控制系统的时域分析—5稳态误差
控制工程基础第三章
特征根: 特征方程的根,即D(s)=0的解。
时域分析有关概念----主要概念
3.系统的零点、极点和零极点分布图 Xo(s) = M(s)
闭环零点: 闭环传递函数中M(s)=0的解
Xi (s) D(s)
闭环极点: 闭环传递函数中D(s)=0的解,等价特征根 开环零极点与开环传递函数相对应
f1
稳定性分析 s
s s
n n n
系12 统的特aab征011 方程aba为-223--D -代( s ) a数b a34a 5(0 劳s n 斯a a1 as )76n 稳 1 定 性 a b判n b 121 s 据 a aan 11a a240 aa11aa00aa35
4(s 2) G(s) s2 s
稳定
临界稳定
例 单位反馈系统的开环传递函数如下,判断系统是否稳定?
G(s) s 5 (s 2)
不稳定
稳定性分析----代数(劳斯)稳定性判据
系统的特征方程为 D ( s ) a 0 s n a 1 s n 1 a n 1 s a n 0
时域分析有关概念----典型输入信号
1.阶跃(位置)信号
a,t 0 x(t) 0,t 0
a为常数,a =1时为单位 阶跃信号,记为1(t)。
2.斜坡(速度)信号
at,t 0
x(t)
0,t
0
a为常数,a =1时为单位 斜坡信号,记为t·1(t)。
时域分析有关概念----典型输入信号
3.抛物线(加速度)信号
at2,t 0 x(t) 0, t 0
实验5-控制系统时域分析
实验5-控制系统时域分析实验目的:1. 掌握控制系统的时域分析方法;2. 熟悉控制系统的基本概念;3. 比较不同控制系统的性能指标,并对其优化。
实验原理:控制系统是由控制器、被控对象和传感器等组成的系统。
它的主要功能是将被控对象的输出值与预期输出值(设定值)进行比较,并根据比较结果对控制器的输出信号进行调整,以实现预期的控制系统动态响应。
系统的状态可以用输入输出关系来表示,通常用系统函数表示,它是输入信号与输出信号的转换函数。
根据系统函数的性质,系统的特性可以分析出来,比如稳态误差、响应时间和阻尼等。
控制系统的时域分析方法主要包括以下内容:1. 稳态误差分析稳态误差是指当控制系统到达稳定状态时,被控对象的输出值与设定值之间的差值。
它是一个反映控制系统偏离设定状态能力的指标。
稳态误差对于不同类型的系统有不同的计算方法,常见的系统类型包括比例控制系统、积分控制系统和派生控制系统。
比例控制系统的稳态误差是:$e_{ss}= \frac {k_p}{1+k_p}, (k_p \neq 0)$派生控制系统的稳态误差是0。
2. 基本响应特性分析一个控制系统的基本响应特性主要包括死区、超调量和稳定时间等。
死区是指当控制器输出的信号在一定范围内时,被控对象的输过不会发生变化。
死区对控制系统的响应时间和稳态误差有很大影响,通常需要根据系统的特点对死区进行调整。
超调量是指被控对象的输出值在达到设定值后,超出设定值的程度。
常见的超调量有百分比超调量和绝对超调量。
3. 阻尼及其影响阻尼是指系统的阻尼比,它是表征系统阻尼程度的一个参数。
阻尼对控制系统的稳定性和性能有很大影响。
当阻尼比为1时,系统的响应最快,但容易出现震荡现象。
阻尼比小于1时,系统的响应相对较慢,但是不会出现震荡现象。
当阻尼比大于1时,系统的响应速度较慢,但相对稳定。
实验步骤:本实验采用MATLAB软件对几种常见的控制系统进行时域分析,具体步骤如下:1. 打开MATLAB软件,新建文件进行编程。
《自动控制原理》第三章 3-5 稳态误差计算
R(s) E(s)
k
C(s)
--
s(s 2)
(参考答案:
kt s
k 355.6, kt 0.094; k 44.4, kt 0.055;)
能源与动力学院 第三章 线性系统的时域分析法
26
二、系统的闭环特征方程为, s33 s22sk0
试确定使系统稳定的k值范围以及系统产生等幅振荡的 频率。
能源与动力学院 第三章 线性系统的时域分析法
21
渐进稳定:若线性控制系统在初始扰动的影响下, 其动态过程随时间的推移逐渐衰减并趋于零(原平衡 工作点)。 不稳定:若在初始扰动影响下,系统的动态过程随 时间的推移而发散。
临界稳定:若系统的响应随时间的推移而趋于常值 或等幅正弦振荡
能源与动力学院 第三章 线性系统的时域分析法
第三章 线性系统的时域分析法
25
一、系统结构如图
(1)当kt 0,k9 且r(t)1(t) ,求系统的调节时 t s
间 和超调量% (;n 3 , 1 /3 ,ts 3 .5 ,% 3 .9 2 % 3
(2)若要求阶跃响应的峰值时t间p 0.5 秒,单位斜
坡响应的稳态误差ess 0.1 ,求k,k t 。
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
N(s)
能源与动力学院 第三章 线性系统的时域分析法
15
4. 扰动作用下稳态误差…
稳态误差的总结分析和例解
稳态误差的总结分析和例解控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。
