2018-2019学年高二下学期第二次联考数学(理)试题
2018-2019学年高二下学期期末考试数学试题(带答案)
2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
人教A版数学高二弧度制精选试卷练习(含答案)1
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
河南省商丘市九校2018-2019学年高二上学期期末联考数学(理)试题 Word版含解析
2018-2019学年上期期末联考高二数学(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地)1.命题:地否定是 ( )A. B.C. D.【结果】A【思路】【思路】由全称命题地否定直接改写即可.【详解】因为全称命题地否定为特称命题,所以命题:地否定是:.【点睛】本题主要考查含有一个量词地命题地否定,一般只需要改量词和结论即可,属于基础题型.2.已知,则下面不等式成立地是 ( )A. B. C. D.【结果】B【思路】【思路】利用不等式地基本性质即可得出结果.【详解】因为,所以,所以,故选B【点睛】本题主要考查不等式地基本性质,属于基础题型.3.在单调递增地等差数列中,若,则 ( )A. -1B.C. 0D.【结果】C【思路】【思路】先设等差数列地公差为,由题中款件列出方程组,求解即可.【详解】设等差数列地公差为,因为,所以有:,解方程组得:。
故选C【点睛】本题主要考查等差数列地性质,由题意列方程组求公差和首项即可,属于基础题型.4.△ABC地内角A,B,C地对边分别为a,b,c.已知,,,则 ( )A. B. 3 C. 2 D.【结果】B【思路】【思路】由余弦定理,列出方程,直接求解即可.【详解】因为,,,由余弦定理可得:,解得或,故,选B【点睛】本题主要考查余弦定理,熟记公式即可,属于基础题型.5.设,则“”是“”地 ( )A. 充分而不必要款件B. 既不充分也不必要款件C. 充要款件D. 必要而不充分款件【结果】D【思路】【思路】先解不等式和不等式,然后结合充要款件地定义判断即可.【详解】由得。
由得,所以由能推出。
由不能推出,故“”是“”地必要不充分款件.故选D【点睛】本题主要考查充分款件和必要款件,结合概念直接判断即可,属于基础题型.6.曲线在点(1,1)处切线地斜率等于().A. B. C. 2 D. 1【结果】C【思路】试题思路:由,得,故,故切线地斜率为,故选C.考点:导数地集合意义.7.已知向量且互相垂直,则地值是 ( )A. B. 2 C. D. 1【结果】A【思路】【思路】由向量垂直,可得对应向量数量积为0,从而可求出结果.【详解】因为,所以,,又互相垂直,所以,即,即,所以;故选A【点睛】本题主要考查向量地数量积地坐标运算,属于基础题型.8.若实数x,y满足约束款件则地最大值是( )A. 2B. 0C. 1D. -4【结果】C【思路】【思路】先由约束款件作出可行域,化目标函数为直线方程地斜截式,由截距地取值范围确定目标函数地最值即可.【详解】由约束款件作出可行域如图所示,目标函数可化为,所以直线在y轴截距越小,则目标函数地值越大,由图像易知,当直线过点A时,截距最小,所以目标函数最大为.故选C【点睛】本题主要考查简单地线性规划,只需依据约束款件作出可行域,化目标函数为直线地斜截式,求在y轴截距,即可求解,属于基础题型.9.已知AB是抛物线地一款焦点弦,,则AB中点C地横坐标是 ( )A. 2B.C.D.【结果】B【思路】【思路】先设两点地坐标,由抛物线地定义表示出弦长,再由题意,即可求出中点地横坐标.【详解】设,C地横坐标为,则,因为是抛物线地一款焦点弦,所以,所以,故.故选B【点睛】本题主要考查抛物线地定义和抛物线地简单性质,只需熟记抛物线地焦点弦公式即可求解,属于基础题型.10.若不等式地解集为,那么不等式地解集为 ( )A. B.C. D.【结果】D【思路】【思路】依据题中所给地二次不等式地解集,结合三个二次地关系得到,由根与系数地关系求出地关系,再代入不等式,求解即可.【详解】因为不等式地解集为,所以和是方程地两根,且,所以,即,代入不等式整理得,因为,所以,所以,故选D【点睛】本题主要考查含参数地一圆二次不等式地解法,已知一圆二次不等式地解求参数,通常用到韦达定理来处理,难度不大.11.已知双曲线地左.右焦点分别为F1,F2,点P在双曲线上,且满足,则地面积为 ( )A. 1B.C.D.【结果】A【思路】【思路】由双曲线地定义可得,联立可求出地长,进而可求三角形地面积.【详解】由双曲线地定义可得,又,两式联立得:,,又,所以,即为直角三角形,所以.故选A【点睛】本题主要考查双曲线地简单性质,双曲线地焦点三角形问题,一般需要借助抛物线地性质,结合题中款件来处理,难度不大.12.若函数有两个零点,则实数a地取值范围为 ( )A. B. C. D.【结果】C【思路】【思路】先求出函数地导函数,利用导函数求出函数地最小值,再依据函数地零点和最值之间地关系即可求出参数地范围.【详解】因为函数地导函数为,令,得,所以当时,,函数单调递减。
二项式定理(1)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
浙江省浙南名校联盟2018-2019学年高二下学期期末数学试题(原卷版)
2018年学年第二学期浙南名校联盟期末联考高二年级数学学科试题参考公式:球的表面积公式 24S R π=球的体积公式243V R π= 其中R 表示球的半径 柱体的体积公式 V Sh = 其中S 表示棱柱的底面面积,h 表示棱柱的高锥体的体积公式 13V Sh = 其中S 表示棱锥的底面面积,h 表示棱锥的高台体的体积公式 ()13a ab b V h S S S S =+⋅+ 其中,a b S S 分别表示台体的上、下底面积 h 表示台体的高一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U N =,{}*|2,A x x n n N ==∈,{|16}B x x =<„,则()UA B =Ið( )A. {2,3,4,5,6}B. {2,4,6}C. {1,3,5}D. {3,5}2.双曲线22221y x a b-=的渐近线方程为2y x =±,则其离心率为( )A.32B.6 C. 3D.33.如图,某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.72B.73C.76D. 74.若复数2(1)ai +(i 为虚数单位)纯虚数,则实数a =( ) A. 1±B. 1-C. 0D. 15.已知平面α,β,直线a ,满足αβ⊥,l αβ=I ,则下列是a β⊥的充分条件是( )A. //a αB. a α⊂C. a l ⊥D. ,a l a α⊥⊂6.已知实数,a b 满足cos cos a b a b ->-,则下列说法错误..的是( ) A. cos cos a b a b +>+ B. cos cos a b b a ->- C. sin sin a b a b ->-D. sin sin a b b a ->-7.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P13 12 16η1 2 3P16 12 13A. E E ξη<,D D ξη<B. E E ξη<,D D ξη>C. E E ξη<,D D ξη=D. E E ξη=,D D ξη=8.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B. 有最大值34C. 有最小值43D. 有最小值349.已知2a b a b ==⋅=v v v v ,c tb -v v 的最小值为c a -v v,则4b ac c a +-+-vv v v v 的最小值为( )1 B. 2110.已知数列{}n a前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②n a <;③11n n a a +<A. 仅有①②正确B. 仅有①③正确C. 仅有②③正确D. ①②③均正确二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有__________个.12.若,x y 满足约束条件220,240,330,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则22x y +的最小值为___________,最大值为___________.13.从正方体的8个顶点中选4个点作一个平面,可作___________个不同的平面,从正方体的8个顶点中选4个点作一个四面体,可作___________个四面体.14.在ABC V 中,内角,,A B C 所对的边,,a b c 依次成等差数列,且()cos cos b C k B c =-,则k 的取值范围___________,若2k =,则cos B 的值为___________.15.在444x x ⎛-⎫⎪⎝⎭+的展开式中,各项系数和为_______,其中含2x 的项是________.16.已知椭圆C :()222210x y a b a b +=>>的左,右焦点分别为1F ,2F ,焦距为2c ,P 是椭圆C 上一点(不在坐标轴上),Q 是12F PF ∠的平分线与x 轴的交点,若22QF OQ =,则椭圆离心率的范围是___________.17.对于任意的实数b ,总存在[]0,1x ∈,使得21x ax b ++≥成立,则实数a 的取值范围为_____.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数()30,22f x x πωϕωϕ⎛⎫⎛⎫=+>< ⎪⎪⎝⎭⎝⎭对任意实数x 满足()566f f x f ππ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭. (1)当()f x 的周期最大值时,求函数()f x 的解析式,并求出()f x 单调的递增区间;(2)在(1)的条件下,若,0,3236a a f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∈=,求()2f a 的值.19.如图,已知四棱锥P -ABCD 中,底面ABCD 是直角梯形,AD //BC ,BC =2AD ,AD ⊥CD ,PD ⊥平面ABCD ,E 为PB 的中点.(1)求证:AE //平面PDC ;(2)若BC =CD =PD ,求直线AC 与平面PBC 所成角的余弦值.20.已知数列{}n a 满足12a =,()1*121222n n n n a a a na n N -+++⋅⋅⋅+=∈.(1)求n a ; (2)求证:()*122311113261112n n a a a n n n N a a a +----<++⋅⋅⋅+<∈---. 21.已知点M 为抛物线2:4C y x =上异于原点O 的任意一点,F 为抛物线的焦点,连接MF 并延长交抛物线C 于点N ,点N 关于x 轴的对称点为A . (1)证明:直线MA 恒过定点;(2)如果FM OM λ=,求实数λ的取值范围. 22.已知函数()ln f x x a x =-.(1)若()1f x ≥恒成立,求a 的取值范围;(2)在(1)的条件下,()f x m =有两个不同的零点12,x x ,求证:121x x m +>+.。
2018-2019学年湖北省黄冈中学高二(下)期末数学试卷(理科)
2018-2019学年湖北省黄冈中学高二(下)期末数学试卷(理科)1.(单选题,5分)已知x→0f(1+x)−f(1)x=−2,则f′(1)的值是()A.1B.-1C.2D.-22.(单选题,5分)二项式(a+b)n展开式中,奇数项系数和是32,则n的值是()A.4B.5C.6D.73.(单选题,5分)一袋中有大小相同的2个白球,4个黑球,从中任意取出2个球,取到颜色不同的球的概率是()A. 29B. 49C. 415D. 8154.(单选题,5分)一批产品抽50件测试,其净重介于13克与19克之间,将测试结果按如下方式分成六组:第一组,净重大于等于13克且小于14克;第二组,净重大于等于14克且小于15克;…第六组,净重大于等于18克且小于19克.如图是按上述分组方法得到的频率分布直方图.设净重小于17克的产品数占抽取数的百分比为x,净重大于等于15克且小于17克的产品数为y,则从频率分布直方图中可分析出x和y分别为()A.0.9,35B.0.9,45C.0.1,35D.0.1,455.(单选题,5分)已知(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是()A.1B.16C.41D.816.(单选题,5分)从6名团员中选出4人分别担任书记、副书记、宣传委员、组织委员四项职务,若其中甲、乙不能担任书记,则不同的任职方案种数是()A.280B.240C.180D.967.(单选题,5分)已知a n是多项式(1+x)2+(1+x)3+…+(1+x)n(n≥2,n∈N*)的展开式中含x2项的系数,则n→∞a nn3的值是()A.0B. 16C. 13D. 128.(单选题,5分)当点P在曲线y=sinx(x∈(0,π))上移动时,曲线在P处切线的倾斜角的取值范围是()A. [0,π2)B. (−π4,π4)C. (π4,3π4)D. [0,π4)∪ (3π4,π)9.(单选题,5分)暑期学校组织学生参加社会实践活动,语文科目、数学科目、外语科目小组个数分别占总数的12、13、16,甲、乙、丙三同学独立地参加任意一个小组的活动,则他们选择的科目互不相同的概率是()A. 136B. 112C. 16D. 353610.(单选题,5分)经过点(3,0)的直线l与抛物线y=x2交于不同两点,抛物线在这两点处的切线互相垂直,则直线l的斜率是()A. 112B. 16C. −112D. −1611.(填空题,5分)已知随机变量ξ~B(n,p),若Eξ=3,Dξ=2,则n的值是___12.(填空题,5分)已知limn→∞(2n-1)a n=1,则limn→∞na n=___ .13.(填空题,5分)设随机变量ξ~N(1,1),P(ξ>2)=p,则P(0<ξ<1)的值是___14.(填空题,5分)4名男生和2名女生共6名志愿者和他们帮助的2位老人站成一排合影,摄影师要求两位老人相邻地站,两名女生不相邻地站,则不同的站法种数是___15.(填空题,5分)已知函数f(x)={1x+1−3x3+1(x≠−1)b(x=−1)是(-∞,+∞)上的连续函数,则b的值是___16.(问答题,12分)已知二项式(x22√x )n(n∈N*)展开式中,前三项的二项式系数和是56,求:(Ⅰ)n的值;(Ⅱ)展开式中的常数项.17.(问答题,12分)某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.(I)求从两批产品各抽取的件数;(Ⅱ)记ξ表示抽取的3件产品中非优等品的件数,求ξ的分布列及数学期望.18.(问答题,12分)已知数列{P n}满足:(1)P1=23,P2=79;(2)P n+2=23P n+1+13P n.(Ⅰ)设b n=P n+1-P n,证明数列{b n}是等比数列;(Ⅱ)求n→∞P n.19.(问答题,12分)已知函数f(x)=x2+1,其图象在点(0,-1)处的切线为l.x−1(I)求l的方程;(II)求与l平行的切线的方程.上位于第一象限内的一动点,20.(问答题,13分)如图,设点A(x0,y0)为抛物线y2=x2点B(0,y1)在y轴正半轴上,且|OA|=|OB|,直线AB交x轴于点P(x2,0).(Ⅰ)试用x0表示y1;(Ⅱ)试用x0表示x2;(Ⅲ)当点A沿抛物线无限趋近于原点O时,求点P的极限坐标.21.(问答题,14分)已知数列{a n}满足:(1)a1=3;(2)a n+1=2n2-n(3a n-1)+a n2+2(n∈N*).(Ⅰ)求a2、a3、a4;(Ⅱ)猜测数列{a n}的通项,并证明你的结论;(Ⅲ)试比较a n与2n的大小.。
河南省郑州市第一中学2018-2019学年高二下学期期中考试数学(理)试题(解析版)
2018-2019学年河南省郑州市第一中学高二下学期期中考试数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用反证法证明命题55整除”时,其反设正确的是()A. 5整除B. 5整除C. 5整除5整除【答案】C【解析】【分析】5整除的否定即可.55整除,选C.【点睛】本题考查反证法,考查基本分析判断能力,属基础题.2.)A. B. D.【答案】B【解析】【分析】,,对应点为 B.【点睛】本题考查复数代数形式以及复数几何意义,考查基本分析求解能力,属基础题.3.)A. B. D.【答案】D【解析】【分析】先求导数,再根据导数几何意义得结果.D.【点睛】本题考查导数几何意义,考查基本分析求解能力,属基础题.4.a、b、c S,内切圆半径为r可知,四面体S−ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为R,四面体S−ABC的体积为V,则R等于C.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为R=B5.)A. 60B. 64C. 160D.【答案】A【解析】【分析】根据二项展开式通项公式求特定项系数.,因此含项的系数为 A.【点睛】本题考查二项展开式通项公式,考查基本分析求解能力,属基础题.6.高二年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的分配方案有()A. B. 37种 C. 18种 D. 16种【答案】B【解析】【分析】根据间接法求解甲工厂没有班级去的方法数即可.【详解】高二年级的B.【点睛】本题考查排列组合,考查基本分析求解能力,属基础题. 7.的模等于()A. B. D. 2【答案】D【解析】【分析】.,所以 D.【点睛】本题考查纯虚数以及复数的模,考查基本分析求解能力,属基础题.8.停车场划出一排9个停车位置,今有5辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()A. B. D.【答案】D【解析】【分析】剩余的4个空车位看作一个元素,由相邻问题用捆绑法求排列数.【详解】剩余的4个空车位看作一个元素,则不同的停车方法有 D. 【点睛】本题考查排列组合,考查基本分析求解能力,属基础题.9.()A. B. D. 【答案】A【解析】【分析】.得,所以A,【点睛】本题考查利用定积分求面积,考查基本分析求解能力,属基础题.10.)A. B. C. D. 【答案】B【解析】【分析】.,选B.【点睛】本题考查函数极值,考查等价转化思想方法与基本求解能力,属中档题.11.在二项式则有理项不相邻的概率为()A. B. D.【答案】A【解析】【分析】.有理项不相邻有种方法,因此所求概率为选A.【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.12.,则称函数.已知函数是区间上的双中值函数,则实数)A. B. D.【答案】C【解析】【分析】转化为函数有两个零点问题,再根据二次函数图象可得不等式,即得结果.或C.【点睛】本题考查函数零点,考查综合分析求解能力,属中档题二、填空题: 本大题共4小题,每小题5分,共20分.13.袋中有3个白球2个黑球共5个小球,现从袋中每次取一个小球,每个小球被抽到的可能性均相同,不放回地抽取两次,则在第一次取到黑球的条件下,第二次仍取到黑球的概率是________.