以提高航空发动机的性能。

航空发动机承受着高温和高压的工作环境,因此需要具备耐高温、耐磨性和抗腐蚀性能。

难熔金属基复合材料的优异性能使它成为理想的航空发动机材料。

除了可以用于制造发动机叶片、涡轮和燃烧室等部件外,还可以用于制造发动机的喷嘴和转子翼等关键部件。

这种材料的应用可以提高发动机的热效率和推力,减少燃料消耗,从而促进航空产业的可持续发展。

此外,难熔金属基复合材料在航空航天领域的应用还具有良好的可加工性。

航空航天领域对材料的可加工性有较高的要求,需要能够进行切削、钻孔、焊接和组装等工艺操作。

难熔金属基复合材料可以通过粉末冶金、铸造和热加工等工艺生产,具备良好的可塑性和可加工性,使得它能够适应不同形状和规格的零部件制造需求。

金属基复合材料

金属基复合材料

金属基复合材料
金属基复合材料是一种由金属基体和其他非金属材料(如陶瓷、碳纤维等)组
成的复合材料。

它具有金属的高强度、刚性和导热性,同时又具有非金属材料的轻量化和耐腐蚀性能。

金属基复合材料在航空航天、汽车制造、电子设备等领域有着广泛的应用。

首先,金属基复合材料的制备方法有多种,其中包括粉末冶金法、热压法、热
处理法等。

粉末冶金法是将金属粉末与非金属粉末混合后,通过压制和烧结得到复合材料。

热压法是将金属基体和非金属材料层叠在一起,然后通过高温和高压进行热压,使两者紧密结合。

热处理法则是将金属基体与非金属材料进行热处理,使其在高温下发生化学反应,形成复合材料。

其次,金属基复合材料具有优异的性能。

首先,它具有高强度和高刚性,能够
承受较大的载荷,因此在航空航天领域得到广泛应用。

其次,金属基复合材料具有良好的导热性和导电性,能够有效地传递热量和电流,因此在电子设备中有着重要的作用。

此外,金属基复合材料还具有耐磨损、耐腐蚀等特性,能够在恶劣环境下长期稳定运行。

最后,金属基复合材料的发展前景广阔。

随着科技的不断进步,金属基复合材
料的制备工艺和性能将不断得到提升,其应用领域也将不断扩大。

未来,金属基复合材料有望在汽车制造、建筑领域等方面发挥更加重要的作用,为人类社会的发展做出更大的贡献。

综上所述,金属基复合材料具有制备方法多样、优异的性能和广阔的发展前景。

它在现代工业中有着重要的地位,为各个领域的发展提供了重要支撑。

相信随着科技的不断进步,金属基复合材料将会迎来更加美好的未来。

金属基复合材料的类型

金属基复合材料的类型

金属基复合材料的类型金属基复合材料是一种由金属基体和增强体组成的复合材料。

金属基体通常占据主导地位,承担大部分载荷,而增强体则起到增强材料性能的作用。

根据增强体的类型、形状、尺寸和分布,金属基复合材料可分为多种类型。

以下是几种常见的金属基复合材料类型:1. 按增强体形状分类(1)颗粒增强金属基复合材料:增强体为颗粒状,如陶瓷颗粒、金属颗粒等。

这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。

(2)纤维增强金属基复合材料:增强体为纤维状,如碳纤维、玻璃纤维、硼纤维等。

这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。

(3)晶须增强金属基复合材料:增强体为晶须状,如氧化铝晶须、碳化硅晶须等。

这种复合材料具有较高的强度和刚度,较好的韧性和耐磨性。

2. 按增强体材料分类(1)陶瓷增强金属基复合材料:增强体为陶瓷材料,如氧化铝、碳化硅等。

这种复合材料具有较高的硬度和耐磨性,但韧性较低。

(2)金属增强金属基复合材料:增强体为金属材料,如不锈钢、钛合金等。

这种复合材料具有较高的强度和韧性,但耐磨性相对较低。

(3)塑料增强金属基复合材料:增强体为塑料材料,如聚四氟乙烯、聚酰亚胺等。

这种复合材料具有良好的耐磨性和耐腐蚀性,但强度和刚度较低。

3. 按增强体分布方式分类(1)连续增强金属基复合材料:增强体呈连续分布,如纤维增强金属基复合材料。

这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。

(2)非连续增强金属基复合材料:增强体呈非连续分布,如颗粒增强金属基复合材料。

