功能陶瓷材料的应用研究综述

合集下载

新型陶瓷材料在储能领域中的应用研究

新型陶瓷材料在储能领域中的应用研究

新型陶瓷材料在储能领域中的应用研究摘要:随着人类对可再生能源需求的增加,储能技术成为解决能源转换和调度问题的关键。

新型陶瓷材料因其优异的物理和化学性能,在储能领域中展现出巨大的应用潜力。

本研究综述了新型陶瓷材料在储能领域中的应用,并重点探讨了其在电池、超级电容器和燃料电池等方面的应用。

结果表明,新型陶瓷材料具有高能量密度、较长的循环寿命和良好的安全性,为储能领域带来了新的发展机遇。

1. 引言能源储存是将能源以可靠、高效和可控的方式储存在需要的时间和地点的关键技术。

目前,储能技术主要以石化能源为主,但其有限的资源性质导致了对可再生能源的需求增加。

因此,研究和开发新的储能材料和技术极为重要。

2. 新型陶瓷材料在电池领域的应用电池是一种常见的储能设备,其能够将化学能转化为电能。

新型陶瓷材料由于其高比能量和长寿命等特点,被广泛地应用于各种电池系统中。

例如,锂离子电池是一种常见的二次电池,它使用铁锂磷酸盐陶瓷材料作为正极材料具有良好的循环寿命和高能量密度。

此外,固态电解质陶瓷也被广泛地研究和应用于锂硫电池和钠离子电池等领域,有效解决了传统电解液的安全性和稳定性问题。

3. 新型陶瓷材料在超级电容器领域的应用超级电容器以其高功率密度和长寿命的特点,在储能领域中占据重要地位。

新型陶瓷材料技术的发展为超级电容器提供了新的解决方案。

例如,钛酸锂、氮化硼等陶瓷材料被广泛用于超级电容器的电极材料之中,以提高储能效率和循环寿命。

此外,固态电容器使用氧化铝陶瓷作为电解质陶瓷材料,不仅提高了电池的耐久性,还改善了电池的热稳定性。

4. 新型陶瓷材料在燃料电池领域的应用燃料电池是一种将化学能转化为电能的装置,其具有高效率和低排放的特点。

新型陶瓷材料在燃料电池中的应用得到了广泛的关注。

例如,氧化铈陶瓷材料用作固体氧化物燃料电池的电解质,具有较高的离子传导性和热稳定性。

此外,铁钛石陶瓷材料被用作质子交换膜燃料电池的电解质材料,有效提高了燃料电池的功率密度和稳定性。

高熵陶瓷性能及应用的研究进展

高熵陶瓷性能及应用的研究进展

高熵陶瓷性能及应用的研究进展摘要高熵陶瓷是一种新兴的陶瓷材料,虽然问世只有短短的几年,但是在性能和应用方面都取得了一定的进展。

本文从高熵陶瓷的性能及应用两方面进行了简要的总结及展望。

关键词高熵陶瓷;性能;应用;展望高熵陶瓷性能优异,应用广泛,作为结构陶瓷具有高硬度高耐磨性的特征,作为功能陶瓷具有优异的热电性,低热导等特征,可应用于超高熔点陶瓷,热电材料,催化剂及电极材料等领域。

本文简要综述了高熵陶瓷的性能及应用两方面,最后进行了简要的总结和展望。

1.高熵陶瓷的性能高熵陶瓷的类型众多,不同类型的高熵陶瓷性能各异,主要具有热导率低,比电容高,锂离子存储能力强,硬度高,抗氧化能力强等优异性能。

1.1.热导率低:高熵陶瓷晶格中产生的大量晶格畸变以及高熵陶瓷组元的增加都会使得其热导率下降,例如Chen等人[1]制备的(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C碳化物高熵陶瓷具有0.39W·m-1·K-1的低室温导热系数以及0.74mm2/s的低热扩散率。

Yan等人[2]制备的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C碳化物高熵陶瓷,在氩气环境中超过1140℃时仍具有热稳定性,该高熵陶瓷的导热系数低,扩散率远低于五元碳化物HfC,ZrC,TaC,NbC和TiC。

1.2.比电容高,锂离子存储能力强:氧化物和氮化物高熵陶瓷具有出色的电容保持能力如Jin等人[3]制备的(V0.2Cr0.2Nb0.2Mo0.2Zr0.2)N氮化物高熵陶瓷在100 mV/s的扫描速率下可获得78 F/g的比电容,具有作为超级电容器的应用潜力,另外Qiu等人[4]使用(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O氧化物高熵陶瓷作为锂离子电池的负极材料,该高熵陶瓷可提供约1585 mAh/g的高初始放电比容量,和920mAh/g的可逆容量,并且经过长期循环,电极仍然保持稳定。

1.3.硬度高:碳化物高熵陶瓷一般都拥有更高的硬度如Sarker 等人[5]制备的(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C和(Hf0.2W0.2Ta0.2Ti0.2Zr0.2)C碳化物高熵陶瓷的硬度分别为32 GPa(几乎比ROM预测高50%)和33 GPa,可用作设计新型超硬材料。

日用陶瓷文献综述范文

日用陶瓷文献综述范文

日用陶瓷文献综述范文
日用陶瓷是指在日常生活中使用的各种陶瓷制品,如碗、盘、杯、壶等。

这些陶瓷制品由于具有良好的物理、化学和生物学性能,在家庭、餐厅等场所得到广泛应用。

本文旨在综述近年来关于日用陶瓷的研究成果,从材料、制造工艺和应用方面全面介绍其发展现状和趋势。

在材料方面,日用陶瓷主要由氧化物陶瓷、非氧化物陶瓷、玻璃陶瓷等材料制成。

其中,氧化物陶瓷是最普遍的材料,如钛酸锶、氧化铝、氧化锆等,其具有高温稳定性、抗腐蚀性、机械强度高等特点。

非氧化物陶瓷,如碳化硅、氮化硅等,其具有高硬度、高强度、高耐磨性等特点。

而玻璃陶瓷则具有良好的透明度、光泽度和耐热性,成为高档日用陶瓷产品的重要原料。

在制造工艺方面,日用陶瓷主要分为手工制作和工业生产两种方式。

手工制作是一种传统的制作方式,主要应用于少量、高档的定制产品。

而工业生产则通过模具、注塑、压制等方式进行大规模生产,以满足市场需求。

此外,随着科技的发展,3D打印技术、激光刻画技术等新型工艺也逐渐应用于日用陶瓷制造中。

在应用方面,日用陶瓷的应用范围非常广泛。

在家庭中,我们常见的餐具、花瓶、装饰品等都是日用陶瓷的典型代表。

在餐厅和酒店中,高档餐具和酒杯也大量采用日用陶瓷制成。

此外,日用陶瓷还被广泛应用于医疗、环保、建筑等领域,如牙科修复材料、电子废料处理等。

总之,日用陶瓷是一种具有广泛应用前景的材料。

未来,随着人
们对生活品质的不断追求,日用陶瓷产品的品质、款式和工艺将不断提高和创新。

功能陶瓷材料的制备与研究进展

功能陶瓷材料的制备与研究进展

功能陶瓷材料的制备与研究进展摘要:该文重点介绍了三种功能陶瓷的发展和制备情况,并针对我国功能陶瓷的研究存在的问题提出应对方法,以期为我国未来功能陶瓷的研究提供参考。

关键词:功能陶瓷制备研究功能陶瓷自20世纪30年代发展以来,经历了电介质陶瓷到高温超导陶瓷的发展历程,目前功能陶瓷在计算机技术、微电子技术、光电子技术等领域应用广泛,成为推动我国科技发展的重要功能性材料。

1 功能陶瓷情况介绍1.1 微波介质陶瓷微波介质陶瓷主要应用于现代通讯设备中,尤其在介质天线、滤波器、谐振器等设备中发挥着至关重要的作用。

在现代通讯技术影响下,我国十分重视微波介质陶瓷的研究和发展。

微波介质陶瓷研究对其基本要求如下。

为了实现微波元器件小型化发展要求,在使用的微波波段中微波介质陶瓷介电常数ε应尽可能的大;为了保证较好的通讯质量和良好的滤波性质,微波介质陶瓷的品质因数Q应尽可能的小;应保证谐振频率的温度系数可调节或者最大限度的小。

除此之外,还应充分分析微波介质陶瓷的绝缘电阻、传热系数等参数。

目前对微波介质陶瓷的研究、开发主要集中在以下方面。

首先,高品质因数和低介电常数的微波介质陶瓷,这类材料主要以BaO-ZnO-Nb2O5、BaO-ZnO-Ta2O5、BaO-MgO-Ta2O5或者它们之间的复合材料为代表。