只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。
一、 误差与稳态误差1、输入端的定义:对图一,比较输出得到:E(s)=R(s)-H(s)*Y(s)称E(s)为误差信号,简称误差图一2、输出端的定义:将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:E ’(s)=E(s)/H(s)输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。
图二再有误差的时域表达式:也有:e(t)= [E(S)]= [Φe (s)*R(S)]其中Φe (s)是误差传递函数,定义为:Φe (s)==根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)e ss (∞)= =二、 系统类型一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:[]1()()()()ts ss e t L E s e t e t -==+G(S)H(S)=K为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。
四、阶跃输入下的ess(∞)与静态位置误差系数Kpr(t)=R*1(t),则有:ess (∞)=νν用Kp表示静态位置误差系数:ess(∞)==其中: Kp=且有一般式子:Kp=ν∞ν五、斜坡输入下的ess(∞)与静态速度误差系数Kvr(t)=Rt,则有:ess (∞)=ν用Kv表示静态速度误差系数:ess(∞)==其中: Kv=六、加速度输入下的ess(∞)与静态加速度误差系数Kar(t)=Rt2/2,则有: ess (∞)=ν、用Kv表示静态速度误差系数: ess(∞)==其中: Kv=且有: Ka=、七、扰动状况下的稳态误差系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:图三1、输入端定义法:扰动状况下的系统的稳态误差传递函数:由拉氏变换终值定理,求得扰动状况下的稳态误差为:2、输出端定义法:212()'()0()()1()()()G s E s Y s N s G s G s H s =-=-+记Φe (s) =为误差传递函数,其中G(s)为:G(s)=G 1(s)*G 2(s)*H(s)八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。
控制系统的稳态误差ppt课件
(2) ?
(3)
22
小结
1)时域分析是通过直接求解系统在典型输入信号作用下的 时域响应来分析系统的性能的。通常是以系统阶跃响应的 超调量、调整时间和稳态误差等性能指标来评价系统性能 的优劣。
2)二阶系统在欠阻尼时的响应虽有振荡,但只要阻尼比取 值适当(如=0.7左右),则系统既有响应的快速性,又有 过渡过程的平稳性,因而在控制工程中常把二阶系统设计 为欠阻尼。
例题分析
根据 解得
。
把式子改写为二阶系统的标准形式,即
由上式得
例题分析
例题3-4 一单位反馈控制系统.若要求:①跟踪单位斜坡
输入时系统的稳态误差为2;②设该系统为三阶,其中一对复
数闭环极点为
。求满足上述要求的开环传递函数。
解 根据①和②的要求,可知该系统是I型三阶系统,因而 令其开环传递函数为
因为
例题分析
(2)当开环传递函数为
则其闭环特征方程变为
排劳斯表
例题分析
例题分析
欲使系统稳定,表中第一列的系数必须全为正值,即
由此得出系统稳定的条件是
例题分析
例题3-6 设一控制系统误差的传递函数为
输入信号
,求误差
。
解
由于输入是余弦信号,因而系统误差的终值将不存在。下
面用部分分式法去求
。因为
式中
例题分析
§3 控制系统的时域分析
§3.1 典型的试验信号 §3.2 一阶系统的时域响应 §3.3 二阶系统的时域响应 §3.4 高阶系统的时域响应 §3.5 线性定常系统的稳定性 §3.6 劳斯稳定判据 §3.7 控制系统的稳定误差
§3.7 控制系统的稳定误差
控制系统的稳态误差, 是控制精度(准确度)的 一种度量,是控制系统的 稳态性能指标。在实际系 统中,引起稳态误差的因 素是多种多样的。
自动控制原理第3章
拉氏变换式
A R(s) s2
当A=1时,称为单位斜坡信号
3、抛物线信号 数学表达式
拉氏变换式
r(t) 1 At2 2
A R(s) s3
r(t) t
1 R(s) s2
当A=1时,称为单位抛物线信号
4
典型的输入信号
单位抛物线信号拉氏变换式
r(t) 1 t 2 2
R(s)
1 s3
4、脉冲信号 数学表达式
y(s) R(s)(s) 1
2 n
s (s2 2ns n2 )
阶跃响应为
y(t) L1y(s) L1R(s)(s)
L1
1 s
(s2
2 n
2 ns
n2
)
二阶系统响应特性取决于阻尼系数 和无阻尼振荡频率 两个参数!
