2019届湖北省襄阳市襄州区九年级上学期期中数学试卷【含答案及解析】

合集下载

【精】湖北省襄阳市襄州区九年级上学期数学期中试卷及解析

【精】湖北省襄阳市襄州区九年级上学期数学期中试卷及解析

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=02.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或03.(3分)用配方法解下列方程时,配方有错误的是()A.2m2+m﹣1=0化为B.x2﹣6x+4=0化为(x﹣3)2=5C.2t2﹣3t﹣2=0化为D.3y2﹣4y+1=0化为4.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°5.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位6.(3分)正方形ABCD内一点P,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP′,则PP′的长为()A.2 B.2 C.3 D.37.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°8.(3分)如图,已知直径MN⊥弦AB,垂足为C,下列结论:①AC=BC;②=;③=;④AM=BM.其中正确的个数为()A.1 B.2 C.3 D.49.(3分)已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=310.(3分)吉林省某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距P 地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)()A.9.2米B.9.1米C.9米 D.5.1米二、填空题(每小题3分,共30分)11.(3分)在平面直角坐标系中,点A(﹣1,2)关于原点对称的点为B(a,﹣2),则a=.12.(3分)将点A(3,1)绕原点O按顺时针方向旋转90°到点B,则点B的坐标是.13.(3分)若(a2+b2)(a2+b2﹣2)=8,则a2+b2=.14.(3分)若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.15.(3分)已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.16.(3分)如图,已知A,B,C是半径为1的⊙O上三点,且四边形AOBC是平行四边形,则弦AB的长是.17.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.18.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.19.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.20.(3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三、解答题21.(8分)选择适当的方法解一元二次方程:(1)x2+2x﹣15=0(2)4x﹣6=(3﹣2x)x.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2;(3)△OB2P为等腰三角形,且P在x轴上,请直接写出所有符合条件的P点坐标.23.(7分)要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化、设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.24.(7分)如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.25.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?26.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.27.(10分)已知抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标;(3)设P点是直线L上的一个动点,当△PAC的周长最小时,求点P的坐标.2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或0【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴(a﹣1)×0+0+a2﹣1=0,且a﹣1≠0,解得a=﹣1;故选:A.3.(3分)用配方法解下列方程时,配方有错误的是()A.2m2+m﹣1=0化为B.x2﹣6x+4=0化为(x﹣3)2=5C.2t2﹣3t﹣2=0化为D.3y2﹣4y+1=0化为【解答】解:A、2m2+m﹣1=0,变形得:m2+m=,配方得:m2+m+=,即(m+)2=,本选项正确;B、x2﹣6x+4=0,移项得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,本选项正确;C、2t2﹣3t﹣2=0,变形得:t2﹣t=1,配方得:t2﹣t+=,即(t﹣)2=,本选项错误;D、3y2﹣4y+1=0,变形得:y2﹣y=﹣,配方得:y2﹣y+=,即(y﹣)2=,本选项正确.故选:C.4.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.5.(3分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.6.(3分)正方形ABCD内一点P,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP′,则PP′的长为()A.2 B.2 C.3 D.3【解答】解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴PP′=BP=2.故选:A.7.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.8.(3分)如图,已知直径MN⊥弦AB,垂足为C,下列结论:①AC=BC;②=;③=;④AM=BM.其中正确的个数为()A.1 B.2 C.3 D.4【解答】解:∵直径MN⊥弦AB,∴AC=BC,弧AN=弧BN,弧AM=弧BM,∴AM=BM,即①②③④都正确,故选:D.9.(3分)已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=3【解答】解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得t=3.即方程的另一根为3.故选:D.10.(3分)吉林省某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距P 地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)()A.9.2米B.9.1米C.9米 D.5.1米【解答】解:已知如图所示建立平面直角坐标系:设抛物线的方程为y=ax2+bx+c,又已知抛物线经过(﹣4,0),(4,0),(﹣3,4),(3,4),可得,求出a=﹣,b=0,c=,故y=﹣x2+,当x=0时,y≈9.1米.故选:B.二、填空题(每小题3分,共30分)11.(3分)在平面直角坐标系中,点A(﹣1,2)关于原点对称的点为B(a,﹣2),则a=1.【解答】解:∵点A(﹣1,2)关于原点对称的点为B(a,﹣2),∴a=1,故答案为:1.12.(3分)将点A(3,1)绕原点O按顺时针方向旋转90°到点B,则点B的坐标是(1,﹣3).【解答】解:如图,过点A作AC⊥x轴,过点B作BD⊥y轴,∴∠ACO=∠BDO=90°,∵将点A(3,1)绕原点O按顺时针方向旋转90°到点B,∴OA=OB,AC=1,OC=3,∠AOB=90°,∴∠AOC+∠BOC=∠BOC+∠BOD=90°,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴BD=AC=1,OD=OC=3,∴点B的坐标是(1,﹣3).故答案为:(1,﹣3).13.(3分)若(a2+b2)(a2+b2﹣2)=8,则a2+b2=4.【解答】解:(a2+b2)2﹣2(a2+b2)﹣8=0,(a2+b2﹣4)(a2+b2+2)=0,所以a2+b2﹣4=0,所以a2+b2=4.故答案为4.14.(3分)若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.15.(3分)已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是3或﹣5.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.16.(3分)如图,已知A,B,C是半径为1的⊙O上三点,且四边形AOBC是平行四边形,则弦AB的长是.【解答】解:如图,连接CO交AB于点E,在圆O上取一点D,连接AD、BD.∵四边形AOBC是平行四边形,OA=OB,∴平行四边形AOBC为菱形,∴AB⊥OC.∵OC是半径,∴BE=AB.又∵∠D=∠AOB,∠ACB+∠D=180°,∴∠AOB+∠AOB=180°,∴∠AOB=120°,∴∠BOE=60°,在Rt△BOE中,BE=OB•sin60°=1×=,则AB=2BE=.故答案为:.17.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.18.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是x≤1.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.19.(3分)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<320.(3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是19.【解答】解:∵△ABC是等边三角形,∴AC=AB=BC=10,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,∴DE=BD=9,∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.三、解答题21.(8分)选择适当的方法解一元二次方程:(1)x2+2x﹣15=0(2)4x﹣6=(3﹣2x)x.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)2(2x﹣3)+x(2x﹣3)=0,(2x﹣3)(2+x)=0,2x﹣3=0或2+x=0,所以x1=,x2=﹣2.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2;(3)△OB2P为等腰三角形,且P在x轴上,请直接写出所有符合条件的P点坐标.【解答】解:(1)画出△ABC关于x轴对称的△A1B1C1如图所示:(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2如图所示:(3)①OB2=PB2时,OP=2OA2=2,∴P1(2,0);②OB2=OP时,∵OB=,∴P2(﹣,0),P3(,0);③OP=B2P时,P4(1,0).综上,符合条件的P点坐标为(1,0),(2,0),(,.23.(7分)要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化、设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.【解答】解:设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得解之得x1=10,x2=30经检验,x2=30不符合题意,舍去.答:两块绿地周围的硬化路面宽都为10米.24.(7分)如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.25.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?【解答】解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.26.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.27.(10分)已知抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标;(3)设P点是直线L上的一个动点,当△PAC的周长最小时,求点P的坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);(3)连结BC交l于P,如图,∵点A与点B关于直线l对称,∴PA=PB,∴PC+PA=CB,∴此时△PAC的周长最小,设直线BC的解析式为y=kx+b,把C(0,3),B(3,0)代入得,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣x+3=2,∴点P的坐标为(1,2).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

襄阳市襄州区九年级上期中数学试题及答案(扫描版).doc

襄阳市襄州区九年级上期中数学试题及答案(扫描版).doc

九年级期中考试答案参考一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11、 1 12、 (1,-3) 13、 4 14、 4 15、 3或-5 16、3 17、 2 18、x ≤1 19、-1<x <3 20、 19 三、解答题(共60分)22、21、(每小题4分,共8分) (1)x 1=3 x 2=-5 (2)x 1=3/2 x 2=-2 22、(本题8分)(1)图略……………………2分(2)图略……………………4分(3)P(1,0) ,(2,0),()0,2 ,)0,2(-……………………8分 23、23、(本题7分) 解;设路宽为x 米则406041)240)(360(⨯⨯=--x x ……………………3分 整理得:0300402=+-x x解得301=x ,102=x ……………………4分 检验 301=x ( 不合题意)……………………5分答:路宽为10米. ……………………6分 24、(本题7分)把△ABF 绕点B 顺时钟转90°,得△CBG则点E 、C 、G 三点共线,且BF=BG,∠1=∠2,∠FBG=90°……………………1分 ∵EG=AF+CE 又∵CE+AF=EF∴EF=EG ……………………3分 又BF=BG BE=BE∴△EBF ≌△EBG(SSS) ……………………5分 ∴∠EBF=∠EBG ……………………6分 又∠FBG=90°∴∠EBF=45° ……………………7分(按实际情况酌情给分)25、(本题10分)解; (1)设每件衬衫应降价x 元根据题意得;1200)220)(40(=+-x x ……………………2分 整理得:0200302=+-x x解得:201=x ,102=x …………………………4分答:每件衬衫应降价10元或20元……………………5分 商场每天盈利:(40-x)(20+2x)……………………7分=800+60x -2x 2=-2(x -15)2+1250. ……………………9分当x=15时,商场最大盈利1250元。

湖北省襄阳市2019年中考[数学]考试真题和参考答案

湖北省襄阳市2019年中考[数学]考试真题和参考答案

湖北省襄阳市2019年中考[数学]考试真题与答案解析一、选择题本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是( )A.﹣2 B.2 C.﹣D.【知识考点】绝对值.【思路分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解题过程】解:|﹣2|=2.故选:B.【总结归纳】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是( )A.132° B.128° C.122° D.112°【知识考点】平行线的性质.【思路分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解题过程】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.【总结归纳】此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.下列运算一定正确的是( )A.a+a=a2B.a2•a3=a6C.(a3)4=a12D.(ab)2=ab2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.【总结归纳】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定【知识考点】算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【解题过程】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.【总结归纳】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.如图所示的三视图表示的几何体是( )A.B.C.D.【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【总结归纳】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.不等式组中两个不等式的解集在数轴上表示正确的是( )A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】根据不等式组可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.【解题过程】解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.【总结归纳】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【知识考点】作图—基本作图.【思路分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解题过程】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【总结归纳】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A.B.C.D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:根据题意可得:,故选:C.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是( )A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形【知识考点】平行四边形的判定与性质;菱形的性质;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.【解题过程】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD 是菱形,故四边形ABCD是正方形,该结论正确;故选:B.【总结归纳】本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有( )A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系.【思路分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【解题过程】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.【总结归纳】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.二、填空题本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是 .【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解题过程】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【总结归纳】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= °.【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解题过程】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【总结归纳】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为 .【知识考点】概率公式.【思路分析】从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,由概率公式即可得出答案.【解题过程】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.【总结归纳】本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t ﹣6t2.则汽车从刹车到停止所用时间为 秒.【知识考点】二次函数在给定区间上的最值.【思路分析】利用配方法求二次函数最值的方法解答即可.【解题过程】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.【总结归纳】考查了二次函数最值的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 °.【知识考点】线段垂直平分线的性质;垂径定理;圆周角定理.【思路分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解题过程】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.【总结归纳】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为 .【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=,设BF=x,BE =2x,由勾股定理得出EF=3x,得出AB=BF,则可得出答案.【解题过程】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.【总结归纳】本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.三、解答题本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.【知识考点】整式的混合运算—化简求值.【思路分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解题过程】解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.【总结归纳】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD =140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】求出∠E的度数,再在Rt△BDE 中,依据三角函数进行计算即可.【解题过程】解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D=560×cos50°≈560×0.64=358.4(米).答:点E与点D间的距离是358.4米.【总结归纳】考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?【知识考点】分式方程的应用.【思路分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为 人.【知识考点】用样本估计总体;频数(率)分布直方图;中位数;众数.【思路分析】(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占,因此估计总体1500人的是80分以上的人数.【解题过程】解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),故答案为:720.【总结归纳】考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m= ,n= ;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 .【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.【解题过程】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.【总结归纳】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O 的切线;(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.【解题过程】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【知识考点】一元一次不等式组的应用;一次函数的应用.【思路分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a 的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论分情况讨论.【解题过程】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意可设甲种水果为千克,乙种水果为千克当时,即0≤a≤125,则甲种水果的进货价为30元/千克,(40﹣30)×a+(36﹣25)×≥1650,解得a≥,与0≤a≤125矛盾,故舍去;当时,即a>125,则甲种水果的进货价为24元/千克,≥1650,解得x≥150,∴a的最小值为150.【总结归纳】本题主要考查了一次函数的图象以及一元一次不等式组的应用.借助函数图象表达题目中的信息,读懂图象是关键.24.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE= °;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.【知识考点】三角形综合题.【思路分析】(1)①证明△ABD≌△ACF(AAS)可得结论.②利用四点共圆的性质解决问题即可.(2)结论不变.利用四点共圆证明即可.(3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.【解题过程】(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.②结论:∠ACE=90°.理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.故答案为90.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴==,设EC=a,则AB=AC=3a,AK=3a﹣,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a﹣,∵EK2=CK2+EC2,∴(3a﹣)2=()2+a2,解得a=4或0(舍弃),∴EC=4,AB=AC=12,∴AE===4,∴DP=PA=PE=AE=2,EF=AE=,∴PF=PE=2,∵∠DPF=90°,∴DF===4.【总结归纳】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【知识考点】二次函数综合题.【思路分析】(1)令x=0,由y=﹣x+2,得A点坐标,令y=0,由y=﹣x+2,得C点坐标,将A、C的坐标代入抛物线的解析式便可求得抛物线的解析式,进而由二次函数解析式令y=0,便可求得B点坐标;(2)过M点作MN⊥x轴,与AC交于点N,设M(a,),则N(a,),由三角形的面积公式表示出四边形的面积关于a的函数关系式,再根据二次函数的性质求得最大值,并求得a的值,便可得M点的坐标;(3)根据旋转性质,求得O′点和A′点的坐标,令O′点和A′点在抛物线上时,求出m 的最大和最小值便可.【解题过程】解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.。