当满足f≥10?GHz,Q=(1-3)×104,ε=25-30,谐振温度系数几乎为零时,可广泛应用于毫米、厘米波段的卫星直播通信系统中。

其次,中等的Q和ε微波介质陶瓷,其组成材料主要有Ba2TiO20、(Zr,Sn)TiO4以及BaTi4O9等。

当满足f≤3-4?GHz,Q=(6-9)×104,ε≈40,谐振温度系数小于等于5×10-6/℃,可作为微波军用雷达通信系统的重要器件。

最后,低Q和高ε微波介质陶瓷,以BaO、TiO2、Ln2O3为主要组成材料,该类陶瓷在目前微波介质陶瓷研究中受到人们的广泛关注。

光电功能陶瓷材料在电子工程中的应用研究报告

光电功能陶瓷材料在电子工程中的应用研究报告

光电功能陶瓷材料在电子工程中的应用研究报告摘要:光电功能陶瓷材料是一类具有特殊光电性能的材料,广泛应用于电子工程领域。

本研究报告旨在探讨光电功能陶瓷材料的基本特性、制备方法以及在电子工程中的应用。

通过对相关文献的综述和实验研究,我们发现光电功能陶瓷材料在传感器、光电器件、储能装置等方面具有广泛的应用前景。

1. 引言光电功能陶瓷材料是一类能够实现光电转换的材料,具有优异的光电性能和稳定性。

随着电子工程的发展,对高性能、多功能材料的需求日益增加,光电功能陶瓷材料应运而生。

本报告将重点介绍光电功能陶瓷材料的应用领域和研究进展。

2. 光电功能陶瓷材料的基本特性光电功能陶瓷材料具有多种特性,包括高温稳定性、低热膨胀系数、优异的光电性能等。

其中,光电性能是其最重要的特性之一,包括光电转换效率、光电导率、光敏感性等。

这些特性使得光电功能陶瓷材料在电子工程中具有广泛的应用前景。

3. 光电功能陶瓷材料的制备方法目前,制备光电功能陶瓷材料的方法主要包括固相反应法、溶胶-凝胶法、热处理法等。

这些方法在制备过程中能够控制材料的晶体结构、形貌和性能,从而实现对光电功能陶瓷材料的定制化制备。

4. 光电功能陶瓷材料在传感器中的应用光电功能陶瓷材料在传感器中的应用是其最重要的应用之一。

利用光电功能陶瓷材料的特性,可以实现对光、电、磁等信号的敏感检测和转换。

例如,将光电功能陶瓷材料应用于光电传感器中,可以实现对光信号的高灵敏度检测和转换。

5. 光电功能陶瓷材料在光电器件中的应用光电功能陶瓷材料在光电器件中的应用也具有广泛的前景。

例如,将光电功能陶瓷材料应用于太阳能电池中,可以实现对太阳能的高效转换。

此外,光电功能陶瓷材料还可以应用于光电调制器、光电开关等光电器件中,提高器件的性能和稳定性。

6. 光电功能陶瓷材料在储能装置中的应用随着能源问题的日益凸显,储能装置成为电子工程中的研究热点。

光电功能陶瓷材料作为一种具有优异储能性能的材料,可以应用于储能装置中。

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展一、本文概述碳化硅陶瓷材料,作为一种高性能的无机非金属材料,因其出色的物理和化学性能,如高强度、高硬度、高热稳定性、良好的化学稳定性以及低热膨胀系数等,在航空航天、汽车、能源、电子等多个领域具有广泛的应用前景。

本文旨在全面综述国内外碳化硅陶瓷材料的研究现状、发展趋势和应用领域,以期为相关领域的科研人员和技术人员提供有价值的参考。

本文首先回顾了碳化硅陶瓷材料的发展历程,并分析了其独特的物理和化学性质,以及这些性质如何使其在众多领域中脱颖而出。

随后,文章重点介绍了国内外在碳化硅陶瓷材料制备工艺、性能优化、结构设计等方面的研究进展,包括新型制备技术的开发、复合材料的制备与应用、纳米碳化硅陶瓷的研究等。

文章还讨论了碳化硅陶瓷材料在航空航天、汽车、能源、电子等领域的应用现状及未来发展趋势。

通过本文的综述,我们期望能够为碳化硅陶瓷材料的研究与应用提供更为清晰和全面的视角,推动该领域的技术进步和创新发展。

我们也期待通过分享国内外的研究经验和成果,为国内外科研人员和技术人员搭建一个交流与合作的平台,共同推动碳化硅陶瓷材料的发展和应用。

二、碳化硅陶瓷材料的制备技术碳化硅陶瓷材料的制备技术是决定其性能和应用领域的关键因素。

经过多年的研究和发展,目前碳化硅陶瓷的主要制备技术包括反应烧结法、无压烧结法、热压烧结法、气相沉积法等。

反应烧结法:反应烧结法是一种通过碳和硅粉在高温下反应生成碳化硅的方法。

这种方法工艺简单,成本较低,但制备的碳化硅陶瓷材料致密度和性能相对较低,主要用于制备大尺寸、低成本的碳化硅制品。

无压烧结法:无压烧结法是在常压下,通过高温使碳化硅粉末颗粒之间发生固相反应,实现烧结致密化。

这种方法制备的碳化硅陶瓷材料具有较高的致密度和优良的力学性能,但烧结温度较高,时间较长。

热压烧结法:热压烧结法是在加压和高温条件下,使碳化硅粉末颗粒之间发生固相反应,实现快速烧结致密化。

这种方法制备的碳化硅陶瓷材料具有极高的致密度和优异的力学性能,但设备成本高,生产效率较低。

多孔陶瓷材料的的研究现状及应用

多孔陶瓷材料的的研究现状及应用

多孔陶瓷材料的的研究现状及应用近年来,多孔陶瓷材料作为一种新型的材料,已经受到了普遍的重视。

多孔陶瓷材料具有加工性好、耐久性强、热膨胀系数小、吸音和隔音性能良好等优点,可用于航空、航天、非金属材料的高温烧结、冶金和电镀、化工设备的催化剂床,以及医学技术、陶瓷艺术等多个领域。