【解析】 试题分析:记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”,则事件AB 为“两次都取到白球”,考点:条件概率与独立事件. 点评:本题考查条件概率,是高中阶段见到的比较少的一种题目,针对于这道题同学们要好好分析,再用事件数表示的概率公式做一遍,有助于理解本题.14.【解析】 【分析】根据正态分布对称性求解. 【点睛】本题考查正态分布,考查综合分析求解能力,属中档题15.________.【解析】【分析】.,增,时,【点睛】本题考查利用导数研究函数单调性以及利用导数解决不等式恒成立问题,考查综合分析求解能力,属中档题16.________.【答案】【解析】【分析】利用导数求函数最值.【详解】因,对应值为时,,对应值为,【点睛】本题考查利用导数求函数最值,考查综合分析求解能力,属中档题三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤.17.【答案】(Ⅰ)【解析】【分析】(Ⅰ)根据复数相等列方程组,(Ⅱ)先化复数为代数形式,再根据复数为实数列式,解得实数值.【详解】解:,即为所求.【点睛】本题考查复数相等以及复数概念,考查基本分析求解能力,属中档题18.的通项公式;【答案】【解析】【分析】(Ⅰ)根据递推关系逐一代入求解,再根据规律归纳,(Ⅱ)根据和项与通项关系得递推关系式,再利用求根公式解得相邻项关系,最后根据数学归纳法证明.【详解】解:,解得.时,由(Ⅰ)可知成立,所以当时猜想也成立.【点睛】本题考查数学归纳法求与证数列通项公式,考查基本分析求解能力,属中档题19.(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.【答案】(1)(2)见解析【解析】试题分析:(1(2的单调性可知是极大值点还是极小值点.试题解析:(1,得(2)由(1),.令,解得,.考点:导数的几何意义,用导数研究函数的单调性与极值.【名师点睛】导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0);(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k;(3)已知过某点M(x1,f(x1))(不是切点)的切线斜率为k时,常需设出切点A(x0,f(x0)),利用k20..(Ⅰ)假设这名射手射击3次,求至少1次击中目标的概率;(Ⅱ)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续3次全部击中,则额外加10分.手射击3次后的总得分,求.【答案】(I(II 的分布列是【解析】试题分析:解:⑴3,所以所求概率为.⑵的所有可能取值为“”,,,.考点:n次独立重复试验中恰好发生k次的概率;离散型随机变量的期望与方差.点评:本题主要考查n次独立重复实验中恰好发生k次的概率,离散型随机变量的数学期望的求法,属于中档题.21.某分公司经销某种品牌产品,每件产品的成本为30然对数的底数)万件.已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每35元,最高不超过41元.【答案】(1) L(x)= 500(x-30-a)e40-x(35≤x≤41);(2) 当2≤a≤4时,每件产品的售价为35元,该产品一年的利润L(x)最大,最大为500(5-a)e5万元;当4<a≤5时,每件产品的售价为(31+a)元时,该产品一年的利润L(x)最大,最大为500e9-a万元.【解析】试题分析:(1)先根据条件求出k,再根据利润等于销售量乘以单个利润得函数解析式,最后交代定义域(2)先求导数,再求导函数零点,根据零点与定义区间关系分类讨论,确定导函数符号,进而确定最大值试题解析:(1)由题意,该产品一年的销售量为y=.将x=40,y=500代入,得k=500e40.故该产品一年的销售量y(万件)关于x(元)的函数关系式为y=500e40-x.所以L(x)=(x-30-a)y=500(x-30-a)e40-x(35≤x≤41).(2)由(1)得,L′(x)=500[e40-x-(x-30-a)e40-x]=500e40-x(31+a-x).①当2≤a≤4时,L′(x)≤500e40-x(31+4-35)=0,当且仅当a=4,x=35时取等号.所以L(x)在[35,41]上单调递减.因此,L(x)max=L(35)=500(5-a)e5.②当4<a≤5时,L′(x)>0⇔35≤x<31+a,L′(x)<0⇔31+a<x≤41.所以L(x)在[35,31+a)上单调递增,在[31+a,41]上单调递减.因此,L(x)max=L(31+a)=500e9-a.综上所述当2≤a≤4时,每件产品的售价为35元,该产品一年的利润L(x)最大,最大为500(5-a)e5万元;当4<a≤5时,每件产品的售价为(31+a)元时,该产品一年的利润L(x)最大,最大为500e9-a万元.22.【答案】(1)函数的递增区间为,函数的递减区间为23)见解析.【解析】试题分析:(1(2)由(1上是增函数,由(1)可;(3)由(2)知,,,进而换元可得即可得证.试题解析:(1在上单调递增时,在上单调递增;(2)由(1)知,时,不可能成立;(3)由(2.点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和.。
安徽省濉溪二中等2018-2019学年高二下学期4月联考数学(理)试题
”是“
的周长为
B.必要不充分条件 D.既不充分也不必要条件
7. 已知 A. C.
,
,
,
,则( )
B. D.
8. 将曲线 A.
向右平移 个单位长度后得到曲线
,若函数 的图象关于 轴对称,则 ( )
B.
C.
D.
9. 若定义在 上函数 满足
,则( )
A.
B.
C.
D.
10. 在三棱锥 A.
中,
, B.
二、填空题
;
,
为1,
的零点为2,
的零点为4,那么
, 的零点为________.
,…,
14. 已知
,则函数
在 上恰有两个零点的概率为________.
三、解答题
15. 在
中, , , 的对边分别是 , , ,已知
.
(1)求
;
(2)若
,且
的面积为4,求
的周长
,经过计算可以求得 的零点
16. 已知函数
,
且
.
(1)若 (2)讨论
,证明
,
.
安徽省濉溪二中等2018-2019学年高二下学期4月联考数学(理)试题
安徽省濉溪二中等2018-2019学年高二下学期4月联考数学(理)试题
一、单选题
1. 复数 A.第一象限
在复平面内对应的点位于( ) B.第二象限
C.第三象限
D.第四象限
2. 已知集合
,集合
,则
()
A.
B.
C.
D.
3. 已知向量
,
A.-1
,若 与 B.1
垂直,则
() C.土1
2018-2019学年广东省东莞市三校高二(下)期中数学试卷(理科)(解析版)
2018-2019学年广东省东莞市三校高二(下)期中数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知a+ii=b+2i(a,b∈R),其中为虚数单位,则a-b=()A. −3B. −2C. −1D. 12.函数f(x)=x3+ax2+3x-9已知f(x)在x=-3时取得极值,则a=()A. 2B. 3C. 4D. 53.已知f(x)=e x-e-x,f'(x)是f(x)的导函数,则f'(2)=()A. 0B. e2+e−2C. e2−e−2D. 14.若函数f(x)=sinα-cos x,α为常数,则f'(α)=()A. sinαB. −sinαC. sinα+cosαD. 2sinα5.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=|Ax0+By0+C|√A2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+2z+3=0的距离为()A. 3B. 5C. 5√217D. 3√56.已知函数f(x)=e x-x,x>0,下列结论中正确的是()A. 函数f(x)有极小值B. 函数f(x)有极大值C. 函数f(x)有一个零点D. 函数f(x)没有零点7.如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回.则这样组成的三位数的个数为()A. 21B. 48C. 64D. 818.改革开放以来,中国经济飞速发展,科学技术突飞猛进.高铁、核电、桥梁、激光、5G通信、人工智能、航空航天、移动支付、量子通讯、特高压输电等许多技术都领先于世界.厉害了,我的国!把“厉害了我的国”这六个字随机地排成一排,其中“厉”、“害”这两个字必须相邻(可以交换顺序),“了”、“的”这两个助词不能相邻,则不同排法的种数为()A. 72B. 108C. 144D. 2889.现有命题“1−2+3−4+5−6+⋯+(−1)n+1n=14+(−1)n+1(14+n2),n∈N+”,不知真假.请你用数学归纳法去探究,此命题的真假情况为()A. 不能用数学归纳法去判断真假B. 一定为真命题C. 加上条件n≤9后才是真命题,否则为假D. 存在一个很大常数m,当n>m时,命题为假10.王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个4×100米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是()A.甲B.乙C.丙D. 丁11.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A. −1B. 0C. 2D. 412.过坐标原点O作曲线C:y=e x的切线l,则曲线C、直线l与y轴所围成的封闭图形的面积为()A. e2−1 B. e−1 C. e−2 D. e2二、填空题(本大题共4小题,共20.0分)13.定积分∫(13x+e x)dx=______.14.已知函数f(x)=x2-5x+2ln2x,则f(x)的单调递增区间为______.15.已知:cosπ3=12,cosπ5cos2π5=14,cosπ7cos2π7cos3π7=18…………,根据以上等式,可猜想出的一般结论是______.16.函数f(x)=e x-ax2在(0,+∞)上有两个极值点,则实数a的取值范围是______.三、解答题(本大题共6小题,共70.0分)17.已知m为实数,设复数z=(m2+5m+6)+(m2-2m-15)i.(1)当复数z为纯虚数时,求m的值;(2)当复数z对应的点在直线x-y+7=0的下方,求m的取值范围.18.已知函数f(x)=e x cos x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,π2]上的值域.19.设函数f(x)=x3-6x2+9x+a.(1)求f(x)在区间x∈[-2,2]的最值;(2)若f(x)有且只有两个零点,求a的值.20.下面图形都是由小正三角形构成的,设第n个图形中的黑点总数为f(n)(n∈N+).(1)写出f(2),f(3),f(4),f(5)的值;(2)归纳出f(n+1)与f(n)的关系(不用证明),并求出f(n)的表达式.21.“既要金山银山,又要绿水青山”.某风景区在一个直径AB为100米的半圆形花圆中设计一条观光线路.打算在半圆弧上任选一点C(与A,B不重合),沿AC修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧BC⏜修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计.(1)设∠BAC=θ(弧度),将绿化带的总长度表示为θ的函数f(θ);(2)求绿化带的总长度f(θ)的最大值.22.已知函数f(x)=x2-2m ln x-2m(m∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)有极小值,求该极小值的取值范围.答案和解析1.【答案】A【解析】解:由=b+2i,得a+i=-2+bi,∴a=-2,b=1,则a-b=-3.故选:A.由=b+2i,得a+i=-2+bi,再由复数相等的条件列式求得a,b的值,则答案可求.本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.【答案】D【解析】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=-3时取得极值∴f′(-3)=0⇒a=5,验证知,符合题意故选:D.先对函数进行求导,根据函数f(x)在x=-3时取得极值,可以得到f′(-3)=0,代入求a值.本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.3.【答案】B【解析】解:函数的导数为f′(x)=e x+e-x,则f′(2)=e2+e-2,故选:B.求函数的导数,结合函数的导数公式进行计算即可.本题主要考查函数的导数计算,结合函数的导数公式是解决本题的关键.比较基础.4.【答案】A【解析】解:函数的导数f′(x)=sinx,则f′(α)=sinα,故选:A.根据函数的导数公式进行计算即可.本题主要考查函数的导数的计算,结合函数的导数公式是解决本题的关键.5.【答案】B【解析】解:类比点P(x0,y0)到直线Ax+By+C=0的距离d=,可知在空间中,点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离d=点(2,4,1)到平面x+2y+2z+3=0的距离d==5.故选:B.类比点P(x0,y0)到直线Ax+By+C=0的距离d=,可知在空间中,d==5类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).6.【答案】D【解析】解:∵函数f(x)=e x-x,x>0,∴f′(x)=e x-1>0,∴f(x)在x>0内是增函数,∵f(0)=1-0=1>0,∴函数f(x)=e x-x,x>0没有零点,没有极值,故选:D.推导出f′(x)=e x-1>0,从而f(x)在x>0内是增函数,由f(0)=1,得到函数f(x)=e x-x,x>0没有零点,没有极值.本题考查命题真假的判断,考查导数性质、函数性质、最值等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.7.【答案】C【解析】解:依题意,百位、十位和个位每个位置有4种选择,根据分步乘法原理,这样的三位数共有4×4×4=64个.故选:C.百位、十位、个位每个位置有4种选择,根据分步乘法原理,共有4×4×4=64种三位数.本题考查了计数原理,不同的三位数的个数由三个数位上的数字决定,不随着取数的人的变化而变化.本题属于中档题.8.【答案】C【解析】解:把厉”、“害”这两个字看出一个元素和“我“,“国”,全排列为A=12种,中间有4个空,排“了”、“的”有=12种,共有12×12=144种,故选:C.根据相邻问题捆绑法,不相邻问题插空法进行求解即可.本题主要考查排列组合的计算,利用相邻问题捆绑法,不相邻问题插空法是解决本题的关键.9.【答案】B【解析】解:n=1时,左边=(-1)2•1=1,右边=+(-1)2•(+)=1,左边=右边,命题成立;假设n=k,k≥1,k∈Z时,命题成立,即1-2+3-4+5-6+…+(-1)k+1•k=+(-1)k+1•(+),则n=k+1时,左边=1-2+3-4+5-6+…+(-1)k+1•k+(-1)k+2•(k+1)=+(-1)k+1•(+)+(-1)k+2•(k+1)=+(-1)k+2•[-(+)+(k+1)]=+(-1)k+2•(+)=右边,命题也成立;命题“,n∈N+”,是真命题.故选:B.利用数学归纳法证明,基本步骤是①验证n=1时命题成立,②假设n=k时命题成立,③证明n=k+1时命题也成立.本题考查了利用数学归纳法证明命题成立的应用问题,也考查了运算求解以及化归、转化思想.是基础题.10.【答案】C【解析】解:由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.故跑第三棒的是丙.故选:C.跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.【答案】B【解析】解:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.先从图中求出切线过的点,再求出直线L的方程,利用导数在切点处的导数值为切线的斜率,最后结合导数的概念求出g′(3)的值.本题考查导数的几何意义,曲线在切点处的导数值为曲线的切线的斜率.12.【答案】A【解析】解:根据题意,过坐标原点O作曲线C:y=e x的切线l,设切点为(m,e m),y=e x,其导数y=e x,则切线的斜率k=e m,则直线l的方程为:y-e m=e m(x-m),又由直线l经过原点,则有-e m=e m(-m),分析可得m=1,则直线l的方程为y-e=e(x-1),即y=ex,切点为(1,e);曲线C、直线l与y轴所围成的封闭图形的面积S=(e x-ex)dx=(e x -)=(e-)-(1-0)=-1;故选:A.根据题意,设直线l与曲线C的切点为(m,e m),求出曲线C的导数,由导数的几何意义可得直线l的方程,进而由定积分的计算公式分析可得答案.本题考查利用导数求曲线的切线方程以及定积分的计算,关键是求出直线l的方程,属于基础题.13.【答案】12+e【解析】解:根据题意,=(+e x )=(+e )-(0+1)=+e,故答案为:+e.根据题意,由定积分的计算公式可得=(+e x ),进而计算可得答案.本题考查定积分的计算,关键是掌握定积分的计算公式.14.【答案】(0,12),(2,+∞)【解析】解:函数f(x)=x 2-5x+2ln2x,其定义域{x|x>0}则f′(x)=2x-5+=令f′(x)=0,可得x1=,x2=2 当x时,f′(x)>0,∴函数f(x)在(0,)是单调递增.当x∈(2,+∞)时,f′(x)>0,∴函数f(x)在(2,+∞)是单调递增.∴函数f(x)的单调递增区间是(0,)和(2,+∞).故答案为:(0,),(2,+∞).利用导函数研究原函数的单调性即可.本题考查函数的单调区间的求法,考查导数的应用,考查运算能力,属于中档题.15.【答案】cosπ2n+1cos2π2n+1…cos nπ2n+1=12n【解析】解:根据题意,分析所给的等式可得:cos=,可化为cos=cos cos=,可化为cos cos=cos cos cos=,可化为cos cos cos=;则一般的结论为cos cos…cos=;故答案为cos cos…cos=.根据题意,分析所给的等式可得:对于第n个等式,等式左边为n个余弦连乘的形式,且角部分为分式,分子从π到nπ,分母为(2n+1),右式为;将规律表示出来可得答案.本题考查归纳推理的运用,解题的关键在于发现3个等式的变化的规律.16.【答案】(e2,+∞)【解析】解:∵f(x)=e x-ax2,∴f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >.故实数a的取值范围为().故答案为:().求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,考查导数性质、函数性质、最值等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.17.【答案】解:(1)由题意得:{m2−2m−15≠0m2+5m+6=0,解得m=-2.(2)复数z对应的点的坐标为(m2+5m+6,m2-2m-15),直线x-y+7=0的下方的点的坐标(x,y)应满足x-y+7>0,即:(m2+5m+6)-(m2-2m-15)+7>0,解得m>-4,∴m的取值范围为(-4,+∞).