18
二阶系统分析
1、无阻尼 ( =0)的情况
特征根及分布情况: p1,2 jn
1 2
1 2nt
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 ent 1 nt
y(t)
响应曲线
1
0
t
21
二阶系统分析
4、过阻尼( >1)的情况
特征根及分布情况: 阶跃响应:
p1 2 1 n
p2 2 1 n
11
一阶系统分析
2、单位斜坡响应
t
y(t) (t T ) Te T t 0
y(t)的特点: (1)由动态分量和稳态分量两部分组成。 (2)输入与输出之间存在跟踪误差,且误差 值等于系统时
自动控制原理课件之第三章 (一) 时域性能指标,时域分析 (5)
故 20lg ( j) 3(dB)
b
系统带宽频率与带宽
一阶和二阶系统,带宽和系统参数具有解析关系。
自动控制原理教案
一阶系统的带宽: 一阶系统: 因为
1 (s) Ts 1
, 按带宽定义
1 1 T 2b
2
( j 0) 1
20lg ( jb ) 20lg
解 因为该系统为I型系统,单位速度输入下的稳态误差为 查表
1 K 9 K
60
0.62 % e
/ 1 2
7.5%
K 2 1 n , 2n n 2 K 11.6 T T 3.5 ts 0.506
n
自动控制原理教案
G ( j ) G ( j ) 1 G ( j ) A( )
1 2
[1 A2 ( ) 2 A( ) cos ( )] 1 1 [ cos ( )]2 sin 2 ( ) A( )
一般情况下,在M (ω)的极大值附近, γ(ω) 变化较小,且使M (ω)为极值的谐振频率ωr常位于ωc附近,即有
( j 0) 1 , 按带宽定义
b 2 2 b 2 (1 2 ) 4 2 2 2 n n
b n (1 2 2 ) (1 2 2 )2 1
1 2
二阶系统的带宽和自然频率成正比。与阻尼比成反比。
自动控制原理教案
带宽指标意义
根据一阶系统和二阶系统上升时间和过渡过程时间与参数的 关系,可以推论:系统的单位阶跃响应的速度和带宽成正比。 对于任意阶次的控制系统,这一关系仍然成立。 当系统的带宽扩大λ 倍,系统的响应速度则加快λ 倍。 对于输入端信号,带宽大,则跟踪控制信号的能力强;而在另一 方面, 抑制输入端高频干扰的能力则弱,因此系统带宽的选择在设计中应折 衷考虑,不能一味求大。
《自动控制原理》第三章自动控制系统的时域分析和性能指标
i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2
自动控制原理课后答案第3章
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
控制系统的时域分析
第四章 控制系统的时域分析
4. 3 控制系统的动态特性 一.动态性能指标
通常以系统单位阶跃输入时的响应来定义时域性能指标。 1.超调量——阶跃响应超过稳态值的最大值与稳态值之比 的百分数。下式中,c(tP ) 为输出响应的最大值;c() 为稳态值。
P
c(t P ) c() 100 % c()
2.延迟时间:响应曲线第一次达到终值一半所需的时间。
1
0.632
63.2%
86.5% 95% 98.2% 99.3%
0TLeabharlann 2T3T4T 5T t
这是一条指数曲线,t 0 处斜率最大,其值为1/T, 若系统保持此变化速度,在 t=T 时,输出将达到稳态值。 而实际系统只能达到稳态值的0.632, 经过3T或4T的时间 系统输出响应分加别达到稳态值的0.95或0.98。
3.峰值时间:对应于最大超调量发生的时间。
4.上升时间:动态响应曲线从零到第一次上升到稳态值所需
的时间。(若无超调量,取稳态值10-90%)
2
5.调整时间(又称过渡过程时间) :响应曲线达到并保 持与终值之差在预定的差值△内(又叫误差带 )所需要 的时间。一般取±2%或±5%。
c(t) 误差带 :0.05 或0.02
T
R( s ) s 2 1 s K
TT
10
R(s)