本文就多孔陶瓷材料的研究现状及应用情况进行综述,旨在为多孔陶瓷材料的进一步开发和应用提供参考。

一、多孔陶瓷材料的研究现状1、烧结工艺研究多孔陶瓷材料的制备需要克服以下几个技术难题:首先,多孔陶瓷材料的烧结工艺。

多孔陶瓷材料的烧结技术主要包括萃取法、模压法、粉末技术和复合材料技术等。

其中,萃取法技术能够控制多孔陶瓷材料的结构和性能。

目前,萃取法烧结工艺仍处于萌芽阶段,但已在一定程度上实现了多孔陶瓷材料的高功能性。

2、微观结构和性能研究与传统陶瓷材料相比,多孔陶瓷材料的特殊结构与其特殊的功能有关。

因此,要更好地利用多孔陶瓷材料的性能,必须对材料的微观结构进行研究。

国内外学者已经对多孔陶瓷材料的微观结构与性能关系进行了深入的研究,取得了一定的进展。

二、多孔陶瓷材料的应用1、多孔陶瓷材料在新能源和节能方面的应用在新能源领域,多孔陶瓷材料可用于提高太阳能电池的光伏效率。

多孔陶瓷材料具有较高的热稳定性,可用于太阳能电池表面保护膜,防止太阳能电池表面受损。

此外,多孔陶瓷材料还可用于改善空调能源利用效率,从而节省能源。

2、多孔陶瓷材料在航空航天领域的应用在航空航天领域,多孔陶瓷材料可用于制作热吸收涂层和热隔离层,以有效抵御高温环境的影响,提高发射火箭和高空飞机的安全性能。

此外,多孔陶瓷材料还可作为消声器、过滤器和吸音材料,大大提高航空航天设备的静音和防腐能力。

三、结论多孔陶瓷材料具有许多优异的性能,已经应用于航空航天、能源、石油化工等领域。

它的研究是一个新兴的研究领域,国内外学者已经对多孔陶瓷材料的烧成工艺及其微观结构与性能关系进行了研究,取得了比较理想的结果。

日用陶瓷文献综述范文

日用陶瓷文献综述范文

日用陶瓷文献综述引言日用陶瓷是指在日常生活中使用的陶瓷制品,如碗、盘、杯子等。

它们在人类生活中扮演着重要的角色,不仅满足了人们的基本生活需求,还具有装饰和文化传承的功能。

本文将对日用陶瓷的历史、制作工艺以及影响因素进行综述,并展望其未来发展方向。

历史日用陶瓷的历史可以追溯到数千年前的新石器时代。

最早的日用陶器出现在中国和中东地区,随后传播到世界各地。

这些早期的陶器多为手工制作,形态简单,功能单一。

随着社会进步和科技发展,陶瓷制作工艺逐渐改进。

公元前16世纪左右,中国商代开始使用轮盘制作器具,并发展出青铜彩绘技法。

此后,各个朝代相继出现了不同风格和特点的陶瓷制品。

在欧洲,古希腊和古罗马时期也有较为发达的陶瓷制作工艺。

古希腊的黑陶和红陶以其精湛的技艺和独特的装饰图案而闻名,而古罗马则致力于大规模生产,使陶瓷成为大众化的日常用品。

制作工艺日用陶瓷的制作工艺包括原料准备、成型、干燥、装饰和烧制等步骤。

原料准备制作陶瓷所需的原料主要包括黏土、石英和长石。

这些原料需要经过粉碎、筛分和配比等处理,以确保均匀性和可塑性。

成型成型是指将原料通过挤压、拉拔或旋转等方式塑造成所需形态的过程。

常见的成型方法有手工捏塑、轮盘制作和注浆成型等。

干燥成型后的陶器需要进行干燥,以去除水分并增加强度。

干燥过程中需要控制温度和湿度,避免出现开裂或变形等问题。

装饰装饰是为了美化陶器表面并增加其观赏价值。

常见的装饰方法包括彩绘、雕刻、贴花等。

不同地区和文化有着各自独特的陶瓷装饰风格。

烧制烧制是将干燥后的陶器置于高温下进行加热,使其变得坚硬和耐用。

烧制温度和时间的控制对于陶器的质量至关重要。

影响因素日用陶瓷的质量和特点受到多种因素的影响,包括原料选择、工艺技术、设计风格以及文化传统等。

原料选择不同类型的原料会影响陶器的质地、颜色和透气性等特性。

不同地区根据当地资源情况选择合适的原料,以确保制作出符合需求的日用陶瓷。

工艺技术工艺技术对于日用陶瓷的成型和装饰具有重要意义。

国内外有关陶瓷的研究综述

国内外有关陶瓷的研究综述

国内外有关陶瓷的研究综述国内外对陶瓷的研究综述导言陶瓷作为一种重要的材料,在人类历史上起着不可忽视的作用。

从古至今,陶瓷一直是人类生活中不可替代的一部分,无论是生活用品还是艺术品都离不开陶瓷的存在。

随着科技的发展,人们对陶瓷材料的研究也越来越深入。

本文将从国内外的角度对陶瓷的研究进行综述,探讨陶瓷在不同领域中的应用和技术进展。

一、陶瓷的定义和分类陶瓷是一种无机非金属材料,由粘土、石英和长石等天然矿物质制成。

根据材料的组成和特性,可以将陶瓷分为多个类别,如结构陶瓷、功能陶瓷和装饰陶瓷等。

1. 结构陶瓷结构陶瓷是指用于支撑、承载或隔热等结构应用的陶瓷材料。

这种陶瓷具有高强度、硬度和耐磨损性,广泛应用于航空航天、汽车工业和高速列车等领域。

近年来,新型结构陶瓷材料的研究呈现出多样化的发展趋势,如纳米陶瓷和多孔陶瓷等。

2. 功能陶瓷功能陶瓷是指具有特定性能和功能的陶瓷材料,如磁性陶瓷、电介质陶瓷和敏感陶瓷等。

这些陶瓷能够在磁场、电场或热场中表现出特定的响应和效应,被广泛应用于电子器件、传感器和储能设备等领域。

3. 装饰陶瓷装饰陶瓷是指用于装饰和艺术品制作的陶瓷材料,如瓷砖、陶艺和瓷器等。

这些陶瓷通常以其美观的外观和精美的工艺而闻名,代表着一定时期和地区的文化和艺术水平。

二、陶瓷的制备技术陶瓷的制备技术是陶瓷研究的核心内容之一。

随着科学技术的进步,陶瓷的制备技术也得到了不断发展和改进。

1. 传统制备技术传统的陶瓷制备技术主要包括手工制作和传统窑炉烧制。

这些技术虽然历史悠久,但制作过程繁琐,生产效率低下。

2. 现代制备技术随着现代科技的发展,陶瓷的制备技术得到了革命性的改变。

如现代陶瓷材料的制备常常采用机械成型、注浆成型和胶结烧结等自动化和半自动化的工艺,大大提高了陶瓷制作的效率和质量。

三、陶瓷的应用领域陶瓷作为一种多功能材料,其应用领域广泛。

无论是在传统行业中还是在现代技术领域,陶瓷都发挥着重要的作用。

1. 材料工程领域陶瓷在材料工程方面的应用主要体现在结构陶瓷和功能陶瓷的领域。

钛酸钡功能陶瓷制备及应用

钛酸钡功能陶瓷制备及应用

纳米钛酸钡制备工艺的研究进展摘要:综述了目前国内外制备纳米陶瓷材料BaTiO 粉体的主要方法,包括固相烧结法、化学沉淀法和水热合成法等多种工艺,分析了各种合成方法制备工艺的特点与不足,并提出了其发展方向。

关键词:纳米钛酸钡;电子陶瓷;制备工艺;研究进展Abstract:Barium titanate(BaTiO3)is an important functional dielectric materials.A number of recent advancementpreparation technology of BaTiO3 were reviewed in this paper.The most important method such as the sol—gel,hydrothermal and chemical precipitation are introduced.The merit and drawback of these techniques were discussed.The developments of the preparation technology of nm-sized barium titanate is presented.Key words:nano-barium titanate;electronic ceramic;preparation technology ;advance1前言钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。

它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻( ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。

钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。

功能材料综述

功能材料综述

功能材料综述●摘要:能源、信息和材料是现代文明的三大支柱,而材料有事一切技术发展的物质基础。

功能材料是指有特定光、电、磁、声、热、湿、气、生物等特性的各类材料。

这些材料在能源、计算技术、通信、电子、激光、空间、医药等现代化技术中有着广泛的应用●关键词:纳米材料超导材料光学材料功能薄膜材料等●引言:人类社会发展的历史证明,材料是人类赖以生存的发展、政府自然和改造自然的物质基础,同时又是人类社会发展的先导,他是人类进步的里程碑。

历史上的石器时代、青铜器时代、铁器时代都是以材料作为时代主要标志。

然而先待新技术,例如:能源、计算技术、通信、电子、激光、空间、医药等领域,对材料的要求已经远远超出了结构材料的范围,既不单是利用材料的强度、硬度等力学性能来满足工程结构上的需要,而且对材料提出了许多特殊的物理性能要求。

例如,要求材料具有光、电、声、磁、热等特殊无聊性能而且可以有效利用。

●材料的分类:(1)超导材料:当材料的温度降低的某一稳定,出现电阻为零的非常状态是称为超导状态,能够产生超导状态的材料称为超导材料。

入在液氦温区出现超导现象的铌钛合金、铌锡合金,液氮温区出现超导现象的陶瓷材料。

(2)储氢材料:在一定条件下,固体的金属吸附氢二形成氢化金属并放出热,而且这一反应是可逆的,及氢化金属吸收热后可变成金属并放出氢。

能够吸收氢并形成氰化物的金属和合金,称为储氢材料。

(3)形状记忆材料:在一定温度条件下能够记住自己原来的形状的材料称为形状记忆材料。

用镍钛形状记忆合金制作管接头作密封件,月面天线等。

(4)半导体材料:电阻在导电体与绝缘体之间,既比电阻为105到107Ω·m称为半导体这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。

(5)磁性材料:磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。

磁性是物质的一种基本属性。

物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。

功能材料的研究与进展报告

功能材料的研究与进展报告

功能材料的研究与进展报告功能材料的研究与进展报告题目:功能材料的研究进展课程名称:先进功能材料学院:材料与冶金学院专业:材料物理班级:xxx学号:xxxx学生姓名:xxxx指导老师:xxx随着经济的迅速发展,人们对材料的需求日益增加。

为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。

功能材料作为现代技术的标志,引起了各国的关注,已经成为材料科学中的一个分支学科,并在不同程度上推动或加速了各种现代技术的进一步发展。

本篇综述简单介绍了功能材料的基本性能、特点和分类及其发展现状和发展趋势。

一、功能材料的基本性能功能材料是以物理性能为主的工程材料的统称, 即指在电、磁、声、光、热等方面具有特殊性质,或在其作用下表现出特殊功能的材料。

功能材料按其显示功能的过程可分为一次功能和二次功能。

一次功能是当向材料输入的能量和从材料输出的能量属于同种形式时, 材料起能量传送部件作用, 又称载体材料, 主要有: (1) 力学功能如惯性、粘性、流动性、润滑性、成型性、超塑性、高弹性、恒弹性、振动性和防震性; (2) 声功能如吸音性、隔音性; (3) 热功能如隔热性、传热性、吸热性和蓄热性; (4) 电功能如导电性、超导性、绝缘性和电阻; (5) 磁功能如软磁性、硬磁性、半硬磁性; (6) 光功能如透光性、遮光性、反射光性、折射光性、吸收光性、偏振性、聚光性、分光性; (7) 化学功能如催化作用、吸附作用、生物化学反应、酶反应、气体吸收; (8) 其它功能如电磁波特性( 常与隐身相联系) 、放射性。

二次功能是当向材料输入的能量和输出的能量属于不同形式时, 材料起能量转换部件作用, 又称高次功能, 主要有: (1) 光能与其它形式能量的转换, 如光化反应、光致抗蚀、光合成反应、光分解反应、化学发光、感光反应、光致伸缩、光生伏特效应、光导电效应; (2)电能与其它形式能量的转换, 如电磁效应、电阻发热效应、热电效应、光电效应, 场致发光效应、电光效应和电化学效应; (3) 磁能与其它形式能量的转换, 如热磁效应, 磁冷冻效应、光磁效应和磁性转变; (4) 机械能与其它形式能量的转换, 如压电效应、磁致伸缩、电致伸缩、光压效应、声光效应、光弹性效应、机械化学效应、形状记忆效应和热弹性效应。

微波介质陶瓷材料应用现状及其研究方向

微波介质陶瓷材料应用现状及其研究方向

微波介质陶瓷材料应用现状及其研究方向马调调【摘要】微波介质陶瓷作为一种新型电子材料,在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质导波回路等,广泛应用于微波技术的许多领域,如移动通讯、卫星通讯和军用雷达等.随着科学技术日新月异的发展,通信信息量的迅猛增加,以及人们对无线通信的要求,使用卫星通讯和卫星直播电视等微波通信系统己成为当前通信技术发展的必然趋势,这就使得微波材料在民用方面的需求逐渐增多,如手机、汽车电话、蜂窝无绳电话等移动通信和卫星直播电视等新的应用装置.笔者综述了国内外微波介质陶瓷的应用现状,阐明微波介质陶瓷材料应用中存在的问题,指明微波陶瓷材料今后的研究方向.【期刊名称】《陶瓷》【年(卷),期】2019(000)004【总页数】11页(P13-23)【关键词】微波介质陶瓷;微波材料;应用现状;存在问题;研究方向【作者】马调调【作者单位】榆林市天然气化工有限责任公司陕西榆林 718100【正文语种】中文【中图分类】TQ174前言陶瓷的发展史是人类文明史的一个缩影,现代人在研究古代历史的时候,各个时期留存下来的陶瓷便是最有价值的线索。

当陶瓷这一古老的工艺发展成陶瓷科学的时候,她便成了对我们生活能产生重大影响的一门学科。

近半个多世纪以来,随着陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。

可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。

微波介质陶瓷是近二十多年来发展起来的一种新型的功能陶瓷材料。

它是指应用于微波频率(主要是300 MHz~30 GHz 频段)电路中作为介质材料并完成一种或多种功能的陶瓷材料,是制造微波介质滤波器和谐振器的关键材料。

它具有高介电常数、低介电损耗、温度系数小等优良性能,适用于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。