【解析】(1)由实部为0且虚部不为0列式求解;(2)由复数z对应的点在直线x-y+7=0的下方,得(m2+5m+6)-(m2-2m-15)+7>0,求解不等式得答案.本题考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.18.【答案】解:(1)因为f(0)=e0cos0=1,所以切点为(0,1);又因为f'(x)=e x cos x-e x sin x=e x(cos x-sin x),所以f'(0)=1,即切线斜率k=1.所以切线方程为:y=x+1.即y=f(x)在点(0,f(0))处的切线方程为x-y+1=0.---------------------(6分)(2)令f'(x)=e x(cos x-sin x)=0,因为x∈[0,π2],所以x=π4.当x∈[0,π4]时,f'(x)>0,f(x)单调递增;当x∈[π4,π2]时,f'(x)<0,f(x)单调递减;所以f(x)max=f(π4)=eπ4cosπ4=√22eπ4;又因为f(0)=1,f(π2)=0,所以f(x)min=0;所以f(x)在[0,π2]上的值域为[0,√22eπ4].--------------------------------------(12分)【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程.(2)判断函数的单调性然后求解函数的最值.本题考查函数的单调性以及切线方程的求法,考查最值思想以及计算能力.19.【答案】解:(1)f'(x)=3x2-12x+9,令f'(x)=0可得:x=1或x=3(舍去)因为f(1)=4+a,f(-2)=-50+a,f(2)=2+a,所以f(x)min=-50+a,f(x)max=4+a.----------------------------(6分)(2)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x.设g(x)=-x3+6x2-9x,则g'(x)=-3x2+12x-9,令g'(x)=0,得x=1或x=3,列表如下:x(-∞,1)1(1,3)3(3,+∞)f'(x)-0+0-f(x)递减有极小值-4递增有极大值0递减所以g(x)的大致图象如下:要使a=-x3+6x2-9x有且只有两个零点,只需直线y=a与g(x)的图象有两个不同交点,所以a=-4或a=0.------------------------(12分)【解析】(1)求出函数的导数,求出极值点,然后转化求解最值即可.(2)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x.设g(x)=-x3+6x2-9x,则g'(x)=-3x2+12x-9,判断函数的单调性以及函数的极值,结合数形结合转化求解即可.本题考查函数的导数的应用,函数的最值以及函数的极值函数单调性的求法,数形结合以及转化思想的应用.20.【答案】解:(1)由题意有f (1)=3,f (2)=f (1)+3+3×2=12, f (3)=f (2)+3+3×4=27, f (4)=f (3)+3+3×6=48, f (5)=f (4)+3+3×8=75.…(6分)(2)由题意及(Ⅰ)知,f (n +1)=f (n )+3+3×2n =f (n )+6n +3, 即f (n +1)-f (n )=6n +3,…(8分)故f (2)-f (1)=6×1+3, f (3)-f (2)=6×2+3,f (4)-f (3)=6×3+3, …f (n )-f (n -1)=6(n -1)+3,n ≥2.…(10分) 将上面(n -1)个式子相加,得:f(n)−f(1)=6[1+2+3+⋯+(n −1)]+3(n −1)=6×(1+n−1)(n−1)2+3(n −1)=3n 2−3,又f (1)=3,所以f (n )=3n 2,n ≥2, 而当n =1时,f (1)=3也满足上式, 故f (n )=3n 2,n ∈N *.…(12分) 【解析】(1)由题意有f (1)=3,借助三角形能求出f (2),f (3),f (4),f (5)的值.(2)f (n+1)=f (n )+3+3×2n=f (n )+6n+3,从而f (n+1)-f (n )=6n+3,由此利用累加法能求出f (n )的表达式.本题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,考查累加法的求解思路与方法,是中档题.21.【答案】解:(1)设圆心为O ,连结OC ,BC .在直角△ABC 中,AC =AB cosθ=100cosθ,BC⏜的弧长=50×2θ=100θ; 所以绿化带的总长度为f (θ)=200cosθ+100θ,其中θ∈(0,π2);------------------------(6分)(2)对f (θ)求导数,得f '(θ)=-200sinθ+100,θ∈(0,π2), 令f '(θ)=0,可得sinθ=12,所以θ=π6; 当θ∈(0,π6)时,f '(θ)>0,f (θ)单调递增; 当θ∈(π6,π2)时,f '(θ)<0,f (θ)单调递减; 所以f(θ)max =f(π6)=200×√32+100×π6=100√3+50π3;所以绿化带的总长度f (θ)的最大值为(100√3+50π3)米.------------------------(12分)【解析】(1)设圆心为O ,连结OC 、BC ,利用直角三角形的边角关系和弧长公式,求出绿化带的总长度f (θ);(2)对f (θ)求导数,利用导数判断f (θ)的单调性,再求出它的最大值.本题考查了三角函数模型的实际应用问题,也考查了利用导数求函数的单调性与最值问题,是中档题.22.【答案】解:(1)函数f (x )=x 2-2m ln x -2m (m ∈R )的定义域为(0,+∞).f′(x)=2x −2m x =2x 2−2mx①当m ≤0时,f ′(x )>0,函数f (x )在(0,+∞)单调递增.②当m >0时,令f ′(x )=0⇒x =√m ,当x ∈(0,√m)时,f ′(x )<0,当x ∈(√m ,+∞)时,f ′(x )>0,∴函数f (x )在(0,√m )单调递减,在(√m ,+∞)单调递增.(2)①当m ≤0时,f ′(x )>0,函数f (x )在(0,+∞)单调递增,没有极值.②当m >0时,令f ′(x )=0⇒x =√m ,当x ∈(0,√m)时,f ′(x )<0,当x ∈(√m ,+∞)时,f ′(x )>0,∴函数f (x )在(0,√m )单调递减,在(√m ,+∞)单调递增. ∴函数f (x )有极小值为f(√m)=-m (ln m +1).记h (m )=-m (ln m +1).(m >0),则h ′(m )=-2-ln m ,由h ′(m )=0得m =e -2, 当0<m <e -2时,h ′(m )>0,当m >e -2时,h ′(m )<0, ∴h (m )≤h (e -2)=e -2,∴函数f (x )有极小值的取值范围为(-∞,e -2). 【解析】(1)函数f (x )=x 2-2mlnx-2m (m ∈R )的定义域为(0,+∞).,分①当m≤0,②当m >0分别求单调性.(2)由①当m≤0时,没有极值;②当m >0时,函数f (x )有极小值为=-m (lnm+1).记h (m )=-m (lnm+1).(m >0),利用导数求得函数f (x )有极小值的取值范围. 本题考查了导数的应用,利用导数求单调性、极值,属于中档题.。
2018-2019学年河南省天一大联考高二下学期期末测试数学(理)试题(解析版)
【解析】设 ,根据已知可得 ,由 ,得到 ,结合双曲线的定义,得出 ,再由已知求出 ,即可求解.
【详解】
设 ,则由渐近线方程为 , ,
又 ,
所以
两式相减,得 ,
而 ,所以 ,
所以 ,所以 , ,
故双曲线的方程为 .
故选:D
【点睛】
本题考查双曲线的标准方程、双曲线的几何性质,注意焦点三角形问题处理方法,一是曲线的定义应用,二是余弦定理(或勾股)定理,利用解三角形求角或面积,属于中档题.
,则 ,又 ,所以 ,
,所以 ,从而有 ,
故④正确.
因此,真命题的个数是 .
故选:B
【点睛】
本题考查了空间线面位置关系的判定和证明,其中熟记空间线面位置中的平行与垂直的判定定理与性质定理是解题的关键,考查直观想象能力,属于基础题.
9.函数 的图象大致为()
A. B.
C. D.
【答案】B
【解析】函数 图象是由函数 图象向左平移1个单位,做出函数 的图象,即可求解.
【答案】(Ⅰ) ;(Ⅱ)存在, 或
【解析】(1)由已知可得 ,再将点 代入椭圆方程,求出 即可;
(2)设 ,由已知可得 ,结合 ,可得 ,从而有 ,验证 斜率不存在时是否满足条件,当 斜率存在时,设其方程为 ,与椭圆方程联立,根据根与系数关系,得出 关系式,结合 ,即可求解.
【详解】
(Ⅰ)由椭圆 的右顶点为 知,
4.已知 ,则 ()
A. B. C. D.
【答案】A
【解析】根据已知结合二倍角的正弦,求出 ,再由二倍角的正切公式,即可求解,
【详解】
由 ,得 .
又因 ,得 .
所以 .
故选:A
【点睛】
2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A. 随机抽样B. 分层抽样C. 系统抽样D. 以上都是2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+8iB. 8+2iC. 4+iD. 2+4i3.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A. 18B. 24C. 30D. 364.设i为虚数单位,则(x-i)6的展开式中含x4的项为()A. -15x4B. 15x4C. -20ix4D. 20ix45.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A. (1,3)B. (-1,3)C. (1,3)和(-1,3)D. (1,-3)7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,则一开始输入的x的值为()A.B.C.D.8.p设η=2ξ+3,则E(η)的值为()A. 4B.C.D. 19.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.10.根据如下样本数据,得到回归方程=bx+a,则()x345678y4.02.5-0.50.5-2.0-3.0A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<011.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A. (-∞,]B. (-∞,3]C. [,+∞)D. [3,+∞)12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)二、填空题(本大题共4小题,共20.0分)13.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为______.14.已知复数z满足(1+2i)z=4+3i,则|z|=______.15.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.16.若曲线C1:y=ax2(a>0)与曲线C2:y=e x在(0,+∞)上存在公共点,则a的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R)(1)若函数f(x)的导函数为偶函数,求a的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围18.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数==,=-19.已知函数,.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.20.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE向上折起,D变为D',且平面D'AE⊥平面ABCE.(Ⅰ)求证:AD'⊥EB;(Ⅱ)求二面角A-BD'-E的大小.21.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.22.已知函数f(x)=(ax-1)e x(x>0,a∈R)(e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当a=1时,f(x)>kx-2恒成立,求整数k的最大值.答案和解析1.【答案】C【解析】解:∵学生人数比较多,∵把每个班级学生从1到最后一号编排,要求每班编号是5的倍数的同学留下进行作业检查,这样选出的样本是采用系统抽样的方法,故选:C.学生人数比较多,把每个班级学生从1到最后一号编排,要求每班学号是5的倍数的同学留下进行作业检查,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.2.【答案】D【解析】解:因为复数6+5i,-2+3i对应的点分别为A(6,5),B(-2,3).且C为线段AB的中点,所以C(2,4).则点C对应的复数是2+4i.故选:D.写出复数所对应点的坐标,有中点坐标公式求出C的坐标,则答案可求.本题考查了中点坐标公式,考查了复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有C42C31=18种选法;②,选出的3人为1男2女,有C41C32=12种选法;则男女生都有的选法有18+12=30种;故选:C.根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理,属于基础题.4.【答案】A【解析】解:(x-i)6的展开式的通项公式为T r+1=•x6-r•(-i)r,令6-r=4,求得r=2,故展开式中含x4的项为•(-i)2•x4=-15x4,故选:A.在二项式展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5.【答案】B【解析】【分析】这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n,再由公式求出概率得到答案本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.【解答】解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选B.6.【答案】C【解析】解:设P的坐标为(m,n),则n=m3-m+3,f(x)=x3-x+3的导数为f′(x)=3x2-1,在点P处的切线斜率为3m2-1,由切线平行于直线y=2x-1,可得3m2-1=2,解得m=±1,即有P(1,3)或(-1,3),故选:C.设P的坐标为(m,n),则n=m3-m+3,求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,可得m的方程,求得m的值,即可得到所求P的坐标.本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查两直线平行的条件:斜率相等,属于基础题.7.【答案】C【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.【解答】解:第一次输入x=x,i=1第二次输入x=2x-1,i=2,第三次输入x=2(2x-1)-1=4x-3,i=3,第四次输入x=2(4x-3)-1=8x-7,i=4>3,第五次输入x=2(8x-7)-1=16x-15,i=5>4,输出16x-15=0,解得:x=,故选:C.8.【答案】B【解析】解:由题意可知E(ξ)=-1×+0×+1×=-.∵η=2ξ+3,所以E(η)=E(2ξ+3)=2E(ξ)+3=+3=.故选:B.求出ξ的期望,然后利用η=2ξ+3,求解E(η)即可.本题考查有一定关系的两个变量之间的期望之间的关系,本题也可以这样来解,根据两个变量之间的关系写出η的分布列,再由分布列求出期望.9.【答案】B【解析】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为1-=,则根据几何概型的概率公式可得所求的概率为.故选:B.函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.【答案】B【解析】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.通过样本数据表,容易判断回归方程中,b、a的符号.本题考查回归方程的应用,基本知识的考查.11.【答案】C【解析】解:∵函数f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.12.【答案】B【解析】【分析】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.先求导函数,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax-1与y=ln x的图象相切,由图可知,当0<a<时,y=ln x与y=2ax-1的图象有两个交点.则实数a的取值范围是(0,).简解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,可得2a=有两个不同的解,设g(x)=,则g′(x)=,当x>1时,g(x)递减,0<x<1时,g(x)递增,可得g(1)取得极大值1,作出y=g(x)的图象,可得0<2a<1,即0<a<,13.【答案】【解析】解:根据题意,简单随机抽样中每个个体被抽到的概率是相等的,若在含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率P==;故答案为:.根据题意,由简单随机抽样的性质以及古典概型的计算公式可得个体m被抽到的概率P=,化简即可得答案.本题考查古典概型的计算,涉及随机抽样的性质,属于基础题.14.【答案】【解析】解:∵(1+2i)z=4+3i,∴z=,则|z|=||=.故答案为:.把已知等式变形,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.15.【答案】【解析】解:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,进行等体积转化V D 1-EDF=V F -D1ED后体积易求.本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.16.【答案】[,+∞)【解析】解:根据题意,函数y=ax2(a>0)与函数y=e x在(0,+∞)上有公共点,令ax2=e x得:,设则,由f'(x)=0得:x=2,当x>2时,f'(x)>0,函数在区间(2,+∞)上是增函数,所以当x=2时,函数在(0,+∞)上有最小值,所以.故答案为:.由题意可得,ax2=e x有解,运用参数分离,再令,求出导数,求得单调区间、极值和最值,即可得到所求范围.本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,属于中档题.17.【答案】解:(1):f(x)=3x2+2(1-a)x-a(a+2),由题因为f(x)为偶函数,∴2(1-a)=0,即a=1.