襄阳XX中学2019届九年级上期中数学试卷含答案解析

襄阳XX中学2019届九年级上期中数学试卷含答案解析

襄阳XX中学2019届九年级上期中数学试卷含答案解析XX中学九年级(上)期中数学试卷一、选择题1.将一元一次方程3x2﹣1=6x化成一般形式后,二次项系数和一次项系数分别为()A.3,﹣6 B.3,6 C.3,﹣1 D.3x2,﹣6x2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=23.下列电视台的台标,是中心对称图形的是()A.B.C.D.4.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°5.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°6.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B. C.D.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28 B. x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 8.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.910.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个二、填空题11.一元二次方程x 2﹣x=0的根是 .12.已知抛物线y=ax 2+bx+c (a ≠0)与x 轴交于A ,B 两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB 的长为 .13.关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a 的最大值是 .14.著名画家达芬奇不仅画意超群,同时还是一个数学家,发明家.他增进设计过一种圆规.如图所示,有两个互相垂直的话槽(滑槽宽度忽略不计)一根没有弹性的木棒的两端A ,B 能在滑槽内自由滑动,将笔插入位于木棒中点P 处的小孔中,随着木棒的滑动就可以画出一个圆来,若AB=10cm ,则画出的圆半径为 cm .15.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换: ①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于 .16.如图,正方形ABCD 中,已知AB=3,点E ,F 分别在BC 、CD 上,且∠BAE=30°,∠DAF=15°,则△AEF 的面积为 .三、解答题:(共9小题,共72分)17.解方程:x 2+3x ﹣1=0.18.如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,求a 的值.19.如图,弦AB 和CD 相交于⊙O 内一点E ,AE=CE .求证:BE=DE .20.如图是一张长8cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样大小的正方形,可制成底面积是18cm 2的一个无盖长方体纸盒,求剪去的正方形的边长.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (3,4)、B (1,1)、C (4,2).(1)画出△ABC 绕点B 逆时针旋转90°后得到的△A 1BC 1,其中A 、C 分别和A 1、C 1对应.(2)平移△ABC ,使得A 点落在x 轴上,B 点落在y 轴上,画出平移后的△A 2B 2C 2,其中A 、B 、C 分别和A 2B 2C 2对应.(3)填空:在(2)的条件下,设△ABC ,△A 2B 2C 2的外接圆的圆心分别为M 、M 2,则MM 2= .22.如图,在半径为5的扇形AOB 中,∠AOB=90°,点C 是上的一点,且BC=2,OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)求线段OD 、DE 的长;(2)求线段OE 的长.23.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该种品牌玩具获得的利润为w元.(1)请直接写出y与x,w与x的函数表达式;(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x应定为多少元?(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?24.(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD ≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.25.如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)在第一象限内抛物线上,找一点M使△OCM的面积是△OAM的面积的倍,求点M的坐标;(3)在抛物线上,找一点N使∠NCA=2∠ACB,求点N的坐标.-学年襄阳九年级(上)期中数学试卷参考答案与试题解析一、选择题1.将一元一次方程3x2﹣1=6x化成一般形式后,二次项系数和一次项系数分别为()A.3,﹣6 B.3,6 C.3,﹣1 D.3x2,﹣6x【考点】一元二次方程的一般形式.【专题】计算题.【分析】方程移项变形为一般形式,找出二次项系数和一次项系数即可.【解答】解:方程整理得:3x2﹣6x﹣1=0,则二次项系数和一次项系数分别为3,﹣6,故选A.【点评】考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.下列电视台的台标,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.4.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°【考点】圆周角定理.【专题】压轴题.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠BOC=2∠A=100°.故选D.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.5.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°【考点】旋转的性质.【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【解答】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选:C.【点评】此题主要考查了旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,根据已知得出∠ACA′=40°是解题关键.6.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B. C.D.【考点】二次函数图象与几何变换.【分析】确定出平移前的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出抛物线解析式即可.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选B.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28 B. x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为: x(x﹣1)=4×7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.8.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.9【考点】解直角三角形;全等三角形的判定;圆心角、弧、弦的关系;圆周角定理.【专题】综合题.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8﹣x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=7.故选B.【点评】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.此题是一个大综合题,难度较大.10.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的对称轴在y 轴右侧,可以判定a 、b 异号,由此确定①正确;由抛物线与x 轴有两个交点得到b 2﹣4ac >0,又抛物线过点(0,1),得出c=1,由此判定②正确;由抛物线过点(﹣1,0),得出a ﹣b+c=0,即a=b ﹣1,由a <0得出b <1;由a <0,及ab <0,得出b >0,由此判定④正确;由a ﹣b+c=0,及b >0得出a+b+c=2b >0;由b <1,c=1,a <0,得出a+b+c <a+1+1<2,由此判定③正确;由图象可知,当自变量x 的取值范围在一元二次方程ax 2+bx+c=0的两个根之间时,函数值y >0,由此判定⑤错误.【解答】解:∵二次函数y=ax 2+bx+c (a ≠0)过点(0,1)和(﹣1,0),∴c=1,a ﹣b+c=0.①∵抛物线的对称轴在y 轴右侧,∴x=﹣>0,∴a 与b 异号,∴ab <0,正确;②∵抛物线与x 轴有两个不同的交点,∴b 2﹣4ac >0,∵c=1,∴b 2﹣4a >0,b 2>4a ,正确;④∵抛物线开口向下,∴a <0,∵ab <0,∴b >0.∵a ﹣b+c=0,c=1,∴a=b ﹣1,∵a <0,∴b ﹣1<0,b <1,∴0<b <1,正确;③∵a ﹣b+c=0,∴a+c=b ,∴a+b+c=2b >0.∵b <1,c=1,a <0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,∴0<a+b+c <2,正确;⑤抛物线y=ax 2+bx+c 与x 轴的一个交点为(﹣1,0),设另一个交点为(x 0,0),则x 0>0,由图可知,当x 0>x >﹣1时,y >0,错误;综上所述,正确的结论有①②③④.故选B.【点评】本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a 的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意二次函数与方程之间的转换.二、填空题11.一元二次方程x2﹣x=0的根是x1=0,x2=1 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8 .【考点】抛物线与x轴的交点.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是0 .【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,再求出两不等式的公共部分得到a≤且a≠1,然后找出此范围内的最大整数即可.【解答】解:根据题意得a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.14.著名画家达芬奇不仅画意超群,同时还是一个数学家,发明家.他增进设计过一种圆规.如图所示,有两个互相垂直的话槽(滑槽宽度忽略不计)一根没有弹性的木棒的两端A,B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来,若AB=10cm,则画出的圆半径为 5 cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB,即为圆的半径.【解答】解:如图,∵两个滑槽互相垂直,点P是木棒的中点,∴OP=AB=×10=5cm,即画出的圆半径为5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质是解题的关键.15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【考点】点的坐标.【专题】新定义.【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.16.如图,正方形ABCD中,已知AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则△AEF的面积为9﹣3.【考点】正方形的性质.【专题】计算题;推理填空题.【分析】如图,把△ADF 绕点A 逆时针旋转90°得到△ABM .则AM=AF ,∠FAD=∠MAB=15°,首先证明△EAF ≌EAM ,推出ME=EF ,推出ME=BM+BE=BE+DF ,设FE=a ,在Rt △ABE 中,由∠ABE=90°,AB=3,∠BAE=30°,推出BE=,DF=a ﹣,CF=3﹣(a ﹣),根据EF 2=EC 2+CF 2,列出方程求出a 即可解决问题.【解答】解:如图,把△ADF 绕点A 逆时针旋转90°得到△ABM .则AM=AF ,∠FAD=∠MAB=15°∵四边形ABCD 是正方形,∴AB=AD=BC=CD ,∠D=∠ABC=∠ABM=90°,∵∠BAE=30°,∠DAF=15°,∴∠EAF=45°,∠MAE=∠MAB+∠BAE=45°=∠EAF ,在△EAF 和△EAM 中,,∴△EAF ≌EAM ,∴ME=EF ,∵ME=BM+BE=BE+DF ,设FE=a ,在Rt △ABE 中,∵∠ABE=90°,AB=3,∠BAE=30°,∴BE=,DF=a ﹣,CF=3﹣(a ﹣),∵EF 2=EC 2+CF 2,∴a 2=(3﹣)2+[3﹣(a ﹣)]2,∴a=6﹣2,∴S △AEF =S △AME =•EM •AB=•(6﹣2)×3=9﹣3.故答案为9﹣3.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角旋转等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线的方法,记住基本图形、基本结论,属于中考常考题型.三、解答题:(共9小题,共72分)17.解方程:x 2+3x ﹣1=0.【考点】解一元二次方程-公式法.【专题】计算题.【分析】找出a ,b ,c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=3,c=﹣1,∵△=9+4=13,∴x=,则x 1=,x 2=.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.18.如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,求a 的值.【考点】根的判别式;根与系数的关系.【分析】利用根与系数的关系求得x 1x 2=a ,x 1+x 2=﹣4,然后将其代入x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=0列出关于a 的方程,通过解方程即可求得a 的值.【解答】解:∵x 1,x 2是关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根, ∴x 1x 2=a ,x 1+x 2=﹣4,∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0,解得:a=﹣3.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.19.如图,弦AB 和CD 相交于⊙O 内一点E ,AE=CE .求证:BE=DE .【考点】圆周角定理;全等三角形的判定与性质.【专题】证明题.【分析】由∠A=∠C,∠D=∠B,再加上AE=CE,即可得到△AED≌△CEB,从而有BE=DE.【解答】证明:在△ADE和△CBE中有,∴△AED≌△CEB,∴BE=DE.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了三角形全等的判定与性质.20.如图是一张长8cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样大小的正方形,可制成底面积是18cm2的一个无盖长方体纸盒,求剪去的正方形的边长.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(8﹣2x),宽为(5﹣2x),然后根据底面积是18cm2即可列出方程.【解答】解:设剪去的正方形边长为xcm,依题意得(8﹣2x)•(5﹣2x)=18,解得:x=1或x=>5(舍去).答:减去的正方形的边长为1cm.【点评】本题考查了一元二次方程的应用,明白纸盒的结构是解题的关键.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (3,4)、B (1,1)、C (4,2).(1)画出△ABC 绕点B 逆时针旋转90°后得到的△A 1BC 1,其中A 、C 分别和A 1、C 1对应.(2)平移△ABC ,使得A 点落在x 轴上,B 点落在y 轴上,画出平移后的△A 2B 2C 2,其中A 、B 、C 分别和A 2B 2C 2对应.(3)填空:在(2)的条件下,设△ABC ,△A 2B 2C 2的外接圆的圆心分别为M 、M 2,则MM 2=.【考点】作图-旋转变换;勾股定理;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A 、C 绕点B 逆时针旋转90°的对应点A 1、C 1的位置,再与点A 顺次连接即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(3)根据平移的性质,对应点的连续互相平行且相等可得MM 2=AA 2,再利用勾股定理列式计算即可得解.【解答】解:(1)△A 1BC 1如图所示;(2)△A 2B 2C 2如图所示;(3)∵M 、M 2分别为△ABC ,△A 2B 2C 2的外接圆的圆心,∴MM 2=AA 2,由勾股定理得,AA 2==,所以,MM 2=.故答案为:.【点评】本题考查了利用旋转变换作图,利用平移变换作图,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是上的一点,且BC=2,OD⊥BC,OE⊥AC,垂足分别为D、E.(1)求线段OD、DE的长;(2)求线段OE的长.【考点】垂径定理;勾股定理;三角形中位线定理.【专题】计算题.【分析】(1)连结AB,如图1,根据垂径定理,由OD⊥BC得到BD=BC=1,再在Rt△OBD中,利用勾股定理可计算出OD=2,然后证明DE为△ABC的中位线,根据三角形中位线性质得到DE=AB,接着证明△AOB为等腰直角三角形得到AB=OB=5,所以DE=;(2)作DH⊥OE,连结OC,如图2先证明∠2+∠3=45°,得到△ODH为等腰直角三角形,则OH=DH=OD=2,再在Rt△DHE中,利用勾股定理计算出HE=,然后由OE=OH+HE 计算即可.【解答】解:(1)连结AB,如图1,∵OD⊥BC,∴BD=CD=BC=1,在Rt△OBD中,∵BD=1,OB=5,∴OD==2,∵OE⊥AC,∴AE=CE,∴DE为△ABC的中位线,∴DE=AB,∵∠AOB=90°,∴△AOB为等腰直角三角形,∴AB=OB=5,∴DE=;即线段OD、DE的长分别为2,;(2)作DH⊥OE,连结OC,如图2,∵OC=OB,OD垂直平分BC,∴OD平分∠BOC,即∠3=∠4,同理可得∠1=∠2,而∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°,∴△ODH为等腰直角三角形,∴OH=DH=OD=•2=2,在Rt△DHE中,∵DH=2,DE=,∴HE==,∴OE=OH+HE=2+.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和三角形中位线定理.23.(•沈阳二模)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少销售10件玩具,设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该种品牌玩具获得的利润为w元.(1)请直接写出y与x,w与x的函数表达式;(2)若商场获得了10000元的销售利润,求该种品牌玩具销售单价x应定为多少元?(3)若玩具厂规定该种品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该种品牌玩具获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得y=600﹣(x﹣40)×10=1000﹣10x,利润W=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【解答】解:(1)y=600﹣(x﹣40)×10=1000﹣10x,W=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000;(2)﹣10x2+1300x﹣30000=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润,(3)根据题意得,解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.24.(秋•期中)(1)如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD≌△BCE;(2)如图2,将图1中△DCE绕点C逆时针旋转n°(0<n<45°),使∠BED=90°,又作△DCE中DE边上的高CM,请完成图2,并判断线段CM、AE、BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【考点】全等三角形的判定与性质.【分析】(1)易证∠ACD=∠BCE,即可解题;(2)根据△ACD≌△BCE,即可证明AD=EB,即可解题;(3)易证△DPE∽△BAE,即可求得PE的值,即可解题.【解答】解:(1)∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)如图2,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠BEC=∠ADC=135°,∴A、D、E三点共线,∵DE=DM+ME=2CM,∴AE=BE+2CM;(3)①如图,∵∠DPE=∠BAE=90°,∴△DPE∽△BAE,∴=,∵BP==3,解得PE=,∴A到BE距离为=1.②如图,∵∠DPE=∠BCE=90°,∴△DPE∽△BCE,∴=,∵BP==3,∴PE=,∴C到BE距离为=1.∴A到BE距离为2.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,考查了勾股定理的运用.25.(秋•校级期中)如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)在第一象限内抛物线上,找一点M使△OCM的面积是△OAM的面积的倍,求点M的坐标;(3)在抛物线上,找一点N使∠NCA=2∠ACB,求点N的坐标.【考点】二次函数综合题.【分析】(1)把A(﹣1,0),B(3,0)两点代入y=ax2+bx﹣3求解即可,(2)由y=x2﹣2x﹣3交y轴于点C.可得OC=3,设M(x,y),由△OCM的面积是△OAM的面积的倍,可得OC•x=ו|AO|•y,解得y=2x,代入y=x2﹣2x﹣3求解即可.(3)作NQ⊥AB于点Q,CH⊥NQ于点H,由△AOC∽△NHC,设N(x,y),由=,可得x=﹣3y﹣9,与y=x2﹣2x﹣3联立求解即可.【解答】解:(1)把A(﹣1,0),B(3,0)两点代入y=ax2+bx﹣3得,解得,所以抛物线的解析式y=x2﹣2x﹣3.(2)如图1,∵y=x 2﹣2x ﹣3交y 轴于点C .∴OC=3,设M (x ,y ),∵△OCM 的面积是△OAM 的面积的倍,∴OC •x=ו|AO|•y ,∴y=2x ,代入y=x 2﹣2x ﹣3得,x 1=2+,x 2=2﹣(舍去),∴y=2x=4+2,∴M (2+,4+2). (3)如图2,作NQ ⊥AB 于点Q ,CH ⊥NQ 于点H ,∵OB=3,OC=3,∴∠OCB=∠BCH=45°,∵∠NCA=2∠ACB,∴∠OCA=∠NCH,∠AOC=∠NHC=90°,∴△AOC∽△NHC,设N(x,y),∴=,∴=,解得x=﹣3y﹣9,与y=x2﹣2x﹣3联立得,解得(舍去),.∴N((,﹣).【点评】本题主要考查了二次函数的综合题,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识求解.。