近年来,由于微波通信事业的迅速发展,卫星通信、汽车电话和便携式电话等移动通信领域对小型化、高性能化的微波电路和微波器件的需求量日益增加,更高频带的利用也在计划之中。

陶瓷材料微波烧结研究进展与工业应用现状

陶瓷材料微波烧结研究进展与工业应用现状

陶瓷材料微波烧结研究进展与工业应用现状陶瓷是一种珍贵的无机非金属材料,由于具有耐高温、耐腐蚀、耐磨损和绝缘性等特殊性能,因此在高温、热环境中应用非常广泛。

微波烧结是一种采用微波能量加热形成具有抗腐蚀、耐磨损和高强度的材料,在近年来受到广泛关注。

本文主要综述了微波烧结陶瓷材料的研究进展及其在工业应用中的现状。

1.微波烧结陶瓷材料的研究进展陶瓷材料的烧结过程主要是形成陶瓷浆料的粒度和结构,烧结温度主要在1000℃左右,为了取得合格的陶瓷制品,必须保证温度均匀和加热时间恰当。

微波烧结属于高温烧结陶瓷材料,具有加热快、温度高、烧结硬度高、烧结形质佳、烧结效率高等优点,具有比传统烧结技术更高的节能性。

目前,微波烧结陶瓷的研究主要集中在微波加热烧结模式的试验研究,各类氧化物、锆酸锂、金属基复合材料和类似陶瓷制品的合成、烧结技术和性能实验。

2.波烧结陶瓷材料的工业应用微波烧结技术在烧结高效低成本的高性能陶瓷制品中发挥着重要作用,目前应用广泛。

微波烧结陶瓷材料用于航空航天、汽车、轨道交通和电子领域,主要应用在复合材料、半导体绝缘体、铝合金复合粉体等中。

此外,微波烧结陶瓷材料还应用于污水处理、生物医药、节能环保、净化和传感等领域,用于制备催化剂、耐高温滤芯、海水结晶水处理器等,为陶瓷行业提供了巨大的发展空间。

3.论微波烧结陶瓷材料的研究和应用技术已取得长足的进展,其烧结工艺及性能特点为各种高性能陶瓷制品的制作提供了技术支持,在高温烧结陶瓷材料领域占据重要地位。

然而,由于烧结过程的温度和时间控制要求复杂,因此陶瓷微波烧结制品的力学、热力学性能尚有待进一步完善。

未来,根据各种陶瓷材料的特性,持续开展微波烧结技术的研究,进一步提升其在工业应用中的稳定性和可靠性,以确保微波烧结陶瓷材料的稳定性和可靠性。

本文主要介绍了微波烧结陶瓷材料的研究进展及其在工业应用中的现状,以期能够更好地推进陶瓷材料的微波烧结技术发展,提高其在更多领域的应用。

功能陶瓷材料研究进展综述

功能陶瓷材料研究进展综述

1 四类功能 陶瓷材料及其研究进展
利用 陶瓷对声 、 、 磁、 光 电、 热等物理性 能所 具有 的特殊 功 能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类 繁多, 用途 各异。例如 , 根据陶瓷 电学性质 的差异可制成导电陶瓷 、 半导体 陶 瓷 、 电陶 瓷 、 缘 陶 瓷 等 电子 材 料 。 介 绝
参考 文献 :
… 李龙土. 能陶瓷材料及其 应用研究进 展 [. 1 功 J 硅酸 盐通报 ,05 ] 20 ,
(5 0 ).
材料 , 主要有热敏材料、 电压敏材料 、 光敏材 料、 气敏材料 、 湿敏
材 料 等 。如 P C(oiv m ea r ce i t T ps i t p rt e omc n 的缩 写 ) 料 在 tee u e 材 国 内无 论 是 基 础 理 论 研 究 还 是 工 业 生 产 规 模 都 有 长 足 进 步 , 其 应用范 围已渗透到航天 、 空、 航 航海 、 线通 讯、 无 有线通讯 、 电子 工 业 和 民用 电器 等 各 个 领 域 。 而 铬 酸 镧 (a CO) 一种 钙 钛 L — r 是 矿 型 ( B 复合氧 化物 ,  ̄ O) / 具有很 高的熔点 (4 0 , 29 ℃) 它在掺 杂 C 、r Mg as 和 等二价碱土金属 后具有很多特殊 的性质 。在 高温 发热材料、 固体氧化物燃料 电池连接材料 、 催化剂、 T N C热敏 电 阻 等 方 面 都 得 到 广 泛 的应 用 ,是 一 种 很 有 前 途 的功 能 陶 瓷 材 料 。高温超导陶瓷指相对金属而言具有较高超导温度的功能陶 瓷材料 。从 2 0世纪 8 O年代对 超导陶瓷 的研 究有重大突 破 以 来, 对高温超导陶瓷材料 的研究及应用就倍受关注 。 目前高温 超导材料 的应用 正朝着大 电流应用 、 电子学应 用、 磁性等方 抗 面发展。

多孔陶瓷的制备工艺及应用文献综述资料

多孔陶瓷的制备工艺及应用文献综述资料

文献综述多孔陶瓷的制备工艺及应用肖燕(湖南大学外国语学院 201213010322)摘要:多孔陶瓷因其独特结构和优异性能近年来成为陶瓷材料领域的一个研究热点,本文综述了多孔陶瓷制备技术的发展以及其应用。

关键词:多孔陶瓷应用制备工艺1.前言多孔陶瓷又称微孔陶瓷、泡沫陶瓷,是一种新型陶瓷材料,是以刚玉砂、碳化硅、堇青石等优质原料为主料、配以添加剂经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料。

多孔陶瓷一般可按孔径大小分为3类:微孔陶瓷(孔径小于2nm)、介孔陶瓷(孔径为2~50nm)及宏孔陶瓷(孔径大于50nm)。

若按孔形结构及制备方法,其又可分为蜂窝陶瓷和泡沫陶瓷两类,后者有闭孔型、开孔型及半开孔型3种基本类型。

多孔陶瓷的发展始于19世纪70年代,初期仅作为细菌过滤材料使用,随着控制材料的细孔结构水平的不断提高,其与玻璃纤维、金属等相比具有可控的孔结构、高的开口空隙率、均匀的透过性、机械强度高、易于再生、较低的热传导性、耐高温、抗腐蚀、使用寿命长等优良性能,给其应用开拓了广阔的前景,被广泛应用于环保、节能、化工、石油、冶炼、食品及生物医学等多个科学领域,引起全球材料科学界的密切关注。

虽然目前已有较多关于多孔陶瓷的综述文献,但近些年来在技术发展推动下,新工艺新应用不断涌现,因此有必要结合一些最新文献对多孔陶瓷的制备工艺与应用进行综述。

2.多孔陶瓷的制备工艺多孔陶瓷的性能除与组成因素相关以外,还与气孔形态、大小及分布等因素有密切关联。

从制备工艺、结构和性能角度考虑,形成气孔是多孔陶瓷制备工艺的关键步骤,也是多孔陶瓷研究的重点。

本文将从介绍目前主流制备工艺着手,重点综述新型制备工艺方面取得的进展。

2.1传统制备工艺一些研发历史较长、技术相对成熟的多孔陶瓷制备工艺已经获得了规模化的生产应用,这些工艺称为传统制备工艺,常见的有添加造孔剂法、有机泡沫浸渍法、发泡法、挤压成型技术、颗粒堆积法等。

压电陶瓷文献综述1

压电陶瓷文献综述1

压电陶瓷文献综述班级:姓名:学号:专业:压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料压电效应{1},压电陶瓷除具有压电性外, 还具有介电性、弹性等, 已被广泛应用于医学成像、声传感器、声换能器、超声马达等。

压电陶瓷利用其材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即压电效应而制作,具有敏感的特性,压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等{2},除了用于高科技领域,它更多的是在日常生活中为人们服务,为人们创造更美好的生活而努力。

基本释义压电陶瓷是一类具有压电特性的电子陶瓷材料。

与典型的不包含铁电成分的压电石英晶体的主要区别是:构成其主要成分的晶相都是具有铁电性的晶粒{3}。

由于陶瓷是晶粒随机取向的多晶聚集体,因此其中各个铁电晶粒的自发极化矢量也是混乱取向的{4}。

为了使陶瓷能表现出宏观的压电特性,就必须在压电陶瓷烧成并于端面被复电极之后,将其置于强直流电场下进行极化处理,以使原来混乱取向的各自发极化矢量沿电场方向择优取向. 经过极化处理后的压电陶瓷,在电场取消之后,会保留一定的宏观剩余极化强度,从而使陶瓷具有了一定的压电性质{5}。