K s(Ts 1)
C(s)
K
( s ) C( s )
T
R( s ) s 2 1 s K
TT
令:
2 n
K T
2 n
1 T
则 二阶系统标准式:
( s )
s2
2 n
2
n
s
2 n
系统的稳态误差为
0型系统
A ess Ka
K a 0, ess K a 0, ess
K a K , ess A K
I型系统
II型系统
三、系统稳定误差的计算
输入信号作用下的稳态误差
系统 型别 静态误差 系数 阶跃输入 斜坡输入 抛物线输入
r (t ) 1(t )
r (t ) t
e ss
1
r (t ) t
e ss
1
2
Kp
0型 I型 II型
Kv
0
Ka
0 0
ess
1
1
2
1 K
K
p
Kv
Kp
1
1
Ka
K
0 0
Kv
K
0
Ka
三、系统稳定误差的计算
综述,系统的稳态误差与输入信号形式有 关,对于一个结构确定的系统,如果给定 输入形式不同,其稳态误差就不同;同时 稳态误差与系统结构也密切相关,如果给 定信号一定,不同结构的系统稳态误差也 不同。 按静态误差系数法计算稳态误差的方法, 是基于拉氏变换的终值定理,只能使用阶 跃、斜坡及加速度或他们的组合,如果输 入是其他任意时间函数,以上结论则不能 成立。
一、系统误差及稳态误差概念
系统误差传递函数
sR ( s) sR ( s) ess lim e(t ) lim sE ( s) lim lim t s 0 s 0 1 G1G2 H s 0 1 GK ( s )
在误差信号e(t)中,包含瞬态分量 ets (t ) 和稳态分量 ess (t ) 两部分,由于系统必须稳定,故当时间趋于无穷时, 瞬态分量必须趋于零,因而系统的稳态误差定义为, ess () ess 系统误差的稳态分量 ,常以 表示。 E ( s) 1 对上式 Ge (s) ,根据拉氏变换的终值定 R( s) 1 G1G2 H 理,得
控制系统时域分析
控制系统时域分析控制系统是指由各种元件和装置组成的,用于控制、调节和稳定各种过程的系统。
在控制系统的设计和分析中,时域分析是一种常用的方法。
时域分析可以通过考察系统输出信号在时间上的变化来评估系统的性能和稳定性。
本文将介绍控制系统的时域分析方法及其在工程实践中的应用。
1. 时域分析的基本概念时域分析是指通过观察系统输入和输出信号在时间轴上的波形变化,来分析控制系统的性能和特性。
在时域分析中,常用的指标包括系统的响应时间、稳态误差、超调量、振荡频率等。
2. 系统的单位阶跃响应单位阶跃响应是指将系统输入信号设置为单位阶跃函数,观察系统输出信号的变化。
单位阶跃响应可以反映系统的动态特性,包括系统的稳态响应和暂态响应。
通过观察单位阶跃响应的波形,可以评估系统的超调量、上升时间、峰值时间等性能指标。
3. 系统的单位脉冲响应单位脉冲响应是指将系统输入信号设置为单位脉冲函数,观察系统输出信号的变化。
单位脉冲响应可以用来确定系统的传递函数和冲激响应。
通过观察单位脉冲响应的波形,可以计算系统的阶跃响应和频率响应等特性。
4. 系统的稳态误差分析稳态误差是指系统输出信号与期望输出信号之间的偏差。
稳态误差分析是用来评估系统在稳态下的性能。
根据系统的稳态误差特性,可以对系统进行进一步的补偿和优化。
通常,稳态误差可以通过单位阶跃响应和传递函数来计算。
5. 系统的波形分析波形分析是指通过观察系统输入和输出信号的波形,来分析系统的性能和特性。
波形分析可以帮助工程师判断系统是否存在超调、振荡和阻尼等问题,从而进行相应的调整和改进。
6. 控制系统的频域分析虽然时域分析是评估控制系统性能的常用方法,但有时候需要使用频域分析来更全面地了解系统的特性。
频域分析可以通过考察系统的频率响应函数来评估系统的稳定性和抗干扰性能。
常见的频域分析方法包括傅里叶变换、拉普拉斯变换和频率响应曲线等。
总结:时域分析是控制系统设计和分析中重要的工具之一。
通过观察系统输入和输出信号在时间上的变化,可以评估系统的性能和稳定性。
稳态误差总结分析与例解