湖北省襄阳市九年级上学期数学期中试卷

湖北省襄阳市九年级上学期数学期中试卷

湖北省襄阳市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列函数中是反比例函数的是()A . y=﹣B . y=C . y=﹣3x2D . y=﹣3x+1【考点】2. (2分)(2017·永州) 在同一平面直角坐标系中,函数y=x+k与y= (k为常数,k≠0)的图象大致是()A .B .C .D .【考点】3. (2分) (2019八下·余姚月考) 在下列方程中,是一元二次方程的是()A .B .C .D .【考点】4. (2分)将矩形ABCD按如图方式铺在长为4cm.宽为2cm的矩形纸片(图中阴影部分)右侧,若组成的新矩形与原矩形(图中阴影部分)相似,则AB=()cm.A . 3B . 6C . 8D . ﹣1【考点】5. (2分) (2019九上·武汉月考) 将方程x2-8x=10化为一元二次方程的一般形式,其中一次项系数、常数项分别是()A . -8、-10B . -8、10C . 8、-10D . 8、10【考点】6. (2分)如果,那么的值是()A .B .C .D . 5【考点】7. (2分) (2020九上·南山期中) 若x=3是关于x的一元二次方程的一个解,则m的值为()A . 2B . 1C . 0D . -2【考点】8. (2分)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A . ∠ABP=∠CB . ∠APB=∠ABCC .D .【考点】9. (2分)(2018·重庆) 如图,在平面直角坐标系中,菱形ABCD的顶点A , B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A .B .C . 4D . 5【考点】10. (2分) (2019九上·章丘期中) 如图,Rt△ABC中,,,,D 为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为()A . 2或3.5B . 2或3.2C . 2或3.4D . 3.2或3.4【考点】二、填空题 (共8题;共10分)11. (1分)已知△ABC中的三边a=2,b=4,c=3,ha , hb , hc分别为a,b,c上的高,则ha:hb:hc=________.【考点】12. (1分)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为________m.【考点】13. (1分) (2019九上·巴州期中) 关于x的方程有解,则k的范围是________.【考点】14. (1分) (2015八下·开平期中) 反比例函数的图像在第一、三象限,则m的取值范围是________【考点】15. (2分) (2019九上·陵县月考) 如图,一次函数的图象与反比例函数的图象交于点,C ,交y轴于点B ,交x轴于点D ,那么不等式的解集是________ .【考点】16. (1分) (2020九上·泉州期末) 一元二次方程的根是________.【考点】17. (1分) (2019八下·西湖期末) 若反比例函数y=的图象经过点(2,﹣3),则k=________.【考点】18. (2分)如图,在长8cm,宽4cm的矩形中截去一个矩形(阴影部分)使留下的矩形与原矩形相似,那么留下的矩形的面积为________cm2 .【考点】三、解答题 (共8题;共47分)19. (5分)(2019·温州模拟)(1)计算:|- |-3tan60°+(2019-π)0(2)化简:(n-3)2+n(8-n)【考点】20. (5分) (2019九上·余杭期末) 周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.已知:,,测得,, .测量示意图如图所示.请根据相关测量信息,求河宽 .【考点】21. (10分) (2018九上·镇海期末) 如图,为的直径,于点,交于点,于点 .(1)求证:;(2)当,时,求圆中阴影部分的面积.【考点】22. (2分)(2012·贺州) 某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?【考点】23. (10分) (2019九上·东莞期末) 如图,直线y=2x与反比例函数y= (x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B .(1)求k的值;(2)点C在AB上,若OC=AC ,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD ,求点D的坐标.【考点】24. (2分)(2011·泰州) 如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.【考点】25. (11分)(2019·周至模拟) 如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.【考点】26. (2分) (2015九上·汶上期末) 如图,已知一次函数y=x+b与反比例函数y= 的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.【考点】参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共47分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

2019年湖北省襄阳中考数学试卷(含答案与解析)

2019年湖北省襄阳中考数学试卷(含答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前湖北省襄阳市2019年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3-的结果是( )A .3B .13C .3-D .3±2.下列运算正确的是( )A . 32a a a -=B .236a a a ⋅=C .623a a a ÷=D .236()a a --= 3.如图,直线BC AE ∥,CD AB ⊥于点D ,若40BCD =︒∠,则1∠的度数是 ( )第3题图A .60oB .50oC .40oD .30o4.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )第4题图A .青B .来C .斗D .奋5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D6.不等式组24339x x x x +⎧⎨++⎩<≥的解集在数轴上用阴影表示正确的是( )A B C D7.如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C ,D 两点,连接AC ,BC ,AD ,BD ,则四边形ADBC 一定是 ( )第7题图A .正方形B .矩形C .梯形D .菱形8.下列说法错误的是( )A .必然事件发生的概率是1B .通过大量重复试验,可以用频率估计概率C .概率很小的事件不可能发生D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是 ( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 10.如图,AD 是O e 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是 ( )第10题图A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为 .12.定义:*aa b b =,则方程2*(3)1*(2)x x +=的解为 .13.从2,3,4,6中随机选取两个数记作a 和b (a b <),那么点(,)a b 在直线2y x =上毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)的概率是 .14.如图,已知ABC DCB =∠∠,添加下列条件中的一个:①A D =∠∠,②AC DB =,③AB DC =,其中不能确定ABC DCB △≌△的是 (只填序号).第14题图15.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为 s .第15题图16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,30BAC DEC ==︒∠∠,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CFEF= .第16题图三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中1x .18.(本小题满分6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3 000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,(1)表中a = ,b =; (2)这组数据的中位数落在 范围内;(3)判断:这组数据的众数一定落在7080x ≤<范围内,这个说法 (填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在8090x ≤<范围内的扇形圆心角的大小为 ;(5)若成绩不小于80分为优秀,则全校大约有 名学生获得优秀成绩.19.(本小题满分6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD )16m ,宽(AB )9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为2112m ,则小路的宽应为多少?第19题图数学试卷 第5页(共22页) 数学试卷 第6页(共22页)20.(本小题满分6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠BE )进行了测量.如图所示,最外端的拉索AB 的底端A 到塔柱底端C 的距离为121m ,拉索AB 与桥面AC 的夹角为37︒,从点A 出发沿AC 方向前进23.5m ,在D 处测得塔冠顶端E 的仰角为45︒.请你求出塔冠BE 的高度(结果精确到0.1m .参考数据sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,1.41).第20题图21.(本小题满分7分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、第三象限分别交于(3,4)A ,(,2)B a -两点,直线AB 与y 轴,x 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD ______BC (填“>”或“<”或“=”); (3)直接写出12y y <时x 的取值范围.第21题图22.(本小题满分7分)如图,点E 是ABC △的内心,AE 的延长线和△ABC 的外接圆O e 相交于点D ,过D 作直线DG BC ∥.(1)求证:DG 是O e 的切线;(2)若6DE =,BC =¼BAC的长.第22题图23.(本小题满分10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、(1)该超市购进甲种蔬菜10kg 和乙种蔬菜5kg 需要170元;购进甲种蔬菜6kg 和乙种蔬菜10kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg 进行销售,其中甲种蔬菜的数量不少于20kg ,且不大于70kg .实际销售时,由于多种因素的影响,甲种蔬菜超过60kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg )之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________24.(本小题满分10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ AE⊥于点O,点G,F分别在边CD,AB上,GF AE⊥.①求证:DQ AE=;②推断:GFAE的值为;(2)类比探究:如图(2),在矩形ABCD中,BCkAB=(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当23k=时,若3tan4CGP∠=,GF=求CP的长.第24题图(1)第24题图(2)25.(本小题满分13分)如图,在直角坐标系中,直线132y x=-+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC△相似?若存在,求出点Q的坐标;若不存在,请说明理由.第25题图数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)湖北省襄阳市2019年初中毕业生学业水平考试数学答案解析一、选择题 1.【答案】A【解析】解:33-=. 故选:A .根据绝对值的性质进行计算. 【考点】绝对值的性质 2.【答案】D【解析】解:A .32a a -,无法计算,故此选项错误; B .235a a a ⋅=,故此选项错误; C .624a a a ÷=,故此选项错误; D .()326a a --=,正确.故选:D .直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案. 【考点】合并同类项,同底数幂的乘除运算 3.【答案】B【解析】解:∵CD AB ⊥于点D ,40BCD =︒∠, ∴90CDB =︒∠.∴90BCD DBC +=︒∠∠,即4090BCD +︒=︒∠. ∴50DBC =︒∠. ∵直线BC AE ∥,∴150DBC ==︒∠∠. 故选:B .先在直角CBD △中可求得DBC ∠的度数,然后平行线的性质可求得1∠的度数. 【考点】平行线的性质,垂线的定义,直角三角形两锐角互余的性质 4.【答案】D【解析】解:由:“Z ”字型对面,可知春字对应的面上的字是奋; 故选:D .正方体展开图的“Z ”字型找对面的方法即可求解; 【考点】正方体的展开图 5.【答案】B【解析】解:A .是轴对称图形,不是中心对称图形,故此选项错误; B .是轴对称图形,也是中心对称图形,故此选项正确; C .不是轴对称图形,是中心对称图形,故此选项错误; D .不是轴对称图形,是中心对称图形,故此选项错误. 故选:B .根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形与轴对称图形的概念 6.【答案】C【解析】解:不等式组整理得:43x x ⎧⎨-⎩<≤,∴不等式组的解集为3x -≤,故选:C .求出不等式组的解集,表示出数轴上即可. 【考点】解一元一次方程组 7.【答案】D【解析】解:由作图可知:AC AD BC BD ===, ∴四边形ACBD 是菱形, 故选:D .根据四边相等的四边形是菱形即可判断. 【考点】基本作图,菱形的判定 8.【答案】C【解析】解:A .必然事件发生的概率是1,正确; B .通过大量重复试验,可以用频率估计概率,正确; C .概率很小的事件也有可能发生,故错误;D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确, 故选:C .不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【考点】本题考查了概率的意义 9.【答案】B【解析】解:设合伙人数为x 人, 依题意,得:54573x x +=+. 故选:B .设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解. 【考点】由实际问题抽象出一元一次方程 10.【答案】A【解析】解:∵AD 为直径, ∴90ACD =︒∠,∵四边形OBCD 为平行四边形, ∴CD OB ∥,CD OB =, 在Rt ACD △中,1sin 2CD A AD ==, ∴30A =︒∠,在Rt AOP △中,AP ,所以A 选项的结论错误; ∵OP CD ∥,CD AC ⊥,数学试卷 第11页(共22页) 数学试卷 第12页(共22页)∴OP AC ⊥,所以C 选项的结论正确; ∴AP CP =,∴OP 为ACD △的中位线,∴2CD OP =,所以B 选项的结论正确; ∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确. 故选:A .利用圆周角定理得到90ACD =︒∠,再根据平行四边形的性质得到CD OB ∥,CD OB =,则可求出30A =︒∠,在Rt AOP △中利用含30度的直角三角形三边的关系可对A 选项进行判断;利用OP CD ∥,CD AC ⊥可对C 选项进行判断;利用垂径可判断OP 为ACD △的中位线,则2CD OP =,原式可对B 选项进行判断;同时得到2OB OP =,则可对D 选项进行判断.【考点】圆周角定理,垂径定理,平行四边形的性质. 二、填空题11.【答案】81.210⨯【解析】解:81.2 1.210=⨯亿. 故答案为:81.210⨯.科学记数法就是将一个数字表示成(10a ⨯的n 次幂的形式),其中110a ≤<,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂. 【考点】科学记数法的理解和运用,单位的换算 12.【答案】1x =【解析】解:2*(3)1*(2)x x +=, 2132x x =+, 43x x =+, 1x =,经检验:1x =是原方程的解, 故答案为:1x =.根据新定义列分式方程可得结论. 【考点】解分式方程,新定义的理解 13.【答案】13【解析】解:画树状图如图所示,一共有6种情况,2b a =的有(2,4)和(3,6)两种,所以点(,)a b 在直线2y x =上的概率是2163=, 故答案为:13.画出树状图,找到2b a =的结果数,再根据概率公式解答 【考点】列表法与树状图法 14.【答案】②【解析】解:∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC DCB △≌△;若添加②AC DB =,则属于边边角的顺序,不能判定ABC DCB △≌△; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC DCB △≌△. 故答案为:②.一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解. 【考点】全等三角形的几种基本判定方法 15.【答案】4【解析】解:依题意,令0h =得 20205t t =-得(205)0t t -=解得0t =(舍去)或4t =即小球从飞出到落地所用的时间为4s 故答案为4.根据关系式,令0h =即可求得t 的值为飞行的时间 【考点】二次函数的性质在实际生活中的应用 16.【答案】3【解析】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N , ∵1BD =,5AD =, ∴6AB BD AD =+=,∵在Rt ABC △中,30BAC ∠=︒,9060B BAC ∠=︒-∠=︒,∴132BC AB ==,AC ==, 在Rt BCA △与Rt DCE △中, ∵30BAC DEC =∠=︒,∴tan tan BAC DEC ∠=∠,∴BC DCAC EC=, ∵90BCA DCE =∠=︒,∴BCA DCA DCE DCA -∠=∠-∠∠, ∴BCD ACE ∠=∠,数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴BCD ACE △∽△, ∴60CAE B ∠=∠=︒, ∴BC BDAC AE=, ∴306090DAE DAC CAE ∠=∠+∠=︒+︒=︒1AE,∴AE =, 在Rt ADE △中,DE = 在Rt DCE △中,30DEC ∠=︒,∴60EDC ∠=︒,12DC DE ==,在Rt DCM △中,MC =在Rt AEN △中,32NE AE ==,∵MFC NFE ∠=∠,90FMC FNE ∠=∠=, ∴MFC NFE △∽△+,∴2332CF MC EF NE ==,故答案为:3.过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,先证BCD ACE △∽△,求出AE 的长及60CAE ∠=︒,推出90DAE ∠=︒,在Rt DAE △中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt DCM △和Rt AEN △中,求出MC 和NE 的长,再证MFC NFE △∽△,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【考点】相似三角形的判定与性质,勾股定理,解直角三角形 三、解答题17.【答案】解:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭22121111xx x x x x x -++⎛⎫=-÷⎪---⎝⎭21(1)(1)1(1)x x x x +-=⨯-+ 11x =+,当1x =时,原式2==.【解析】根据分式的混合运算法则把原式化简,代入计算即可. 【考点】分式的化简求值 18.【答案】(1)20︒ 0.2︒(2)7080x ︒≤< (3)正确 (4)72︒ (5)900【解析】解:(1)调查学生总数:150.350÷=(名), 7080x ≤<的频数:501510520---=,即20a =。