发展历史1880年,居里兄弟首先发现电气石的压电效应,从此开始了压电学的历史{6}。

1881年,居里兄弟实验验证了逆压电效应,给出石英相同的正逆压电常数{7}。

1894年,Voigt指出,仅无对称中心的二十种点群的晶体才有可能具有压电效应,石英是压电晶体的一种代表,它被取得应用。

第一次世界大战,居里的继承人郎之万,最先利用石英的压电效应,制成了水下超声探测器,用于探测潜水艇,从而揭开了压电应用史篇章{8}。

第二次世界大战中发现了BaTiO3陶瓷,压电材料及其应用取得划时代的进展。

装甲防护陶瓷材料的研究与应用

装甲防护陶瓷材料的研究与应用

装甲防护陶瓷材料的研究与应用*张文毓(中国船舶重工集团公司第七二五研究所河南洛阳471023)摘要近10年来,陶瓷材料在防护装甲上的应用逐渐增多,已经成为装甲防护材料的主要选择㊂材料体系从最初的氧化铝㊁碳化硅㊁碳化硼陶瓷向多元化㊁复合化发展,具有高硬度和高韧性的新型材料不断涌现,以应对更高级别的威胁㊂笔者对装甲防护陶瓷材料进行了概述,并对其研究现状㊁应用进展和发展趋势进行了综述㊂关键词装甲防护陶瓷抗弹性能应用中图分类号:T Q174.75+8文献标识码:B文章编号:1002-2872(2020)08-0016-05为适应现代高科技战争㊂作为提高舰船生存能力的一项重要的被动防护技术 装甲防护日益受到重视㊂二战前后,舰船装甲防护主要以均质金属装甲为主,但随着武器装备的发展,特别是聚能破甲反舰导弹的发展,目前已可穿透厚1000mm以上的均质钢装甲,对舰攻击时一般都能穿透舰体,并形成直径10m左右的爆炸破口㊂因此,传统的钢装甲已经不能满足现代战争的要求,必须研制出密度小㊁防护能力高的新型轻质防弹装甲㊂自20世纪70年代以来,随着材料技术的发展,由单一依靠均质钢装甲逐步向设计复合装甲结构发展方向已成为舰船装甲防护技术的主流㊂目前轻型防护装甲的设计是提高其防护能力和尽量减轻自重,以提高其机动能力㊂陶瓷材料因其密度小,且具有比装甲钢更高的硬度㊁抗压强度㊁耐热性㊁动态应力性能,而被广泛应用于轻型复合装甲的设计中㊂故轻型复合装甲为多层结构,以陶瓷板为主体,配合其他复合材料㊂突破传统重型复合装甲结构设计,以高硬度陶瓷面板取代装甲钢面板,充分发挥陶瓷的高硬度和高抗压强度,可提高陶瓷复合装甲的抗弹性能[1]㊂1概述为了应对当代高科技战争,世界各国对防弹装甲技术越来越重视,对装甲材料的性能提出了越来越高的要求㊂装甲的防护性能主要是通过抗侵彻能力㊁抗冲击能力㊁抗崩落能力和自重等方面来予以评价,因此装甲材料应尽可能地满足高硬度㊁高强度㊁高韧性以及低密度,即 三高一低 的要求㊂装甲防护材料主要用于装甲车辆㊁坦克㊁航母㊁舰艇㊁直升机等装备,它们能承受反装甲武器的攻击,可提高武器装备和作战人员的生存能力和作战能力㊂纵观古今中外,用做装甲的材料大体有4类,即:金属㊁陶瓷㊁凯芙拉(K e v l a r)和玻璃钢㊂金属材料具有高硬度和韧性,但是硬度较陶瓷材料低,特别是密度大,不能满足单兵和装备高灵活性的要求,成为逐步被其他材料所替换的主要原因㊂凯芙拉和陶瓷材料与金属材料相比具有密度低㊁耐高温等诸多优点,满足了坦克及其它军用装甲车辆轻量化㊁高防护性及高机动性的需求,在武器装备上的应用日益广泛[2]㊂目前,国外已经在舰船上应用了大量的陶瓷装甲㊂美国在舰船的天线㊁炮台上都已使用了陶瓷复合装甲,并预计其在研的A A A V级两栖攻击舰艇也将会使用陶瓷复合装甲;此外,资料显示,国外的水陆两栖战车㊁海军登陆艇等都不同程度地利用陶瓷基复合装甲的优秀抗弹性能提高其抵御来自岸防武器威胁的能力㊂据悉,美国在研制作战机动灵活的小型巡逻艇㊁微型潜艇等新式轻型舰船,在其结构设计中,陶瓷装甲作为防御系统的主体得到了充分的肯定㊂2研究现状陶瓷材料拥有许多极具吸引力的性能,包括高比刚度㊁高比强度和在许多环境下的化学惰性㊂同时,因其相对于金属的低密度㊁高硬度和高抗压强度,使其在*作者简介:张文毓(1968-),本科,高级工程师;主要从事情报研究工作㊂装甲系统上的应用十分具有吸引力,己成为一种广泛应用于防弹衣㊁车辆和飞机等装备的防护装甲㊂在20世纪60年代,B 4C 最先用于设计防弹背心,之后装配到飞机飞行员的座椅上㊂之后,又将陶瓷面板与复合材料背板共同构成防弹陶瓷复合装甲,且于20世纪70年代后被美国等西方军事强国应用于运兵车㊁坦克及军机等㊂陶瓷装甲主要应用于装甲车辆,在实际应用中常以复合装甲的形式出现,如英国 挑战者 坦克㊁E E -T 1奥索里约主战坦克等㊂陶瓷作为装甲防护材料的主要优势是强度和硬度高㊁耐磨㊁密度小等,而易破碎㊁抗多发打击性能弱的劣势则在一定程度上限制了其应用㊂目前,防弹陶瓷主要朝着提高抗多发打击性能㊁减轻质量及降低成本这3个方面进行㊂国内外现阶段主要使用的特种防弹陶瓷有B 4C ㊁A l 2O 3㊁S i C ㊁T i B 2㊁A l N ㊁S i 3N 4㊁S i -a l o n 等[3]㊂用于装甲防护的单相陶瓷主要包括氧化铝㊁碳化硼和碳化硅㊂表1为3种陶瓷的特征性能㊂尽管单相陶瓷具备一定的防弹能力,但共性问题是断裂韧性低㊁脆性大,因此,防弹陶瓷的强韧化一直是研究的热点方向㊂强韧方法主要包括多元陶瓷体系复合㊁功能梯度陶瓷㊁层状结构设计等㊂M e d v e d o v s k i 对S i C -A l 2O 3㊁S i C-S i 3N 4-A l 2O 3㊁S i C-S i -A l 2O 3和S i C -S i 3N 4-S i -A l 2O 3这些碳化硅基的复合材料进行了研究㊂复合装甲包括2层含义:一是装甲用复合材料制成,二是装甲采用了复合结构㊂任何复合装甲的研究都是为了优化复合材料和复合结构㊂当前,陶瓷复合装甲早已不限于2种复合材料和较为单一的复合结构㊂在实验领域,已经出现了陶瓷㊁金属㊁纤维㊁硅硫等复数复合,且结构方面也出现了复数层数㊂通过对陶瓷复合装甲的种类和现今应用情况的分析,不难发现,陶瓷+复合金属采用功能梯度复合形式的复合材料是较为理想的应用形式㊂主要研究的方向在于具体组分设计㊁微观修饰㊁制备工艺的改进以及对成本的控制[4]㊂表1 典型防弹陶瓷的性能陶瓷密度(g ㊃c m -3)弹性模量(G P a)努氏硬度断裂韧性(M P a㊃m 1/2)价格(元㊃k g -1)A l 2O 33.60~3.9034018002.8~4.570~80B 4C 2.5040029002.8~4.3700~800S i C3.12~3.28408~45125004.0~6.4350~4002.1 氧化铝(A l 2O 3)陶瓷氧化铝陶瓷具有高硬度㊁高耐磨㊁低摩擦系数等优点,通常以单晶体和多晶体的形式,用于要求耐热和耐磨的各种应用中㊂在一些特殊应用中采用晶须增韧和相变增韧陶瓷,例如,耐火材料㊁火花塞绝缘体㊁装甲和轴承等㊂不过,陶瓷也拥有太脆韧性不够等缺点㊂氧化铝陶瓷基本上不存在塑性变形,低韧性会导致其很容易受到热和机械冲击载荷而发生破坏㊂氧化铝陶瓷应用于装甲设计有很多优点,价格便宜而且成形工艺多种多样㊂2.2 碳化硼(B 4C )陶瓷碳化硼(B 4C )陶瓷是一种密度低㊁高耐磨㊁高强度极硬的陶瓷㊂碳化硼陶瓷广泛应用于坦克车的装甲㊁防弹衣㊁喷砂嘴㊁特殊密封环以及其他很多工业用品中㊂碳化硼陶瓷是一种重要的工程陶瓷材料,具有低密度(2.52g /c m 3)㊁高熔点(2450ħ)㊁高硬度㊁高弹性模量㊁化学稳定性好以及高中子俘获率等特点,因此B 4C 及其复合材料被广泛地应用于工程领域,尤其是用作新型装甲陶瓷㊂早在20世纪60年代,美国就推出了以B 4C 为芯部的防弹复合装甲,黑鹰武装直升机的机身腹部和乘员座椅也采用由B 4C 和K e v l a r 纤维组成的复合装甲㊂但是,碳化硼是强共价键化合物(共价键比例达到93%以上),塑性差,晶界移动阻力大,并且在碳化硼粉体颗粒表面常常有一层B 2O 3薄膜,阻碍了烧结过程中的物质扩散,因此B 4C 是一种极难烧结的陶瓷材料,这极大地限制了B 4C 陶瓷的应用[5]㊂2.3 碳化硅陶瓷S i C 陶瓷由于具有高温强度大㊁抗氧化性强㊁耐磨损性好㊁热稳定性佳㊁热膨胀系数小㊁热导率大㊁硬度高以及抗热震和耐化学腐蚀等优良特性,因此是当前最有前途的结构陶瓷之一,并且已在许多高技术领域(如空间技术㊁核物理等)及基础产业(如石油化工㊁机械㊁车辆㊁造船等)得到应用,如用作精密轴承㊁密封件㊁气轮机转子㊁喷嘴㊁热交换器部件及原子核反应堆材料等㊂将S i C陶瓷用作装甲材料是近年来国内外研究的热点㊂作为装甲材料,对陶瓷的抗弯强度和硬度则有更高的要求[6]㊂2.4硼化钛(T i B2)陶瓷硼化钛陶瓷(T i B2)是一种具有高强度㊁高硬度和高耐磨性的非氧化物陶瓷㊂目前,主要应用于防弹衣㊁装甲和切割材料等㊂热压㊁热等静压(H I P)㊁无压烧结和微波烧结等工艺都可以用于生产完全致密的硼化钛陶瓷㊂2.5纤维增韧陶瓷复合材料战争中人员和装备的快速安全移动对轻质结构防护材料提出了持续需求,纤维复合陶瓷材料则是提供能量吸收和质量减轻的最佳组合方式㊂用于增韧陶瓷的纤维主要包括玻璃纤维和碳纤维㊂如轻型车辆吉普的面板通常都是基于S-2玻璃纤维(65%的S i O2, 25%的A l2O3和10%的M g O),这会比传统的低碱铝硼硅酸盐E玻璃纤维(名义组成是54%的S i O2,14%的A l2O3,22%的C a O+M g O和10%的B2O3)有更高的断裂应变和弹性模量㊂由陶瓷/凯芙拉材料组成的复合装甲自从问世以来,由于其特有的物理性能和良好的防弹㊁防辐射能力,在武器装备㊁航空航天等领域的应用逐渐广泛㊂美国㊁俄罗斯㊁日本㊁欧共体等己经把该复合装甲成功地应用在多种武器装备上,显著地提高了综合防护能力㊂但鉴于技术保密,有关该材料的加工方法㊁加工技术很少有文章发表㊂2.6透明陶瓷随着材料制备技术的发展,更高性能的新材料不断被开发和研究㊂现代化战争对装甲系统的要求越来越高,不仅要求能够实现全方位的防护,还要求不能妨碍士兵们的行动能力,变 被动 为 主动 ,发展能预先识别目标,并利用诱饵触发和物理摧毁方式破坏来袭武器的 主动装甲 ,成为作战中的一大优势㊂以氮氧化铝(A l O N)和镁铝尖晶石(M g A