稳态误差的总结分析和例解控制系统稳态误差是系统控制准确度的一种度量,通常称为稳态性能。
只有当系统稳定时,研究稳态误差才有意义,对不能稳定的系统,根本不存在研究稳态误差的可能性。
一、 误差与稳态误差1、输入端的定义:对图一,比较输出得到:E(s)=R(s)-H(s)*Y(s)称E(s)为误差信号,简称误差图一2、输出端的定义:将图一转换为图二,便可定义输出端的稳态误差,并且与输入端的稳态误差有如下关系:E ’(s)=E(s)/H(s)输入端定义法可测量实现,输出端定义法常无法测量,因此只有数学意义,以后在不做特别说明时,系统误差总是指输入端定义误差。
图二再有误差的时域表达式:也有:e(t)=L −1[E(S)]=L −1[Φe (s)*R(S)]其中Φe (s)是误差传递函数,定义为:Φe (s)=E sR (S )=11+G s ∗H s根据拉氏变换终值定理,由上式求出稳态误差:(T j s+1)e ss (∞)=lim s →0s ∗E (s )=lim s →0s∗R (S )1+G s ∗H s二、 系统类型一般的,定义一个分子为m 阶次,分母为n 阶次的开环传递函数为:[]1()()()()ts ss e t L E s e t e t -==+G(S)H(S)=K (Tis +1)m i =1s ^v (Tjs +1)n −vj =1K 为开环增益,ν表示系统类型数,ν=0,表示0型系统;ν=1表示Ⅰ型系统;当ν大于等于2时,除了符合系统外,想使得系统稳定相当困难。
四、阶跃输入下的e ss (∞)与静态位置误差系数Kpr(t)=R*1(t),则有:e ss (∞)= R1+K ,ν=00 ,ν≥1用Kp 表示静态位置误差系数:e ss (∞)=R 1+lim s →0G s ∗H s =R1+Kp其中: Kp=lim s →0G s ∗H s且有一般式子:Kp=K ,ν=0∞ ,ν>=1五、斜坡输入下的e ss (∞)与静态速度误差系数Kvr(t)=Rt,则有:e ss (∞)= ∞ ,ν=0RK ,v =10,v ≥2用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKv其中:Kv=lim s →0s ∗G s ∗H s六、加速度输入下的e ss (∞)与静态加速度误差系数Kar(t)=Rt 2/2,则有:e ss (∞)= ∞ ,ν=0、1R/K,v =20 ,v ≥3用Kv 表示静态速度误差系数:e ss (∞)=R lim s →0G s ∗H s =RKa其中:Kv=lim s →0s ^2∗G s ∗H s且有:Ka= 0, v =0、1K , v =2∞, v ≥3七、扰动状况下的稳态误差系统的模型如图三所示对扰动状况下的稳态误差仍然有输入端与输出端的两种定义:图三1、输入端定义法:扰动状况下的系统的稳态误差传递函数:由拉氏变换终值定理,求得扰动状况下的稳态误差为:2、输出端定义法:212()'()0()()1()()()G s E s Y s N s G s G s H s =-=-+记Φe (s) =−G 2 s1+G s 为误差传递函数,其中G(s)为:G(s)=G 1(s)*G 2(s)*H(s)八、减小或者消除稳态误差的措施: (1)保证系统中各个环节(或元件),特别是反馈回路中元件的参数具有一定的精度和恒定性;(2)对输入信号而言,增大开环放大系数(开环增益),以提高系统对给定输入的跟踪能力;(3)对干扰信号而言,增大输入和干扰作用点之间环节的放大系数(扰动点之前的前向通道增益),有利于减小稳态误差;(4)增加系统前向通道中积分环节数目,使系统型号提高,可以消除不同输入信号时的稳态误差。
控制系统的稳态误差
二、稳态误差分析与静态误差系数
(1)阶跃输入作用下的稳态误差及静态位置
误差系数
定义:静态位置误差系数:
位置误差
无差系统:稳态误差为零的系统。 有差系统:稳态误差非零有限值的系统。 静差:将系统在阶跃输入作用下的稳态误差 称为静差。 Q:要使系统在单位阶跃信号作用下,稳态误 差为0,则要求误差度v=?