这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。

4. 按制备工艺分类(1)铸造法制备的金属基复合材料:采用铸造工艺将增强体与金属基体结合,如陶瓷颗粒增强铝基复合材料。

(2)粉末冶金法制备的金属基复合材料:采用粉末冶金工艺将增强体与金属基体结合,如碳纤维增强铜基复合材料。

(3)热压法制备的金属基复合材料:采用热压工艺将增强体与金属基体结合,如碳化硅晶须增强钛基复合材料。

金属基复合材料的研究进展与应用前景

金属基复合材料的研究进展与应用前景

金属基复合材料的研究进展与应用前景金属基复合材料是一种具有金属基体和强化相的材料,能够综合发挥金属的优良性能和强化相的增强效果。

近年来,金属基复合材料得到了广泛的研究和应用,其研究进展和应用前景也备受关注。

本文将综述金属基复合材料的研究进展和应用前景。

一、金属基复合材料的研究进展1. 强化相的选择和设计强化相是金属基复合材料中起到增强作用的材料,通常是颗粒、纤维或片状结构。

近年来,随着纳米材料的研究和发展,纳米颗粒和纳米纤维作为强化相的应用逐渐成为研究的热点。

纳米颗粒和纳米纤维具有较大的比表面积和较好的强度,可以显著提高金属基复合材料的力学性能和热学性能。

2. 制备技术的改进金属基复合材料的制备技术对于材料性能具有决定性影响,近年来研究者们在制备技术方面进行了大量的改进。

传统的制备技术包括粉末冶金、熔融法和电化学沉积法等,这些方法能够制备金属基复合材料,但是制备工艺复杂、成本高。

近年来,研究者们开始探索新的制备技术,如激光熔融沉积、电子束熔凝等,这些新的制备技术具有制备精度高和能耗低的优点。

3. 性能测试与评价金属基复合材料的性能测试和评价是研究中的重要环节,目前主要包括力学性能测试、热学性能测试和耐腐蚀性能测试等方面。

力学性能测试包括拉伸性能、硬度、韧性等方面的测试,热学性能测试包括热膨胀系数、导热系数等方面的测试,耐腐蚀性能测试包括盐雾试验、腐蚀电位测试等方面的测试。

通过对金属基复合材料的性能测试和评价,能够了解材料的力学性能和热学性能,为进一步研究和应用提供依据。

二、金属基复合材料的应用前景1. 航空航天领域金属基复合材料具有高强度、高温稳定性和低密度等优点,能够满足航空航天领域对材料高性能的需求。

金属基复合材料在飞机、火箭、导弹等航空航天装备的结构材料中有广泛的应用前景。

例如,金属基复合材料可以用于飞机结构的轻量化设计,提高飞机的燃油效率和载重能力,同时保证结构的强度和刚度。

2. 汽车制造领域汽车制造领域也是金属基复合材料的应用领域之一。

4金属基复合材料制备方法及应用

4金属基复合材料制备方法及应用

4金属基复合材料制备方法及应用金属基复合材料是一种由金属基体和其他强化相(例如纤维增强材料、陶瓷颗粒等)复合而成的材料。

这种材料具有金属的导电、导热和机械性能,同时又兼具强度高、抗磨损和耐高温等优点。

在许多领域,如航空航天、汽车制造和能源领域等,金属基复合材料常被应用于重要零部件的制备。

下面将介绍几种金属基复合材料的制备方法及其应用。

1.焊接制备方法:通过焊接技术将金属基体与强化相材料连接在一起。

这种方法适用于金属基体与纤维增强材料的组合。

例如,利用电弧焊、激光焊或摩擦焊等技术可以将金属基体与碳纤维增强材料连接在一起,制备出具有高强度和低密度的复合材料。

这种方法常被应用于航空航天和汽车制造领域。

2.粉末冶金制备方法:通过将金属粉末与强化相粉末混合后进行压制和烧结,制备出金属基复合材料。

这种方法适用于金属基体与陶瓷颗粒的组合。

例如,将铝粉末与氧化铝颗粒混合后压制和烧结,可以获得高强度和高耐磨损性的复合材料,广泛应用于汽车制造和航空航天领域。

3.化学反应制备方法:通过金属基体和强化相之间的化学反应,制备金属基复合材料。

这种方法适用于金属基体与陶瓷颗粒的组合。

例如,将铝基金属与氧化铝颗粒放置在高温环境中,经过反应生成金属化合物后,可以形成金属基复合材料。

这种方法常被应用于能源领域,如制备高温热电材料。

金属基复合材料在许多领域有着广泛的应用。

其中,航空航天领域是最重要的应用领域之一、由于金属基复合材料具有高强度、低密度和耐高温等特点,因此被广泛应用于飞机和航天器的结构件制造。