湖北省襄阳市九年级上学期数学期中考试试卷

湖北省襄阳市九年级上学期数学期中考试试卷

湖北省襄阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)二次根式的值是()A . 3B . 2C . 2D . 02. (2分)方程:①;②;③;④中一元二次方程是()A . ①和②B . ②和③C . ③和④D . ①和③3. (2分) (2019九上·新蔡期末) 如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A . 2B . 4C . 6D . 84. (2分) (2017九下·富顺期中) 函数有意义的自变量x的取值范围是().A . x≤B . x≠C . x≥D . x<5. (2分) (2016高二下·湖南期中) 若等腰三角形的一个内角等于50°,则另外两个角的度数分别为A . 50°、80°B . 65°,65°C . 50°、65°或65°,80°D . 50°、80或65°,65°6. (2分)如图,路灯AB的高度为8米,树CD与路灯的水平距离为4米,则得树在灯光下的影长DE为3米,则树高()A . 4米B . 6米C . 米D . 米7. (2分)用配方法解下列方程,其中应在方程的左右两边同时加上4的是()A . -2x=5B . +4x=5C . +2x=5D . 2 -4x=58. (2分) (2020八下·香坊期末) 一个矩形的长比宽多2cm ,面积是7cm2 .若设矩形的宽为xcm ,则可列方程()A . x(x+2)=7B . x(x﹣2)=7C . x(x+2)=7D . x(x﹣2)=79. (2分)如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P 点.若∠BAC=60°,∠ACP=24°,则∠ABP是()A . 24°B . 30°C . 32°D . 36°10. (2分)已知如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为 1.6m,并测得BC=2.2m,CA=0.8m,那么树DB的高度是()A . 6mB . 5.6mC . 5.4mD . 4.4m二、填空题 (共5题;共5分)11. (1分)若+(b-2)2=0,则ab的值是________.12. (1分) (2019七下·梅江月考) 一个等腰三角形两边的长分别是15cm和7cm ,则它的周长是________cm.13. (1分) (2018九上·扬州月考) 如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是________.14. (1分) (2019八下·朝阳期末) 如图,在中,为边延长线上一点,且,连结、 .若的面积为1,则的面积为________.15. (1分) (2019九下·温州竞赛) 如图,在△ABC中,∠CAB=Rt∠,AC= ,AB=1,点D是BC的中点,将△ABD沿AD翻折得到△AB'D,连结B'C,则B'C的长是________.三、解答题 (共8题;共72分)16. (5分)(2018·焦作模拟) 化简并求值:,其中x,y满足|x+2|+(2x+y﹣1)2=0.17. (15分)计算:(1) + ;(2).18. (10分)如图,先画△ABC关于直线l1的对称△A1B1C1 ,(直线l1过点C),再画出△A1B1C1 ,关于直线l2的对称△A2B2C2 .19. (10分) (2019八上·交城期中) 如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E,连接DE交AB于点F.求证:(1) CD=BE;(2) AB垂直平分DE.20. (5分)已知:如图,△ABC中,∠ACD=∠B,求证:△ABC∽△ACD.21. (10分) (2019八下·硚口月考) 如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?22. (10分) (2018九上·荆州期末) 如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O 交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.23. (7分)(2019·高港模拟) 如图1,已知在矩形ABCD中,AD=10,E是CD上一点,且DE=5,点P是BC 上一点,PA=10,∠PAD=2∠DAE.(1)求证:∠APE=90°;(2)求AB的长;(3)如图2,点F在BC边上且CF=4,点Q是边BC上的一动点,且从点C向点B方向运动.连接DQ,M是DQ 的中点,将点M绕点Q逆时针旋转90°,点M的对应点是M′,在点Q的运动过程中,①判断∠M′FB是否为定值?若是说明理由.②求AM′的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共72分)16-1、17-1、答案:略17-2、答案:略18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、答案:略23-2、答案:略23-3、答案:略。

2019年湖北省襄阳市中考数学试题及参考答案(word解析版)

2019年湖北省襄阳市中考数学试题及参考答案(word解析版)

2019年襄阳市初中毕业生学业水平考试数学试题(满分120分,考试时间120分钟)一、选择题:本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.计算|﹣3|的结果是()A.3 B.C.﹣3 D.±32.下列运算正确的是()A.a3﹣a2=a B.a2•a3=a6C.a6÷a2=a3D.(a2)﹣3=a﹣63.如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°4.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是()A.青B.来C.斗D.奋5.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.7.如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形8.下列说法错误的是()A.必然事件发生的概率是1 B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=10.如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB二、填空题:本大题共6个小题,每小题3分,共18分。

19上学期襄州区年中考试9化学试卷1页压缩版

19上学期襄州区年中考试9化学试卷1页压缩版

19上学期襄州区年中考试9化学试卷1页压缩版
一、选择题(毎空1分,共10分)
1A 2C 3C 4D 5B 6D 7A 8C 9A 10B
二、填空题(毎空1分,共18分)
11.⑴2Fe2+,⑵Na2CO3。

(符号写错不得分)12.⑴3,a.⑵得到,3,O2-。

13.⑴供给人呼吸。

化合。

⑵②⑤(写对一个的0.5分,但含有错误答案不得分,下同)。

⑶肥皂水,煮沸。

(专用术语写错不得分,下同)。

⑷①②③④。

14.
⑴使集气瓶中的氧气反应完全;⑵②⑤⑿;③④⑨⑾。

15.不能,测定的不全是氧气的含量,而是氧气、氮气和二氧化碳的含量。

三、实验探究题(毎空1分,共8分)
16.⑴药匙。

⑵最低处。

17.⑴酒精灯。

B,检验装置的气密性。

⑵剧烈燃烧,火星四溅,放热,生成黑色的固体。

氢气(或H2)。

⑶防止生成的熔融物温度过高而炸裂集气瓶或作反应物或验证氧气约占空气体积的五分之一。

四、计算题(4分)
18.⑴49。

(1分)⑵9:14。

(1分)⑶解:葡萄糖酸锌中锌元素的质量分数为:锌原子的相对原子质量×锌原子个数/葡萄糖酸锌相对分子质量×100%=65/455×100%≈14.3%,每支口服液含锌元素的质量为45.5mg×14.3%≈6.5mg。

答:每支口服液含锌元素的质量为6.5mg。

(2分)其他解法正确可参照给分。

湖北省襄阳市九年级上学期数学期中考试试卷

湖北省襄阳市九年级上学期数学期中考试试卷

湖北省襄阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式中,一定是二次根式的是()A .B .C .D .2. (2分) (2019九上·伍家岗期末) 方程x2+mx﹣3x=0不含x的一次项,则m=()A . 0B . 1C . 3D . ﹣33. (2分) (2019九上·福田期中) 如图,直线a、b被三条互相平行的直线l1 , l2 , l3所截,AB=3,BC=2,则DE:DF=()A . 2:3B . 3:2C . 2:5D . 3:54. (2分)要使二次根式有意义,字母x必须满足的条件是()A . x≥1B . x>-1C . x≥-1D . x>15. (2分) (2011八下·新昌竞赛) 为使有意义,x的取值范围是()A . x>B . x≥C . x≠D . x≥ 且x≠6. (2分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形(图中阴影部分)的面积分别是4,9和49,则△ABC的面积是()A . 81B . 121C . 124D . 1447. (2分)已知x2+y2+4x﹣6y+13=0,则代数式x+y的值为()A . -1B . 1C . 25D . 368. (2分)(2018·道外模拟) 如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2 ,设小路的宽为xm,那么x满足的方程是()A . 2x2-25x+16=0B . x2-25x+32=0C . x2-17x+16=0D . x2-17x-16=09. (2分)(2012·阜新) 如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF= AD,那么平行四边形ABCD应满足的条件是()A . ∠ABC=60°B . AB:BC=1:4C . AB:BC=5:2D . AB:BC=5:810. (2分)如图是某一天四个时刻的旗杆及它们的影子,请选出哪一个图形能表示大约是下午1点的图(用线段表示旗杆的影子)()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018八上·大庆期末) 当x=________时,分式的值等于零.12. (1分) (2017九上·满洲里期末) 如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.13. (1分)已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是________ .14. (1分)如图,在▱ABCD中,对角线AC、BD相交成的锐角α为60°,若AC=10,BD=8,则▱ABCD的面积是________15. (1分)若两个三角形的相似比为3:2,且较大的三角形的周长为9cm,则较小的三角形的周长为________ cm.三、解答题 (共8题;共72分)16. (5分) (2018九上·安陆月考) 先化简,再求值:,其中m是方程x2+2x﹣3=0的根.17. (15分) (2018九上·黑龙江期末) 用适当的方法解下列方程:(1) 3x(x+3)=2(x+3);(2) 2x2-6x-3=0.18. (10分) (2019九上·南山期末) 如图,在6×8的网格图中,每个小正方形边长均为1dm,点O和△ABC 的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1:2;(2)台风“山竹”过后,深圳一片狼藉,小明测量发现一棵被吹倾斜了的树影长为3米,与地面的夹角为45°,同时小明还发现大树树干和影子形成的三角形和△ABC相似(树干对应BC边),求原树高(结果保留根号)19. (10分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.20. (5分) (2017九上·恩阳期中) 如图,△ABC中,AD是∠BAC的平分线,AD的垂直平分线交AD于点E,交BC的延长线于点F.求证:△ABF∽△CAF.21. (10分)(2017·天山模拟) 在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2 .(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?22. (10分)(2017·金乡模拟) 如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.23. (7分) (2017九上·深圳期中) 如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO 为矩形,AB=16,AC=20,点D与点A关于y轴对称,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.(1)直接写出BC的长是________,点D的坐标是________;(2)证明:△AEF与△DCE相似;(3)当△EFC为等腰三角形时,求点E的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共72分)16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

湖北省襄阳市九年级上学期期中数学试卷

湖北省襄阳市九年级上学期期中数学试卷

湖北省襄阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·新兴期中) 下列说法中正确的是A . 多项式的常数项B . 有理数分为正数和负数C . 如果两个数的绝对值相等,那么这两个数相等D . 互为相反数的两个数的绝对值相等2. (2分) (2017九上·鸡西期末) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)把方程x2﹣6x+3=0化成(x﹣m)2=n的形式,则m、n的值是()A . 3,12B . ﹣3,12C . 3,6D . ﹣3,64. (2分)(2017·新泰模拟) 在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A .B .C .D .5. (2分)(2020·贵港模拟) 若是一元二次方程的两根,则 =()A .B . 2C . 3D . 56. (2分) (2017九上·老河口期中) 如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是()A . 90°B . 80°C . 50°D . 30°7. (2分)如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC//OD,AB=2,OD=3,则BC的长为()A .B .C .D .8. (2分)在平面直角坐标系中,已知点M(1,﹣4),若将OM绕原点O逆时针旋转180°得到OM1 ,则点M1所在的位置是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A . 第8秒B . 第10秒C . 第12秒D . 第15秒10. (2分)如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴相交于负半轴.给出四个结论:①;②;③;④.其中结论正确的个数为()A . 1B . 2C . 3D . 411. (2分) (2019九上·荆门期中) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当x<0时,y随x增大而增大,其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个12. (2分)(2017·碑林模拟) 将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A . 1个单位B . 个单位C . 个单位D . 个单位二、填空题 (共6题;共6分)13. (1分) (2019九上·龙泉驿月考) 关于x的一元二次方程2x2﹣2x+(a+1)=0没有实数根,整数a的最小值为________.14. (1分) (2017八下·泰州期中) 如图,正方形ABCD的边长为4cm,E为CD边的中点,,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于________cm.15. (1分)如图,在Rt△ABC中,∠C=90°,BC=6,∠ABC的平分线BD交AC于D,且BD=10,点E是AB 边上的一动点,则DE的最小值为________.16. (1分) (2019九上·杭州月考) 如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0,x的范围是________.17. (1分)(2018·溧水模拟) 如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=α,则∠BED=________.(用含α的代数式表示)18. (1分) (2016七上·鼓楼期中) 如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有________.三、解答题 (共8题;共75分)19. (10分)(2020·海南) 计算:(1);(2) .20. (10分)(2019·孝感) 已知关于的一元二次方程有两个不相等的实数根, .(1)若为正数,求的值;(2)若,满足,求的值.21. (6分) (2016九上·江津期中) 如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1 , A1的坐标是________(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2 ,试在图上画出△A2B2C2的图形.22. (15分)(2017·平谷模拟) 直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C.(1)求点C的坐标;(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.23. (10分)(2016·宜昌) 某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.24. (10分) (2016九上·平南期中) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.(1)以水平的地面为x轴,两棵树间距离的中点O为原点,建立如图所示的平面直角坐标系,求出抛物线的解析式;(2)求绳子的最低点离地面的距离.25. (4分) (2016九上·赣州期中) 自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的________和________.(只填序号)①转化思想②分类讨论思想③数形结合思想(2)一元二次不等式x2﹣5x<0的解集为________.(3)用类似的方法写出一元二次不等式的解集:x2﹣2x﹣3>0.________.26. (10分)(2020·扬州) 如图,内接于,,点E在直径CD的延长线上,且.(1)试判断AE与的位置关系,并说明理由;(2)若,求阴影部分的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

湖北省襄阳市襄州区2019-2020学年人教版九年级(上)期中数学试卷

湖北省襄阳市襄州区2019-2020学年人教版九年级(上)期中数学试卷

2019-2020学年九年级(上)期中数学试卷一.选择题(共10小题)1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程一定是一元二次方程的是()A.x2+2x=x2﹣x+1 B.(x﹣1)2=2x﹣3C.D.ax2+bx=c=03.下列方程没有实数根的是()A.x2+3x=4 B.3x2+6x﹣5=0C.x2﹣4x+5=0 D.(x+2)(x﹣3)=144.抛物线y=﹣2(x+1)2的顶点坐标和对称轴分别是()A.(﹣1,0),直线x=﹣1 B.(1,0),直线x=1C.(0,1),直线x=1 D.(0,1),直线x=05.如图,△ABC与△A′BC′是成中心对称的两个图形,则下列说法不正确的是()A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′6.如图,⊙O的半径为5,弦AB的长为6,M是AB上的动点,则线段OM长的最小值为()A.2 B.3 C.4 D.57.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是()A.25°B.40°C.30°D.50°8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是()A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0 9.如图是二次函数y=﹣x2+2x+4的图象,使y≥1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3 10.如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或4 B.2或3 C.3或4 D.1或2二.填空题(共6小题)11.已知方程x2﹣3x﹣k=0有一根是2,则k的值是.12.已知A(﹣2,y1),B(0,y2),C(1,y3)三点都在抛物线y=﹣2x2﹣4x+5的图象上,则y1,y2,y3的大小关系是.13.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=.14.如图,点M是矩形ABCD下方一点,将△MAB绕点M顺时针旋转60°后,恰好点A与点D重合,得到△MDE,则∠DEC的度数是.15.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.16.如图,抛物线y=ax2+bx+c与x轴交于A,B(m+1,0)两点,与y轴相较于点C,点D 在该抛物线上,其坐标为(m,c),则点A的坐标为.三.解答题(共9小题)17.解下列方程:(1)2x(x+1)=2x+2(2)x2﹣4x﹣4=0(3)x2﹣x﹣7=0(4)(x﹣1)2﹣5(x﹣1)﹣6=018.某种商品的标价是400元/件,经过两次降价后的价格是361元/件,且两次降价的百分率相同.求该商品每次降价的百分率.19.如图,平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐标系中画出与△ABC关于点P(1,0)成中心对称的△A'B'C',并分别写出点A',B',C'的坐标;(2)如果点M(a,b)是△ABC边上(不与A,B,C重合)任意一点,请写出在△A'B'C'上与点M对应的点M'的坐标.20.如图是抛物线在平面直角坐标系中的图象.(1)将的图象向上平移2个单位长度,画出平移后的图象,并写出新图象的解析式、顶点坐标;(2)直接写出将(1)所得的抛物线向右平移两个单位所得抛物线的解析式.21.如图,矩形ABCD的两边长AB=16cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)当△BPQ面积有最大值时,求x的值.22.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.23.如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.(1)请你写出两个不相同的结论(不添加辅助线);(2)连接AD,若BE=4,AC=6,求线段AD的长.24.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销意将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?25.已知二次函数y=﹣x2+x+m.(1)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB和二次函数图象的解析式;(2)在线段AB上有一动点P(不与A,B两点重合),过点P作x轴的垂线,交抛物线于点D,是否存在一点P使线段PD的长有最大值?若存在,求出点P的坐标;若不存在,请说明理由.。