(2)∵曲线y=f(x)存在两条垂直于y轴的切线,∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)有两个不相等的实数根,∴△=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,∴,∴a的取值范围为()∪().【解析】(1)求出导函数,利用函数的奇偶性求出a即可.(2)求出函数的导数,利用曲线y=f(x)存在两条垂直于y轴的切线,通过△>0求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.18.【答案】解:(1)根据题意,由表中的数据可得:=100+=100,=100+=100,则有,从而,故物理成绩更稳定;(2)由于x与y之间具有线性相关关系,则==0.5,则=100-0.5×100=50,则线性回归方程为=0.5x+50,当y=115时,x=130;建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.【解析】(1)根据题意,由数据计算数学、物理的平均数、方差,进而分析可得答案;(2)根据题意,求出线性回归方程,据此分析可得答案.本题考查线性回归方程的计算,涉及数据的平均数、方差的计算,属于基础题.19.【答案】解:(1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0) 0(0,)(,1)f′(x)- 0+ 0-f(x)极小值极大值∴当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)取得极大值点为x=.(2)①当-1≤x<1时,f(x)=-x3+x2,由(1)知,函数f(x)在[-1,0]和[,1)上单调递减,在[0,]上单调递增.∵,∴f(x)在[-1,1)上的最大值为2.②当1≤x≤e时,f(x)=a ln x.当a≤0时,f(x)在[1,e],上单调递增,∴f(x)max=a.综上所述,当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.【解析】(1)当x<1时,求导函数,确定函数的单调性,可得f(x)在区间(-∞,1)上的极小值和极大值点;(2)分类讨论,确定函数的单调性,即可得到f(x)在[-1,e](e为自然对数的底数)上的最大值.本题考查导数知识的应用,考查函数的单调性与极值、最值,考查分类讨论的数学思想,属于中档题.20.【答案】证明:(Ⅰ)∵,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD',则AD=D'E=2⇒MD'⊥AE,∵平面D'AE⊥平面ABCE,∴MD'⊥平面ABCE,∴MD'⊥BE,从而EB⊥平面AD'E,∴AD'⊥EB;解:(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),从而=(4,0,0),,.设为平面ABD'的法向量,则,取z=1,得设为平面BD'E的法向量,则,取x=1,得因此,,有,即平面ABD'⊥平面BD'E,故二面角A-BD'-E的大小为90°.【解析】(Ⅰ)推导出AE⊥EB,取AE的中点M,连结MD',则MD'⊥BE,从而EB⊥平面AD'E,由此能证明AD'⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD'-E的大小.本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3=0.729.P(B)=1-P()=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.(III)由频率分布直方图可得:分布列如下表:X30364260P0.10.440.360.1E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.此人经过该路段所用时间的数学期望是39.96分钟.【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3.P(B)=1-P()=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.本题考查了频率分布直方图的应用、互斥事件的概率计算公式、数学期望,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)f′(x)=[ax-(1-a)]e x(x>0,a∈R),当a≥1时,f′(x)≥0,f(x)在(0,+∞)上递增;当0<a<1时,f(x)在(0,)上递减,在(,+∞)上递增;当a≤0时,f′(x)≤0,f(x)在(0,+∞)上递减.(2)依题意得(x-1)e x>kx-2对于x>0恒成立,方法一:令g(x)=(x-1)e x-kx+2(x≥0),则g′(x)=xe x-k(x≥0),当k≤0时,f(x)在(0,+∞)上递增,且g(0)=1>0,符合题意;当k>0时,易知x≥0时,g′(x)单调递增.则存在x0>0,使得,且g(x)在(0,x0]上递减,在[x0,+∞)上递增,∴,∴,,由得,0<k<2,又k∈Z,∴整数k的最大值为1.另一方面,k=1时,,g′(1)=e-1>0∴x0∈(,1),∈(1,2),∴k=1时成立.方法二:恒成立,令,则,令t(x)=(x2-x+1)e x-2(x>0),则t′(x)=x(x+1)e x>0,∴t(x)在(0,+∞)上递增,又t(1)>0,,∴存在x0∈(,1),使得,且h(x)在在(0,x0]上递减,在[x0,+∞)上递增,∴,又x0∈(,1),∴∈(1,),∴h(x0)∈(,2),∴k<2,又k∈Z,∴整数k的最大值为1.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,函数恒成立问题,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)方法一:令g(x)=(x-1)e x-kx+2(x≥0),通过讨论k的范围,求出g(x)的最小值,从而确定k的最大值;方法二:分离参数k,得到恒成立,令,根据函数的单调性求出k的最大值即可.。
2018-2019学年贵州省遵义市高二(下)期中考试数学试卷(理科)Word版含解析
2018-2019学年贵州省遵义市高二(下)期中考试数学试卷(理科)一.选择题:(每小题5分,60)1.复数z=1﹣i,则=()A.B.C.D.2.已知p:x≥k,q:<1,如果p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(﹣∞,﹣1)3.的展开式中常数项是()A.﹣160 B.﹣20 C.20 D.1604.如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.5.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c﹣2),则c的值是()A.1 B.2 C.3 D.46.已知椭圆=1(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20 C.D.7.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()A.4种B.5种C.6种D.9种8.给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④9.对于R上可导的任意函数f(x),若满足(x﹣2)f′(x)≤0,则必有()A.f(﹣3)+f(3)<2f(2)B.f(﹣3)+f(7)>2f(2)C.f(﹣3)+f(3)≤2f (2)D.f(﹣3)+f(7)≥2f(2)10.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=1,设点CG到平面PAB的距离为d1,点B到平面PAC的距离为d2,则有()A.1<d1<d2B.d1<d2<1 C.d1<1<d2D.d2<d1<111.已知双曲线(a>0,b>0)的焦点F1(﹣c,0)、F2(c,0)(c>0),过F2的直线l交双曲线于A,D两点,交渐近线于B,C两点.设+=,+=,则下列各式成立的是()A.||>|| B.||<|| C.|﹣|=0 D.|﹣|>012.已知函数f(x)=x n+1(n∈N*)的图象与直线x=1交于点P,若图象在点P处的切线与x轴交点的横坐标为x n,则log2013x1+log2013x2+…+log2013x2012的值为()A.1﹣log20132012 B.﹣1C.﹣log20132012 D.1二.填空题:(每小题5分,20)13.由曲线y=sinx,y=cosx与直线x=0,x=所围成的平面图形(下图中的阴影部分)的面积是.14.设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB 的中点,若|FQ|=2,则直线l的斜率等于.15.将全体正奇数排成一个三角形数阵如图:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.16.已知O是△ABC的外心,AB=2a,AC=,∠BAC=120°,若=x+y,则x+y的最小值是.三.解答题:17.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)求二面角C1﹣AD﹣C的余弦值.18.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a﹣b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.19.某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.(Ⅰ)求分别获得一、二、三等奖的概率;(Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.20.已知曲线C:y=e ax.(Ⅰ)若曲线C在点(0,1)处的切线为y=2x+m,求实数a和m的值;(Ⅱ)对任意实数a,曲线C总在直线l:y=ax+b的上方,求实数b的取值范围.21.已知椭圆W:=1,直线l与W相交于M,N两点,l与x轴、y轴分别相交于C、D两点,O为坐标原点.(Ⅰ)若直线l的方程为x+2y﹣1=0,求△OCD外接圆的方程;(Ⅱ)判断是否存在直线l,使得C,D是线段MN的两个三等分点,若存在,求出直线l的方程;若不存在,说明理由.22.已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).2018-2019学年贵州省遵义市高二(下)期中考试数学试卷(理科)参考答案与试题解析一.选择题:(每小题5分,60)1.复数z=1﹣i,则=()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把复数z代入后前一部分采用复数的除法运算,然后在把实部和实部相加,虚部和虚部相加.解答:解:因为z=1﹣i,所以=.故选D.点评:本题考查了复数代数形式的乘除运算,复数的除法采用的是分子分母同时乘以分母的共轭复数,是基础题.2.已知p:x≥k,q:<1,如果p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(﹣∞,﹣1)考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出不等式q的等价条件,根据充分条件和必要条件的定义即可得到结论.解答:解:∵<1,∴﹣1=<0,即(x﹣2)(x+1)>0,∴x>2或x<﹣1,∵p是q的充分不必要条件,∴k>2,故选:B.点评:本题主要考查充分条件和必要条件的应用,利用不等式之间的关系是解决本题的关键,比较基础.3.的展开式中常数项是()A.﹣160 B.﹣20 C.20 D.160考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,进而求出展开式的常数项.解答:解:展开式的通项为T r+1=(﹣2)r C6r x3﹣r令3﹣r=0得r=3所以展开式的常数项为(﹣2)3C63=﹣160故选A点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.4.如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.考点:导数的几何意义;直线的倾斜角.专题:计算题.分析:由二次函数的图象可知最小值为,再根据导数的几何意义可知k=tanα≥,结合正切函数的图象求出角α的范围.解答:解:根据题意得f′(x)≥则曲线y=f(x)上任一点的切线的斜率k=tanα≥结合正切函数的图象由图可得α∈故选B.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,同时考查了数形结合法的应用,本题属于中档题.5.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c﹣2),则c的值是()A.1 B.2 C.3 D.4考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:随机变量ξ服从正态分布N(2,9),得到曲线关于x=2对称,根据P(ξ>c)=P(ξ<c﹣2),结合曲线的对称性得到点c与点c﹣2关于点2对称的,从而做出常数c的值得到结果.解答:解:随机变量ξ服从正态分布N(2,9),∴曲线关于x=2对称,∵P(ξ>c)=P(ξ<c﹣2),∴,∴c=3故选:C.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.6.已知椭圆=1(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20 C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据椭圆=1,得出b=5,再由|F1F2|=8,可得c=4,求得a=,运用定义整体求解△ABF2的周长为4a,即可求解.解答:解:由|F1F2|=8,可得2c=8,即c=4,由椭圆的方程=1(a>5)得:b=5,则a==,由椭圆的定义可得,△ABF2的周长为c=|AB|+|BF2|+|AF2|=|AF1|+|BF1|+|BF2|+|AF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=4.故选:D.点评:本题考查了椭圆的方程,定义,整体求解的思想方法,属于中档题.7.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()A.4种B.5种C.6种D.9种考点:分类加法计数原理.专题:分类讨论.分析:4枚硬币摆成一摞,应该有3类:(1)正反依次相对,(2)有两枚反面相对,(3)有两枚正面相对;本题(1)(2)满足题意.解答:解:记反面为1,正面为2;则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112;共5种摆法,故选B点评:本题考查的是排列组合中的分类计数原理,对于元素较少的可以利用列举法求解;属于基本知识和基本方法的考查.8.给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④考点:命题的真假判断与应用.专题:综合题;简易逻辑.分析:①“p∨q”为真命题,p、q二者中只要有一真即可;②写出一个命题的否命题的关键是正确找出原命题的条件和结论;③直接写出全称命题的否定判断;④利用基本不等式,可得结论.解答:解:①“p∨q”为真命题,p、q二者中只要有一真即可,故不正确;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”,正确;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0<1”,故不正确;④“x>0”时,“x+≥2”,若“x+≥2”,则“x>0”,∴“x>0”是“x+≥2”的充要条件,故正确.故选:C.点评:本题考查命题的真假判断与应用,考查复合命题的真假判断,考查了命题的否命题、全称命题的否定、充要条件,属于中档题.9.对于R上可导的任意函数f(x),若满足(x﹣2)f′(x)≤0,则必有()A.f(﹣3)+f(3)<2f(2)B.f(﹣3)+f(7)>2f(2)C.f(﹣3)+f(3)≤2f (2)D.f(﹣3)+f(7)≥2f(2)考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:借助导数知识,根据(x﹣2)f′(x)≥0,判断函数的单调性,再利用单调性,比较函数值的大小即可.解答:解:∵对于R上可导的任意函数f(x),(x﹣2)f′(x)≥0∴有,即当x∈[2,+∞)时,f(x)为增函数,当x∈(﹣∞,2]时,f(x)为减函数∴f(1)≥f(2),f(3)≥f(2)∴f(1)+f(3)≥2f(2)故选:C点评:本题考查了利用导数判断抽象函数单调性,以及利用函数的单调性比较函数值的大小.10.如图,四棱锥P ﹣ABCD 的底面为正方形,PD ⊥底面ABCD ,PD=AD=1,设点CG 到平面PAB 的距离为d 1,点B 到平面PAC 的距离为d 2,则有( )A . 1<d 1<d 2B . d 1<d 2<1C . d 1<1<d 2D . d 2<d 1<1考点: 点、线、面间的距离计算.专题: 综合题;空间位置关系与距离;空间角.分析: 过C 做平面PAB 的垂线,垂足为E ,连接BE ,则三角形CEB 为直角三角形,根据斜边大于直角边,再根据面PAC 和面PAB 与底面所成的二面角,能够推导出d 2<d 1<1.解答: 解:过C 做平面PAB 的垂线,垂足为E ,连接BE ,则三角形CEB 为直角三角形,其中∠CEB=90°,根据斜边大于直角边,得CE <CB ,即d 2<1.同理,d 1<1.再根据面PAC 和面PAB 与底面所成的二面角可知,前者大于后者,所以d 2<d 1.所以d 2<d 1<1.故选D .点评: 本题考查空间距离的求法,解题时要认真审题,仔细解答,注意空间角的灵活运用.11.已知双曲线(a >0,b >0)的焦点F 1(﹣c ,0)、F 2(c ,0)(c >0),过F 2的直线l 交双曲线于A ,D 两点,交渐近线于B ,C 两点.设+=,+=,则下列各式成立的是( )A . ||>||B . ||<||C . |﹣|=0D . |﹣|>0考点: 双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析: 特殊化,取过F 2垂直于x 轴的直线l 交双曲线于A ,D 两点,交渐近线于B ,C 两点,可得+==2,+==2,即可得出结论.解答: 解:取过F 2垂直于x 轴的直线l 交双曲线于A ,D 两点,交渐近线于B ,C 两点,则+==2,+==2,∴|﹣|=0..故选:C点评: 特殊化是我们解决选择、填空题的常用方法.12.已知函数f(x)=x n+1(n∈N*)的图象与直线x=1交于点P,若图象在点P处的切线与x轴交点的横坐标为x n,则log2013x1+log2013x2+…+log2013x2012的值为()A.1﹣log20132012 B.﹣1C.﹣log20132012 D.1考点:利用导数研究曲线上某点切线方程;数列的函数特性.专题:计算题;导数的概念及应用.