l2O4)为代表的透明陶瓷已应用于装甲防护领域,既能保护人体又能随时观察敌情㊂透明陶瓷因高强度和硬度,已成为可替代防弹玻璃的具有发展潜力的防护材料,如面罩㊁导弹探测窗口㊁地面作战车辆保护窗㊁飞机的挡风玻璃和降落窗等,主要有单晶氧化铝(蓝宝石)㊁氮氧化铝和镁铝尖晶石㊂当前,陶瓷装甲材料研究的重点是提高其韧性并降低生产成本㊂美国采用微波烧结技术提高生产效率,大幅降低了生产成本,并实现了碳化硅和硼化钛陶瓷材料的规模化生产㊂为提高抗弹性能,美国计划发展全致密碳化硅㊁氧化铝㊁硼化钛和碳化硼等单质陶瓷材料㊁陶瓷基复合材料及透明陶瓷材料[7]㊂陶瓷材料凭借其优异特性,已经成为了当前国内外装甲防护领域的研究热点与发展重点㊂由于军事工程应用的需要,如何提高陶瓷材料的力学性能,深入探究装甲防护陶瓷材料的动态力学特性以及陶瓷复合装甲的抗弹机理,成为了当前装甲防护的重点研究课题㊂3应用进展目前,世界各国对于装甲防护技术研究可以分为材料改进与结构设计2个方向㊂在军用装甲上应用较为广泛的防护材料主要有金属材料㊁陶瓷材料㊁复合材料等,功能结构设计上有蜂窝结构㊁金属封装结构等特殊结构㊂对装甲材料要求的防弹性能包括抗侵彻㊁抗冲击和抗崩落能力㊂陶瓷材料作为一种先进的高技术材料,具有高强度㊁高硬度㊁耐腐蚀㊁高耐磨性和质量轻的特点,它不仅可用在坦克的防护上,而且也可用在飞机㊁舰船㊁车辆㊁关键部位的防弹遮蔽层和单兵作战的防护上,其应用范围越来越广泛㊂实践表明,世界上许多先进坦克采用高性能的陶瓷防护装甲后,防护能力都得到了明显提高㊂为了提高防弹能力,一般采用陶瓷复合装甲㊂舰船用陶瓷复合装甲除了要求有良好的防弹性能外,还需要质量轻,所以对装甲的要求是密度尽可能小㊂因此,在装甲的设计中必须充分考虑复合装甲中各个组成部分的密度,通过优化结构,在最小面密度下实现最大防护效果[8]㊂3.1防弹陶瓷陶瓷是一种脆性材料,在受到冲击时容易破碎,通常不单独做成防护装甲,而是与金属和其它纤维材料一起做成复合装甲;复合装甲中使用的陶瓷通常被改成陶瓷块,使得当某块陶瓷被弹体击碎时,其它陶瓷块还仍然有效㊂陶瓷材料主要应用于以对付中㊁大口径长杆穿甲弹为首要目标的装甲系统,这些弹药主要采用烧蚀破坏机理,另外也应用于防弹背心,陶瓷与复合背面材料结合使用提供要求的防护能力㊂工程应用中,陶瓷复合装甲广泛用在坦克㊁装甲车等装备的防护装甲上㊂但陶瓷材料塑性差㊁断裂强度低㊁易产生脆性断裂,且不能二次防弹,此外,其成形尺寸较小㊁生产效率低,且因其具有极高的硬度和脆性,二次成形加工十分困难,特别是成形孔的加工尤其困难,因而制备成本高,使用局限性较大㊂目前,用于防弹的三大陶瓷材料是氧化铝(A l2O3)㊁碳化硅(S i C)和碳化硼(B4C)㊂氧化铝因其成本低而在防弹上得到更广泛的应用,但其防弹等级最低㊁密度也最大;碳化硼防弹性能最好㊁密度最小,但其价格最为昂贵,20世纪60年代就最先用来作为设计防弹背心的材料;碳化硅陶瓷材料在成本㊁防弹性能和密度指标方面均介于二者之间㊂因而最有可能成为氧化铝防弹陶瓷的升级换代产品[9]㊂3.2陶瓷复合装甲的应用现状陶瓷面板+金属背板复合装甲作为结构最简单㊁成本相对低廉的复合装甲,被研究最多,多被制造为轻型复合装甲㊂面板通常采用A l2O3㊁S i C㊁B4C陶瓷等,背板一般采用芳纶㊁高强度聚乙烯等,粘接一般用橡胶㊁环氧树脂等㊂是制作单兵装甲㊁防弹衣㊁小型关键部位防护装甲的首选㊂碳化硅基陶瓷复合装甲受限于其高昂的价格,多被应用于特种作战领域,例如特种兵防弹衣㊁军用特种车辆装甲㊁武装直升机装甲㊂它也被看做是最有应用前途的陶瓷复合装甲之一,只要能够降低其制造成本并解决其韧性稍差的问题,将会被大量应用于主战坦克㊁轻型装甲车辆等领域㊂目前最普遍的陶瓷复合装甲是氧化铝基陶瓷复合装甲,它有着较好韧性㊁抗热冲击性,价格低廉,生产技术简易㊂被广泛应用于民㊁警单兵防护和民㊁警用押运车及对装甲强度要求较低的领域㊂目前圣戈班陶瓷公司可提供满足复合装甲系统性能要求的陶瓷材料㊂基于40多年来在复合装甲系统的经验,该公司可提供最终产品㊁半成品㊁机加毛坯㊁压制近净形毛坯㊁大体积压制净形部件和复杂机加部件产品㊂生产的陶瓷材料包括:轻型高硬度㊁高压缩强度H e x o l o y 烧结碳化硅(S S i C),具有最佳强度和抗氧化性C R Y S T A R 反应烧结碳化硅(S i S i C),高模量高声速S i l i t S K D反应烧结碳化硅(S i S i C),低密度高硬度N o r b i d e 热压碳化硼(B4C),最高硬度最高刚度的T196/T198氧化铝(A l2O3),高硬度氧化物复合陶瓷T Z3(A l u m i n aZ i r c o n i a)和用于红外窗口的极硬长寿命抗刮伤S a p h i k o n 蓝宝石材料等[10]㊂3.3陶瓷一金属功能梯度复合材料在装甲防护中的应用现在一般应用的陶瓷一金属复合材料,尽管具有很多优点,但当内部应力增大时,会导致材料的破坏;若采用陶瓷一金属功能梯度复合材料,将会改变这种状况㊂这是因为,陶瓷一金属功能梯度复合材料是一种采用多元化技术制造的新型非均匀复合材料,在这种材料中,一面是陶瓷,一面是金属,中间是从陶瓷到金属逐渐变化的板材,可以兼具陶瓷材料和金属材料的双重特点,即可以具有陶瓷的硬度和耐腐蚀㊁耐高温的特性,同时还具有金属的强度和韧性㊂并且在这种材料中,由于各组分材料的体积含量在空间位置上是连续变化的,而其物理性能没有突变,因而可较好地避免诸如在纤维增强复合材料中经常出现的层间应力问题,并降低应力集中现象[11]㊂为克服目前陶瓷复合装甲材料的结构缺陷,美国材料科学家于1999年提出 陶瓷/金属功能梯度装甲材料(F G A C) 的新概念,即利用陶瓷/金属功能梯度材料层间界面上非突变声阻特性及梯度层间冶金结合所具有的良好横向剪切强度,不仅能有效缓解材料的动态损伤,提升材料反侵彻效能,同时又可以促进陶瓷复合装甲材料轻质化发展,所以陶瓷/金属功能梯度装甲材料得到了材料界(尤其是兵器材料科学界)的高度重视与深入研究,成为今后陶瓷复合装甲材料的发展趋势之一[12]㊂目前国外科研人员研究的防弹用陶瓷-金属功能梯度复合材料主要有T i-T i B2体系以及A l2O3/A l㊁S i C/A l㊁B4C/A l㊁S i3N4/A l等复合体系㊂国外研究人员分别从功能梯度材料的制备㊁材料的动态力学性能㊁应力波在功能梯度材料内的传播以及裂纹的扩展等方面展开研究㊂近年来我国许多高校和研究所也相继开展了对功能梯度复合装甲的研究,国内的主要研究单位有北京理工大学㊁西北工业大学㊁沈阳金属所等㊂目前研究的防弹用功能梯度复合材料体系主要有A l2O3/A l㊁S i C/ A l㊁B4C/A l㊁S i3N4/A l等复合体系㊂国内研究人员分别从功能梯度材料的制备㊁材料的动态力学性能与组份分布规律的关系㊁材料的抗弹性能等方面展开研究,并取得了一定的进展[13]㊂4发展趋势目前,装甲陶瓷材料研究的重点是解决其韧性差及成本高的问题㊂美国在降低陶瓷成本方面取得了较大进展,如采用微波烧结技术极大地提高了生产效率,大幅降低了材料成本,并实现了S i C和T i B2陶瓷材料的规模化生产㊂提高装甲陶瓷材料性能方面主要途径有:1)用连续碳纤维增韧补强的S i3N4比纯S i3N4的断裂韧性提高4倍,S i C纤维/S i C可比纯S i C的应变量增大9倍㊂对于S i C w/A l2O3复合材料,当晶须的体积分数为20%以下时,其断裂韧性与晶须含量呈较好的线性关系㊂金属与陶瓷复合可明显提高装甲材料的韧性,如用S i C或B4C颗粒增强铝㊂美国D OW化工公司采用快速全面压实工艺制造了B4C/A l复合装甲,其抗弹极限可达热压B4C的80%~90%,而韧性比单一的B4C好得多㊂另外,塑料陶瓷是一个新的研究领域,它系由陶瓷颗粒为主体(约占总质量的85%),以高聚物做胶粘剂混合而成,它只须采用一般聚合物成形加工技术㊂在等质量基础上比较,这种塑料陶瓷比纯陶瓷具有更好的抗弹性能,且可承受多发弹丸侵彻㊂2)梯度功能材料(F GM)是通过精心设计和采用特殊的工艺,使陶瓷与金属的复合物组分㊁结构能连续地变化,由陶瓷侧过渡到金属侧形成了一种物性参数也连续变化的复合材料㊂F GM的制备可采用化学气相沉积法(C D V)㊁物理蒸镀法(P V D)㊁薄膜叠层法㊁等离子喷涂法㊁自蔓延高温合成法(S H S)及颗粒梯度排列法等,其中以薄膜叠层法效果较好㊂已制成的F GM有S i C-C㊁T i C-T i㊁S i C-A l㊁B e4B-B e㊁T i C-N i等,当以B e4B-B e制作装甲板时,从外表面到中心部位只含B e4B,然后以弥散方式加入B e,到背面为B e4B-10v o l%B e㊂这比陶瓷面板和金属背板组合的复合装甲抗弹性能要好得多㊂3)陶瓷材料的脆裂与其结构敏感性密切相关,其断裂往往始于表面或近表面处的缺陷㊂因此,必须尽可能消除其表面缺陷㊂诸如采用机械化学抛光㊁表面微氧化㊁气相沉积和激光表面处理等,都可改善表面状态,提高陶瓷的韧性㊂20世纪80年代以来,人们采用离子注入法对A l2O3㊁S i C㊁S i3N4㊁Z r O2陶瓷材料的性能进行了研究㊂在A l2O3表面注入N i㊁C r㊁T i㊁Z r㊁Y 等离子可提高其表面硬度约50%,离子注入法也可使S i C和S i3N4的弯曲强度提高20%~30%[14]㊂5结语不同的装甲材料对反装甲武器的攻击有着不同的反应,单一均质材料构成的装甲通常只能防护特定的反装甲武器㊂为了能够应对越来越复杂的实际需求,同时防护多种反装甲武器,复合装甲的研究已成为必然趋势㊂陶瓷复合装甲作为其中的佼佼者,将朝着更高强度㊁更高韧性㊁更低廉的价格㊁更简易的制备工艺等方向发展㊂随着陶瓷复合装甲研究的进展,能让我国陶瓷复合装甲技术水平得到飞跃性的提高,对我国国防领域技术会产生积极影响㊂参考文献[1]胡丽萍,王智慧,侯圣英,等.大倾角陶瓷复合装甲抗弹性能研究[J].兵工自动化,2010,29(2):12-13.[2]郭丽.高性能轻质装甲材料加工技术的研究:[硕士学位论文][D].南京理工大学,2006.[3]吴燕平,燕青芝.防弹装甲中的陶瓷材料[J].兵器材料科学与工程,20174(4):135-140.[4]陈刚.陶瓷复合装甲材料的应用研究[J].中国战略新兴产业,2019(4):35.[5]孙川,万春磊,潘伟,等.反应烧结B4C/A l2O3复合陶瓷的装甲防护性能研究[C].无机材料学报,2018,33(5):545-549.[6]曹连忠,刘国玺,燕东明,等.高防护系数S i C陶瓷制备技术研究[J].兵器材料科学与工程,2008,31(5):43-46.[7]房凌晖,郑翔玉,马丽,等.坦克装甲车辆装甲防护发展研究[C].四川兵工学报,2014,35(2):23-26.[8]谢述锋.舰船用轻型陶瓷基复合装甲的抗弹性能研究[J].舰船科学技术,2007,29(3):110-113.[9]高原,姚凯.军用车辆装甲防护材料与技术发展的研究[J].机电产品开发与创新,2015,28(2):10-13.[10]梓文.用于复合装甲防护系统的陶瓷[J].兵器材料科学与工程,2016,39(1):88.[11]焦丽娟,李军.陶瓷一金属功能梯度复合材料在装甲防护中的应用[C].四川兵工学报,2006(3):22-23.[12]李维锴,韩保红,赵忠民.装甲防护陶瓷材料的研究进展[J].特种铸造及有色合金,2018,38(3):259-262.[13]王信涛.陶瓷增强金属功能梯度装甲抗侵彻性能数值模拟:[硕士学位论文][D].哈尔滨工程大学,2013.[14]刘薇,杨军.装甲防护材料的研究现状及发展趋势[J].热加工工艺,2011,40(2):108-111.。