2019年湖北省襄阳中考数学试卷含答案解析

2019年湖北省襄阳中考数学试卷含答案解析

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前湖北省襄阳市2019年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3-的结果是( )A .3B .13C .3-D .3±2.下列运算正确的是( )A . 32a a a -=B .236a a a ⋅=C .623a a a ÷=D .236()a a --= 3.如图,直线BC AE ∥,CD AB ⊥于点D ,若40BCD =︒∠,则1∠的度数是 ( )第3题图A .60B .50C .40D .304.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )第4题图A .青B .来C .斗D .奋5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D6.不等式组24339x x x x +⎧⎨++⎩<≥的解集在数轴上用阴影表示正确的是( )A B C D7.如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C ,D 两点,连接AC ,BC ,AD ,BD ,则四边形ADBC 一定是 ( )第7题图A .正方形B .矩形C .梯形D .菱形8.下列说法错误的是 ( ) A .必然事件发生的概率是1B .通过大量重复试验,可以用频率估计概率C .概率很小的事件不可能发生D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是 ( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 10.如图,AD 是O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是 ( )第10题图A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为 .12.定义:*aa b b =,则方程2*(3)1*(2)x x +=的解为 .13.从2,3,4,6中随机选取两个数记作a 和b (a b <),那么点(,)a b 在直线2y x =上的毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)概率是 .14.如图,已知ABC DCB =∠∠,添加下列条件中的一个:①A D =∠∠,②AC DB =,③AB DC =,其中不能确定ABC DCB △≌△的是 (只填序号).第14题图15.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为 s .第15题图16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,30BAC DEC ==︒∠∠,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CFEF= .第16题图三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中1x .18.(本小题满分6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3 000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,(1)表中a = ,b =; (2)这组数据的中位数落在 范围内;(3)判断:这组数据的众数一定落在7080x ≤<范围内,这个说法 (填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在8090x ≤<范围内的扇形圆心角的大小为 ;(5)若成绩不小于80分为优秀,则全校大约有 名学生获得优秀成绩.19.(本小题满分6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD )16m ,宽(AB )9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为2112m ,则小路的宽应为多少?第19题图数学试卷 第5页(共22页) 数学试卷 第6页(共22页)20.(本小题满分6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠BE )进行了测量.如图所示,最外端的拉索AB 的底端A 到塔柱底端C 的距离为121m ,拉索AB 与桥面AC 的夹角为37︒,从点A 出发沿AC 方向前进23.5m ,在D 处测得塔冠顶端E 的仰角为45︒.请你求出塔冠BE 的高度(结果精确到0.1m .参考数据sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,1.41≈).第20题图21.(本小题满分7分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、第三象限分别交于(3,4)A ,(,2)B a -两点,直线AB 与y 轴,x 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD ______BC (填“>”或“<”或“=”); (3)直接写出12y y <时x 的取值范围.第21题图22.(本小题满分7分)如图,点E 是ABC △的内心,AE 的延长线和△ABC 的外接圆O 相交于点D ,过D 作直线DG BC ∥.(1)求证:DG 是O 的切线;(2)若6DE =,BC =BAC 的长.第22题图23.(本小题满分10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、(1)该超市购进甲种蔬菜10kg 和乙种蔬菜5kg 需要170元;购进甲种蔬菜6kg 和乙种蔬菜10kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg 进行销售,其中甲种蔬菜的数量不少于20kg ,且不大于70kg .实际销售时,由于多种因素的影响,甲种蔬菜超过60kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg )之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________24.(本小题满分10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ AE⊥于点O,点G,F分别在边CD,AB上,GF AE⊥.①求证:DQ AE=;②推断:GFAE的值为;(2)类比探究:如图(2),在矩形ABCD中,BCkAB=(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当23k=时,若3tan4CGP∠=,GF=求CP的长.第24题图(1)第24题图(2)25.(本小题满分13分)如图,在直角坐标系中,直线132y x=-+与x轴,y轴分别交于点B,点C,对称轴为1x=的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与ABC△相似?若存在,求出点Q的坐标;若不存在,请说明理由.第25题图数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷 第9页(共22页) 数学试卷 第10页(共22页)湖北省襄阳市2019年初中毕业生学业水平考试数学答案解析一、选择题 1.【答案】A【解析】解:33-=. 故选:A .根据绝对值的性质进行计算. 【考点】绝对值的性质 2.【答案】D【解析】解:A .32a a -,无法计算,故此选项错误; B .235a a a ⋅=,故此选项错误; C .624a a a ÷=,故此选项错误; D .()326a a --=,正确.故选:D .直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案. 【考点】合并同类项,同底数幂的乘除运算 3.【答案】B【解析】解:∵CD AB ⊥于点D ,40BCD =︒∠, ∴90CDB =︒∠.∴90BCD DBC +=︒∠∠,即4090BCD +︒=︒∠. ∴50DBC =︒∠. ∵直线BC AE ∥,∴150DBC ==︒∠∠. 故选:B .先在直角CBD △中可求得DBC ∠的度数,然后平行线的性质可求得1∠的度数. 【考点】平行线的性质,垂线的定义,直角三角形两锐角互余的性质 4.【答案】D【解析】解:由:“Z ”字型对面,可知春字对应的面上的字是奋; 故选:D .正方体展开图的“Z ”字型找对面的方法即可求解; 【考点】正方体的展开图 5.【答案】B【解析】解:A .是轴对称图形,不是中心对称图形,故此选项错误; B .是轴对称图形,也是中心对称图形,故此选项正确; C .不是轴对称图形,是中心对称图形,故此选项错误; D .不是轴对称图形,是中心对称图形,故此选项错误. 故选:B .根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形与轴对称图形的概念 6.【答案】C【解析】解:不等式组整理得:43x x ⎧⎨-⎩<≤,∴不等式组的解集为3x -≤,故选:C .求出不等式组的解集,表示出数轴上即可. 【考点】解一元一次方程组 7.【答案】D【解析】解:由作图可知:AC AD BC BD ===, ∴四边形ACBD 是菱形, 故选:D .根据四边相等的四边形是菱形即可判断. 【考点】基本作图,菱形的判定 8.【答案】C【解析】解:A .必然事件发生的概率是1,正确; B .通过大量重复试验,可以用频率估计概率,正确; C .概率很小的事件也有可能发生,故错误;D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确, 故选:C .不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【考点】本题考查了概率的意义 9.【答案】B【解析】解:设合伙人数为x 人, 依题意,得:54573x x +=+. 故选:B .设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解. 【考点】由实际问题抽象出一元一次方程 10.【答案】A【解析】解:∵AD 为直径, ∴90ACD =︒∠,∵四边形OBCD 为平行四边形, ∴CD OB ∥,CD OB =,在Rt ACD △中,1sin 2CD A AD ==, ∴30A =︒∠,在Rt AOP △中,AP =,所以A 选项的结论错误; ∵OP CD ∥,CD AC ⊥,数学试卷 第11页(共22页) 数学试卷 第12页(共22页)∴OP AC ⊥,所以C 选项的结论正确; ∴AP CP =,∴OP 为ACD △的中位线,∴2CD OP =,所以B 选项的结论正确; ∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确. 故选:A .利用圆周角定理得到90ACD =︒∠,再根据平行四边形的性质得到CD OB ∥,CD OB =,则可求出30A =︒∠,在Rt AOP △中利用含30度的直角三角形三边的关系可对A 选项进行判断;利用OP CD ∥,CD AC ⊥可对C 选项进行判断;利用垂径可判断OP 为ACD △的中位线,则2CD OP =,原式可对B 选项进行判断;同时得到2OB OP =,则可对D 选项进行判断.【考点】圆周角定理,垂径定理,平行四边形的性质. 二、填空题11.【答案】81.210⨯【解析】解:81.2 1.210=⨯亿. 故答案为:81.210⨯.科学记数法就是将一个数字表示成(10a ⨯的n 次幂的形式),其中110a ≤<,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂. 【考点】科学记数法的理解和运用,单位的换算 12.【答案】1x =【解析】解:2*(3)1*(2)x x +=, 2132x x =+, 43x x =+, 1x =,经检验:1x =是原方程的解, 故答案为:1x =.根据新定义列分式方程可得结论. 【考点】解分式方程,新定义的理解 13.【答案】13【解析】解:画树状图如图所示,一共有6种情况,2b a =的有(2,4)和(3,6)两种,所以点(,)a b 在直线2y x =上的概率是2163=, 故答案为:13. 画出树状图,找到2b a =的结果数,再根据概率公式解答 【考点】列表法与树状图法 14.【答案】②【解析】解:∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC DCB △≌△;若添加②AC DB =,则属于边边角的顺序,不能判定ABC DCB △≌△; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC DCB △≌△. 故答案为:②.一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解. 【考点】全等三角形的几种基本判定方法 15.【答案】4【解析】解:依题意,令0h =得 20205t t =- 得(205)0t t -=解得0t =(舍去)或4t =即小球从飞出到落地所用的时间为4s 故答案为4.根据关系式,令0h =即可求得t 的值为飞行的时间 【考点】二次函数的性质在实际生活中的应用 16.【答案】3【解析】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N , ∵1BD =,5AD =, ∴6AB BD AD =+=,∵在Rt ABC △中,30BAC ∠=︒,9060B BAC ∠=︒-∠=︒,∴132BC AB ==,AC ==,在Rt BCA △与Rt DCE △中, ∵30BAC DEC =∠=︒, ∴tan tan BAC DEC ∠=∠, ∴BC DCAC EC=, ∵90BCA DCE =∠=︒,∴BCA DCA DCE DCA -∠=∠-∠∠, ∴BCD ACE ∠=∠,数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴BCD ACE △∽△, ∴60CAE B ∠=∠=︒, ∴BC BDAC AE=, ∴306090DAE DAC CAE ∠=∠+∠=︒+︒=︒1AE,∴AE , 在Rt ADE △中,DE = 在Rt DCE △中,30DEC ∠=︒,∴60EDC ∠=︒,12DC DE ==,在Rt DCM △中,MC =在Rt AEN △中,32NE AE ==, ∵MFC NFE ∠=∠,90FMC FNE ∠=∠=, ∴MFC NFE △∽△+,∴232CF MC EF NE ==故答案为:3.过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,先证BCD ACE △∽△,求出AE 的长及60CAE ∠=︒,推出90DAE ∠=︒,在Rt DAE △中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt DCM △和Rt AEN △中,求出MC 和NE 的长,再证MFC NFE △∽△,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【考点】相似三角形的判定与性质,勾股定理,解直角三角形 三、解答题17.【答案】解:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭22121111xx x x x x x -++⎛⎫=-÷⎪---⎝⎭21(1)(1)1(1)x x x x +-=⨯-+ 11x =+,当1x =时,原式==.【解析】根据分式的混合运算法则把原式化简,代入计算即可. 【考点】分式的化简求值 18.【答案】(1)20︒ 0.2︒(2)7080x ︒≤< (3)正确 (4)72︒ (5)900【解析】解:(1)调查学生总数:150.350÷=(名), 7080x ≤<的频数:501510520---=,即20a =。