分析:先求点P(1,1),再求曲线在点P(1,1)处的切线方程,从而得出切线与x轴的交点的横坐标为x n,再求相应的函数值.解答:解:∵函数f(x)=x n+1(n∈N*)的图象与直线x=1交于点P,∴P(1,1),∵y=x n+1,∴y′=(n+1)x n,当x=1时,y′=n+1,即切线的斜率为:n+1,故y=x n+1在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),令y=0可得x=,即该切线与x轴的交点的横坐标为x n=,所以log2013x1+log2013x2+…+log2013x2012=log2013×××…×==﹣1,故选B.点评:本题考查导数的几何意义的应用,解题时要认真审题,仔细解答,注意利用对数运算的性质求出函数,属中档题.二.填空题:(每小题5分,20)13.由曲线y=sinx,y=cosx与直线x=0,x=所围成的平面图形(下图中的阴影部分)的面积是2﹣2.考点:余弦函数的图象.专题:三角函数的图像与性质.分析:三角函数的对称性可得S=2,求定积分可得.解答:解:由三角函数的对称性和题意可得S=2=2(sinx+cosx)=2(+)﹣2(0+1)=2﹣2故答案为:2﹣2点评:本题考查三角函数的对称性和定积分求面积,属基础题.14.设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB 的中点,若|FQ|=2,则直线l的斜率等于不存在.考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.解答:解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.15.将全体正奇数排成一个三角形数阵如图:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为n2﹣n+5.考点:归纳推理.专题:探究型.分析:根据数阵的排列规律确定第n行(n≥3)从左向右的第3个数为多少个奇数即可.解答:解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n ﹣1)=个,则第n行(n≥3)从左向右的第3个数为为第个奇数,所以此时第3个数为:1=n2﹣n+5.故答案为:n2﹣n+5.点评:本题主要考查归纳推理的应用,利用等差数列的通项公式是解决本题的关键.16.已知O是△ABC的外心,AB=2a,AC=,∠BAC=120°,若=x+y,则x+y的最小值是2.考点:向量在几何中的应用.专题:平面向量及应用.分析:建立直角坐标系,求出三角形各顶点的坐标,因为O为△ABC的外心,把AB的中垂线m方程和AC的中垂线n的方程,联立方程组,求出O的坐标,利用已知向量间的关系,待定系数法求x和y的值,最后利用基本不等式求最小值即可.解答:解:如图:以A为原点,以AB所在的直线为x轴,建立直角系:则A(0,0),B (2a,0),C(﹣,),∵O为△ABC的外心,∴O在AB的中垂线m:x=a上,又在AC的中垂线n 上,AC的中点(﹣,),AC的斜率为tan120°=﹣,∴中垂线n的方程为y﹣=(x+).把直线m和n 的方程联立方程组,解得△ABC的外心O(a,+),由条件=x+y,得(a,+)=x(2a,0)+y(﹣,)=(2ax﹣,),∴,解得x=+,y=,∴x+y=++=+()=2.当且仅当a=1时取等号.故答案为:2.点评:本题考查求两条直线的交点坐标的方法,三角形外心的性质,向量的坐标表示及向量相等的条件,待定系数法求参数值.属中档题.三.解答题:17.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)求二面角C1﹣AD﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法.专题:综合题.分析:(1)连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是直三棱柱,得四边形ACC1A1为矩形,由此利用三角形中位线能够证明A1B∥平面ADC1.(2)由ABC﹣A1B1C1是直三棱柱,且∠ABC=90°,知BA,BC,BB1两两垂直.由此能求出二面角C1﹣AD﹣C的余弦值.解答:(1)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点,又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,因为OD⊂平面ADC1,A1B⊄平面ADC1,所以A1B∥平面ADC1.…(6分)(2)解:由ABC﹣A1B1C1是直三棱柱,且∠ABC=90°,故BA,BC,BB1两两垂直.以BA为x轴,以BC为y轴,以BB1为z轴,建立空间直角坐标系,∵AB=BC=2AA1,∠ABC=90°,D是BC的中点,∴可设AA1=1,AB=BC=2,BD=DC=1,∴A(2,0,0),D(0,1,0),C(0,2,0),C1(0,2,1),∴=(﹣2,2,1),,设平面ADC1的法向量为,则,,∴,∴=(1,2,﹣2),∵平面ADC的法向量,所以二面角C1﹣AD﹣C的余弦值为|cos<>|=||=.点评:本题考查直线与平面平行的证明,考查二面角的求法.解题时要认真审题,注意合理地化空间问题为平面问题,注意向量法的合理运用.18.已知a,b,c∈R,a2+b2+c2=1.(Ⅰ)求证:|a+b+c|≤;(Ⅱ)若不等式|x﹣1|+|x+1|≥(a﹣b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.考点:二维形式的柯西不等式;函数恒成立问题.专题:选作题;不等式.分析:(Ⅰ)利用柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3;(Ⅱ)同理,(a﹣b+c)2≤[12+(﹣1)2+12](a2+b2+c2)=3,问题等价于|x﹣1|+|x+1|≥3.解答:解:(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3所以﹣≤a+b+c≤所以:|a+b+c|≤;…(5分)(Ⅱ)同理,(a﹣b+c)2≤[12+(﹣1)2+12](a2+b2+c2)=3 …(7分)若不等式|x﹣1|+|x+1|≥(a﹣b+c)2对一切实数a,b,c恒成立,则|x﹣1|+|x+1|≥3,解集为(﹣∞,﹣]∪[,+∞)…(10分)点评:本题考查柯西不等式,考查恒成立问题,正确运用柯西不等式是关键.19.某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.(Ⅰ)求分别获得一、二、三等奖的概率;(Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式.专题:计算题.分析:(Ⅰ)由题意设“摸到一等奖、二等奖、三等奖”分别为事件A,B,C,利用独立事件同时发生的概率公式及互斥事件的概率公式即可求得;(Ⅱ)由于摸球次数为ξ,按题意则ξ=1,2,3,4,利用随机变变量的定义及随机变量的分布列及期望定义即可求得.解答:解:(Ⅰ)设“摸到一等奖、二等奖、三等奖”分别为事件A,B,C.则P(A)=,P(B)==;三等奖的情况有:“生,生,意,兴”;“生,意,意,兴”;“生,意,兴,兴”三种情况.P(C)==;(Ⅱ)设摸球的次数为ξ,则ξ=1,2,3,4.,,,.故取球次数ξ的分布列为ξ 1 2 3 4P=.点评:此题考查了学生的理解及计算能力,考查了独立事件同时发生及互斥事件一个发生的概率公式,还考查了离散型随机变量的定义及分布列,随机变量的期望.20.已知曲线C:y=e ax.(Ⅰ)若曲线C在点(0,1)处的切线为y=2x+m,求实数a和m的值;(Ⅱ)对任意实数a,曲线C总在直线l:y=ax+b的上方,求实数b的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)根据导数的几何意义,y=e ax在x=0处的切线方程为y﹣1=y′(0)x,再比较已知条件,可得;(Ⅱ)原题意可转化为对于∀x,a∈R,e ax>ax+b恒成立,法1:进一步转化为∀x,a∈R,e ax﹣ax﹣b>0恒成立,令g(x)=e ax﹣ax﹣b,分别从a=0和a≠0两种情况通过求导的方式进一步分析;法2:进一步转化为∀x,a∈R,b<e ax﹣ax恒成立,再令t=ax,则等价于∀t∈R,b<e t﹣t恒成立,再通过研究函数g(t)=e t ﹣t的性质求解.解答:解:(Ⅰ)y'=ae ax,因为曲线C在点(0,1)处的切线为L:y=2x+m,所以1=2×0+m且y'|x=0=2.解得m=1,a=2(Ⅱ)法1:对于任意实数a,曲线C总在直线的y=ax+b的上方,等价于∀x,a∈R,都有e ax>ax+b,即∀x,a∈R,e ax﹣ax﹣b>0恒成立,令g(x)=e ax﹣ax﹣b,①若a=0,则g(x)=1﹣b,所以实数b的取值范围是b<1;②若a≠0,g'(x)=a(e ax﹣1),由g'(x)=0得x=0,g'(x),g(x)的情况如下:x (﹣∞,0)0 (0,+∞)g'(x)﹣0 +g(x)↘极小值↗所以g(x)的最小值为g(0)=1﹣b,所以实数b的取值范围是b<1;综上,实数b的取值范围是b<1.法2:对于任意实数a,曲线C总在直线的y=ax+b的上方,等价于∀x,a∈R,都有e ax>ax+b,即∀x,a∈R,b<e ax﹣ax恒成立,令t=ax,则等价于∀t∈R,b<e t﹣t恒成立,令g(t)=e t﹣t,则g'(t)=e t﹣1,由g'(t)=0得t=0,g'(t),g(t)的情况如下:t (﹣∞,0)0 (0,+∞)g'(t)﹣0 +g(t)↘极小值↗所以g(t)=e t﹣t的最小值为g(0)=1,实数b的取值范围是b<1.点评:本题中的导数的几何意义和利用导数研究函数的性质,是高考中经常考查的知识点和方法,特别是第二小问,通过数形转化后,对于“∀x,a∈R,e ax﹣ax﹣b>0恒成立,”的处理介绍了两种方法,对于拓宽学生的思维,拓展学生的思路有一定的指导作用,不过不管是哪种方法,最终都需要用导数的知识来进一步分析.21.已知椭圆W:=1,直线l与W相交于M,N两点,l与x轴、y轴分别相交于C、D两点,O 为坐标原点.(Ⅰ)若直线l的方程为x+2y﹣1=0,求△OCD外接圆的方程;(Ⅱ)判断是否存在直线l,使得C,D是线段MN的两个三等分点,若存在,求出直线l的方程;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由直线l的方程为x+2y﹣1=0,求出C,D的坐标,进而可求△OCD外接圆的圆心与半径,即可求△OCD外接圆的方程;(Ⅱ)存在直线l,使得C,D是线段MN的两个三等分点.设直线l的方程为y=kx+m(km≠0),与椭圆方程联立,由C,D是线段MN的两个三等分点,得线段MN的中点与线段CD的中点重合,利用韦达定理,求出k,由C,D是线段MN的两个三等分点,得|MN|=3|CD|,求出m,即可得出结论.解答:解:(Ⅰ)因为直线l的方程为x+2y﹣1=0,所以与x轴的交点C(1,0),与y轴的交点.…(1分)则线段CD的中点,,…(3分)即△OCD外接圆的圆心为,半径为,所以△OCD外接圆的方程为.…(5分)(Ⅱ)存在直线l,使得C,D是线段MN的两个三等分点.理由如下:由题意,设直线l的方程为y=kx+m(km≠0),M(x1,y1),N(x2,y2),则,D(0,m),…(6分)由方程组得(1+2k2)x2+4kmx+2m2﹣2=0,…(7分)所以△=16k2﹣8m2+8>0,(*)…(8分)由韦达定理,得,.…(9分)由C,D是线段MN的两个三等分点,得线段MN的中点与线段CD的中点重合.所以,…(10分)解得.…(11分)由C,D是线段MN的两个三等分点,得|MN|=3|CD|.所以,…(12分)即,解得.…(13分)验证知(*)成立.所以存在直线l,使得C,D是线段MN的两个三等分点,此时直线l的方程为,或.…(14分)点评:本题考查圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).考点:数学归纳法;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题;证明题.分析:(I)可先求f′(x),从而判断f(x)在x∈[1,+∞)上的单调性,利用其单调性求f(x)在x∈[1,+∞)最小值;(Ⅱ)求h′(x),可得,若f(x)存在单调递减区间,需h′(x)<0有正数解.从而转化为:ax2+2(a﹣1)x+a<0有x>0的解.通过对a分a=0,a<0与当a>0三种情况讨论解得a的取值范围;(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,⇒,再构造函数,令,有,从而,问题可解决;(法二)可用数学归纳法予以证明.当n=1时,ln(n+1)=ln2,3ln2=ln8>1⇒,成立;设当n=k 时,,再去证明n=k+1时,即可(需用好归纳假设).解答:解:(I),定义域为(0,+∞).∵,∴f(x)在(0,+∞)上是增函数.当x≥1时,f(x)≥f(1)=1;(3分)(Ⅱ)∵,∵若f(x)存在单调递减区间,∴f′(x)<0有正数解.即ax2+2(a﹣1)x+a<0有x>0的解.(5分)①当a=0时,明显成立.②当a<0时,y=ax2+2(a﹣1)x+a为开口向下的抛物线,ax2+2(a﹣1)x+a<0总有x>0的解;③当a>0时,y=ax2+2(a﹣1)x+a开口向上的抛物线,即方程ax2+2(a﹣1)x+a=0有正根.因为x1x2=1>0,所以方程ax2+2(a﹣1)x+a=0有两正根.,解得.综合①②③知:.(9分)(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.令,则有,∴.∵,∴.(12分)(法二)当n=1时,ln(n+1)=ln2.∵3ln2=ln8>1,∴,即n=1时命题成立.设当n=k时,命题成立,即.∴n=k+1时,.根据(Ⅰ)的结论,当x>1时,,即.令,则有,则有,即n=k+1时命题也成立.因此,由数学归纳法可知不等式成立.(12分)点评:本题考查利用导数研究函数的单调性及数学归纳法,难点之一在于(Ⅱ)中通过求h′(x)后,转化为:ax2+2(a﹣1)x+a<0有x>0的解的问题,再用分类讨论思想来解决;难点之二在于(Ⅲ)中法一通过构造函数,用放缩法证得结论,法二通过数学归纳法,其中也有构造函数的思想,属于难题.。
海城区高中2018-2019学年高二下学期第二次月考试卷数学
海城区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 2. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C.()D.()3. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i4. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .1205. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=06. 已知函数,,若,则( )A1 B2 C3 D-17. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1﹣B .﹣C .D .8. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .59. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120 10.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .B .C .D . 11.下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内12.如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°二、填空题13.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R .若=,则a+3b 的值为 .14.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 其中正确的是 .(填上所有正确命题的编号)15.函数y=lgx 的定义域为 .16.已知正四棱锥O ABCD -的体积为2,则该正四棱锥的外接球的半径为_________17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .18.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.三、解答题19.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h (x )图象上时,公式变为,请参考该公式求出函数ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值.20.已知函数f (x )=2cosx (sinx+cosx )﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.21.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?22.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.23.已知cos(+θ)=﹣,<θ<,求的值.24.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.25.已知命题p :∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,命题q :f (x )=x 2﹣ax+1在区间上是增函数.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.26.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.PA=;(1)求证:PB∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.(2)OAB【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.海城区高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e co s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .2. 【答案】B【解析】解:∵抛物线x 2=4y 中,p=2, =1,焦点在y 轴上,开口向上,∴焦点坐标为 (0,1),故选:B .【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x 2=2py 的焦点坐标为(0,),属基础题.3. 【答案】D【解析】解:i 2015=i 503×4+3=i 3=﹣i , 故选:D【点评】本题主要考查复数的基本运算,比较基础.4. 【答案】B【解析】解:根据频率分布直方图,得; 该班级数学成绩的平均分是=80×0.005×20+100×0.015×20 +120×0.02×20+140×0.01×20 =114. 故选:B .【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.5. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.6. 【答案】A【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1 7. 【答案】A【解析】解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A .8. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]9. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mnn n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .10.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