在系统的稳态性能分析中常以偏差代替误
差进行研究,稳态误差就是指稳态偏差。
2. 误差的数学模型
根据稳态误差的定义,利用拉普拉斯变换终 值定理:
可见,稳态误差取决于开环传递函数和输入 信号。
3. 开环系统的类型
以开环系统中积分环节个数v分类
其中:
控制系统稳态误差:
控制系统的稳态误差主要由三方面确定: a.输入信号的类型; b.系统的开环增益K; c.积分环节的个数ν ,也称为误差度。
(2)斜坡输入作用下的稳态误差及静态速度 误差系数
速度误差
定义:静态速度误差系数:
(3)抛物线输入作用下的稳态误差及静态加 速度误差系数
加速度误差
定义:静态加速ห้องสมุดไป่ตู้误差系数:
小
结
(a)对于有稳态误差的情况,开环增益K越 大,稳态误差就越小但受实际设备的限 制; (b)系统的类型(即误差度)越高,能够跟踪 信号的阶次就越高; (c)但误差度过高也可能导致系统不稳定; 系统的稳定性与系统的稳态性能要兼顾 考虑。
第四章 控制系统的时域分析
第7小节 控制系统的稳态误差(1)
一、稳态误差的基本概念
稳态性能考虑的是系统输出响应在调整时 间之后的品质,通常用稳态误差来描述。稳 态误差的大小反映系统对于给定信号的跟踪 精度,是系统控制精度的一种度量。
控制系统的稳态误差分析
第六节 控制系统的稳态误差分析
例 位置随动系统的稳态误差分析。
解: (1) 典型随动系统 开环传递函数为 K G(s)= s(T s+1) m
θ (s) r
c K θ (s) s(Tms+1)
1 当输入信号 θr(s)= s
Kp=∞
essr=0 1 essr= K
1 当输入信号 θr(s)=s2
K =K υ
1 a t2 设静态加速度误差系数 设 r(t)= 2 0 Ka=lim s2G(s)H(s) a0 s→0 R(s)= s3 a 0 =lim sK-2 s→0 υ s3 essr=lim s· s→0 1+G(s)H(s) 可得: a0 a0 = lim s2G(s)H(s)= K υ≤1 Ka=0 essr=∞ a s→0 a0 m Ka=K essr= K KΠ(τ is+1) υ=2 G(s)H(s)= υ i=υ n1 s Π(Tjs+1) υ≥ 3 Ka=∞ essr=0 j=1
2 R(s)= s2 0.5 D(s)= s
2 2 2 essr= K = K = 20 =0.1 υ essd= lim s -G2(s)H(s)D(s) s→0 1+G1(s)G2(s)H(s)
第六节 控制系统的稳态误差分析
三、改善系统稳态精度的方法
增加积分环节可提高系统精度等级, 增加放大系数可减小有限误差。采用补偿 的方法,则可在保证系统稳定的前提下减 小稳态误差。
第三章 时域分析法
第六节 控制系统的稳态误差分析
一、给定信号作用下的稳态误差 二、扰动信号作用下的稳态误差
三、改善系统稳态精度的方法
第六节 控制系统的稳态误差分析
控制系统的时域分析
L-1
1 s3
其中:A
-
[
T +T2 s2 s
1 s3( Ts
- T3 Ts + 1
1 ) s3 ]s=0
1
1 2
t2
- Tt + T 2 - T 2e -t/T
d
1
B ds [ s3(Ts 1 )
s3
]s=0
T
s1,2,3 0
C
1 {
( 3 1 )
d 31 ds 31
[
1 s3( Ts 1 )
=- 1 T
s(Ts
+
1)
(Ts
+
1)
p2
=
-
1 T
=
1
= -T
红河学院自动化系
T
自动控制原理
单位阶跃
慣性
拉氏反变换:
c(t) = L-1 C(s)
=
L-1
1 s
-
s
1 + 1/T
=
1
-
-t
eT
一阶系统没有超调,
c(t)
系统的动态性能指标为 调节时间:
ts = 3T (±5%)
单位阶跃响应曲线
一、时域分析法及其特点
时域分析法——控制系统在一定输入作用下,根 据输出量的时域表达式,分析系统的稳定性、瞬 态过程性能和稳态误差。 特点:
(1) 直接在时间域中对系统进行分析校正,直观、 准确; (2) 可以提供系统时间响应的全部信息; (3) 基于求解系统输出的解析解,比较烦琐。
红河学院自动化系
自动控制原理
二、常用的典型输入信号
红河学院自动化系
自动控制原理 三、线性系统时域性能指标 总要求
6第六节稳态误差分析
Wednesday, July 03, 2019
9
对于稳定的系统,稳态误差可以借助拉氏变换的终值定
理方便的计算出:
ess
lim e(t) lim sE(s)
s2
K
由稳定的条件知:
ess
1 6
不能满足 ess 0.1 的要求
Wednesday, July 03, 2019
14
给定输入时的稳态误差表达式
三、给定输入值作用下系统的误差及分析
N (s)
这时,不考虑扰动的影响。 R(s) 由图b,可以写出随动系统的 误差 为E((s)见右图):
E(s) G1(s)
K (0.5s 1) C(s)
s(s 1)(2s 1)
解:只有稳定的系统计算稳态误差才有意义,所以先判稳:
系统特征方程为 2s3 3s2 (1 0.5K )s K 0
由劳斯判据知稳定的条件为:0 K 6
E (s)
E(s) R(s)
1 1 G1(s)G2 (s)H (s)
开平面(包括原点)。
R(s) B(s)
E(s) -
G1 ( s )
N(s) +
C(s)
G2 (s)
H (s)
Wednesday, July 03, 2019
13
稳态误差的计算
[例] 系统结构图如图所示,当输
入信号为单位斜坡函数时,求系统 在输入信号作用下的稳态误差;调
R(s)
-
整K值能使稳态误差小于0.1吗?