湖北省襄阳市九年级上学期期中数学试卷

湖北省襄阳市九年级上学期期中数学试卷

湖北省襄阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)计算﹣(﹣1)+|﹣1|,其结果为()A . ﹣2B . 2C . 0D . ﹣12. (2分) 2012年武汉市约有71000个初中毕业生,其中71000这个数用科学计数法表示为A . 71×103 .B . 7.1×105 .C . 7.1×104 .D . 0.71×105 .3. (2分)一元二次方程的二次项系数、一次项系数、常数项分别是()A .B .C .D .4. (2分)下列各组线段中,能组成三角形的是()A . 2,2,4B . 5,6,12C . 6,9,12D . 5,15,85. (2分)(2019·新泰模拟) 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A .B .C .D .6. (2分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为32,则OE的长等于()A . 8B . 4C . 7D . 167. (2分)如图,在等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,则△DEC的周长是().A . 3B . 12C . 15D . 198. (2分) (2015九上·宜春期末) 二次函数y1=x2﹣2x﹣1与反比例函数y2=﹣(x>0)的图象在如图所示的同一坐标系中,若y1>y2时,则x的取值范围()A . ﹣1<x<1 或 x>2B . 1<x<2C . x<1D . 0<x<1或x>29. (2分)据(南通市2005年国民经济和社会发展统计公报)报告:南通市2005年国内生产总值达1493亿元,比2004年增长11.8%.下列说法:①2004年国内生产总值为1493(1﹣11.8%)亿元;②2004年国内生产总值为亿元;③2004年国内生产总值为亿元;④若按11.8%的年增长率计算,2007年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是()A . ③④B . .②④C . ①④D . ①②③10. (2分) (2018九上·安陆月考) 若是方程的一个根,则c的值为()A . ﹣2B .C .D .11. (2分)下列结论错误的是()A . 成轴对称的图形全等B . 两边对应相等的直角三角形不一定全等C . 一边和一锐角对应相等的两直角三角形全等D . 两直线被第三条直线所截,同位角相等12. (2分)(2017·东光模拟) 如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH⊥AB于H,则AH等于()A .B .C .D .二、填空题 (共6题;共10分)13. (1分)已知﹣2am﹣2b4与3abn+2是同类项,则(n﹣m)m= ________.14. (1分) (2018八上·双清月考) 已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=________15. (1分)若关于x的一元二次方程mx2﹣3x+1=0有实数根,则m的取值范围是________ .16. (1分) (2019八上·交城期中) 某校在一块如图所示的三角形空地上种草皮以美化环境,已知AB=20m,BC=30m,∠B=150°,并且这种草皮每平方米元,则购买这种草皮至少要________元.17. (1分) (2019九下·东台月考) 如图,矩形纸片中,,,点在边上,将沿所在直线折叠,使点落在边上的点处,则的长为________ .18. (5分) (2008七下·上饶竞赛) 如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°, 则∠2=度.三、解答题 (共6题;共49分)19. (10分) (2018九上·邗江期中) 已知,关于x的方程x2﹣2mx+m2﹣1=0(1)不解方程,判别方程的根的情况;(2)若x=2是方程的一个根,请求出m的值以及它的另一个根.20. (5分)如图,是一个由小立方体搭成的几何体的俯视图(从上面看),小正方形中的数字表示在该位置的小立方体的个数,请画出它的主视图(从正面看)和左视图(从左面看).21. (5分)如图,EF∥BC,ED∥AC,FD∥AB,请你写出△AEF由图中哪些三角形可以通过一次平移或旋转而得到.22. (10分)(2016·崂山模拟) 已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.23. (9分)(2012·河南) 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若 =3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,CG和EH的数量关系是________,的值是________.(2)类比延伸如图2,在原题的条件下,若 =m(m>0),求的值(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若 =a, =b,(a>0,b>0),则的值是________(用含a、b的代数式表示).24. (10分)(2019·渝中模拟) 如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共49分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷一、选择题:(本大题共10小题每小超3分共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填人题后的括号内1.(3分)在下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)下列方程中不一定是一元二次方程的是()A.(a﹣3)x2=8 (a≠3)B.ax2+bx+c=0C.(x+3)(x﹣2)=x+5D.3.(3分)已知x=2是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.﹣3D.0或﹣14.(3分)已知x1,x2是一元二次方程x2﹣6x﹣15=0的两个根,则x1+x2等于()A.﹣6B.6C.﹣15D.155.(3分)在平面直角坐标系中,点P(3,﹣4)关于原点对称的点的坐标是()A.(﹣3,4)B.(4,﹣3)C.(3,4)D.(﹣3,﹣4)6.(3分)在抛物线y=x2﹣6x+21图象上的点是()A.(3,7)B.(4,5)C.(5,4)D.(6,2)7.(3分)将二次函数y=x2+bx+c的图象先向左平移3个单位长度,再向上平移2个单位长度得到二次函数y=x2﹣2x+1的图象,用b,c的值分别是()A.b=14,c=﹣8B.b=﹣2,c=4C.b=﹣8,c=14D.b=4,c=﹣2 8.(3分)已知函数y=(3﹣k)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥2且k≠3B.k≥2C.k>2且k≠3D.k>29.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A.30°B.50°C.60°D.70°10.(3分)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦AB=8,则弦CD的长为()A.6B.8C.5D.5二、填空题:(本大悶共6个小题每小题3分,共18分)请将每小题正确答案写在题中的横线上11.(3分)方程(x﹣1)(x+2)=0的解是.12.(3分)若抛物线y=(n+2)x有最低点,则n=.13.(3分)用长为14的铁丝围成一个面积是12的矩形,这个矩形相邻的两边长分别是.14.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,点(x1,y1),(x2,y2)是图象上的两点,当2<x1<x2时,y1,y2的大小关系是.15.(3分)如图,已知∠AOB=30°,M是射线OB上一点,OM=6,若以M为圆心,r 为半径的圆与射线OA有两个不同的交点,则r的取值范围是.16.(3分)如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(3,1)表示方格纸上A点的位置,用(2,2)表示点B的位置,那么由四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示为(数为整数)三、解答题:(本大题共9个小题共72分)解答应写出演算步骤证明过程或文字说明并将答案写在对应的答题区域内17.(16分)解方程(请选择合适的方法)(1)x2+4x=0;(2)x2+x﹣=0(3)3x(x﹣1)=4(x﹣1);(4)x2﹣4x+4=(3﹣2x)218.(5分)如图,正方形ECFD各顶点在Rt△ABC的边上,观察图形,并回答下列问题:(1)请你说明由图(1)变换到图(2)的过程;(2)若AD=3,△AED与△BDF的面积和为9,求线段BD的长.19.(6分)已知抛物线经过(1,0),(3,0),(0,3)三个点(1)求该抛物线的解析式;(2)分别在<x<,≤x≤4的范围内,求该二次函数的最值.20.(7分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?21.(7分)如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.22.(7分)如图,BC为⊙O的直径,AD⊥BC于D,P是上一动点,连接PB分别交AD、AC于点E,F.(1)当=时,求证:AE=BE;(2)当点P在什么位置时,AF=EF?证明你的结论.23.(7分)如图,△ABC为等边三角形,将一个直角三角形60°角的顶点与点C重合,再将三角形绕点C按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角形的一直角边与AB交于点D,在直角三角形斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接EF.(1)求∠EAF的度数;(2)DE与EF相等吗?请说明理由.24.(8分)某商家经销一种绿茶,用于装修门面已投资4000元.已知绿茶每千克成本40元,经研究发现销量y(kg)与销售单价x(元/kg)之间的函数关系是y=﹣2x+240(40≤x≤90),设该绿茶的月销售利润为w(元)[销售利润=(每千克单价﹣每千克成本)×销售量](1)求w与x之间的函数关系式,并求出x为何值时,w的值最大?(2)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于85元,要想在全部收回投资的基础上使第二个月的利润达到2200元,那么第二个月里应该确定销售单价为多少元?25.(9分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,点D为直线AE上方抛物线上的一点(1)求抛物线所对应的函数解析式;(2)求△ADE面积的最大值和此时点D的坐标;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.。

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷解析版

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷解析版

2018-2019学年湖北省襄阳市襄州区九年级(上)期中数学试卷一、选择题:(本大题共10小题每小超3分共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填人题后的括号内1.(3分)在下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)下列方程中不一定是一元二次方程的是()A.(a﹣3)x2=8 (a≠3)B.ax2+bx+c=0C.(x+3)(x﹣2)=x+5D.3.(3分)已知x=2是一元二次方程x2+mx﹣2=0的一个解,则m的值是()A.1B.﹣1C.﹣3D.0或﹣14.(3分)已知x1,x2是一元二次方程x2﹣6x﹣15=0的两个根,则x1+x2等于()A.﹣6B.6C.﹣15D.155.(3分)在平面直角坐标系中,点P(3,﹣4)关于原点对称的点的坐标是()A.(﹣3,4)B.(4,﹣3)C.(3,4)D.(﹣3,﹣4)6.(3分)在抛物线y=x2﹣6x+21图象上的点是()A.(3,7)B.(4,5)C.(5,4)D.(6,2)7.(3分)将二次函数y=x2+bx+c的图象先向左平移3个单位长度,再向上平移2个单位长度得到二次函数y=x2﹣2x+1的图象,用b,c的值分别是()A.b=14,c=﹣8B.b=﹣2,c=4C.b=﹣8,c=14D.b=4,c=﹣28.(3分)已知函数y=(3﹣k)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥2且k≠3B.k≥2C.k>2且k≠3D.k>29.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A .30°B .50°C .60°D .70°10.(3分)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦AB =8,则弦CD 的长为( )A .6B .8C .5D .5二、填空题:(本大悶共6个小题每小题3分,共18分)请将每小题正确答案写在题中的横线上 11.(3分)方程(x ﹣1)(x +2)=0的解是 .12.(3分)若抛物线y =(n +2)x 有最低点,则n = .13.(3分)用长为14的铁丝围成一个面积是12的矩形,这个矩形相邻的两边长分别是 . 14.(3分)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,点(x 1,y 1),(x 2,y 2)是图象上的两点,当2<x 1<x 2时,y 1,y 2的大小关系是 .15.(3分)如图,已知∠AOB =30°,M 是射线OB 上一点,OM =6,若以M 为圆心,r 为半径的圆与射线OA 有两个不同的交点,则r 的取值范围是 .16.(3分)如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(3,1)表示方格纸上A点的位置,用(2,2)表示点B的位置,那么由四边形ABCD旋转得到四边形EFGH 时的旋转中心用有序数对表示为(数为整数)三、解答题:(本大题共9个小题共72分)解答应写出演算步骤证明过程或文字说明并将答案写在对应的答题区域内17.(16分)解方程(请选择合适的方法)(1)x2+4x=0;(2)x2+x﹣=0(3)3x(x﹣1)=4(x﹣1);(4)x2﹣4x+4=(3﹣2x)218.(5分)如图,正方形ECFD各顶点在Rt△ABC的边上,观察图形,并回答下列问题:(1)请你说明由图(1)变换到图(2)的过程;(2)若AD=3,△AED与△BDF的面积和为9,求线段BD的长.19.(6分)已知抛物线经过(1,0),(3,0),(0,3)三个点(1)求该抛物线的解析式;(2)分别在<x<,≤x≤4的范围内,求该二次函数的最值.20.(7分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?21.(7分)如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.22.(7分)如图,BC为⊙O的直径,AD⊥BC于D,P是上一动点,连接PB分别交AD、AC 于点E,F.(1)当=时,求证:AE=BE;(2)当点P在什么位置时,AF=EF?证明你的结论.23.(7分)如图,△ABC为等边三角形,将一个直角三角形60°角的顶点与点C重合,再将三角形绕点C按顺时针方向旋转(旋转角大于0°且小于30°).旋转后三角形的一直角边与AB交于点D,在直角三角形斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接EF.(1)求∠EAF的度数;(2)DE与EF相等吗?请说明理由.24.(8分)某商家经销一种绿茶,用于装修门面已投资4000元.已知绿茶每千克成本40元,经研究发现销量y(kg)与销售单价x(元/kg)之间的函数关系是y=﹣2x+240(40≤x≤90),设该绿茶的月销售利润为w(元)[销售利润=(每千克单价﹣每千克成本)×销售量](1)求w与x之间的函数关系式,并求出x为何值时,w的值最大?(2)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于85元,要想在全部收回投资的基础上使第二个月的利润达到2200元,那么第二个月里应该确定销售单价为多少元?25.(9分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,点D为直线AE上方抛物线上的一点(1)求抛物线所对应的函数解析式;(2)求△ADE面积的最大值和此时点D的坐标;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.参考答案与试题解析一、选择题:(本大题共10小题每小超3分共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填人题后的括号内1.解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.2.解:A、由于a≠3,所以a﹣3≠0,故(a﹣3)x2=8 (a≠3)是一元二次方程;B、方程二次项系数可能为0,不一定是一元二次方程;C、方程展开后是:x2﹣11=0,符合一元二次方程的定义;D、符合一元二次方程的定义.故选:B.3.解:把x=2代入x2+mx﹣2=0得4+2m﹣2=0,解得m=﹣1.故选:B.4.解:∵x1,x2是一元二次方程x2﹣6x﹣15=0的两个根,∴x1+x2=﹣=6.故选:B.5.解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故选:A.6.解:A、把(3,7)中x=3代入得y=≠7;B、把(4,5)中x=4代入得y=5;C、把(5,4)中x=5代入得y=≠4;D、把(6,2)中x=6代入得y=3≠2.故选:B.7.解:∵y=x2﹣2x+1=(x﹣1)2,∴二次函数y=x2﹣2x+1的图象的顶点坐标为(1,0),把点(1,0)先向右平移3个单位长度,再向下平移2个单位长度所得对应点的坐标为(4,﹣2),∴原抛物线解析式为y=(x﹣4)2﹣2,即y=x2﹣8x+14,即b=﹣8,c=14.故选:C.8.解:①当3﹣k≠0时,(3﹣k)x2+2x+1=0,△=b2﹣4ac=22﹣4(3﹣k)×1=4k﹣8≥0,k≥2;②当3﹣k=0时,y=2x+1,与x轴有交点;故k的取值范围是k≥2,故选:B.9.解:连接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选:C.10.解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴CD===6,故选:A.二、填空题:(本大悶共6个小题每小题3分,共18分)请将每小题正确答案写在题中的横线上11.解:∵(x﹣1)(x+2)=0∴x﹣1=0或x+2=0∴x1=1,x2=﹣2,故答案为x1=1、x2=﹣2.12.解:根据题意得n+2>0且n2+n﹣4=2,解n2+n﹣4=2得n1=﹣3,n2=2,又n+2>0,即n>﹣2,∴n=2,故答案为:2.13.解:设矩形的长为x,则宽为(7﹣x),根据题意得:x(7﹣x)=12,解得:x1=4,x2=﹣3(舍去),∴7﹣x=3.故答案为:3,4.14.解:如图,抛物线y=ax2+bx+c(a≠0)的开口方向向上,对称轴是直线x=2,且当x>2时,y 随x的增大而增大,∴当2<x1<x2时,y1<y2.故答案是:y1<y2.15.解:由图可知,r的取值范围在OM和MD之间.在Rt△OMD中,∠AOB=30°,OM=6,则MD=OM=×6=3;则r的取值范围是3<r≤6.故答案为:3<r≤6.16.解:如图,连接AE、DH,作AE、DH的垂线,相交于点P,则点P即为旋转中心,∵A(3,1),B(2,2),∴P(6,2).故答案为:(6,2).三、解答题:(本大题共9个小题共72分)解答应写出演算步骤证明过程或文字说明并将答案写在对应的答题区域内17.解:(1)x(x+4)=0x=0,x+4=0x1=0,x2=﹣4;(2)x2+x﹣=0△=()2﹣4×1×(﹣)=3x=x1=,x2=;(3)3x(x﹣1)=4(x﹣1)3x(x﹣1)﹣4(x﹣1)=0(x﹣1)(3x﹣4)=0x1=1,x2=;(4)x2﹣4x+4=(3﹣2x)2(x﹣2)2﹣(3﹣2x)2=0(x﹣2+3﹣2x)(x﹣2﹣3+2x)=0x1=1,x2=.18.解:(1)∵四边形DECF为正方形,∴∠EDF=90°,DE=DF,∴DA绕点D逆时针旋转90度到DA1的位置,DE绕点D逆时针旋转90度到DF位置,∴△ADE绕点D逆时针旋转90°得到△A'DF;(2)∵四边形ECFD是正方形,∴∠CED=∠EDF=∠DFC=90°,∴∠AED=∠DFB=90°,∠ADE+∠FDB=90°,由(1)可知,△ADE≌△A'DE,∴∠ADE=∠A'DF,∠AED=∠A'FD=90°,∴∠DFB+∠A'FD=180°,∠A'DF+∠FDB=90°,∴A',F,B三点共线,∴△AED和△BDF的面积和=△A'DB的面积,∴A'D×BD=9,∵A'D=AD=3,∴BD=6.19.解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),把(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,所以抛物线解析式为y=(x﹣1)(x﹣3),即抛物线解析式为y=x2﹣4x+3;(2)y=(x﹣2)2﹣1,则抛物线的顶点坐标为(2,﹣1),抛物线的对称轴为直线x=2,当<x<时,x=2时,二次函数有最小值为﹣1;当≤x≤4时,x=,二次函数有最小值,最小值为﹣;x=4,二次函数有最大值,最大值为3.20.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.21.(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.22.(1)证明:连接AB,∵BC为⊙O的直径,∴AB⊥AC.又∵AD⊥BC,∴∠BAD+∠DAC=∠C+∠DAC=90°∴∠BAD=∠C.∵=,∴∠ABE=∠C.∴∠ABE=∠BAD.∴AE=BE.(2)当弧PC=弧AB时,AF=EF.证明:∵弧PC=弧AB,∴∠PBC=∠C.∴90°﹣∠PBC=90°﹣∠C.即∠BED=∠DAC,∵∠BED=∠AEF,∴∠DAC=∠AEF.∴AF=EF.23.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;(2)DE=EF:理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF.24.解:(1)由题意可得,w与x的函数关系式为:w=(x﹣50)•y=(x﹣40)•(﹣2x+240)=﹣2x2+320x﹣9600;∵w=﹣2x2+320x﹣9600=﹣2(x﹣80)2+3200,∴当x=80时,w的值最大为3200元;(2)∵在第一个月里,按使w获得最大值的销售单价进行销售所获利润为3200元,∴第1个月还有4000﹣3200=800元的投资成本没有收回,∴要想在全部收回投资的基础上使第二个月的利润达到2200元,即w=2200+800=3000才可以,∴﹣2(x ﹣80)2+3200=3000,解得,x 1=70,x 2=90,根据题意,x 2=90不合题意应舍去.答:当销售单价为70元时,利润达到2200元.25.解:(1)∵四边形OCEF 为矩形,OF =2,EF =3, ∴点C 的坐标为(0,3),点E 的坐标为(2,3),把x =0,y =3;x =2,y =3,分别代入二次函数表达式得:,解得:,∴抛物线对应函数的表达式为:y =﹣x 2+2x +3;(2)连接DF 、DE 、DA ,∵点D 在直线AE 上方的抛物线上,∴D (x ,﹣x 2+2x +3), 令y =0,得:﹣x 2+2x +3=0,解得:x =﹣1或3,∴A (﹣1,0)、B (3,0),∴OA =1,OB =3,∴S △ADE =(S △ADF +S △DEF )﹣S △AEF=(1+2)(﹣x 2+2x +3)+×3×(2﹣x )﹣×3×3,=﹣(x ﹣)2+,在y =﹣x 2+2x +3中,当x =时,y =∴△ADE 面积的最大值是,此时点D 的坐标为(,); (3)△AOC 绕点C 逆时针旋转90°,OC 落在CE 所在的直线上, 由(2)知OA =1,∴点A 的对应点G 的坐标为(3,2),当x=3时,y=﹣32+2×3+3=0≠2,∴点G不在该抛物线上.。