江苏省2019-2020年高三下学期第二次联考 数学试卷(理)
高中毕业班联考(二)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}22|1,y |y 1M x N x x ⎧⎫=≥==-⎨⎬⎩⎭,则M N =( )A .(],2-∞B .(]0,2C .(]0,1D .(],1-∞2. 复数11i+的虚部是( ) A .12 B .12- C .12i D .12i - 3.2sin 473sin17cos17-=( )A .3-B .1-C .3D .1 4.给出下列三个命题:(1)“若2230x x +-≠,则1x ≠”为假命题; (2)命题p :,20xx R ∀∈>,则00:,20x p x R ⌝∃∈≤;(3)“ϕ=”是“函数y = sin(2x+ϕ)为偶函数”的充要条件;其中正确的个数是( )A. 0B. 1C. 2D. 35.已知函数cos y x =与()()sin 20y x ϕϕπ=+≤≤,它们的图象有一个横坐标为3π的交点,则ϕ的值为( )A .6πB .4πC .3πD .23π6.下图是计算500名学生毕业测试成绩(满分为100分)及格率q 的程序框图,则图中空白框内应填入( )A .M q i =B .M q N =C .N q M N =+D .M q M N=+7.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (,,,*a b cd N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值,我们知道 3.14159π=⋅⋅⋅,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第三次用“调日法”后可得π的近似分数为( )A .227 B .6320 C .7825 D .109358. 已知变量,x y 满足240220x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩,则32x y x +++的取值范围是( )A .55,42⎡⎤⎢⎥⎣⎦B .52,2⎡⎤⎢⎥⎣⎦ C .45,52⎡⎤⎢⎥⎣⎦ D .5,24⎡⎤⎢⎥⎣⎦9.某几何体的三视图如图所示,在该几何体的各个面中,面积最小的面与底面面积之比为:( )A .13 B .23 C .34 D .2510.如图,已知双曲线()222210,0x y a b a b-=>>上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该双曲线离心率e 的取值范围为( )A .2,31⎡⎤+⎣⎦B .3,23⎡⎤+⎣⎦ C .2,23⎡⎤+⎣⎦ D .3,31+⎡⎤⎣⎦11.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知'A ED ∆是ADE ∆绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点'A 在平面ABC 上的射影在线段AF 上B .异面直线'A E 与BD 不可能垂直C .三棱锥'EFD A -的体积有最大值 D .恒有平面'GF A ⊥平面BCDE12.已知函数()f x 的图象在点()()00,x f x 处的切线方程():l y g x =,若函数()f x 满足x l ∀∈(其中I 为函数()f x 的定义域),当0x x ≠时,()()()00f x g x x x ⎡⎤-->⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,若函数()2ln f x x ax x =--在(]0,e 上存在一个“转折点”,则a 的取值范围为( )A .21,2e ⎡⎫+∞⎪⎢⎣⎭ B .211,2e ⎛⎤- ⎥⎝⎦ C .21,12e ⎡⎫-⎪⎢⎣⎭ D .21,2e ⎛⎤-∞- ⎥⎝⎦ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知幂函数()y f x =图象过点()9,3,则()1f x dx =⎰ .14.二项式82x y ⎛⎫- ⎪⎝⎭的展开式中,44x y 与26x y 项的系数之和是 (用数字作答).15.下侧茎叶图记录了甲、乙两组各四名同学的植树棵树,分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵树为20棵的概率是.16.在ABC ∆中,2AB a =,则3AC b =,设P 为ABC ∆内部及其边界上任意一点,若AP a b λμ=+,则λμ的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且()21*n n S a n N =-∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记1131,log 1n n n n nb b bc a n n+==++,求数列{}n c 的前n 项和为n T .18. (本小题满分12分)心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)几何题 代数题 总计男同学 22 8 30女同学 8 12 20总计 30 20 50(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5至7分钟,女生乙每次解答一道几何题所用的时间在6至8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X ,求X 得分布列及数学期望()E X .附:. ()()()()()22n ad bc K a b c d a c b d -=++++()20P k k ≥ 0.1000.0500.025 0.010 0.0010k2.7063.841 5.024 6.635 10.82819. (本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//,90AD BC ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2,1,3PA PD AD BC CD =====.(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M BQ C --为30°,设PM t MC =⋅,试确定t 的值.20. (本小题满分12分)在直角坐标系xOy ,椭圆()22122:10x y C a b a b+=>>的左、右焦点分别为12,F F ,其中2F 也是抛物线22:4C y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3MF =. (1)求椭圆的方程;(2)若过点()4,0D 的直线l 与1C 交于不同的两点、A B ,且A 在DB 之间,试求AOD ∆与BOD ∆面积之比的取值范围.21. (本小题满分12分)已知函数()(),cf x a b R ax b=∈+满足()f x 的图象与直线10x y +-=相切于点(0,1). (1)求()f x 的解析式; (2)对任意n N ∈,定义()()()()()()()()()01012,,n n n n f x x f x f f x F x f x f x f x f x +===+++⋅⋅⋅+.证明:对任意0x y >>,均有()()n n F x F y >.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲如图所示, AB 是⊙O 的一条弦,延长AB 到点C ,使得AB BC =,过点B 作BD AC ⊥且DB AB =,连接AD 与⊙O 交于点E ,连接CE 与⊙O 交于点F .(1)求证:,,,D F B C 四点共圆;(2)若6,3AB DF ==,求2BE.23. (本小题满分10分)选修4-4:坐标系与参数方程选讲已知在直角坐标系xOy 中,直线l 的参数方程为33x t y t=-⎧⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为24cos 30ρρθ-+=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点P 是曲线C 上的一个动点,求它到直线l 的距离d 的取值范围.24. (本小题满分10分)选修4-5:不等式选讲 已知函数()|3|f x x =-.(1)若不等式()()1f x f x a -+<的解集为空集,求实数a 的取值范围;(2)若||1,|b |3a <<,且0a ≠,判断()||f ab a 与b f a ⎛⎫⎪⎝⎭的大小,并说明理由.数学(理科)参考答案一、选择题1.【答案】C【解析】:解不等式2102x x≥∴<≤,集合N 其值域为[]0,1,所以M N =(]0,1.2.【答案】B【解析】()()1111112i i i i i --==++-,所以复数11i +的虚部是12-. 3.【答案】C【解析】330cos 217cos 30cos 17sin )3017sin(217cos 30cos 17sin 47sin 2000000000==-+⨯=-⨯ 4.【答案】C【解析】(1)∵命题“若1=x ,则0322=-+x x ”是真命题,所以其逆否命题亦为真命题,因此(1)不正确;(2)根据含量词的命题否定方式,可知命题(2)正确.(3)当)(2Z k k ∈+=ππϕ时,则函数x k x x y 2cos )22sin()2sin(±=++=+=ππφ)为偶函数;反之也成立.故“)(2Z k k ∈+=ππϕ”是“函数)2sin(φ+=x y 为偶函数”的充要条件;综上可知:真命题的个数2.5.【答案】B【解析】:由题意21sin()cos 332ππϕ+==,把四个选择支的值代入此式,只有A 适合.故选A . 6.【答案】D【解析】:由程序框图可知,M 为及格的人数,N 为不及格人数,所以及格率Mq M N=+,故选D.7.【答案】B【解析】:由调日法运算方法可知,第二次用调日法后得1547是π更为精确的不足近似值,即5161547<<π,故第三次调日法后得到2063为π的近似分数。
2023-2024学年河南省南阳市高二下学期第二次月考联考(6月)数学检测试题(含答案)
2023-2024学年河南省南阳市高二下学期第二次月考联考(6月)数学检测试题一、单选题(本大题共8小题,每小题5分,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 抛物线的焦点为F ,点M 在C 上,,则M 到y 轴的距离是()2:16C y x =12MF =A. 4 B. 8 C. 10 D. 122. 如图,四棱锥S -ABCD 的底面ABCD 是菱形,且,60BAD SAB SAD ∠=∠=∠=︒AB =AS =1,则SC=()A. 1110,022a b <<<<ξC .减小,增大D .减小,减小4. 已知变量,的关系可以用模型拟合,设,其变换后得到一组数据如下:x y y =c·we kxz =lny x 16171819z50344131由上表可得线性回归方程,则( )z =?4x +?a c =A. B. C. D. 4e4109e1096.若过点可以作曲线的两条切线,则( )(1,b )y =ln (x +1)A .B .ln2<b <2b >1C .D .0<b <ln2b >ln27. 数列的前n 项和为,对一切正整数n ,点在函数的图象上,{}n a n S (),n n S 2()2f x x x =+且,则数列的前n 项和()n b n *=∈N )1n ≥{}n b n T =A B1--C --8. 若其中为自然对数的底数,则,,的大小关系是( )e )a b c A. B. C. D. c <b <ac <a <b c <a <bb <c <a a <c <b二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,,,为//,//BC AD EF AD 4,2AD AB BC EF ====ED FB ==M 的中点,则下列说法正确的是( )AD A .BD AD ⊥B .平面//BM CDEC .与平面BF EMBD .平面与平面所成夹角的正弦值为BFM EMB 111310.已知函数,则( )()()()1ln 1f x ax x x=-+-图A .()()()1ln 1,(0)1a x f x a x x x+=-+->+'B .当时,的极大值为,无极小值2a =-()f x 0C .当时,的极小值为,无极大值2a =-()f x 0D .当时,恒成立,的取值范围为0x ≥()0f x ≥a 12⎛⎤-∞- ⎥⎝⎦,11. 已知双曲线:,、分别为双曲线的左,右顶点,、为左、C x 2a 2y 2b2=1(a >0,b >0)A B F 1F 2右焦点,,且,,成等比数列,点是双曲线的右支上异于点的任意一点,|F 1F 2|=2c a b c P C B 记,的斜率分别为,,则下列说法正确的是( )PA PB k 1k 2 A. 当轴时,PF 2⊥x B. 双曲线的离心率e =1+52C. 为定值k 1k 21+52D. 若为的内心,满足,则I S △IPF 1=S △IPF 2+xS △IF1F 2(x ∈R )x =5?12三、填空题:本题共3小题,每小题5分,共15分12. 已知数列满足 ,若 为数列 的前{a n }S n {a n }n 项和,则___S 10=13.设双曲线的左右焦点分别为,过作平行于轴的直线交2222:1(0,0)x y C a b a b -=>>12F F 、2F y C 于A ,B 两点,若,则C 的离心率为.1||13,||10F A AB ==14. 已知关于 的不等式 (其中 ). 的解集中恰有两个整数,则x 2x <(ax ?a )e x(x ∈R )a <1实数的取值范围是_________a 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤。
东北三省三校(哈师大附中)2018-2019学年高三第二次模拟考试数学(理)试题+Word版含答案
东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2018-2019学年高三第二次模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,则复数ii437++在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.设集合}02|{2<--=x x x A ,集合}41|{<<=x x B ,则=B A Y ( ) A .}21|{<<x x B .}41|{<<-x x C .}11|{<<-x x D .}42|{<<x x3.等比数列}{n a 中,23-=a ,811-=a ,则=7a ( ) A .4- B .4 C .4± D .5- 4.已知向量)1,1(=a ,)2,1(-=b ,若)2//()(b t a b a +-,则=t ( )A .0B .21C .2-D .3- 5.执行如下的程序框图,若输出T 的值为1225,则“?”处可填( )A .6<nB .5<nC .4<nD .3<n6.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有( ) A .240 B .480 C .720 D .960 7.函数11)(+-+=x x e x f x的部分图象大致是( )8.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )A .338π B .π8 C .π6 D .334π9.21,F F 是双曲线)0,0(12222>>=-b a by a x 的左右焦点,过1F 且斜率为1的直线与两条渐近线分别交于B A ,两点,若12=,则双曲线的离心率为( ) A.25B. 5C.310D. 10 10.设n m ,是两条不同的直线,βα,是两个不同的平面,则下列命题中正确的是( ) A .若βα⊥,α⊥m ,则β//m B .若α//m ,α⊂n ,则n m // C .若m =βαI ,α//n ,β//n ,则n m //D .若βα⊥,且m =βαI ,点α∈A ,直线m AB ⊥,则β⊥AB11.甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )A .甲和乙不可能同时获奖B .丙和丁不可能同时获奖C .乙和丁不可能同时获奖D .丁和甲不可能同时获奖 12.已知当),1(+∞∈x 时,关于x 的方程1)2(ln -=-+kxk x x 有唯一实数解,则k 值所在的范围是( )A .)4,3(B .)5,4(C .)6,5(D .)7,6( 二、填空题(每题4分,满分20分,将答案填在答题纸上) 13.设随机变量)21,6(~B X ,则==)3(X P .14.已知递增的等差数列}{n a 的前三项和为6-,前三项积为10,则前10项和=10S .15.函数43cos 3)3sin(cos )(2+-+=x x x x f π在闭区间]4,4[ππ-上的最小值是 .16.设抛物线x y 22=的焦点为F ,过点)0,3(M 的直线与抛物线相交于B A ,两点,与抛物线的准线相交于点C ,2||=BF ,则BCF ∆与ACF ∆的面积之比=∆∆ACFBCFS S . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆三个内角C B A ,,所对的边分别是c b a ,,,若)sin (sin )sin )(sin (B A b C A c a -=+-.(1)求角C ;(2)若ABC ∆的外接圆半径为2,求ABC ∆周长的最大值.18.经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:xb y a xn x yx n yx bn i i ni ii ˆˆ,ˆ1221-=⋅-⋅⋅-=∑∑==,∑==81217232i i x ,∑==8147384i ii y x(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a x b y ˆˆˆ+=;(b aˆ,ˆ的值精确到0.01)(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg 的70岁的老人,属于哪类人群?19.