无铅压电陶瓷的研究与应用进展

无铅压电陶瓷的研究与应用进展

无铅压电陶瓷的研究与应用进展一、本文概述随着科技的进步和社会的发展,无铅压电陶瓷作为一种重要的功能材料,其在众多领域中的应用越来越广泛。

无铅压电陶瓷,顾名思义,是指那些不含有铅元素,同时具备压电效应的陶瓷材料。

这类材料因其独特的物理性质,如压电性、热释电性、铁电性等,使得它们在传感器、换能器、谐振器、滤波器、驱动器等电子元器件以及医疗、环保、能源、通信等领域具有广阔的应用前景。

本文旨在全面综述无铅压电陶瓷的研究现状和应用进展。

我们将首先介绍无铅压电陶瓷的基本概念、性质及分类,然后重点论述其制备工艺、性能优化、改性方法等关键技术问题。

我们还将对无铅压电陶瓷在各个领域的应用情况进行深入探讨,分析其在不同应用场景中的优势和挑战。

我们将对无铅压电陶瓷的未来发展趋势进行展望,以期为推动该领域的研究和应用提供有益的参考。

二、无铅压电陶瓷的分类与性能无铅压电陶瓷,作为一种环境友好且性能优良的压电材料,近年来受到了广泛的关注和研究。

根据其组成和结构的不同,无铅压电陶瓷主要可以分为以下几类:碱土金属氧化物基无铅压电陶瓷、铋层状结构无铅压电陶瓷、钨青铜结构无铅压电陶瓷以及其他复杂结构无铅压电陶瓷。

碱土金属氧化物基无铅压电陶瓷,如钛酸钡(BaTiO3)和钛酸锶(SrTiO3)等,具有较高的居里温度和稳定的压电性能。

这些材料在传感器、执行器以及谐振器等领域有着广泛的应用。

然而,它们的压电性能相对铅基压电陶瓷来说较低,因此,提高其压电性能是无铅压电陶瓷研究的重要方向。

铋层状结构无铅压电陶瓷,如铋酸钠(Bi2NaNbO7)和铋酸钾(Bi2KNbO7)等,具有层状结构和良好的压电性能。

这类材料的压电常数和介电常数都较高,因此在高频、高功率、高温等极端环境下具有广泛的应用前景。

然而,其居里温度较低,限制了其在高温领域的应用。

钨青铜结构无铅压电陶瓷,如铌酸钾钠(K5Na5NbO3)和铌酸钾锂(LiNbO3)等,具有良好的压电性能和较高的居里温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年论文`题目:功能陶瓷材料学院:化学学院专业年级:材料化学2012级学生姓名:廖彦学号:20120512263 指导教师:周健职称:教授2015年4月17日成绩功能陶瓷材料材料化学专业 2012级廖彦指导教师周健摘要:随着现代新技术的发展,功能陶瓷及其应用正向着高微型化、薄膜化、精细化、多功能集成化、高性能和复合结构方向发展。

根据功能陶瓷材料的应用前景,本文介绍了几种重要功能陶瓷材料的性能、应用范围,同时介绍了功能陶瓷材料今后的发展趋势。

关键词:功能陶瓷;功能陶瓷材料;应用;发展趋势Abstract:with the development of the modern new technology, high functional ceramics and its application is toward miniaturization, thin films, the refinement, multifunctional integration, high performance and complex structure. According to the application prospect of functional ceramic material, this paper introduces several kinds of important functional ceramics material performance, application range, and introduces the development trend of functional ceramic materials in the future.Key words:functional ceramics; Functional ceramics materials; Application; The development trend1功能陶瓷材料概述利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。