湖北省襄阳市襄州区人教版九年级上册期中数学试卷 含解析

湖北省襄阳市襄州区人教版九年级上册期中数学试卷  含解析

九年级(上)期中数学试卷一.选择题(共10小题)1.如图图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.下列方程一定是一元二次方程的是( )A.x2+2x=x2﹣x+1B.(x﹣1)2=2x﹣3C.D.ax2+bx=c=03.下列方程没有实数根的是( )A.x2+3x=4B.3x2+6x﹣5=0C.x2﹣4x+5=0D.(x+2)(x﹣3)=144.抛物线y=﹣2(x+1)2的顶点坐标和对称轴分别是( )A.(﹣1,0),直线x=﹣1B.(1,0),直线x=1C.(0,1),直线x=1D.(0,1),直线x=05.如图,△ABC与△A′BC′是成中心对称的两个图形,则下列说法不正确的是( )A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′6.如图,⊙O的半径为5,弦AB的长为6,M是AB上的动点,则线段OM长的最小值为( )A.2B.3C.4D.57.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是( )A.25°B.40°C.30°D.50°8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是( )A.abc<0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>09.如图是二次函数y=﹣x2+2x+4的图象,使y≥1成立的x的取值范围是( )A.﹣1≤x≤3B.x≤﹣1C.x≥1D.x≤﹣1或x≥3 10.如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )A.1或4B.2或3C.3或4D.1或2二.填空题(共6小题)11.已知方程x2﹣3x﹣k=0有一根是2,则k的值是 .12.已知A(﹣2,y1),B(0,y2),C(1,y3)三点都在抛物线y=﹣2x2﹣4x+5的图象上,则y1,y2,y3的大小关系是 .13.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2= .14.如图,点M是矩形ABCD下方一点,将△MAB绕点M顺时针旋转60°后,恰好点A与点D重合,得到△MDE,则∠DEC的度数是 .15.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给 个人.16.如图,抛物线y=ax2+bx+c与x轴交于A,B(m+1,0)两点,与y轴相较于点C,点D 在该抛物线上,其坐标为(m,c),则点A的坐标为 .三.解答题(共9小题)17.解下列方程:(1)2x(x+1)=2x+2(2)x2﹣4x﹣4=0(3)x2﹣x﹣7=0(4)(x﹣1)2﹣5(x﹣1)﹣6=018.某种商品的标价是400元/件,经过两次降价后的价格是361元/件,且两次降价的百分率相同.求该商品每次降价的百分率.19.如图,平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐标系中画出与△ABC关于点P(1,0)成中心对称的△A'B'C',并分别写出点A',B',C'的坐标;(2)如果点M(a,b)是△ABC边上(不与A,B,C重合)任意一点,请写出在△A'B'C'上与点M对应的点M'的坐标.20.如图是抛物线在平面直角坐标系中的图象.(1)将的图象向上平移2个单位长度,画出平移后的图象,并写出新图象的解析式、顶点坐标;(2)直接写出将(1)所得的抛物线向右平移两个单位所得抛物线的解析式.21.如图,矩形ABCD的两边长AB=16cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)当△BPQ面积有最大值时,求x的值.22.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.23.如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.(1)请你写出两个不相同的结论(不添加辅助线);(2)连接AD,若BE=4,AC=6,求线段AD的长.24.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销意将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?25.已知二次函数y=﹣x2+x+m.(1)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB和二次函数图象的解析式;(2)在线段AB上有一动点P(不与A,B两点重合),过点P作x轴的垂线,交抛物线于点D,是否存在一点P使线段PD的长有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.如图图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:C.2.下列方程一定是一元二次方程的是( )A.x2+2x=x2﹣x+1B.(x﹣1)2=2x﹣3C.D.ax2+bx=c=0【分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程,运用定义对每个方程作出判断.【解答】解:A:两边的项消去后,不含二次项,所以不是一元二次方程;B:符合一元二次方程的定义,是一元二次方程;C:是分式方程,不是整式方程,当然不是一元二次方程;D:要强调a≠0,否则不是一元二次方程.故选:B.3.下列方程没有实数根的是( )A.x2+3x=4B.3x2+6x﹣5=0C.x2﹣4x+5=0D.(x+2)(x﹣3)=14【分析】判断上述四个方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:A、∵△=b2﹣4ac=9+16=25>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=b2﹣4ac=36+60=7225>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=b2﹣4ac=16﹣20=﹣4<0,∴方程无实数根,故本选项符合题意;D、由已知方程得到x2﹣x﹣20=0,则△=b2﹣4ac=1+80=81>0,∴方程有两个不相等的实数根,故本选项不符合题意;故选:C.4.抛物线y=﹣2(x+1)2的顶点坐标和对称轴分别是( )A.(﹣1,0),直线x=﹣1B.(1,0),直线x=1C.(0,1),直线x=1D.(0,1),直线x=0【分析】根据顶点式,可直接求出顶点坐标,对称轴.【解答】解:∵抛物线y=﹣2(x+1)2,∴顶点坐标为(﹣1,0),对称轴为x=﹣1.故选:A.5.如图,△ABC与△A′BC′是成中心对称的两个图形,则下列说法不正确的是( )A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′【分析】直接利用中心对称图形的性质分析得出答案.【解答】解:∵△ABC与△A′BC′是成中心对称的两个图形,∴AB=A′B′,BC=B′C′,AB∥A′B′,BC∥B′C′,S△ABC=S△A′B′C′,无法得到:△ABC≌△A′OC′.故选:D.6.如图,⊙O的半径为5,弦AB的长为6,M是AB上的动点,则线段OM长的最小值为( )A.2B.3C.4D.5【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM长的最小值.【解答】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=6,OA=5,∴AM′=×6=3,∴在Rt△OAM′中,OM′===4,∴线段OM长的最小值为4.故选:C.7.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是( )A.25°B.40°C.30°D.50°【分析】利用平行线的性质求出∠AOD即可解决问题.【解答】解:∵DE∥OA,∴∠AOD=∠D=60°,∵OA=OC,∴∠A=∠C,∵∠AOD=∠A+∠C=60°,∴∠C=∠A=30°,故选:C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是( )A.abc<0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>0【分析】A、由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B、由抛物线的对称轴为x=1,可得﹣=1,再整理即可;C、利用抛物线与x轴的交点的个数进行分析即可;D、由二次函数的图象可知当x=﹣1时y<0,据此分析即可.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B、由抛物线的对称轴为x=1,可得﹣=1,则2a+b=0,故B正确,不符合题意;C、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D、当x=﹣1时,y<0,则a﹣b+c<0,故D错误,符合题意,故选:D.9.如图是二次函数y=﹣x2+2x+4的图象,使y≥1成立的x的取值范围是( )A.﹣1≤x≤3B.x≤﹣1C.x≥1D.x≤﹣1或x≥3【分析】根据函数图象写出直线y=1以及上方部分的x的取值范围即可.【解答】解:由图象可知,﹣1≤x≤3时,y≥1.故选:A.10.如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )A.1或4B.2或3C.3或4D.1或2【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(2+3+x)×3﹣x•(3﹣x)=×(2+3+x)×3﹣2×1,解得x=1或x=2,故选:D.二.填空题(共6小题)11.已知方程x2﹣3x﹣k=0有一根是2,则k的值是 ﹣2 .【分析】直接把x=2代入方程x2﹣3x﹣k=0得关于k的方程,然后解一次方程即可.【解答】解:把x=2代入方程x2﹣3x﹣k=0得4﹣6﹣k=0,解得k=﹣2.故答案为﹣2.12.已知A(﹣2,y1),B(0,y2),C(1,y3)三点都在抛物线y=﹣2x2﹣4x+5的图象上,则y1,y2,y3的大小关系是 y1=y2>y3 .【分析】先求出抛物线的对称轴为直线x=﹣1,再根据二次函数的对称性和增减性判断.【解答】解:对称轴为直线x=﹣=﹣1,∵A(﹣2,y1)、B(0,y2),∴A、B是对称点,∴y1=y2,∵k=﹣2<0,∴x>﹣1时,y的值随x的增大而减小,∴y2>y3,∴y1=y2>y3.故答案为:y1=y2>y3.13.如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2= 90° .【分析】首先连接OE,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可得∠1=∠AOE,∠2=∠BOE,即可得∠1+∠2=(∠AOE+∠BOE),则可求得∠1+∠2的度数.【解答】解:连接OE,∵∠1=∠AOE,∠2=∠BOE,∴∠1+∠2=∠AOE+∠BOE=(∠AOE+∠BOE)=×180°=90°.故答案为:90°.14.如图,点M是矩形ABCD下方一点,将△MAB绕点M顺时针旋转60°后,恰好点A与点D重合,得到△MDE,则∠DEC的度数是 60° .【分析】根据旋转的性质得到MA=MD,∠AMD=60°,得到△MAD是等边三角形,根据等边三角形的性质得到∠DAM=∠MDA=60°,再证明△EDC是等边三角形即可解决问题..【解答】解:由题意可知:∠AMD=60°,MA=MD,∴△MAD是等边三角形,∴∠DAM=∠MDA=60°,∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°∴∠MDC=∠MAE=30°,∴∠DAE=∠DAM﹣∠MDE=30°,∴∠EDC=60°,又∵CD=AB,DE=AB,∴DE=DC,∴△ABE是等边三角形,∴∠DEC=60°.15.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给 9 个人.【分析】设每轮传染中平均每个人传染了x人,第一轮后有(1+x)人患了流感,第二轮后会传染给x(1+x)人,则两轮以后共有1+x+x(1+x)人得病,然后根据共有100人患了流感就可以列出方程求解.【解答】解:设每轮传染中平均每个人传染了x人.依题意得1+x+x(1+x)=100,∴x2+2x﹣99=0,∴x=9或x=﹣11(不合题意,舍去).所以,每轮传染中平均一个人传染给9个人.故填空答案:9.16.如图,抛物线y=ax2+bx+c与x轴交于A,B(m+1,0)两点,与y轴相较于点C,点D 在该抛物线上,其坐标为(m,c),则点A的坐标为 (﹣1,0) .【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣1,即A点坐标为(﹣1,0),故答案为:(﹣1,0).三.解答题(共9小题)17.解下列方程:(1)2x(x+1)=2x+2(2)x2﹣4x﹣4=0(3)x2﹣x﹣7=0(4)(x﹣1)2﹣5(x﹣1)﹣6=0【分析】(1)移项后分解因式,即可得出得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可;(3)先求出b2﹣4ac的值,再代入公式求出即可;(4)先分解因式,即可得出得出两个一元一次方程,求出方程的解即可.【解答】解:(1)2x(x+1)=2x+2,2x(x+1)﹣2(x+1)=0,2(x+1)(x﹣1)=0,x+1=0,x﹣1=0,x1=﹣1,x2=1;(2)x2﹣4x﹣4=0,b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=32,x=,x1=2+2,x2=2﹣2;(3)x2﹣x﹣7=0,b2﹣4ac=(﹣)2﹣4×1×(﹣7)=30,x=,x1=,x2=;(4)(x﹣1)2﹣5(x﹣1)﹣6=0,(x﹣1﹣6)(x﹣1+1)=0,x﹣1﹣6=0,x﹣1+1=0,x1=7,x2=0.18.某种商品的标价是400元/件,经过两次降价后的价格是361元/件,且两次降价的百分率相同.求该商品每次降价的百分率.【分析】设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;【解答】解:设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=361,解得:x=5,或x=﹣105(舍去).答:该种商品每次降价的百分率为5%.19.如图,平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐标系中画出与△ABC关于点P(1,0)成中心对称的△A'B'C',并分别写出点A',B',C'的坐标;(2)如果点M(a,b)是△ABC边上(不与A,B,C重合)任意一点,请写出在△A'B'C'上与点M对应的点M'的坐标.20.如图是抛物线在平面直角坐标系中的图象.(1)将的图象向上平移2个单位长度,画出平移后的图象,并写出新图象的解析式、顶点坐标;(2)直接写出将(1)所得的抛物线向右平移两个单位所得抛物线的解析式.【分析】(1)将的图象向上平移2个单位长度,画出平移后的图象即可;(2)根据平移规律“左加右减”写出平移后的抛物线解析式.【解答】解:(1)画出平移后的图象如图:由图象可知:新图象的解析式为+2,顶点坐标为(0,2);(2)将+2的图象向右平移2个单位长度,所得新抛物线的解析式为:y=(x ﹣2)2+2.21.如图,矩形ABCD的两边长AB=16cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)当△BPQ面积有最大值时,求x的值.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=16﹣2x,BQ=x,∴y=(16﹣2x)x,即y=﹣x2+8x(0<x≤4);(2)由(1)知:y=﹣x2+8x,∴y=﹣(x﹣4)2+16,∴当x=4时,y有最大值,即△BPQ面积有最大值时,x的值为4.22.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.【分析】(1)先构造出△ADE'≌△ABE(SAS),得出∠E′AF=∠EAF,再由SAS证明△E′AF≌△EAF,得出E′F=EF,即可得出结论;(2)先判断出AE'=AE,∠DAE'=BAE,再判断出EF=E'F,进而判断出△E'AF≌△EAF (SSS),得出∠E'AF=∠EAF,即可得出结论.【解答】(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.23.如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.(1)请你写出两个不相同的结论(不添加辅助线);(2)连接AD,若BE=4,AC=6,求线段AD的长.【分析】(1)由AB为圆的直径,利用直径所对的圆周角为直角可得出∠ACB为直角;由OD垂直于BC,利用垂径定理得到E为BC的中点,即BE=CE,=,由OD垂直于BC,AC也垂直于BC,利用垂直于同一条直线的两直线平行可得出OD与AC平行;(2)由OD垂直于BC,利用垂径定理得到E为BC的中点,由BE的长求出BC的长,由AB 为圆的直径,利用直径所对的圆周角为直角可得出∠ACB为直角,在直角三角形ABC中,由BC与AC的长,利用勾股定理求出AB的长,进而求出半径OB与OD的长,在直角三角形BOE中,由OB与BE的长,利用勾股定理求出OE的长,由OD﹣OE即可求出DE的长,利用勾股定理求出BD即可解决问题.【解答】解:(1)正确结论有:∠ACB=90°;BE=CE;=;OD∥AC;(2)∵OD⊥BC,BE=4,∴BE=CE=4,即BC=2BE=8,∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB===10,∴OB=OD=5,在Rt△OBE中,OB=5,BE=4,根据勾股定理得:OE===3,则ED=OB﹣OE=5﹣3=2,BD===2,∵AB是直径,∴∠ADB=90°,∴AD===4.24.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销意将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?【分析】(1)根据每降价1元,则每月的销意将增加10箱;每箱降价x元,则多卖10x 箱,据此可列出函数关系式;根据36﹣x≥24,及x为正整数,可得自变量x的取值范围;(2)设每月销售牛奶的利润为w,则根据每箱的利润乘以销售量等于利润,可得关于x 的二次函数,令w=800,解方程,再根据问题的实际意义对方程的解作出取舍,则定价也可求得.【解答】解:(1)由题意得:y=60+10x∵36﹣x≥24∴x≤12∵x为正整数∴1≤x≤12,且x为正整数;(2)设每月销售牛奶的利润为w,则w=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810令w=800得:﹣10(x﹣3)2+810=800解得:x1=2,x2=4∵要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量∴x=4∴36﹣4=32>24(元)∴每箱牛奶的定价应是32元钱.25.已知二次函数y=﹣x2+x+m.(1)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB和二次函数图象的解析式;(2)在线段AB上有一动点P(不与A,B两点重合),过点P作x轴的垂线,交抛物线于点D,是否存在一点P使线段PD的长有最大值?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)把点A(3,0)代入y=﹣x2+2x+m得到﹣9+6+m=0得到B(0,3),然后根据待定系数法即可得到结论;(2)设P(x,﹣2x+6),则D(x,﹣x2+x+6),那么PD=(﹣x2+x+6)﹣(﹣2x+6)=﹣x2+3x=﹣(x﹣)2+,根据二次函数的性质即可得到结论.【解答】解:(1)∵点A(3,0)在抛物线y=﹣x2+x+m上,∴﹣9+3+m=0,∴m=6.∴抛物线解析式为y=﹣x2+x+6,且B(0,6),设直线AB的解析式为y=kx+b,将A(3,0),B(0,6)代入y=kx+b中,得到,解得,∴直线AB的解析式为y=﹣2x+6;(3)设P(x,﹣2x+6),则D(x,﹣x2+x+6),∴PD=(﹣x2+x+6)﹣(﹣2x+6)=﹣x2+3x=﹣(x﹣)2+∵a=﹣1<0,∴当x=时,线段PD的长有最大值为,∴P(,3).。