如图,四棱柱1111D C B A ABCD -的底面为菱形,0120=∠BAD ,2=AB ,F E ,为1,AA CD 中点.(1)求证://DF 平面AE B 1;(2)若⊥1AA 底面ABCD ,且直线1AD 与平面AE B 1所成线面角的正弦值为43,求1AA 的长.20.椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为)0,1(1-F 、)0,1(2F ,若椭圆过点)23,1(. (1)求椭圆C 的方程;(2)若B A ,为椭圆的左、右顶点,),(00y x P (00≠y )为椭圆上一动点,设直线BP AP ,分别交直线l :6=x 于点N M ,,判断线段MN 为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.21.已知函数1ln )(--=x a x x f ,曲线)(x f y =在)0,1(处的切线经过点)0,(e . (1)证明:0)(≥x f ;(2)若当),1[+∞∈x 时,xp x x f ln )(ln )1(2+≥,求p 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==θθsin 1cos y x (θ为参数),曲线2C :1222=+y x .以O 为极点,x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.(1)求曲线21,C C 的极坐标方程;(2)射线3πθ=(0>ρ)与曲线1C 的异于极点的交点为A ,与曲线2C 的交点为B ,求||AB .23.选修4-5:不等式选讲 设函数|12|)(-=x x f .(1)设5)1()(<++x f x f 的解集为集合A ,求集合A ;(2)已知m 为集合A 中的最大自然数,且m c b a =++(其中c b a ,,为正实数),设ccb b a a M -⋅-⋅-=111.求证:8≥M .理科数学答案一、选择题二、填空题 13.165 14. 85 15.21- 16. 54 三、解答题17.(1)由正弦定理得)())((b a b c a c a -=+-,∴222b abc a -=-,∴212222=-+ab c b a ,即21cos =C 因为π<<C 0,则3π=C .(2)由正弦定理4sin sin sin 2====AaB bC c r ∴A a sin 4=,B b sin 4=,32sin 4==C c , ∴周长c b a l ++=32sin 4sin 4++=B A32)32sin(4sin 4+-+=A A π32sin 214cos 234sin 4+⨯+⨯+=A A A 32cos 32sin 6++=A A32)6sin(34++=πA∵)32,0(π∈A ,∴)65,6(6πππ∈+A ∴当26ππ=+A 即3π=A 时363234max =+=l∴当3π==B A 时,ABC ∆周长的最大值为36.18. (1)(2)4586258524842383228=+++++++=x1298147140135129127122118114=+++++++=y∴91.012911845817232129458473848ˆ2812281≈=⨯-⨯⨯-=⋅-⋅⋅-=∑∑==i ii ii xxy x n yx b05.884591.0129ˆˆ=⨯-=-=x b y a∴回归直线方程为05.8891.0ˆ+=x y. (3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为75.15105.887091.0=+⨯(mmHg )∵19.175.151180≈∴收缩压为180mmHg 的70岁老人为中度高血压人群. 19.(1)证明:设G 为1AB 的中点,连GF EG , 因为FG1121B A ,又DE 1121B A ,所以FG DE ,所以四边形DEGF 是平行四边形, 所以EG DF //又⊄DF 平面AE B 1,⊂EG 平面AE B 1, 所以//DF 平面AE B 1.(2)因为ABCD 是菱形,且060=∠ABD , 所以ABC ∆是等边三角形 取BC 中点G ,则AD AG ⊥,因为⊥1AA 平面ABCD , 所以AG AA ⊥1,AD AA ⊥1建立如图的空间直角坐标系,令)0(1>=t t AA ,则)0,0,0(A ,)0,23,23(E ,),1,3(t B -,),2,0(1t D , )0,23,23(=AE ,),1,3(1t AB -=,),2,0(1t AD =, 设平面AE B 1的一个法向量为),,(z y x n =, 则0)3(23=+=⋅y x AE n 且031=+-=⋅tz y x , 取)4,,3(t t n -=,设直线1AD 与平面AE B 1所成角为θ, 则43)4(26||||sin 211=+=⋅=t t AD n θ,解得2=t ,故线段1AA 的长为2. 20.(1)由已知1=c , ∴122+=b a ① ∵椭圆过点)23,1(,∴149122=+b a ② 联立①②得42=a ,32=b∴椭圆方程为13422=+y x(2)设),(00y x P ,已知)0,2(),0,2(B A - ∵00≠y ,∴20±≠x ∴BP AP ,都有斜率 ∴2,20000-=+=x y k x y k BP AP ∴4202-=⋅x y k k BPAP ③ ∵1342020=+y x ∴)41(3220x y -=④ 将④代入③得434)41(32020-=--=⋅x x k k BPAP设AP 方程)2(-=x k y ∴BP 方程)2(43--=x k y ∴)3,6(),8,6(kN k M -由对称性可知,若存在定点,则该定点必在x 轴上,设该定点为)0,(t T 则TM ⊥ ∴0)24()6()3,6()8,6(2=-+-=--⋅-=⋅t k t k t∴24)6(2=-t ,∴626±=t ∴存在定点)0,626(+或)0,626(-以线段MN 为直径的圆恒过该定点.21. (1)曲线)(x f y =在)0,1(处的切线为)1)(1('-=x f y ,即)1)(1(--=x a y 由题意得)1)(1(0--=e a ,解得1=a所以1ln )(--=x x x f 从而xx x x f 111)('-=-= 因为当)1,0(∈x 时,0)('<x f ,当),1(+∞∈x 时,0)('>x f .所以)(x f 在区间)1,0(上是减函数,区间),1(+∞上是增函数,从而0)1()(=≥f x f .(2)由题意知,当),1[+∞∈x 时,0ln ≠+x p ,所以0>p从而当),1[+∞∈x 时,0ln >+x p , 由题意知xp x x x ln )(ln 1ln 12+≥-+,即0ln ]1)1[(≥+-+-p px x x p ,其中),1[+∞∈x 设p px x x p x g +-+-=ln ]1)1[()(,其中),1[+∞∈x设)(')(x g x h =,即11)1()(-+-=x x p x h ,其中),1[+∞∈x 则21)1()('xx p x h --=,其中),1[+∞∈x (1)当2≥p 时,因为),1(+∞∈x 时,0)('>x h ,所以)(x h 是增函数从而当),1(+∞∈x 时,0)1()(=>h x h ,所以)(x g 是增函数,从而0)1()(=≥g x g .故当2≥p 时符合题意.(2)当21<<p 时,因为)11,1(-∈p x 时,0)('<x h , 所以)(x h 在区间)11,1(-p 上是减函数 从而当)11,1(-∈p x 时,0)1()(=<h x h 所以)(x g 在)11,1(-p 上是减函数,从而0)1()11(=<-g p g 故当21<<p 时不符合题意.(3)当10≤<p 时,因为),1(+∞∈x 时,0)('<x h ,所以)(x h 是减函数 从而当),1(+∞∈x 时,0)1()(=<h x h所以)(x g 是减函数,从而0)1()2(=<g g故当10≤<p 时不符合题意综上p 的取值范围是),2[+∞.22. (1)曲线1C 的参数方程⎩⎨⎧+==θθsin 1cos y x (θ为参数) 可化为普通方程1)1(22=-+y x ,由⎩⎨⎧==θρθρcos sin x y ,可得曲线1C 的极坐标方程为θρsin 2=, 曲线2C 的极坐标方程为2)cos 1(22=+θρ.(2)射线3πθ=(0>ρ)与曲线1C 的交点A 的极径为33sin21==πρ, 射线3πθ=(0>ρ)与曲线2C 的交点B 的极径满足2)3cos 1(222=+πρ,解得51022=ρ, 所以51023||||21-=-=ρρAB . 23.(1)5)1()(<++x f x f 即5|12||12|<++-x x当21-<x 时,不等式化为51221<---x x ,∴2145-<<-x ; 当2121≤≤-x 时,不等式化为51221<++-x x ,不等式恒成立; 当21>x 时,不等式化为51212<++-x x ,∴4521<<x . 综上,集合}4545|{<<-=x x A . (2)由(1)知1=m ,则1=++c b a . 则a bc a c b a a 21≥+=-,同理c ab c c b ac b b 21,21≥-≥-,则 8222111=⋅⋅≥-⋅-⋅-a bc b ac c ab c c b b a a ,即8≥M .。
江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)
江苏省徐州市2018—2019学年高二下学期期中考试数学(理)试题一、填空题(不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.=______【答案】60【解析】【分析】根据排列数公式计算即可.【详解】5×4×3=60.故答案为:60.【点睛】本题主要考查了排列数公式,属于基础题.2.若i是虚数单位,且复数z满足z=3﹣i,则=______【答案】【解析】【分析】由已知直接代入复数模的计算公式求解.【详解】∵z=3﹣i,∴|z|.故答案为:.【点睛】本题考查复数模的求法,是基础题.3.用反证法证明命题“如果m<n,那么”时,假设的内容应该是______【答案】假设【解析】【分析】由于用反证法证明命题时,应先假设命题的否定成立,由此得出结论.【详解】∵用反证法证明命题时,应先假设命题的否定成立,而“m7<n7”的否定为:“m7≥n7”,故答案为:假设m7≥n7【点睛】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.4.若,则x的值为______.【答案】3或4【解析】【分析】结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.5.已知复数(是虚数单位),则=______【答案】-1 【解析】【分析】把代入ω3﹣2,再由复数代数形式的乘除运算化简得答案.【详解】∵,∴ω3﹣2.故答案为:﹣1.【点睛】本题考查复数代数形式的乘除运算,是基础题.6.用灰、白两种颜色的正六边形瓷砖按如图所示的规律拼成若干个图案,则第6个图案中正六边形瓷砖的个数是______【答案】37【解析】【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【详解】第1个图案中有灰色瓷砖6块,白色瓷砖1块第2个图案中有灰色瓷砖11块,白色瓷砖2块;第3个图案中有灰色瓷砖16块,白色瓷砖3块;…设第n个图案中有瓷砖a n块,用数列{}表示,则=6+1=7,=11+2=13,=16+3=19,可知﹣=﹣=6,…∴数列{}是以7为首项,6为公差的等差数列,∴=7+6(n﹣1)=6n+1,∴=37,故答案为:37.【点睛】本题考查了归纳推理的问题,属于基础题.7.有这样一段“三段论”推理,对于可导函数,大前提:如果,那么是函数的极值点;小前提:因为函数在处的导数值,结论:所以是函数的极值点.以上推理中错误的原因是______错误(“大前提”,“小前提”,“结论”).【答案】大前提【解析】因为导数等于零的点不一定是极值点.如函数y=x3,它在x=0处导数值等于零,但x=0不是函数y=x3的极值点.因为只有此值两侧的导数值异号时才是极值点8.用数学归纳法证明(,n>1)时,第一步应验证的不等式是______.【答案】【解析】试题分析:式子的左边应是分母从1,依次增加1,直到,所以答案为。
2021极坐标参数方程150题学生版30题
π 针π 针2 2021 高考数学押题卷一、解答题1. 在直角坐标系x 씸ຠ 中,抛物线C 的方程为ຠ2 = 针x .(1) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程; (2) 直线 l 的参数方程是x = 2 ʹ tcosαtl C 交于A ,B 两点,AB =针 6,求l 的倾斜角.ຠ = tsin α (为参数), 与【来源】【市级联考】河南省六市 2019 届高三第二次联考数学(文)试题 x = 1 − 2 t t 为 参 数2. 在直角坐标系x 씸ຠ 中,已知曲线C 1的参数方程:2 ,以ຠ = 2 t2坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ =2asin θ ʹa ⸸ ㄸ .(1) 若曲线C 1与曲线C 2相切,求a 的值;(2) 若曲线C 1与曲线C 2交于 A ,B 两点,且|AB |= 6,求 a 的值.【来源】江西省吉安市 2019 届高三下学期第一次模拟考试数学(文)试题3. 选修 4-4:坐标系与参数方程在直角坐标系x 씸ຠ 中,过点P − 2, − 针 的直线l 的参数方程为x = 2 ʹ 2 t2 (t ຠ =− 针 ʹ 2 t2为参数),以坐标原点 씸 为极点,以 x 轴正半轴为极轴,建立极坐标系,已知曲线 C 的极坐标方程为ρsin 2θ = 2cos θ,记直线l 与曲线C 分别交于M ,⸸ 两点.(1) 求曲线C 和l 的直角坐标方程; (2) 证明: PM , M⸸ , P⸸ 成等比数列.【【全国市级联考】河北省定州市2018-2019 学年高二下学期期中考试数学(理)试题 4. 在平面直角坐标系xOy 中,曲线C 的参数方程为x = 3cos α (α为参数),在ຠ = sin α以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为 2 2, 3π ,针直线l 的极坐标方程为ρsin θ −ʹ 2 = ㄸ.(1) 求直线l 的直角坐标方程与曲线 C 的普通方程;(2) 若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最π 针2 2大值.【来源】【校级联考】山东省郓城一中等学校 2019 届高三第三次模拟考试数学(文) 试题5. 在平面直角坐标系 x 씸ຠ 中,曲线 C 的参数方程为x = 3c 磔-α (α为参数),在以ຠ = -ݏn α坐标原点씸 为极点,x 轴的正半轴为极轴的极坐标系中,点 M 的极坐标为 2 2, 3π ,针直线l 的极坐标方程为ρsin θ −ʹ 2 = ㄸ.(1) 求直线l 的直角坐标方程与曲线C 的普通方程;(2) 若⸸ 是曲线C 上的动点,P 为线段M⸸ 的中点,求点P 到直线l 的距离的最大值.【来源】【校级联考】山东省郓城一中等学校 2019 届高三第三次模拟考试数学(理)试6.[选修 4-4:坐标系与参数方程]在直角坐标系x 씸ຠ 中,曲线C 的参数方程为 x = 2ʹt(t 为参数,ʹ ⸸ ㄸ),以坐1 ຠ = 2ʹ 标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ = 针sinθ.(1) 求C 1的普通方程和极坐标方程;(2) 若C 1与C 2相交于A 、B 两点,且 AB = 2 3,求ʹ 的值.【来源】江西省赣州市 2019 届高三 3 月摸底考试数学(理)试题 7. 在直角坐标系 x 씸ຠ 中,直线 l 的参数方程为 x =− 2 ʹ t, tn ⸸ ㄸ. ຠ = nt ( 为参数),其中 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为θ =π (ρ ∈ R),曲线C 的极坐标方程为ρ2cos2θ = 1.2(1) 求C 1,C 2的直角坐标方程;(2) 已知点 P ( − 2,ㄸ),l 与C 1交于点Q ,与C 2交于A,B 两点,且|PA| · |PB| = |PQ|2,求l 的普通方程.【来源】【市级联考】福建省泉州市 2019 届普通高中毕业班第二次质量检查文科数学试题x 228.已知椭圆C: 2 ʹ ຠ = 1 左顶点为A ,씸 为原点,M ,⸸ 是直线x = t 上的两个动点,且M 씸 ⊥ 가⸸,直线AM 和A⸸ 分别与椭圆C 交于E ,D 两点(1) 若t =− 1,求ΔM 가⸸ 的面积的最小值;tπ 针(2) 若E ,씸,D 三点共线,求实数t 的值.【来源】【校级联考】浙江省金丽衢十二校 2019 届高三第一次联考数学试题9. 在平面直角坐标系 xOy 中,已知曲线C x = 2 ʹ tc 磔 -θt 为参数),C :x = 针m 2(m 为参数).1: ຠ = t -ݏn θ ( 2 ຠ = 针m(1) 将 C 1,C 2 的方程化为普通方程,并说明它们分别表示什么曲线;(2) 设曲线 C 1 与 C 2 的交点分别为 A ,B ,O 为坐标原点,求△OAB 的面积的最小值.【来源】【市级联考】辽宁省辽阳市 2019 届高三下学期一模数学(理科)试题10.选修 4-4:坐标系与参数方程在直角坐标系x 씸ຠ 中,点 M ㄸ,1 ,直线 l: x = 2t(t 为参数),以原点 씸 为极点,ຠ = 1 ʹ t x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 7ρ2 ʹ ρ2cos2θ = 2针.(1) 求曲线C 的直角坐标方程; (2) 设直线l 与曲线C 交于点A,B ,求1ʹ的值.MAMB【来源】【市级联考】广东省湛江市 2019 年普通高考测试(二)理科数学试题11.在极坐标系中,已知 A 1, π3,B 9,AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ΔABC 的面积.【来源】【全国百强校】江苏省海安高级中学 2019 届高三第二学期四月模拟考试数学试题12.在直角坐标系x 씸ຠ 中,曲线C 1的参数方程为 x = 1 ʹ 2c 磔-θ(θ为参数),以ຠ = 1 ʹ 2-ݏn θ原点씸 为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2ρcos θ −= m , m ∈ R .(1) 当m = 针 时,判断曲线C 1与曲线C 2的位置关系;(2) 当曲线C 1上有且只有一点到曲线C 2的距离等于 2时,求曲线C 1上到曲线C 2距离为 2 2的点的坐标.【来源】【校级联考】江西省上饶市重点中学 2019 届高三六校第二次联考文科数学试题13.在直角坐标系x 씸ຠ 中,圆 C 的参数方程为 x = 3 ʹ 2cos α (α为参数),以直ຠ = 1 ʹ 2sin α角坐标系的原点 씸 为极点,x 轴正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;π 3π针ຠ = -ݏnφຠ = m ʹt ຠ = 2 ʹ 2-ݏnφ(2)设曲线l1的极坐标方程为θ = π(ρ ≤ ㄸ),曲线l2的极坐标方程为θ = π(ρ ≤ ㄸ),6 3求三条曲线C,l1,l2所围成图形的面积.