例如,利用金属基复合材料可以制备出更轻、更强的飞机机身和发动机零部件,提高飞机的性能和燃油效率。

此外,金属基复合材料还被应用于汽车制造领域。

由于金属基复合材料的高强度和低密度,可以用来替代传统的金属材料,降低汽车的整体重量,提高燃油效率。

同时,金属基复合材料还具有良好的耐磨损性能,可以用于制造汽车发动机零部件和刹车系统,提高汽车的性能和安全性。

材料科学中先进金属合金材料的应用前景

材料科学中先进金属合金材料的应用前景

材料科学中先进金属合金材料的应用前景先进的金属合金材料在材料科学领域具有广泛的应用前景。

这些材料具有很高的强度、硬度和耐腐蚀性能,因此被广泛应用于航空航天、汽车工业、电子设备、能源等领域。

本文将详细介绍其中一些先进金属合金材料的应用前景。

先进金属合金材料在航空航天领域的应用前景十分广阔。

航空发动机的工作环境要求高温、高压、高速和耐腐蚀,因此对材料的性能提出了很高的要求。

镍基高温合金、钛基合金和铝基合金是航空发动机的重要材料。

镍基高温合金具有优异的高温强度和耐腐蚀性能,能够承受高温下的巨大应力和氧化腐蚀;钛基合金具有良好的强度、刚性和耐腐蚀性能,同时重量较轻,是航空航天领域首选的结构材料;铝基合金具有较高的强度、良好的耐热性和强度比重比,是航空用金属材料的主要代表之一。

另外,先进金属合金材料在汽车工业中也有重要的应用前景。

汽车工业对材料的要求主要体现在安全性、轻量化和节能环保方面。

高强度钢、铝合金和镁合金是汽车工业中常用的先进金属合金材料。

高强度钢具有优异的力学性能和碰撞吸能能力,能够提高汽车的安全性能;铝合金具有较低的密度、良好的韧性和优秀的耐腐蚀性能,可以显著降低汽车质量,提高燃油经济性;镁合金具有较低的密度和较高的比强度,是一种理想的轻量化材料,有望在汽车工业中替代钢铁材料。

在电子设备领域,先进金属合金材料也具有广泛的应用前景。

随着电子设备的发展,对材料的要求越来越高,如高温稳定性、较高的导电性和热导率等。

铜基合金、铝硅合金和镍钛合金是电子设备领域的常用金属合金材料。

铜基合金具有优异的导电性和热导率,广泛应用于电路板、散热片等部件;铝硅合金具有良好的导热性和导电性,在微电子封装领域有广泛应用;镍钛合金具有形状记忆效应,可以用于制造微动器件、传感器等。

此外,先进金属合金材料在能源领域也有着重要的应用前景。

高温合金、镍基超合金和磷光合金是能源领域的常用金属合金材料。

高温合金具有良好的高温强度和耐腐蚀性能,在燃气轮机、核电站等能源设备中得到广泛应用;镍基超合金具有良好的高温强度和耐腐蚀性能,是燃气轮机的重要材料;磷光合金具有较高的光储存能力和光敏感性能,可以用于太阳能电池、光学记录等领域。

金属基复合材料的应用

金属基复合材料的应用

金属基复合材料的应用
金属基复合材料是由金属基体和添加的其他材料组成的复合材料。

金属基复合材料具有金属的高强度、刚性和导热性,同时又具备非金属材料的轻、强、耐高温、耐腐蚀等特点,因此在多个领域有广泛的应用。

1. 汽车和航空航天:金属基复合材料在汽车和航空航天领域中应用广泛,可以用于制造轻量化、高性能的车身和结构件,能有效减少车辆重量,提高燃油经济性和减少尾气排放。

2. 电子电气:金属基复合材料在电子领域中用于制造散热器、导热板等散热部件,提高电子设备的散热效果,保证设备的可靠性和稳定性。

3. 机械工程:金属基复合材料在机械工程中用于制造高强度、耐磨损的零件,如轴承、齿轮、刀具等,提高机械设备的性能和寿命。

4. 船舶建筑:金属基复合材料可以用于制造船舶的船体、舾装件等,能够减轻船舶重量、提高航行速度、降低燃油消耗。

5. 建筑工程:金属基复合材料在建筑领域中用于制造外墙装饰材料、屋顶材料等,具有抗腐蚀、防火、耐候性能,同时还能提供良好的隔热和隔音效果。

6. 医疗器械:金属基复合材料在医疗器械制造中可以用于制造骨矫正器、人工关节等,具有良好的生物相容性和机械性能,
能够提高医疗设备的性能和使用寿命。

总之,金属基复合材料的应用范围广泛,能够满足不同领域对材料性能的需求,提高产品的性能和可靠性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