2019-2020学年湖北省襄阳市襄州区九年级(上)期中数学试卷解析版

2019-2020学年湖北省襄阳市襄州区九年级(上)期中数学试卷解析版

2019-2020学年湖北省襄阳市襄州区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下列方程一定是一元二次方程的是()A.x2+2x=x2﹣x+1B.(x﹣1)2=2x﹣3C.D.ax2+bx=c=03.(3分)下列方程没有实数根的是()A.x2+3x=4B.3x2+6x﹣5=0C.x2﹣4x+5=0D.(x+2)(x﹣3)=144.(3分)抛物线y=﹣2(x+1)2的顶点坐标和对称轴分别是()A.(﹣1,0),直线x=﹣1B.(1,0),直线x=1C.(0,1),直线x=1D.(0,1),直线x=05.(3分)如图,△ABC与△A′BC′是成中心对称的两个图形,则下列说法不正确的是()A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC=S△A′B′C′D.△ABC≌△A′OC′6.(3分)如图,⊙O的半径为5,弦AB的长为6,M是AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.57.(3分)如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是()A.25°B.40°C.30°D.50°8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是()A.abc<0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>09.(3分)如图是二次函数y=﹣x2+2x+4的图象,使y≥1成立的x的取值范围是()A.﹣1≤x≤3B.x≤﹣1C.x≥1D.x≤﹣1或x≥310.(3分)如图是由三个边长分别是2,3和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或4B.2或3C.3或4D.1或2二、填空题(共6小题,每小题3分,满分18分)11.(3分)已知方程x2﹣3x﹣k=0有一根是2,则k的值是.12.(3分)已知A(﹣2,y1),B(0,y2),C(1,y3)三点都在抛物线y=﹣2x2﹣4x+5的图象上,则y1,y2,y3的大小关系是.13.(3分)如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=.14.(3分)如图,点M是矩形ABCD下方一点,将△MAB绕点M顺时针旋转60°后,恰好点A与点D重合,得到△MDE,则∠DEC的度数是.15.(3分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.16.(3分)如图,抛物线y=ax2+bx+c与x轴交于A,B(m+1,0)两点,与y轴相较于点C,点D在该抛物线上,其坐标为(m,c),则点A的坐标为.三、解答题(共9小题,满分72分)17.(12分)解下列方程:(1)2x(x+1)=2x+2(2)x2﹣4x﹣4=0(3)x2﹣x﹣7=0(4)(x﹣1)2﹣5(x﹣1)﹣6=018.(6分)某种商品的标价是400元/件,经过两次降价后的价格是361元/件,且两次降价的百分率相同.求该商品每次降价的百分率.19.(6分)如图,平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐标系中画出与△ABC关于点P(1,0)成中心对称的△A'B'C',并分别写出点A',B',C'的坐标;(2)如果点M(a,b)是△ABC边上(不与A,B,C重合)任意一点,请写出在△A'B'C'上与点M对应的点M'的坐标.20.(6分)如图是抛物线在平面直角坐标系中的图象.(1)将的图象向上平移2个单位长度,画出平移后的图象,并写出新图象的解析式、顶点坐标;(2)直接写出将(1)所得的抛物线向右平移两个单位所得抛物线的解析式.21.(7分)如图,矩形ABCD的两边长AB=16cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)当△BPQ面积有最大值时,求x的值.22.(7分)如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.23.(8分)如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.(1)请你写出两个不相同的结论(不添加辅助线);(2)连接AD,若BE=4,AC=6,求线段AD的长.24.(10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销意将增加10箱,设每箱牛奶降价x元(x 为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?25.(10分)已知二次函数y=﹣x2+x+m.(1)如图,二次函数的图象过点A(3,0),与y轴交于点B,求直线AB和二次函数图象的解析式;(2)在线段AB上有一动点P(不与A,B两点重合),过点P作x轴的垂线,交抛物线于点D,是否存在一点P使线段PD的长有最大值?若存在,求出点P的坐标;若不存在,请说明理由.2019-2020学年湖北省襄阳市襄州区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:C.2.【解答】解:A:两边的项消去后,不含二次项,所以不是一元二次方程;B:符合一元二次方程的定义,是一元二次方程;C:是分式方程,不是整式方程,当然不是一元二次方程;D:要强调a≠0,否则不是一元二次方程.故选:B.3.【解答】解:A、∵△=b2﹣4ac=9+16=25>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=b2﹣4ac=36+60=7225>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=b2﹣4ac=16﹣20=﹣4<0,∴方程无实数根,故本选项符合题意;D、由已知方程得到x2﹣x﹣20=0,则△=b2﹣4ac=1+80=81>0,∴方程有两个不相等的实数根,故本选项不符合题意;故选:C.4.【解答】解:∵抛物线y=﹣2(x+1)2,∴顶点坐标为(﹣1,0),对称轴为x=﹣1.故选:A.5.【解答】解:∵△ABC与△A′BC′是成中心对称的两个图形,∴AB=A′B′,BC=B′C′,AB∥A′B′,BC∥B′C′,S△ABC=S△A′B′C′,无法得到:△ABC≌△A′OC′.故选:D.6.【解答】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=6,OA=5,∴AM′=×6=3,∴在Rt△OAM′中,OM′===4,∴线段OM长的最小值为4.故选:C.7.【解答】解:∵DE∥OA,∴∠AOD=∠D=60°,∵OA=OC,∴∠A=∠C,∵∠AOD=∠A+∠C=60°,∴∠C=∠A=30°,故选:C.8.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B、由抛物线的对称轴为x=1,可得﹣=1,则2a+b=0,故B正确,不符合题意;C、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D、当x=﹣1时,y<0,则a﹣b+c<0,故D错误,符合题意,故选:D.9.【解答】解:由图象可知,﹣1≤x≤3时,y≥1.故选:A.10.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(2+3+x)×3﹣x•(3﹣x)=×(2+3+x)×3﹣2×1,解得x=1或x=2,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.【解答】解:把x=2代入方程x2﹣3x﹣k=0得4﹣6﹣k=0,解得k=﹣2.故答案为﹣2.12.【解答】解:对称轴为直线x=﹣=﹣1,∵A(﹣2,y1)、B(0,y2),∴A、B是对称点,∴y1=y2,∵k=﹣2<0,∴x>﹣1时,y的值随x的增大而减小,∴y2>y3,∴y1=y2>y3.故答案为:y1=y2>y3.13.【解答】解:连接OE,∵∠1=∠AOE,∠2=∠BOE,∴∠1+∠2=∠AOE+∠BOE=(∠AOE+∠BOE)=×180°=90°.故答案为:90°.14.【解答】解:由题意可知:∠AMD=60°,MA=MD,∴△MAD是等边三角形,∴∠DAM=∠MDA=60°,∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°∴∠MDC=∠MAE=30°,∴∠DAE=∠DAM﹣∠MDE=30°,∴∠EDC=60°,又∵CD=AB,DE=AB,∴DE=DC,∴△ABE是等边三角形,∴∠DEC=60°.15.【解答】解:设每轮传染中平均每个人传染了x人.依题意得1+x+x(1+x)=100,∴x2+2x﹣99=0,∴x=9或x=﹣11(不合题意,舍去).所以,每轮传染中平均一个人传染给9个人.故填空答案:9.16.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣1,即A点坐标为(﹣1,0),故答案为:(﹣1,0).三、解答题(共9小题,满分72分)17.【解答】解:(1)2x(x+1)=2x+2,2x(x+1)﹣2(x+1)=0,2(x+1)(x﹣1)=0,x+1=0,x﹣1=0,x1=﹣1,x2=1;(2)x2﹣4x﹣4=0,b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=32,x=,x1=2+2,x2=2﹣2;(3)x2﹣x﹣7=0,b2﹣4ac=(﹣)2﹣4×1×(﹣7)=30,x=,x1=,x2=;(4)(x﹣1)2﹣5(x﹣1)﹣6=0,(x﹣1﹣6)(x﹣1+1)=0,x﹣1﹣6=0,x﹣1+1=0,x1=7,x2=0.18.【解答】解:设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=361,解得:x=5,或x=﹣105(舍去).答:该种商品每次降价的百分率为5%.20.【解答】解:(1)画出平移后的图象如图:由图象可知:新图象的解析式为+2,顶点坐标为(0,2);(2)将+2的图象向右平移2个单位长度,所得新抛物线的解析式为:y=(x﹣2)2+2.21.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=16﹣2x,BQ=x,∴y=(16﹣2x)x,即y=﹣x2+8x(0<x≤4);(2)由(1)知:y=﹣x2+8x,∴y=﹣(x﹣4)2+16,∴当x=4时,y有最大值,即△BPQ面积有最大值时,x的值为4.22.【解答】(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.23.【解答】解:(1)正确结论有:∠ACB=90°;BE=CE;=;OD∥AC;(2)∵OD⊥BC,BE=4,∴BE=CE=4,即BC=2BE=8,∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB===10,∴OB=OD=5,在Rt△OBE中,OB=5,BE=4,根据勾股定理得:OE===3,则ED=OB﹣OE=5﹣3=2,BD===2,∵AB是直径,∴∠ADB=90°,∴AD===4.24.【解答】解:(1)由题意得:y=60+10x∵36﹣x≥24∴x≤12∵x为正整数∴1≤x≤12,且x为正整数;(2)设每月销售牛奶的利润为w,则w=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810令w=800得:﹣10(x﹣3)2+810=800解得:x1=2,x2=4∵要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量∴x=4∴36﹣4=32>24(元)∴每箱牛奶的定价应是32元钱.25.【解答】解:(1)∵点A(3,0)在抛物线y=﹣x2+x+m上,∴﹣9+3+m=0,∴m=6.∴抛物线解析式为y=﹣x2+x+6,且B(0,6),设直线AB的解析式为y=kx+b,将A(3,0),B(0,6)代入y=kx+b中,得到,解得,∴直线AB的解析式为y=﹣2x+6;(3)设P(x,﹣2x+6),则D(x,﹣x2+x+6),∴PD=(﹣x2+x+6)﹣(﹣2x+6)=﹣x2+3x=﹣(x﹣)2+∵a=﹣1<0,∴当x=时,线段PD的长有最大值为,∴P(,3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届湖北省襄阳市襄州区九年级上学期期中数学试
卷【含答案及解析】
姓名___________ 班级____________ 分数__________
题号一二三总分
得分
一、选择题
1. 下列关于x的一元二次方程有实数根的是()
A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0
2. 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或0
3. 用配方法解下列方程时,配方有错误的是()
A.2m2+m﹣1=0化为
B.x2﹣6x+4=0化为(x﹣3)2=5
C.2t2﹣3t﹣2=0化为
D.3y2﹣4y+1=0化为
是由△AOB绕点O按逆时针方4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD
向旋转而得,则旋转的角度为()
A.30° B.45° C.90° D.135°
5. 抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位。

相关文档
最新文档