功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。

功能陶瓷材料具有微波介电性能、气敏性能、超导性能、电阻梯度性能、铁电性能及其相变行为、多层驱动性、弛豫性能等多种优良的功能,应用十分广泛。

功能陶瓷材料种类繁多,用途广泛,主要包括铁电、压电、介电、热释电、半导体、电光和磁性等功能各异的新型陶瓷材料,它与传统的陶瓷相比在原料及工艺等方面有很大的区别,是知识和技术密集型产品。

2 四类功能陶瓷材料及其研究进展2.1 导电陶瓷通常陶瓷不导电,是良好的绝缘体。

例如在氧化物陶瓷中,原子的外层电子通常受到原子核的吸引力,被束缚在各自原子的周围,不能自由运动。

所以氧化物陶瓷通常是不导电的绝缘体。

然而,某些氧化物陶瓷加热时,处于原子外层的电子可以获得足够的能量,以便克服原子核对它的吸引力,而成为可以自由运动的自由电子,这种陶瓷就变成了导电陶瓷,它具有良好的导电性能,而且能耐高温,是磁流体发电装置中集电极的关键材料。

石康源[1]认为ZnO导电陶瓷在室温下就具有较高的导电性,这与晶格是纤维锌矿型、能带结构以及微观结构密切相关。

目前,已经研制出多种可在高温环境下应用的高温电子导电陶瓷材料:碳化硅陶瓷的最高使用温度为1450℃,二硅化钼陶瓷的最高使用温度为1650℃,氧化锆陶瓷的最高使用温度为2000℃,氧化钍陶瓷的最高使用温度高达2500℃。

他们应用也是十分广泛,例如碳化硅陶瓷是从20世纪60年代开始发展起来的,之前只要用于机械磨削材料和耐火材料。

[2]现在已经不仅仅满足与制备传统碳化硅陶瓷,近几年以碳化硅为基的复相陶瓷相继出现,改善了单体材料的韧性和强度,这将有助于我国陶瓷产品的发展。

此外,还有离子导电陶瓷和半导体陶瓷,与单晶半导体不同的是,半导体陶瓷存在大量晶界,晶粒的半导体化是在烧结工艺过程中完成的。

因此具有丰富的材料微结构状态多样的工艺条件,特别适用于作为敏感材料。

[3]如PTC(positive temperature coemcient的缩写)材料在国内无论是基础理论研究还是工业生产规模都有长足进步,其应用范围已渗透到航天、航空、航海、无线通讯、有线通讯、电子工业和民用电器等各个领域。

[4]而铬酸镧(La—CrO )是一种钙钛矿型复合氧化物,具有很高的熔点(2490℃),它在掺杂Ca、sr和Mg等二价碱土金属后具有很多特殊的性质。

在高温发热材料、固体氧化物燃料电池连接材料、催化剂、NTC热敏电阻等方面都得到广泛的应用。

从20世纪8O年代对超导陶瓷的研究有重大突破以来,对高温超导陶瓷材料的研究及应用就倍受关注。

目前高温超导材料的应用正朝着大电流应用、电子学应用、抗磁性等方面发展。

2.2 压电陶瓷一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。

压电陶瓷的晶体结构上没有对称中心,因而具有压电效应,即具有机械与电能之间的转换和逆转换的功能。

压电陶瓷利用其材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即压电效应而制作,具有敏感的特性。

压电陶瓷除具有压电性性、介电性、弹性等,已被广泛应用于医学成像、声传感器、声换能器、超声马达等[5]。

压电材料由于其成份和结构的不同,故其压电性能各有特点,根据器件应用性能参数的要求,实际应用领域也各有侧重。

例如铋层状结构无铅压电陶瓷体系压电性能稳定、谐振频率的时间和温度稳定性好,适合用于制作高温能量转换领域的器件,钙钛矿型铁电体BNT陶瓷具有铁电性强、机电耦合系数大、声学性能好,适合制作高频超声换能器和声表面波器件[6,7] 。

无铅钛酸钡基压电陶瓷系列,可以应用于中低温压电陶瓷系列产品,制备技术较为成熟,关键是产业化生产中解决陶瓷片烧结后的分片问题,这可以调整配方和控制工艺技术来解决这一关键技术问题,目前已经有相关的发明专利技术[8]。

2.3 纳米功能陶瓷利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。

它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响。

陶瓷材料的脆性大、不耐热冲击、不均匀、强度差、可靠性低、加工困难等缺点大大地限制了陶瓷的应用。

随着纳米技术的广泛应用,希望以纳米技术来克服陶瓷材料的这些缺点,如降低陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。

因此纳米陶瓷被认为是解决陶瓷脆性的战略途径[9]。

同时,纳米陶瓷也为改善陶瓷材料的烧结性和可加工性提供了一条崭新的途径。

2.4 光催化功能陶瓷随着高新技术的发展,高技术陶瓷已成为国民经济建设和国计民生不可缺少的支柱材料。

在环境保护领域用于节能、减排以及“三废”处理的环保功能陶瓷正崭露头角,例如用于汽车、摩托车尾气净化的蜂窝陶瓷载体,用于蓄热式燃烧技术的蜂窝陶瓷蓄热体,用于处理工业废气和废水的催化剂载体,用于分离气体、固体的陶瓷膜,以及各种抗菌陶瓷等等。

其中将光催化剂负载于陶瓷表面制成的光催化功能陶瓷,克服了粉末态催化剂难回收的弊端,使光催化技术在空气和污水净化方面的应用得以实现[10]。

因此,孔德双、谷昌军[11]等认为研究光研发光催化功能陶瓷的“三废”治理技术,拓展高技术陶瓷在环保节能中的应用,完全符合国家的可持续发展战略,也符合陶瓷行业产业结构调整的方向。

在光催化功能陶瓷材料中,K2Ti6O13具有优良的化学稳定性、耐腐蚀性、耐热隔热性、良好的生物相容性及半导体性能,被用于绝热材料、加固材料、功能性填充料和催化剂等行业。

[12]李靖、张兆娟、史小琴等人就K2Ti6O13的制备以及光催化性质做了研究,认为K2Ti6O13在染料废水和重金属废水过程中均具有光催化作用K2Ti6O13对甲基橙的吸附能力较强,光催化效率较高,因而推测其在光催化净化染料废水方面有潜在应用。

3 功能陶瓷的发展趋势功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷,压电铁电陶瓷,半导体陶瓷,快离子导体陶瓷,高温超陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的类先进陶瓷材料。

十年来功能陶瓷从高介电系数陶瓷、压电陶瓷、热释电陶瓷、电光陶瓷、半导电陶瓷到智能陶瓷的发展,使人们利用这些材料所特有的功能创建了很多高科技的新型传感器、换能器和驱动器。

它们体积小、信号密度高、速度快而且便于组合集成,为了能研制出智能程度更高的器件和系统,近年来又出现了一些新材料如多铁电体(multiferroelectrics)陶瓷和左手(lefthand)材料等。

近十年来,在人类社会对能源、计算机、信息、激光和空间等现代技术的迫切需求的牵引下,功能陶瓷在新材料探索、现有材料潜在功能的开发和材料、器件一体化以及应用等方面都取得了突出的进展,成为材料科学和工程中最活跃的研究领域之一,也是电子信息、集成电路、移动通信、能源技术和国防军工等现代高新技术领域的重要基础材料。

因此,功能陶瓷今后在性能方面会向着高效能、高可靠性、低损耗、多功能、超高功能以及智能化方向发展。

在设备技术方面向着多层、多相乃至超微细结构的调控与复合、低温活化烧结、立体布线、超细超纯、薄膜技术等方向发展,在材料及应用的主要研究方向应包括智能化敏感陶瓷及其传感器,具有高转换率、高可靠性、低损耗、大功率的压电陶瓷及其换能器;超高速太容量超导计算机用光纤陶瓷材料;多层封装立体布线用的高导热低介电常数陶瓷基板材料;量大面广、低烧、高比容、用稳定性的多层陶瓷电容器材料等。

我们要牢记,最先进的技术是买不来的,我们一定要积极发展有自主知识产权的技术,以使自己在未来全球经济一体化的大潮中立于不败之地参考文献:[1] 石康源.ZnO导电陶瓷的微观结构与导电机理[J] .功能材料,1996,27(01):61-63[2] 柴威.碳化硅陶瓷的应用现状[J] .轻工机械,2012,30(4):117[3] 杨秀凯,千学著.电子功能陶瓷材料的应用及发展[J].中国电子商情,2003,(Z1):33-35[4] 叶超群,徐政,严彪.电子陶瓷材料介电功能应用研究现状与前瞻[J].江苏陶瓷,2004,37(02):15-19.[5] WuZG,RonaldE.Pressure-induced anomalous phase transitions and colossal enhan cement of piezoe lectricity in PbTiO3[J].Physical Review Letters, 2005,95 (03760 1):1-4[6] 尹奇异,廖运文,赁敦敏.无铅压电陶瓷的器件应用分析[J].压电与声光,2006,28(2):1 64-166.[7] 范桂芬,吕文中,饶源源.(K0.5Na0.5)12xSrx(Nb0.94Sb0.06) O3无铅压电陶瓷结构及性能研究[J].无机材料报,2009,24(3):433-437[8]唐新桂,邓颖宇,蒋力立.高压电系数无铅锆钛酸锶钡系压电陶瓷[P].中国专利: CN18371 44, 2006-09-27[9] CahnRW.Nanomaterialscomingofage.Nature,1988,332(60-61):112-115[10] 姚治才.环境问题与陶瓷[J].陶瓷.1999. 1:7-12.[11] 孔德双,谷昌军.光催化功能陶瓷的研制[J].中国陶瓷.2008,44(3):11[12]李靖,张兆娟,史小琴.功能陶瓷材料K2Ti6O13的合成和光催化性质研究[J] .中国陶瓷 .2014,50(2):24-29。

相关文档
最新文档