composites

meet
demand of
dual—scaled reinforcements is effective for improvement of comprehensive properties such as the elastic modulus.The nano carbon reinforcements are highly effective and multiple for strengthening metals due to their ultrahigh mechanical and physical properties.As to the hierarchical architecture,it is highly feasible for effectively strengthening metals without sacrificing ductility and toughness,and challenges for these studies are addressed.In the future,modelling and simulation for architecture and interface between
第35卷第9期 2016年9月
中国材料进展
MATERIALS CHINA
VoL 35
No.9
Sep.2016
面向未来应用的金属基复合材料
肖伯律,刘振宇,张星星,马宗义
(中国科学院金属研究所,辽宁沈阳110016)

要:规模化应用促使金属基复合材料研发向更高强度、良好塑韧性和工艺性的方向迈进。围绕该目标,近年来的研究重点
nano
carbons and metals should be
conducted.Furthermore,novel

fabrication methods
one
for mass production should be developed.Research of metal matrix composites has entered important branches of novel materials.
主要以多尺度强化、纳米碳材料增强以及非均质构型设计等为特点。介绍了金属基复合材料相关的研究进展,指出超细晶、超 细颗粒协同强化可以获得高强度与良好塑韧性,进一步通过双尺度增强相强化可以兼顾模量等综合性能;纳米碳材料综合性能 极高,对金属的强化具有高效与多样化特性;非均质构型在充分发挥纳米碳和陶瓷相的增强作用、挖掘复合材料性能极限方面 体现了极高的可行性。同时也指出了这些研究面临的挑战,以及未来开展构型仿真、纳米碳一金属界面模拟研究以及发展必须 的宏量制备技术的必要性。可以预见,金属基复合材料的研发已经进入新阶段,并已成为高性能材料发展的一个重要方向。
强金属基复合材料的发展遇到严峻挑战,一是陶瓷的综 合增强效率偏低,复合材料的某些单项指标尚不能与高
性能单体材料抗衡,降低了性能优势;另一方面,大量 陶瓷相的添加导致复合材料塑韧性和工艺性变差,降低 了成型加工与服役可靠性。这些问题困扰着金属基复合 材料的发展与应用。 为解决复合材料发展中的瓶颈,通过选用多尺度增
(Institute of Metal Research,Chinese Academy of Sciences,Shenyang Abstract:Metal matrix
in order
to
10016,China)
are developed toward higher strength,good ductility or toughness and high performance wide application.For this purpose,attempts have been focused on multi scale strengthening, nano carbon reinforcing and architecture design.A review on the present research indicates that the synergetic strengthening of uhrafine grains and reinforcing particles could provide high strength and good toughness.Based on that,addition of
收稿日期:2016—07—10 基金项目:国家重点基础研发计划项目(2012CB619600) 第一作者:肖伯律,男,1975年生,研究员,博士生导师,Email
blxiao@imr.ac.ca
强相、新型的纳米碳材料增强相、控制基体晶粒组态与 增强相分布、取向等“构型”因素,使复合材料力学性能 获得显著改善。另外,非均质构型设计与新型增强相的 引入还可望给复合材料热、电等物理性能带来突破。本
new
era,and it is
of
Key words:metal
matrix
composites;architecture;carbon nanotube;graphene;uhrafine grain


合材料已成为传统金属材料以外的重要材料体系。

然而,面对装备制造水平突飞猛进,传统的陶瓷增
材料复合化突破了单体材料无法获得的综合性能的 缺点,成为新材料研发的重要方向。金属与陶瓷等材料 的复合集成了不同组元的模量、强度、导热、线膨胀以 及耐磨性等方面的优势,广泛应用于飞机及其发动机、 空间飞行器、电子封装、核电等工程装备以及汽车、轨 道车辆等产品,取得了可观的工业成就,因而金属基复
关键词:金属基复合材料;构型;碳纳米管;石墨烯;超细晶 中图分类号:TGl46.2 文献标识码:A 文章编号:1674—3962(2016)09—0666—08
Metal Matrix Composites
for Future Application

XIAOng,MA Zongyi
相关文档
最新文档