控制系统的时域分析实验报告
控制系统的时域分析实验报告实验目的:1.了解控制系统的时域分析方法;2.学习使用MATLAB进行时域分析;3.通过实验验证时域分析的准确性。
实验原理:时域分析是控制系统研究中的一种方法,通过研究系统在时间上的响应来研究系统的动态特性和稳定性。
在时域分析中,常用的方法包括脉冲响应、阶跃响应和正弦响应等。
通过对这些响应进行观察和分析,可以得到系统的各种性能指标,如超调量、响应时间、稳态误差等。
实验步骤:1.使用MATLAB编写程序,生成一个二阶控制系统的传递函数。
2.通过给控制系统输入一定的信号,观察系统的脉冲响应,并记录脉冲响应图像。
3.给控制系统输入一个阶跃信号,观察系统的阶跃响应,并记录阶跃响应图像。
4.给控制系统输入一个正弦信号,观察系统的正弦响应,并记录正弦响应图像。
5.根据实验数据,使用MATLAB分析系统的性能指标,如超调量、响应时间和稳态误差等。
实验结果:通过实验测得的数据和MATLAB分析,得到了控制系统的各种性能指标。
例如,测得的脉冲响应图像显示了系统的初值响应特性;阶跃响应图像显示了系统的过渡过程;正弦响应图像显示了系统的频率响应特性。
通过分析这些响应图像,可以得到系统的超调量、响应时间和稳态误差等指标。
实验结论:1.通过实验和分析,了解了控制系统的时域分析方法;2.掌握了使用MATLAB进行时域分析的技巧;3.实验证明了时域分析在控制系统研究中的重要性和准确性。
实验心得:通过进行控制系统的时域分析实验,我深刻认识到了时域分析在控制系统研究中的重要性。
通过观察和分析系统的脉冲响应、阶跃响应和正弦响应,可以全面了解系统的动态特性和稳定性。
同时,学会了使用MATLAB进行控制系统的时域分析,这将在我未来的研究工作中发挥重要作用。
实验结果验证了时域分析的准确性,这对我提高对控制系统的理解和研究能力有着积极影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年5月8日11时6分
13
对于1型系统(或高于1型的系统), 1
m
K ( j s 1)
K p
lim
s0
s
j 1 n
(Τi s 1)
1 ess 1 K p 0
2020年5月8日11时6分
3
注释:
N(s)
R(s)
E(s) G1(s)
+ G2 (s)
C(s)
-
B(s) H (s)
从输出端定义的误差,在性能指标提法中经常使用, 但在实际系统中无法测量,因而一般只有数学意义。
从输入端定义的误差,在系统中是可以测量的,因而 具有实用性。
对于单位反馈系统,要求输出量C(s)的变化规律与给定 输入R(s)的变化规律完全一致,所以给定输入R(s)也就是 输出量的希望值Cr(s) ,即Cr(s)=R(s)。 此时,误差的两 种定义形式是一致的。
稳态误差的定义:稳定系统误差信号的稳态分量 称为系统的稳态误差,以 ess 表示。
ess
lim
t
e(t )
lim
s0
sE s
2020年5月8日11时6分
7
二、输入作用下的稳态误差
如果不计扰动输入的影响,可以求得系统的给定 稳态误差。此时,系统的结构图可简化为:
R(s) E(s) G(s)
C(s)
上式是确定给定稳态误差的一个基本公式。 它表明,在给定输入作用下,系统的稳态误差与 系统的结构、参数和输入信号的形式有关,当系 统给定输入的形式确定后,系统的稳态误差将取 决于以开环传递函数描述的系统结构。
2020年5月8日11时6分
10
为了分析稳态误差与系统结构的关系,可以 根据开环传递函数 G(s)H(s) 中串联的积分环节来 规定控制系统的类型。
- B(s)
H(s)
给定输入作用下系统结构图
2020年5月8日11时6分
8
由上图可知 C(s) G(s) R(s)
1 G(s)H(s)
由误差的定义可知
E(s) R(s) B(s) R(s) H (s)C(s)
R(s) H (s) G(s) R(s) 1 G(s)H(s)
1 1 G(s)H (s) R(s) er (s)R(s)