【来源】【校级联考】河北省示范性高中2019 届高三下学期 4 月联考数学(文)试题x =− 1 − 2 t,14.在直角坐标系x씸ຠ中,直线l 的参数方程为 2ຠ = 2 ʹ2t2(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为ρcos2θ = sinθ.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A,B 两点,P( − 1,2),求|PA| · |PB|.【来源】【市级联考】河北省邯郸市2018-2019 学年高二下学期期中考试数学试题(理15.选修4-4:坐标系与参数方程在直角坐标系x磔ຠ中,圆C的参数方程为x = 1 ʹc磔-φ(φ为参数),现以原点씸为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)设P,Q 是圆C 上的两个动点,且∠P씸Q = π,求씸P ʹ씸Q 的最大值.3【来源】【市级联考】湖南省株洲市2019 届高三第二次教学质量检测(二模)文科数学17.在平面直角坐标系x씸ຠ中,曲线C1的参数方程为x =− 1 − t(其中t 为参数).以坐标原点씸为原点,x 轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ = 针 2sin θʹ.(I)写出曲线C1的普通方程和曲线C2的直角坐标方程;(II)设点P,Q 分别在曲线C1,C2上运动,若P,Q 两点间距离的最小值为2 2,求实数m 的值.【来源】【市级联考】安徽省淮南市2019 届高三第二次模拟考试文科数学试卷18.在直角坐标系x磔ຠ中,曲线C1的参数方程为x = 2c磔-φ(φ为参数),以原点씸为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ = 针cosθ.(1)求曲线C1的普通方程和C2的直角坐标方程;(2π针2ຠ = 针s i n θ ຠ = sin θ 的值.【来源】【市级联考】甘肃省兰州市 2019 届高三实战模拟考试(二诊)数学(文)试题19. 直角坐标系x 씸ຠ 中,曲线C 1的参数方程为x = 2 ʹ 5c 磔-α(其中α为参数);ຠ = 1 ʹ 5-ݏn α以씸 为极点,以x 轴的非负半轴为极轴建立极坐标系,直线 l 的极坐标方程为θ =3π (ρ ∈ R),曲线c :ρ = 针sinθ.针(Ⅰ)求曲线C 1的普通方程和极坐标方程;(Ⅱ)已知直线l 与曲线C 1和曲线C 2分别交于M 和⸸ 两点(均异于点 씸),求线段 M⸸ 的长.【来源】【市级联考】山东省青岛市 2019 届高三 3 月教学质量检测(一模)数学(理) 20.在平面直角坐标系 xOy 中,圆C 的参数方程为 x = 针cosθ(θ为参数),直线l 经过点P(1,2),倾斜角α=π.6(1) 写出圆C 的普通方程和直线l 的参数方程;(2) 设直线l 与圆C 相交于A ,B 两点,求|PA|·|PB|的值.【【全国百强校】吉林省实验中学2018-2019 学年高二下学期期中考试数学(文) 21.[选修 4-4:坐标系与参数方程] x = 2 ʹ 3 t已知曲线l 的参数方程为 5ຠ = 1 − 针t5(t 为参数),以原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ = 针 2cos θ −(1) 求曲线C 的直角坐标方程;(2) 设P(2,1).直线l 与曲线C 交于点A ,B .求|PA||PB|的值.【来源】【市级联考】广西壮族自治区南宁、梧州等八市 2019 届高三 4 月联合调研考试数学(理)试题22. 选修 4-4:坐标系与参数方程在直角坐标系x 씸ຠ 中,曲线C 的参数方程为 x = c o s θ(θ为参数),过点 M ㄸ,且倾斜角为α的直线l 与曲线C 交于A,B 两点.(1) 求α的取值范围;(2) 求AB 中点Q 的轨迹的参数方程.【来源】【市级联考】内蒙古赤峰市 2019 届高三 4 月模拟考试数学(理)试题2ຠ = 3 ʹ s i n t 2 2 ຠ = 6 ʹ t ຠ = 3sinθ ຠ = 1 ʹ 3s i n θ23. 在平面直角坐标系 x 씸ຠ 中,椭圆C 的参数方程为x = 3cosφ(φ为参数).ຠ = 2sinφ以坐标原点씸 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 ρcosθ ʹ ρsinθ = 1.(1) 求椭圆C 的极坐标方程和直线 l 的直角坐标方程;(2) 若点P 的极坐标为(1, π ),直线l 与椭圆C 相交于A ,B 两点,求 PA ʹ PB2的值.【来源】【市级联考】四川省雅安市 2019 届高三第三次诊断考试数学(理)试题24. 已知曲线C 1: x =− 针ʹ c o s t (t 为参数),C : x = 3cos θ ຠ = sin θ (θ为参数) (Ⅰ)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C 1上的点对应的参数为 t = π,Q 为C 2上的动点,求 PQ 中点M 到直线x = 3 ʹ tຠ =− 2 ʹ t(t 为参数)距离的最小值.【来源】【校级联考】陕西省西安地区陕师大附中、西安高级中学等八校 2019 届高 三 4 月联考数学(理)试题25. 选修 4-4:坐标系与参数方程在平面直角坐标系x 씸ຠ 中,直线l 的参数方程为 x = t(t 为参数),以原点 씸为极点,x 轴的正半轴为极轴建立极坐标系,圆 C 上有一点P ,且点 P ,C 的极坐标分别为 2 2, π 针,(2,ㄸ).(1) 求圆C 的直角坐标方程及直线 l 的普通方程;(2) 设直线l 与坐标轴的两个交点分别为 A ,B ,点E 在圆C 上运动,求ΔABE 面积的最大值.【来源】【市级联考】湖南省益阳市 2019 届高三 4 月模拟考试数学(理)试题26. 曲线C 的参数方程为 x = 2cosθ(θ为参数),以平面直角坐标系 x 磔ຠ 的原点씸 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 l:ρ(cosθ − 2sinθ) = 1ㄸ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数(为虚数单位)在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:先将复数化为的形式,由此得到复数对应的点,于是可得点所在的象限.详解:,所以复数对应的点为,在第三象限.故选C.点睛:由于复数、复平面内的点和向量之间建立了一一对应的关系,故求解本题时可将复数化为代数形式后即可得到结论.2. 抛物线的焦点坐标是()A. B. C. D.【答案】D【解析】分析:根据抛物线的焦点为求解.详解:由得,所以抛物线的焦点坐标是.故选D.点睛:求抛物线的焦点坐标时,可先将抛物线方程化为标准形式后求解,注意焦点在方程中的一次项对应的坐标轴上,正(负)半轴由一次项的符号确定.3. 下列说法正确的是()A. 命题“若,则”的否命题是“若,则”B. 若,则“”是“”的必要不充分条件C. 函数的最小值为D. 命题“,”的否定是“,”【答案】B【解析】分析:对四个选项逐一分析、排除后可得结论.详解:选项A中,命题的否命题为“若,则”,故A不正确.选项B中,由可得或,得“”是“”的必要不充分条件,故B正确.选项C中,应用基本不等式时,等号成立的条件为,此等式显然不成立,所以函数的最小值为2不正确,即C不正确.选项D中,命题的否定为“,”,故D不正确.故选B.点睛:本题主要考查相关概念,解题时要根据相应的概念进行分析、判断,同时要注意举反例等方法的运用.4. 已知函数,则函数的图象在处的切线方程为()A. B. C. D.【答案】C【解析】分析:先根据导数的几何意义求得切线的斜率,再由点斜式方程得到切线方程.详解:∵,∴,∴,又,∴所求切线方程为,即.故选C..................................5. 已知函数在上单调递增,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:根据在上恒成立求解.详解:∵,∴.又函数在上单调递增,∴在上恒成立,即在上恒成立.∵当时,,∴.所以实数的取值范围是.故选A.点睛:当时,则函数在区间上单调递增;而当函数在区间上单调递增时,则有在区间上恒成立.解题时要注意不等式是否含有等号.6. 甲、乙、丙、丁四位同学被问到是否去过市时,甲说:我没去过,乙说:丙去过,丙说:丁去过,丁说:我没去过.在以上的回答中只有一人回答正确,且只有一人去过市.根据以上条件,可以判断去过市的人是()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】分析:利用反证法的思想对每个选项进行逐一排除可得结果.详解:假设甲去过B市,则甲、乙、丙说的都不正确,丁说的正确,符合题意.故A正确.假设乙去过B市,则甲、丁说的正确,乙、丙说的不正确,矛盾.故B不正确.假设丙去过B市,则甲、乙、丁说的正确,丙说的不正确,矛盾.故C不正确.假设丁去过B市,则甲、丙说的正确,乙、丁说的不正确,矛盾,故D不正确.故选A.点睛:本题考查推理的应用,解题的主要策略就是对所给的结果逐一排除,注意反证法及特例在解题中的利用.7. 用数学归纳法证明不等式“”时的过程中,由到,不等式的左边增加的项为()A. B.C. D.【答案】C【解析】分析:分别写出当和时的不等式,比较后可得结果.详解:当时,不等式为;当时,不等式为,即,比较可得增加的项为.故选C.点睛:数学归纳法证题的关键是证明由“”时命题成立,得到“”时命题也成立,此步的重点在于判断由到时等式(或不等式)增加了哪些项,解题时可写出和时对应的等式(或不等式),通过比较可得结果.8. 已知为等差数列,,.若为等比数列,,则类似的结论是()A. B.C. D.【答案】D【解析】分析:类比等差数列和等比数列下标和的性质求解可得结论.也可直接将等差数列中的和与积类比成等比数列中的积和乘方得到结论.详解:在等差数列中,令,则,∴,∴.在等比数列中,令,则,∴,∴.故选D.点睛:等差数列和等比数列之间进行类比时,可将等差中的和、积类比成等比数列中的积、乘方,由此可得到相关的结论,但要注意类比的结论应是正确的,因此可通过推理进行验证.9. 将标号分别为,,,,的个小球放入个不同的盒子中,每个盒子至少放一球,则不同的方法种数为()A. B. C. D.【答案】A【解析】分析:先将5个小球分为1,1,3和1,2,2两类,然后再进行分配可得结果.详解:①若5个小球分为1,1,3三部分后再放在3个不同的盒子内,则不同的方法为种;②若5个小球分为1,2,2三部分后再放在3个不同的盒子内,则不同的方法为种.所以由分类加法计数原理可得不同的分法有60+90=150种.故选A.点睛:解答排列组合综合问题时,一般是选择先选后排的方法求解.对于分组问题,要分清是平均分组还是不平均分组,对于平均分组问题要注意对出现的重复结果的处理.10. 已知数列是公比为的等比数列,满足.设等差数列的前项和为,若,则()A. B. C. D.【答案】D【解析】分析:由题意求得等差数列的首项和公差,然后根据等差数列的求和公式求解.详解:在等比数列中,由可得,解得.∴,∴.故选D.点睛:①等差数列和等比数列中都有五个量,这五个量中知道三个可求其余两个,解题时注意方程思想的运用.②等差数列求前n项和时,要注意“下标和”性质的运用,借助整体代换可简化计算过程,提高解题的效率.11. 已知椭圆与抛物线的交点为,连线经过抛物线的焦点,且线段的长度等于椭圆的短轴长,则椭圆的离心率为()A. B. C. D.【答案】B【解析】分析:由题意求得点A,B的坐标后代入椭圆的方程,可得间的关系式,于是可得椭圆的离心率.详解:由题意得抛物线的焦点为,∵连线经过抛物线的焦点,且,∴点的坐标分别为,不妨设点B坐标为.由点B在抛物线上可得,∴,故点B坐标为,又点B在椭圆上,∴,整理得,∴.故选A.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.12. 已知函数是函数的导函数,(其中为自然对数的底数),对任意实数,都有,则不等式的解集为()A. B. C. D.【答案】B【解析】分析:由题意构造函数,则可得单调递减.又由可得,即,于是可得不等式的解集.详解:由题意构造函数,则,∴函数在R上单调递减.又,∴,而,∴,∴,故不等式的解集为.故选B.点睛:解抽象不等式的常用方法是构造函数后利用函数的单调性求解,其中如何构造函数是解题的难点,在本题中根据含有的不等式,并结合导数的求导法则构造出函数是关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设复数满足,则__________.【答案】【解析】分析:由题意先求出复数,然后再求.详解:∵,∴,∴.点睛:对于复数的运算一是要注意运算的顺序,另外要注意在运算中的应用,即遇到时要写成.求复数的模时,首项将复数化为代数形式后再根据公式求解.14. 计算__________.【答案】【解析】分析:根据定积分的几何意义,将定积分化为两个区域的面积求解.详解:令,可得,表示以原点为圆心,半径为2的圆的上半部分.结合图形可得所求定积分为和扇形的面积之和(如图),且中,,扇形中,.故.点睛:求定积分的方法有两种,一是根据微积分基本定理求解;二是根据定积分的几何意义求解,特别是对于被积函数中含有根号形式的定积分,一般要根据几何意义转化为图形的面积求解.15. 已知,是双曲线的两个焦点,为双曲线上一点,且,若的面积为,则__________.【答案】3【解析】分析:由题意得焦点三角形为直角三角形,根据双曲线的定义和三角形的面积为9求解可得结论.详解:设,分别为左右焦点,点P在双曲线的右支上,则有,∴,又为直角三角形,∴,∴,又的面积为9,∴,∴,∴,∴.点睛:凡涉及双曲线(椭圆)焦点三角形的问题,解题时要注意曲线的定义的应用,运用定义进行整体代换,同时在该三角形内要合理运用余(正)弦定理,同时在解题中要曲线的基本量间的关系的利用.16. 若为的各位数字之和,如,,则.记,,,……,,,则__________.【答案】11【解析】分析:根据所给出的定义逐个求出,归纳得到一般性的规律后可得所求.详解:由题意得,故;,故;,故;,故;,故;,故;……∴当时,.∴ .点睛:数的归纳时归纳推理中的常见题型,它包括数字归纳和式子归纳.解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的展开式中各项的二项式系数之和为.(1)求的值;(2)求的展开式中项的系数;(3)求展开式中的常数项.【答案】(1);(2)80;(3)-30.【解析】分析:(1)由二项展开式的二项式系数和为求解即可.(2)由(1)得到二项展开式的通项后求解.(3)根据展开式的通项并结合组合的方法求解.详解:(1)由题意结合二项式系数的性质可得,解得.(2)由题意得的通项公式为,令,解得,所以的展开式中项的系数为.(3)由(2)知,的展开式的通项为,令,解得;令,解得.故展开式中的常数项为.点睛:(1)求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求,再将的值代回通项求解,注意的取值范围(=0,1,2,…,n).(2)使用二项式的通项公式时要注意:①通项公式表示的是第r+1项,而不是第r项;②通项公式中a和b的位置不能颠倒.18. 已知的三个内角,,的对边分别为,,,且.(1)求角的大小;(2)若,,求.【答案】(1);(2).详解:(1)∵,∴由正弦定理得,化简得,由余弦定理的推论得,∵,∴.(2)由(1)知,又,∴,由余弦定理得,∴.点睛:(1)解三角形时要注意根据条件选择正(余)弦定理进行边角间的转化,已达到求解的目的.(2)三角形的面积公式和余弦定理常综合在一起考查,解题时注意公式的变形,如,然后利用整体代换的方法求解.19. 设命题实数满足,命题实数满足.(1)若,为真命题,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围.【答案】(1);(2).【解析】分析:(1)将问题转化为当时求不等式组的解集的问题.(2)将是的充分不必要条件转化为两不等式解集间的包含关系处理,通过解不等式组解决.详解:(1)当时,由得,由得,∵为真命题,∴命题均为真命题,∴解得,∴实数的取值范围是.(2)由条件得不等式的解集为,∵是的充分不必要条件,∴是的充分不必要条件,∴,∴解得,∴实数的取值范围是.点睛:根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.20. 如图,在多面体中,四边形,,均为正方形,点是的中点,点在上,且与平面所成角的正弦值为.(1)证明:平面;(2)求二面角的大小.【答案】(1)见解析;(2).【解析】分析:(1)根据条件可证得四边形是平行四边形,故,然后由线面平行的判定定理可得结论成立.(2)由题意易知两两垂直且相等,故建立空间直角坐标系,通过向量的运算来求二面角的大小.详解:(1)因为四边形,均为正方形,所以且,且,所以且,所以四边形是平行四边形,所以.又因为平面,平面,所以.(2)由题意易知两两垂直且相等,以为坐标原点,分别以的方向为轴,轴,轴的正方向,建立空间直角坐标系.令,则.设,且,则,故,所以点H的坐标为,故.易得为平面的一个法向量.设与平面所成角为,则,解得或(舍去),所以点,所以,设平面的法向量为,由得令,则.设平面的法向量为,同理可得,故,由图形知二面角为锐角,所以二面角的大小为.21. 已知椭圆的一个焦点为,且过点.(1)求椭圆的方程;(2)已知直线与椭圆交于,两点,求(为坐标原点)的面积取最大值时直线的方程.【答案】(1);(2),直线的方程为.【解析】分析:(1)根据椭圆的焦点坐标和所过的点得到关于的方程组,求解后可得椭圆的方程.(2)将直线方程代入椭圆的方程消元后,结合根与系数间的关系求得及原点到直线的距离,求得的面积后,再根据目标函数的特征求解最值.详解:(1)依题意得解得∴椭圆的方程为.(2)由消去整理得,其中设,则,,∴,又原点到直线的距离.∴,令,则,∴当时,取得最大值,且,此时,即.∴直线的方程为∴的面积取最大值时直线的方程为.点睛:解决圆锥曲线中的范围或最值问题时,一般先选择适当的参数建立目标函数,再求这个函数的最值,求最值的常用方法有:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用基本不等式求出参数的最值或范围;③在目标函数的基础上构造新的函数,利用函数的性质求最值或范围.22. 已知函数.(1)求函数的极值;(2)若函数(其中为自然对数的底数),且对任意的总有成立,求实数的取值范围.【答案】(1)见解析;(2).【解析】分析:(1)求导后根据的符号判断出函数的单调性,从而可得极值情况.(2)由题意可得在上恒成立.设,根据导数求得函数的最大值后可得的取值范围.详解:(1)因为,所以.①当,,在上单调递增,故没有极值;②当时,,故当,,单调递增,当,,单调递减,所以当时取得极大值,且极大值为,无极小值.综上可得,当时,没有极值;当时,有极大值为,无极小值.(2)由题意知,对任意的总有成立,等价于对任意的,恒成立,设,则,因为,所以当时,,单调递减,当时,,单调递增.所以,所以.故实数的取值范围为.点睛:(1)求解函数的极值时,判断函数的单调性解题的工具,然后根据单调性可求得极值.解题时对于含有参数的问题,要注意分类讨论的运用.(2)已知恒成立问题求参数的取值范围时,对于参数容易分离的情况一般先分离参数,转化为求函数的最值的问题处理.若参数无法分离,则通过对参数分类讨论的方法逐一排除,最后得到所求范围.。