式中
1 er (s) 1 G(s)H (s)
称为给定输入作用下系统的误差传递函数。
应用拉氏变换的终值定理可以方便地求出系 统的稳态误差。
2020年5月8日11时6分
9
ess
lim
t
e(t)
lim
s0
sE(s)
lim
s0
s
1
1 G(s)H(s)
R(s)
1
lim s
R(s)
s0 1 G开 (s)
§ 3-6 控制系统的稳态误差
系统的稳态分量反映系统跟踪输入信号的准 确度或抑制扰动信号的能力,用稳态误差描述。在 系统的分析、设计中,稳态误差是一项重要的性能 指标,它与系统本身的结构、参数及外作用的形式 有关,也与元件的不灵敏、零点漂移、老化及各种 传动机械的间隙、摩擦等因素有关。
本章只讨论由于系统结构、参数及外作用等因 素所引起的稳态误差。 ➢ 给定稳态误差(由给定输入引起的稳态误差) ➢ 扰动稳态误差(由扰动输入引起的稳态误差)
2020年5月8日11时6分
6
我们通常称e(t)为系统的误差响应,它反映 了系统在输入信号和扰动信号作用下整个工作过 程中的精度。误差响应e(t)也和输出响应c(t)一样 包含有瞬态分量和稳态分量两个部分,如果所研 究系统是稳定的,那么当时间t趋于无穷大时, 瞬态分量趋近于零,剩下的只是稳态分量。
设系统的开环的传递函数为:
m
K ( j s 1)
G(s)H(s)
j 1
n
s (Τi s 1)
i 1
2020年5月8日11时6分
11
1、 单位阶跃输入时的稳态误差 对于单位阶跃输入,系统的稳态误差为
1
1
1
ess
lim
s0
s
1
G(s)H(s)
s
1
lim
G(s)H(s)
s0
记K
p
lim
s0
G(s)H (s),为稳态位置误差系数。
E(s)=ε(s) = R(s) - C(s)
2020年5月8日11时6分
4
对于非单位反馈系统,则不难证明E(s)与ε(s) 之 间存在如下关系:
证明:
(s) E(s)
H(s)
(s) Cr(s) C(s)
E(s) R(s) B(s) 0
R(s) Cr (s)H (s) 0 R(s)
2020年5月8日11时6分
2
一、稳态误差的定义
系统的误差e(t)一般定义为输出量的希望值与 实际值之差。误差的定义有两种形式: (1)系统误差(从输出端定义) (s) Cr (s) C(s)
Cr(s)为系统输出量的希望值,其定义为E(s)=0时系 统的输出,C(s)为输出量的实际值。
(2)作用误差(从输入端定义)E(s) R(s) B(s) 作用误差就是给定输入R(s)与主反馈信号B(s)之差。
2020年5月,给定输入变化,要求系统输 出量以一定的精度跟随输入量的变化,因而用 给定稳态误差来衡量系统的稳态性能。
对于恒值系统,给定输入通常是不变的,需 要分析输出量在扰动作用下所受到的影响,因 而用扰动稳态误差来衡量系统的稳态性能。
本章介绍稳态误差的概念和计算方法,研 究稳态误差的规律以及减小或消除稳态误差的 途径。
稳态误差可表示为
ess
1 1 K
p
因此,在单位阶跃输入下,给定稳态误差取决于
系统的稳态位置误差系数。
2020年5月8日11时6分
12
对于0型系统,v=0
m
K ( j s 1)
K p
lim
s0
j 1 n
K
(Τi s 1)
i 1
1
1
ess 1 K p 1 K
可见,由于0型系统中没有积分环节,它对阶跃 输入的稳态误差为一定值,误差的大小与系统 的开环放大系数 K 成反比,K 越大,ess 越小, 只要 K 不是无穷大,系统总有误差存在。
Cr (s) H(s)
(s) R(s) C(s) R(s) C(s)H (s) R(s) B(s) E(s)
H(s)
H(s)
H(s) H(s)
2020年5月8日11时6分
5
系统误差与作用误差之间的关系:
(s) E(s)
H(s)
可见,两种定义对非单位反馈系统是存在差 异的,但两种定义下的误差之间具有确定的 关系,即误差ε(s)可以直接或间接由E(s)来确 定。从本质上看,它们都能反映控制系统的 控制精度。